1
|
Song Q, Sui J, Yang Y, Zhang H, Ya L, Yang L. Fructose-1,6-bisphosphatase 1 in cancer: Dual roles, mechanistic insights, and therapeutic potential - A comprehensive review. Int J Biol Macromol 2025; 293:139273. [PMID: 39753180 DOI: 10.1016/j.ijbiomac.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment. Conversely, in certain contexts like breast and prostate cancers, FBP1 overexpression is associated with tumor promotion, indicating its oncogenic potential. The review explores FBP1's interactions with immune cells within the tumor microenvironment, influencing immune surveillance and tumor immune escape mechanisms. Additionally, FBP1 emerges as a promising diagnostic and prognostic biomarker, with expression levels correlating with patient outcomes in multiple cancers. Future therapeutic strategies targeting FBP1 are discussed, including inhibitors, activators, epigenetic modulation, and combination therapies, while addressing the challenges posed by its dual nature. Understanding the multifaceted roles of FBP1 offers valuable insights into cancer metabolism and opens avenues for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Qinghang Song
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiazhen Sui
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Li Ya
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Huang XY, Gao SJ, Ge D, Ma M, Shen ZL, Chu XQ. Modular Synthesis of Furans with Four Nonidentical Substituents by Aqueous Defluorinative Reaction of Trifluoromethyl Enones with Two Nucleophiles. Org Lett 2024. [PMID: 39719377 DOI: 10.1021/acs.orglett.4c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
A three-component reaction of trifluoromethyl enones, phosphine oxides, and alcohols in water solution is developed. This defluorinative reaction occurs through a cascade process involving defluorophosphorylation, defluoroalkyloxylation, and defluoroheteroannulation, enabling the modular synthesis of furans with four distinct substituents: C2-alkyloxy, C3-trifluoromethyl, C4-phosphoryl, and C5-(hetero)aryl groups. Moreover, apart from alcohol substrates, the scope of nucleophiles could be further extended to phenols, azacycles, or sulfonamide.
Collapse
Affiliation(s)
- Xue-Ying Huang
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shu-Ji Gao
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Wang H, Lei L, Guo H, Xu K, Liu Q, Cao H, Hu J, Liu S, Zhang D. Discovery of novel fructose-1,6-bisphosphatase inhibitors bearing benzimidazole scaffold using a dual-ligand molecular docking model. Eur J Med Chem 2024; 279:116888. [PMID: 39332383 DOI: 10.1016/j.ejmech.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is an emerging target in gluconeogenesis, inhibitors of which would be an effective treatment for elevated fasting blood glucose in patients with type 2 diabetes. Based on the lead compound G-1 (FBPase 10 μM inhibition = 64.3 %) and according to the X-ray crystal structure of FBPase, we designed and validated an innovative molecular docking method based on the dual-ligand model to explore the interactions between two identical ligands in neighboring targets. Based on the dual-ligand molecular docking model, a novel compound 45 bearing a benzimidazole scaffold was identified to show increased inhibitory activity against FBPase (IC50, 2.08 μM). An oral pyruvate tolerance test in ICR mice showed that 45 had a potent inhibitory effect on gluconeogenesis similar to that of metformin when administered as a single dose in vivo. Compound 45 did not inhibit the common subtypes of the human cytochrome P450 system, indicating that it may have a reduced propensity for drug-drug interactions. The findings of this study may pave the way for further development of FBPase inhibitors with novel structural features, improved activity, and good druggability.
Collapse
Affiliation(s)
- Huahao Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Liran Lei
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hao Guo
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Kejia Xu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Quan Liu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hui Cao
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Shuainan Liu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
4
|
Zhang P, Yang J, Liu X, Huang C, Tao Y, Shen P, Bai Z, Xiao C, Zhou L, Li G, Zhang L, Zhou W, Gao Y. FBP1 orchestrates keratinocyte proliferation/differentiation and suppresses psoriasis through metabolic control of histone acetylation. Cell Death Dis 2024; 15:392. [PMID: 38834617 PMCID: PMC11150480 DOI: 10.1038/s41419-024-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ju Yang
- Department of Dermatology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, 610083, China
| | - Xiong Liu
- Department of Information, The PLA Center for Disease Control and Prevention, Beijing, China
| | - Congshu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhang
- Department of Information, The PLA Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
5
|
Ding T, Wen B, Chen J, Chu W, Fan R, Chen X. Excess homocysteine inhibits pancreatic β-cell secretory function by repressing Zbtb20 expression. Mol Cell Endocrinol 2024; 586:112195. [PMID: 38432501 DOI: 10.1016/j.mce.2024.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid. An elevated level of Hcy is a risk factor for diabetes development. However, the mechanism of its effect on pancreatic β-cell function is unclear. In this study, we constructed a hyperhomocysteinemia (HHcy) mouse model by feeding mice a high methionine diet (HMD). The mice suffered impaired glucose tolerance and reduced insulin secretion. Furthermore, at the cellular level, INS1 cells exhibited impaired insulin secretory function after the Hcy intervention. Transcriptomics revealed that Zbtb20 expression was downregulated and the downstream gene Fbp1 was upregulated in HHcy-induced mice compared with mice fed with normal diet. Insulin secretion could be restored by Zbtb20 overexpression or fructose 1,6-bisphosphatase (FBPase) activity inhibition in INS1 cells. In conclusion, our study suggested that Hcy inhibited the insulin secretory function of pancreatic β-cells by suppressing Zbtb20 expression, leading to the development of diabetes. Zbtb20 may be a key target in the development of diabetes associated with elevated Hcy levels.
Collapse
Affiliation(s)
- Tianqi Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bo Wen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jian Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Wenbin Chu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Rong Fan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Central Laboratory, Tianjin Xiqing Hospital, Tianjin, 300380, China.
| | - Xuewei Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
6
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-triggered extracellular trap formation in cattle polymorphonuclear leucocytes is glucose metabolism dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104492. [PMID: 35830898 DOI: 10.1016/j.dci.2022.104492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.
Collapse
Affiliation(s)
- John Quiroga
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
8
|
Zhao Y, Yang H, Wu F, Luo X, Sun Q, Feng W, Ju X, Liu G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int J Mol Sci 2022; 23:ijms231810259. [PMID: 36142164 PMCID: PMC9499002 DOI: 10.3390/ijms231810259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.
Collapse
Affiliation(s)
- Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Honghao Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Sun
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Weiliang Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| |
Collapse
|
9
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.
Collapse
Affiliation(s)
- Samuel A Kirby
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
11
|
Pan L, Kelley AS, Cooke MV, Deckert MM, Laulhé S. Transition-Metal-Free Photoredox Phosphonation of Aryl C-N and C-X Bonds in Aqueous Solvent Mixtures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:691-695. [PMID: 37197437 PMCID: PMC10187776 DOI: 10.1021/acssuschemeng.1c07394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, we present an efficient and mild methodology for the synthesis of aromatic phosphonate esters in good to excellent yields using 10H-phenothiazine, an inexpensive commodity chemical, as a photoredox catalyst. The reaction exhibits wide functional group compatibility enabling the transformation in the presence of ketone, amide, ester, amine, and alcohol moieties. Importantly, the reaction proceeds using a green solvent mixture primarily composed of water, thus lowering the environmental footprint of this transformation compared to current methods. The transformation also proceeds under atmospheric conditions, which further differentiates it from current methods that require inert atmosphere. Mechanistic work using fluorescence quenching experiments and radical trapping approaches support the proposed mechanism.
Collapse
Affiliation(s)
- Lei Pan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Alexandra S Kelley
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Maria Victoria Cooke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Macy M Deckert
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
12
|
Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2022; 17:e202100568. [PMID: 34636150 PMCID: PMC8741643 DOI: 10.1002/cmdc.202100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 01/07/2023]
Abstract
A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michal Šafránek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michael P. Hayes
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| |
Collapse
|
13
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Wang X, Zhao R, Ji W, Zhou J, Liu Q, Zhao L, Shen Z, Liu S, Xu B. Discovery of Novel Indole Derivatives as Fructose-1,6-bisphosphatase Inhibitors and X-ray Cocrystal Structures Analysis. ACS Med Chem Lett 2021; 13:118-127. [PMID: 35059131 PMCID: PMC8762752 DOI: 10.1021/acsmedchemlett.1c00613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023] Open
Abstract
Liver fructose-1,6-bisphosphatase (FBPase) is a key enzyme in the gluconeogenesis, and its inhibitors are expected to be novel antidiabetic agents. Herein, a series of new indole and benzofuran analogues were designed and synthesized to evaluate the inhibitory activity against FBPase. As a result, the novel FBPase inhibitors bearing N-acylsulfonamide moiety on the 3-position of the indole-2-carboxylic acid scaffold (compounds 22f and 22g) were identified with IC50s at the submicromolar levels. Three X-ray crystal structures of the complexes were solved and revealed the structural basis for the inhibitory activity. The chemoinformatics analysis further disclosed the distinct binding features of this class of inhibitors, providing an insight for further modifications to create structurally distinct FBPase inhibitors with high potency and drug-like properties.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Rui Zhao
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,School
of Pharmaceutical Engineering, Shenyang
Pharmaceutical University, Shenyang, 100016, China
| | - Wenming Ji
- State
Key Laboratory of Bioactive Substances and Functions of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,Diabetes
Research Center, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhou
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Quan Liu
- State
Key Laboratory of Bioactive Substances and Functions of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,Diabetes
Research Center, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linxiang Zhao
- School
of Pharmaceutical Engineering, Shenyang
Pharmaceutical University, Shenyang, 100016, China
| | - Zhufang Shen
- State
Key Laboratory of Bioactive Substances and Functions of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,Diabetes
Research Center, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuainan Liu
- State
Key Laboratory of Bioactive Substances and Functions of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,Diabetes
Research Center, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, 100050, China,S.L. email,
| | - Bailing Xu
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing, 100050, China,B.X.: email,
| |
Collapse
|
15
|
Miller CO, Cao J. Probing Hepatic Glucose Metabolism via 13C NMR Spectroscopy in Perfused Livers-Applications to Drug Development. Metabolites 2021; 11:metabo11110712. [PMID: 34822370 PMCID: PMC8622237 DOI: 10.3390/metabo11110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite being first published over 40 years ago, the combination of 13C nuclear magnetic resonance spectroscopy (NMR) and the isolated perfused liver preparation remains a unique and relevant approach in investigating the effects of pharmacological interventions on hepatic metabolism. The use of intact, perfused livers maintains many metabolic reactions at their respective rates in vivo, while the use of 13C-labelled substrates in combination with 13C NMR allows for a detailed study of specific pathways, as well as the design of robust assays which can be used to evaluate novel pharmacological agents. In this review article, we share some of the methods used to probe glucose metabolism, and highlight key findings and successes derived from the application of this specialized technique to the area of drug development for diabetes and related metabolic disorders.
Collapse
|
16
|
Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. Eur J Med Chem 2021; 222:113581. [PMID: 34102377 PMCID: PMC8373703 DOI: 10.1016/j.ejmech.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
A series of novel acyclic nucleoside phosphonates (ANPs) was synthesized as potential adenylate cyclase inhibitors, where the adenine nucleobase of adefovir (PMEA) was replaced with a 5-substituted 2-aminothiazole moiety. The design was based on the structure of MB05032, a potent and selective inhibitor of fructose 1,6-bisphosphatase and a good mimic of adenosine monophosphate (AMP). From the series of eighteen novel ANPs, which were prepared as phosphoroamidate prodrugs, fourteen compounds were potent (single digit micromolar or submicromolar) inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT), mostly without observed cytotoxicity in J774A.1 macrophage cells. Selected phosphono diphosphates (nucleoside triphosphate analogues) were potent inhibitors of ACT (IC50 as low as 37 nM) and B. anthracis edema factor (IC50 as low as 235 nM) in enzymatic assays. Furthermore, several ANPs were found to be selective mammalian AC1 inhibitors in HEK293 cell-based assays (although with some associated cytotoxicity) and one compound exhibited selective inhibition of mammalian AC2 (only 12% of remaining adenylate cyclase activity) but no observed cytotoxicity. The mammalian AC1 inhibitors may represent potential leads in development of agents for treatment of human inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Petra Břehová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic.
| |
Collapse
|
17
|
Quantitative determination of Cpd118, A novel FBPase inhibitor, in dog plasma by HPLC-MS/MS. Bioanalysis 2021; 13:865-873. [PMID: 33998282 DOI: 10.4155/bio-2021-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: A HPLC-MS/MS method was first developed and validated for the quantification of Cpd118, a novel fructose-1, 6-bisphosphatase inhibitor for controlling gluconeogenesis in Type 2 diabetes mellitus. Materials & methods: Cpd118 was extracted from dog plasma following acetonitrile protein precipitation, separated by HPLC on a CAPCELL PAK ADME column (3.5 μm, 2.1 mm × 100 mm) and quantified using negative heated electrospray ion source-MS/MS. Results: Cpd118 was quantified from plasma using the method described above over a linear range of 10-20,000 ng/ml, with interday and intraday assay accuracy from -11.78 to 4.01% and the precision was ≤11.15%. Conclusion: The method was sensitive and selective for the quantification of Cpd118 and was successfully used to the pharmacokinetic and bioavailability study of Cpd118 in dogs.
Collapse
|
18
|
Han X, Huang Y, Wei L, Chen H, Guo Y, Tang Z, Hu W, Xia Q, Wang Q, Yan J, Ren Y. Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1,6-bisphosphatase. Bioorg Med Chem 2020; 28:115624. [PMID: 32828433 DOI: 10.1016/j.bmc.2020.115624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 μM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5-55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.
Collapse
Affiliation(s)
- Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Haifeng Chen
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zilong Tang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qinfei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
19
|
Xu YX, Huang YY, Song RR, Ren YL, Chen X, Zhang C, Mao F, Li XK, Zhu J, Ni SS, Wan J, Li J. Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2020; 203:112500. [PMID: 32711108 DOI: 10.1016/j.ejmech.2020.112500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), as a key rate-limiting enzyme in the gluconeogenesis (GNG) pathway, represents a practical therapeutic strategy for type 2 diabetes (T2D). Our previous work first identified cysteine residue 128 (C128) was an important allosteric site in the structure of FBPase, while pharmacologically targeting C128 attenuated the catalytic ability of FBPase. Herein, ten approved cysteine covalent drugs were selected for exploring FBPase inhibitory activities, and the alcohol deterrent disulfiram displayed superior inhibitory efficacy among those drugs. Based on the structure of lead compound disulfiram, 58 disulfide-derived compounds were designed and synthesized for investigating FBPase inhibitory activities. Optimal compound 3a exhibited significant FBPase inhibition and glucose-lowering efficacy in vitro and in vivo. Furthermore, 3a covalently modified the C128 site, and then regulated the N125-S124-S123 allosteric pathway of FBPase in mechanism. In summary, 3a has the potential to be a novel FBPase inhibitor for T2D therapy.
Collapse
Affiliation(s)
- Yi-Xiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yun-Yuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rong-Rong Song
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Liang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xiao-Kang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuai-Shuai Ni
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 South Wan Ping Road, Shanghai, 200032, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Li S, Chen X, Zhou J, Xie Z, Shang M, He L, Liang P, Chen T, Mao Q, Liang C, Li X, Huang Y, Yu X. Amino acids serve as an important energy source for adult flukes of Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008287. [PMID: 32352979 PMCID: PMC7217481 DOI: 10.1371/journal.pntd.0008287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Clonorchiasis, caused by chronic infection with Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease that seriously afflicts more than 35 million people globally, resulting in a socioeconomic burden in endemic regions. C. sinensis adults long-term inhabit the microaerobic and limited-glucose environment of the bile ducts. Energy metabolism plays a key role in facilitating the adaptation of adult flukes to crowded habitat and hostile environment. To understand energy source for adult flukes, we compared the component and content of free amino acids between C. sinensis-infected and uninfected bile. The results showed that the concentrations of free amino acids, including aspartic acid, serine, glycine, alanine, histidine, asparagine, threonine, lysine, hydroxylysine, and urea, were significantly higher in C. sinensis-infected bile than those in uninfected bile. Furthermore, exogenous amino acids could be utilized by adult flukes via the gluconeogenesis pathway regardless of the absence or presence of exogenous glucose, and the rate-limiting enzymes, such as C. sinensis glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and pyruvate carboxylase, exhibited high expression levels by quantitative real-time PCR analysis. Interestingly, no matter whether exogenous glucose was present, inhibition of gluconeogenesis reduced the glucose and glycogen levels as well as the viability and survival time of adult flukes. These results suggest that gluconeogenesis might play a vital role in energy metabolism of C. sinensis and exogenous amino acids probably serve as an important energy source that benefits the continued survival of adult flukes in the host. Our study will be a cornerstone for illuminating the biological characteristics of C. sinensis and the host-parasite interactions. Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.
Collapse
Affiliation(s)
- Shan Li
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xueqing Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory for Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhizhi Xie
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Mei Shang
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| |
Collapse
|
21
|
Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep 2020; 26:222-235.e5. [PMID: 30605678 DOI: 10.1016/j.celrep.2018.12.028] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.
Collapse
|
22
|
Tiwari P, Katyal A, Khan MF, Ashraf GM, Ahmad K. Lead Optimization Resources in Drug Discovery for Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 19:754-774. [PMID: 30834844 DOI: 10.2174/1871530319666190304121826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes, defined as a chronic metabolic syndrome, exhibits global prevalence and phenomenal rise worldwide. The rising incidence accounts for a global health crisis, demonstrating a profound effect on low and middle-income countries, particularly people with limited healthcare facilities. METHODS Highlighting the prevalence of diabetes and its socio-economic implications on the population across the globe, the article aimed to address the emerging significance of computational biology in drug designing and development, pertaining to identification and validation of lead molecules for diabetes treatment. RESULTS The drug discovery programs have shifted the focus on in silico prediction strategies minimizing prolonged clinical trials and expenses. Despite technological advances and effective drug therapies, the fight against life-threatening, disabling disease has witnessed multiple challenges. The lead optimization resources in computational biology have transformed the research on the identification and optimization of anti-diabetic lead molecules in drug discovery studies. The QSAR approaches and ADMET/Toxicity parameters provide significant evaluation of prospective "drug-like" molecules from natural sources. CONCLUSION The science of computational biology has facilitated the drug discovery and development studies and the available data may be utilized in a rational construction of a drug 'blueprint' for a particular individual based on the genetic organization. The identification of natural products possessing bioactive properties as well as their scientific validation is an emerging prospective approach in antidiabetic drug discovery.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, MG Institute of Management and Technology, Lucknow-Kanpur Road, Lucknow, India
| | - Ashish Katyal
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Mohd F Khan
- Department of Biotechnology, Utkarsh School of Management and Technology, Bareilly, India.,Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
23
|
Lu C, Ren C, Yang T, Sun Y, Qiao P, Wang D, Lv S, Yu Z. A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer. Mol Cancer Res 2020; 18:787-796. [PMID: 32041737 DOI: 10.1158/1541-7786.mcr-19-0842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer. IMPLICATIONS: We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
24
|
Chan CB, Ahuja P, Ye K. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Curr Top Med Chem 2019; 19:2188-2204. [PMID: 31660832 DOI: 10.2174/1568026619666191010160643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Diabetes is a global public health concern nowadays. The majority of diabetes mellitus (DM) patients belong to type 2 diabetes mellitus (T2DM), which is highly associated with obesity. The general principle of current therapeutic strategies for patients with T2DM mainly focuses on restoring cellular insulin response by potentiating the insulin-induced signaling pathway. In late-stage T2DM, impaired insulin production requires the patients to receive insulin replacement therapy for maintaining their glucose homeostasis. T2DM patients also demonstrate a drop of brain-derived neurotrophic factor (BDNF) in their circulation, which suggests that replenishing BDNF or enhancing its downstream signaling pathway may be beneficial. Because of their protein nature, recombinant insulin or BDNF possess several limitations that hinder their clinical application in T2DM treatment. Thus, developing orally active "insulin pill" or "BDNF pill" is essential to provide a more convenient and effective therapy. This article reviews the current development of non-peptidyl chemicals that mimic insulin or BDNF and their potential as anti-diabetic agents.
Collapse
Affiliation(s)
- Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University of School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Huang Y, Wei L, Han X, Chen H, Ren Y, Xu Y, Song R, Rao L, Su C, Peng C, Feng L, Wan J. Discovery of novel allosteric site and covalent inhibitors of FBPase with potent hypoglycemic effects. Eur J Med Chem 2019; 184:111749. [DOI: 10.1016/j.ejmech.2019.111749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
|
26
|
Singh S, Harmalkar DS, Choi Y, Lee K. Fructose-1,6-bisphosphatase Inhibitors: A Review of Recent (2000- 2017) Advances and Structure-Activity Relationship Studies. Curr Med Chem 2019; 26:5542-5563. [DOI: 10.2174/0929867325666180831133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
:
Diabetes mellitus, commonly referred to as diabetes, is the 8th leading cause of
death worldwide. As of 2015, approximately 415 million people were estimated to be diabetic
worldwide, type 2 diabetes being the most common accounting for approximately 90-95% of
all diagnosed cases with increasing prevalence. Fructose-1,6-bisphosphatase is one of the important
therapeutic targets recently discovered to treat this chronic disease. In this focused
review, we have highlighted recent advances and structure-activity relationship studies in the
discovery and development of different fructose-1,6-bisphosphatase inhibitors reported since
the year 2000.
Collapse
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | | | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
27
|
Westermeier F, Holyoak T, Asenjo JL, Gatica R, Nualart F, Burbulis I, Bertinat R. Gluconeogenic Enzymes in β-Cells: Pharmacological Targets for Improving Insulin Secretion. Trends Endocrinol Metab 2019; 30:520-531. [PMID: 31213347 DOI: 10.1016/j.tem.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells express the gluconeogenic enzymes glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBP), and phosphoenolpyruvate (PEP) carboxykinase (PCK), which modulate glucose-stimulated insulin secretion (GSIS) through their ability to reverse otherwise irreversible glycolytic steps. Here, we review current knowledge about the expression and regulation of these enzymes in the context of manipulating them to improve insulin secretion in diabetics. Because the regulation of gluconeogenic enzymes in β-cells is so poorly understood, we propose novel research avenues to study these enzymes as modulators of insulin secretion and β-cell dysfunction, with especial attention to FBP, which constitutes an attractive target with an inhibitor under clinical evaluation at present.
Collapse
Affiliation(s)
- Francisco Westermeier
- FH JOANNEUM Gesellschaft mbH University of Applied Sciences, Institute of Biomedical Science, Eggenberger Allee 13, 8020 Graz, Austria
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joel L Asenjo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, La Pirámide 5750, 8580745 Santiago, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall Room 6022, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Escuela de Medicina, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, 5501842 Puerto Montt, Chile
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile.
| |
Collapse
|
28
|
Heidel KM, Dowd CS. Phosphonate prodrugs: an overview and recent advances. Future Med Chem 2019; 11:1625-1643. [PMID: 31469328 PMCID: PMC6722485 DOI: 10.4155/fmc-2018-0591] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Phosphonates, often used as isosteric replacements for phosphates, can provide important interactions with an enzyme. Due to their high charge at physiological pH, however, permeation into cells can be a challenge. Protecting phosphonates as prodrugs has shown promise in drug delivery. Thus, a variety of structures and cleavage/activation mechanisms exist, enabling release of the active compound. This review describes the structural diversity of these pro-moieties, relevant cleavage mechanisms and recent advances in the design of phosphonate prodrugs.
Collapse
Affiliation(s)
- Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
29
|
Abdel‐Latif E, Almatari AS, Abd‐ElGhani GE. Synthesis and Antibacterial Evaluation of Some New Thiazole‐Based Polyheterocyclic Ring Systems. J Heterocycl Chem 2019; 56:1978-1985. [DOI: 10.1002/jhet.3577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 09/02/2023]
Affiliation(s)
- Ehab Abdel‐Latif
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| | - Altaf S. Almatari
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| | - Ghada E. Abd‐ElGhani
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| |
Collapse
|
30
|
Xu Y, Wang B, Jiang J, Yu H, Fu Y. Mechanistic Study on Decarbonylative Phosphorylation of Aryl Amides by Nickel Catalysis. J Org Chem 2019; 84:9474-9479. [DOI: 10.1021/acs.joc.9b00962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuantai Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Julong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Provence Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
31
|
Fructose 1,6- bisphosphatase: getting the message across. Biosci Rep 2019; 39:BSR20190124. [PMID: 30804231 PMCID: PMC6400660 DOI: 10.1042/bsr20190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Fructose 1,6-bisphosphatase (FBPase) is a key enzyme in gluconeogenesis. It is a potential drug target in the treatment of type II diabetes. The protein is also associated with a rare inherited metabolic disease and some cancer cells lack FBPase activity which promotes glycolysis facilitating the Warburg effect. Thus, there is interest in both inhibiting the enzyme (for diabetes treatment) and restoring its activity (in relevant cancers). The mammalian enzyme is tetrameric, competitively inhibited by Fructose 2,6-bisphosphate and negatively allosterically regulated by AMP. This allosteric regulation requires information transmission between the AMP binding site and the active site of the enzyme. A recent paper by Topaz et al. (Bioscience Reports (2019) 39, pii:BSR20180960) has added additional detail to our understanding of this information transmission process. Two residues in the AMP binding site (Lys112 and Tyr113) were shown to be involved in initiating the message between the two sites. This tyrosine residue has recently be shown to be important with protein’s interaction with the antidiabetic drug metformin. A variant designed to increase metal ion affinity (M248D) resulted in a five-fold increase in enzymatic activity. Interestingly alterations of two residues at the subunit interfaces (Tyr164 and Met177) resulted in increased responsiveness to AMP. Overall, these findings may have implications in the design of novel FBPase inhibitors or activators.
Collapse
|
32
|
Characterization of recombinant fructose-1,6-bisphosphatase gene mutations: evidence of inhibition/activation of FBPase protein by gene mutation. Biosci Rep 2019; 39:BSR20180960. [PMID: 30683805 PMCID: PMC6386767 DOI: 10.1042/bsr20180960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
Specific residues of the highly regulated fructose-1,6-bisphosphatase (FBPase) enzyme serve as important contributors to the catalytic activity of the enzyme. Previous clinical studies exploring the genetic basis of hypoglycemia revealed two significant mutations in the coding region of the FBPase gene in patients with hypoglycemia, linking the AMP-binding site to the active site of the enzyme. In the present study, a full kinetic analysis of similar mutants was performed. Kinetic results of mutants Y164A and M177A revealed an approximate two to three-fold decrease in inhibitory constants (K i's) for natural inhibitors AMP and fructose-2,6-bisphosphate (F2,6-BP) compared with the Wild-type enzyme (WT). A separate mutation (M248D) was performed in the active site of the enzyme to investigate whether the enzyme could be activated. This mutant displayed an approximate seven-fold increase in K i for F2,6-BP. Interfacial mutants L56A and L73A exhibited an increase in K i for F2,6-BP by approximately five-fold. Mutations in the AMP-binding site (K112A and Y113A) demonstrated an eight to nine-fold decrease in AMP inhibition. Additionally, mutant M248D displayed a four-fold decrease in its apparent Michelis constant (K m), and a six-fold increase in catalytic efficiency (CE). The importance-and medical relevance-of specific residues for FBPase structural/functional relationships in both the catalytic site and AMP-binding site is discussed.
Collapse
|
33
|
Balwe SG, Kim JS, Kim YI, Jeong YT. Diversity-oriented one-pot synthesis of furan based densely substituted biheteroaryls via isocyanide insertion. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Huang Y, Chi B, Xu Y, Song R, Wei L, Rao L, Feng L, Ren Y, Wan J. In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. J Mol Graph Model 2018; 86:142-148. [PMID: 30366190 DOI: 10.1016/j.jmgm.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
Fructose-1, 6-bisphosphatase (FBPase) has been regarded as an attractive drug target to control blood glucose against Type 2 diabetes (T2D). In this study, by using the strategy of pharmacophore-based virtual screening, a novel scaffold inhibitor targeted the AMP allosteric site of human liver FBPase were screened, their inhibitory activities were further tested. The experimental results showed that compound H27 exhibited high inhibitory activities with the IC50 value of 5.3 μM. Therefore, compound H27 was chosen as the probe molecule, it's possible binding conformation targeted into FBPase was identified by using DOX2.0 strategy. The importance of key residues (T27, T31, K112 and R140) in allosteric site of FBPase for the binding inhibitors were validated by mutation experiments. The agreement between theory and experiment suggest that the interactional information of FBPase and inhibitors (H27) were reliable. On basis of these rational interactional information, the compound H29 was further designed to exhibit more potential FBPase inhibition (IC50 = 2.5 μM).
Collapse
Affiliation(s)
- Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bo Chi
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanhong Xu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, Sicheri F, Jessen N, Wasserman DH, Sakamoto K. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med 2018; 24:1395-1406. [PMID: 30150719 PMCID: PMC6207338 DOI: 10.1038/s41591-018-0159-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/24/2018] [Indexed: 01/03/2023]
Abstract
Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.
Collapse
Affiliation(s)
- Roger W Hunter
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Curtis C Hughey
- Department of Molecular Physiology and Biophysics and the Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics and the Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Elias I Sundelin
- Departments of Clinical Medicine and Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mark Peggie
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Elton Zeqiraj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Niels Jessen
- Departments of Clinical Medicine and Biomedicine, Aarhus University, Aarhus, Denmark
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics and the Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.
| |
Collapse
|
36
|
Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab 2018; 28:243-255.e5. [PMID: 30033198 DOI: 10.1016/j.cmet.2018.06.021] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/08/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells are effector lymphocytes with pivotal roles in the resistance against various tumors; dysfunction of NK cells often results in advanced tumor progression. Tumors develop in three stages comprising initiation, promotion, and progression, but little is known about the interrelationships between NK cells and tumor cells at different stages of tumor development. Here, we demonstrated that NK cells prevented tumor initiation potently but did not prevent tumor promotion or tumor progression in Kras-driven lung cancer. Moreover, loss of the antitumor effect in NK cells was closely associated with their dysfunctional state during tumor promotion and progression. Mechanistically, aberrant fructose-1,6-bisphosphatase (FBP1) expression in NK cells elicited their dysfunction by inhibiting glycolysis and impairing viability. Thus, our results show dynamic alterations of NK cells during tumor development and uncover a novel mechanism involved in NK cell dysfunction, suggesting potential directions for NK cell-based cancer immunotherapy involving FBP1 targeting.
Collapse
|
37
|
Bakshi I, Suryana E, Small L, Quek LE, Brandon AE, Turner N, Cooney GJ. Fructose bisphosphatase 2 overexpression increases glucose uptake in skeletal muscle. J Endocrinol 2018; 237:101-111. [PMID: 29507044 DOI: 10.1530/joe-17-0555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Skeletal muscle is a major tissue for glucose metabolism and can store glucose as glycogen, convert glucose to lactate via glycolysis and fully oxidise glucose to CO2 Muscle has a limited capacity for gluconeogenesis but can convert lactate and alanine to glycogen. Gluconeogenesis requires FBP2, a muscle-specific form of fructose bisphosphatase that converts fructose-1,6-bisphosphate (F-1,6-bisP) to fructose-6-phosphate (F-6-P) opposing the activity of the ATP-consuming enzyme phosphofructokinase (PFK). In mammalian muscle, the activity of PFK is normally 100 times higher than FBP2 and therefore energy wasting cycling between PFK and FBP2 is low. In an attempt to increase substrate cycling between F-6-P and F-1,6-bisP and alter glucose metabolism, we overexpressed FBP2 using a muscle-specific adeno-associated virus (AAV-tMCK-FBP2). AAV was injected into the right tibialis muscle of rats, while the control contralateral left tibialis received a saline injection. Rats were fed a chow or 45% fat diet (HFD) for 5 weeks after which, hyperinsulinaemic-euglycaemic clamps were performed. Infection of the right tibialis with AAV-tMCK-FBP2 increased FBP2 activity 10 fold on average in chow and HFD rats (P < 0.0001). Overexpression of FBP2 significantly increased insulin-stimulated glucose uptake in tibialis of chow animals (control 14.3 ± 1.7; FBP2 17.6 ± 1.6 µmol/min/100 g) and HFD animals (control 9.6 ± 1.1; FBP2 11.2 ± 1.1µmol/min/100 g). The results suggest that increasing the capacity for cycling between F-1,6-bisP and F-6-P can increase the metabolism of glucose by introducing a futile cycle in muscle, but this increase is not sufficient to overcome muscle insulin resistance.
Collapse
Affiliation(s)
- Ishita Bakshi
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Lewin Small
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Lake-Ee Quek
- School of Mathematics and StatisticsUniversity of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
- Sydney Medical SchoolCharles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of PharmacologySchool of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
- Sydney Medical SchoolCharles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Wu YH, Wu QL, Wang WP, Wang XC, Quan ZJ. Iodine-Promoted Rapid Construction of Carbamoylphosphonates from Phosphinecarboxamides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yong-Hui Wu
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Qiu-Li Wu
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Wen-Peng Wang
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Xi-Cun Wang
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Zheng-Jun Quan
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| |
Collapse
|
39
|
Wattanavanitchakorn S, Rojvirat P, Chavalit T, MacDonald MJ, Jitrapakdee S. CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) regulate expression of the human fructose-1,6-bisphosphatase 1 (FBP1) gene in human hepatocellular carcinoma HepG2 cells. PLoS One 2018; 13:e0194252. [PMID: 29566023 PMCID: PMC5863999 DOI: 10.1371/journal.pone.0194252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively. Mutations of these transcription factor binding sites result in marked decrease of C/EBPα- or HNF4α-mediated transcription activation of FBP1 promoter-luciferase reporter expression. Electrophoretic mobility shift assays of -228/-208 C/EBPα or -566/-554 and -212/-198 HNF4α sites with nuclear extract of HepG2 cells overexpressing C/EBPα or HNF4α confirms binding of these two transcription factors to these sites. Finally, we showed that siRNA-mediated suppression of C/EBPα or HNF4α expression in HepG2 cells lowers expression of FBP1 in parallel with down-regulation of expression of other gluconeogenic enzymes. Our results suggest that an overall gluconeogenic program is regulated by these two transcription factors, enabling transcription to occur in a liver-specific manner.
Collapse
Affiliation(s)
| | - Pinnara Rojvirat
- Division of Interdisciplinary, Mahidol University, Kanjanaburi, Thailand
| | - Tanit Chavalit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Michael J. MacDonald
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
40
|
Antagonism of PPAR-γ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 2018; 24:360-367. [PMID: 29377004 DOI: 10.1038/nm.4477] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) quiescently reside in bone marrow niches and have the capacity to self-renew or differentiate to form all of the blood cells throughout the lifespan of an animal. Allogeneic HSC transplantation is a life-saving treatment for malignant and nonmalignant disorders. HSCs isolated from umbilical cord blood (CB) are used for hematopoietic cell transplantation (HCT), but due to the limited numbers of HSCs in single units of umbilical CB, a number of methods have been proposed for ex vivo expansion of human HSCs. We show here that antagonism of peroxisome proliferator-activated receptor (PPAR)-γ promotes ex vivo expansion of phenotypically and functionally defined subsets of human CB HSCs and hematopoietic progenitor cells (HSPCs). PPAR-γ antagonism in CB HSPCs strongly downregulated expression of several differentiation-associated genes, as well as fructose-bisphosphatase 1 (FBP1; which encodes a negative regulator of glycolysis), and enhanced glycolysis without compromising mitochondrial metabolism. The expansion of CB HSPCs by PPAR-γ antagonism was completely suppressed by removal of glucose or inhibition of glycolysis. Moreover, knockdown of FBP1 expression promoted glycolysis and ex vivo expansion of long-term repopulating CB HSPCs, whereas overexpression of FBP1 suppressed the expansion of CB HSPCs that was induced by PPAR-γ antagonism. Our study suggests the possibility for a new and simple means for metabolic reprogramming of CB HSPCs to improve the efficacy of HCT.
Collapse
|
41
|
Kaur R, Dahiya L, Kumar M. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem 2017; 141:473-505. [DOI: 10.1016/j.ejmech.2017.09.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/27/2022]
|
42
|
Gundala TR, Godugu K, Nallagondu CGR. Citric Acid-catalyzed Synthesis of 2,4-Disubstituted Thiazoles from Ketones via C-Br, C-S, and C-N Bond Formations in One Pot: A Green Approach. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trivikram Reddy Gundala
- Department of Chemistry, School of Physical Sciences; Yogi Vemana University; Kadapa 516 003 Andhra Pradesh India
| | - Kumar Godugu
- Department of Chemistry, School of Physical Sciences; Yogi Vemana University; Kadapa 516 003 Andhra Pradesh India
| | | |
Collapse
|
43
|
Yuan M, Vásquez-Valdivieso MG, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition. J Mol Biol 2017; 429:3075-3089. [PMID: 28882541 PMCID: PMC5639204 DOI: 10.1016/j.jmb.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Abstract
The gluconeogenic enzyme fructose-1,6-bisphosphatase has been proposed as a potential drug target against Leishmania parasites that cause up to 20,000-30,000 deaths annually. A comparison of three crystal structures of Leishmania major fructose-1,6-bisphosphatase (LmFBPase) along with enzyme kinetic data show how AMP acts as an allosteric inhibitor and provides insight into its metal-dependent reaction mechanism. The crystal structure of the apoenzyme form of LmFBPase is a homotetramer in which the dimer of dimers adopts a planar conformation with disordered "dynamic loops". The structure of LmFBPase, complexed with manganese and its catalytic product phosphate, shows the dynamic loops locked into the active sites. A third crystal structure of LmFBPase complexed with its allosteric inhibitor AMP shows an inactive form of the tetramer, in which the dimer pairs are rotated by 18° relative to each other. The three structures suggest an allosteric mechanism in which AMP binding triggers a rearrangement of hydrogen bonds across the large and small interfaces. Retraction of the "effector loop" required for AMP binding releases the side chain of His23 from the dimer-dimer interface. This is coupled with a flip of the side chain of Arg48 which ties down the key catalytic dynamic loop in a disengaged conformation and also locks the tetramer in an inactive rotated T-state. The structure of the effector site of LmFBPase shows different structural features compared with human FBPases, thereby offering a potential and species-specific drug target.
Collapse
Affiliation(s)
- Meng Yuan
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Montserrat G Vásquez-Valdivieso
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Iain W McNae
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Paul A M Michels
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Linda A Fothergill-Gilmore
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
44
|
Liu C, Szostak M. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross‐Coupling of Amide Derivatives. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
45
|
Liu C, Szostak M. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross‐Coupling of Amide Derivatives. Angew Chem Int Ed Engl 2017; 56:12718-12722. [DOI: 10.1002/anie.201707102] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
46
|
Patil R, Chavan JU, Beldar AG. Synthesis of aminothiazoles: polymer-supported approaches. RSC Adv 2017. [DOI: 10.1039/c7ra00790f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aminothiazoles and their derivatives are of immense biological importance and have been consistently synthesizedviavarious methods.
Collapse
Affiliation(s)
- R. V. Patil
- PSGVPM’S Arts, Science & Commerce College
- India
| | | | | |
Collapse
|
47
|
Ruf A, Tetaz T, Schott B, Joseph C, Rudolph MG. Quadruple space-group ambiguity owing to rotational and translational noncrystallographic symmetry in human liver fructose-1,6-bisphosphatase. Acta Crystallogr D Struct Biol 2016; 72:1212-1224. [PMID: 27841754 PMCID: PMC5108348 DOI: 10.1107/s2059798316016715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) is a key regulator of gluconeogenesis and a potential drug target for type 2 diabetes. FBPase is a homotetramer of 222 symmetry with a major and a minor dimer interface. The dimers connected via the minor interface can rotate with respect to each other, leading to the inactive T-state and active R-state conformations of FBPase. Here, the first crystal structure of human liver FBPase in the R-state conformation is presented, determined at a resolution of 2.2 Å in a tetragonal setting that exhibits an unusual arrangement of noncrystallographic symmetry (NCS) elements. Self-Patterson function analysis and various intensity statistics revealed the presence of pseudo-translation and the absence of twinning. The space group is P41212, but structure determination was also possible in space groups P43212, P4122 and P4322. All solutions have the same arrangement of three C2-symmetric dimers spaced by 1/3 along an NCS axis parallel to the c axis located at (1/4, 1/4, z), which is therefore invisible in a self-rotation function analysis. The solutions in the four space groups are related to one another and emulate a body-centred lattice. If all NCS elements were crystallographic, the space group would be I4122 with a c axis three times shorter and a single FBPase subunit in the asymmetric unit. I4122 is a minimal, non-isomorphic supergroup of the four primitive tetragonal space groups, explaining the space-group ambiguity for this crystal.
Collapse
Affiliation(s)
- Armin Ruf
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Tim Tetaz
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Brigitte Schott
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Catherine Joseph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus G. Rudolph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
48
|
Han X, Huang Y, Zhang R, Xiao S, Zhu S, Qin N, Hong Z, Wei L, Feng J, Ren Y, Feng L, Wan J. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 165:155-160. [PMID: 27137358 DOI: 10.1016/j.saa.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/13/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - San Xiao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaihuan Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nian Qin
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiangtao Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
49
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
50
|
Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|