1
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
2
|
Vogt A, Paulat R, Parthier D, Just V, Szczepek M, Scheerer P, Xu Q, Möglich A, Schmitz D, Rost BR, Wenger N. Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology. Biol Chem 2024; 405:751-763. [PMID: 39303162 DOI: 10.1515/hsz-2023-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
Collapse
Affiliation(s)
- Arend Vogt
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Daniel Parthier
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Verena Just
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Michal Szczepek
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Benjamin R Rost
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
3
|
Lockyer JL, Reading A, Vicenzi S, Zbela A, Viswanathan S, Delandre C, Newland JW, McMullen JPD, Marshall OJ, Gasperini R, Foa L, Lin JY. Selective optogenetic inhibition of Gα q or Gα i signaling by minimal RGS domains disrupts circuit functionality and circuit formation. Proc Natl Acad Sci U S A 2024; 121:e2411846121. [PMID: 39190348 PMCID: PMC11388284 DOI: 10.1073/pnas.2411846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
Collapse
Affiliation(s)
- Jayde L Lockyer
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Agnieszka Zbela
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Saranya Viswanathan
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jake W Newland
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - John P D McMullen
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Owen J Marshall
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
4
|
Zheng T, Wei H, Zhao C. Characterization of the tail current of Channelrhodopsin-2 variants. Biochem Biophys Rep 2024; 39:101787. [PMID: 39886620 PMCID: PMC11780329 DOI: 10.1016/j.bbrep.2024.101787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 02/01/2025] Open
Abstract
Our study focused on specific ChR2 variants, particularly those with the Step function Opsins (SFO) mutation at the D156-C128 gate. These are widely used in optogenetics due to their heightened sensitivity to light and bi-stable prolonged activation. However, in some ChR2 variants, specifically D156 mutants, a tail current occurs when continuous light exposure is stopped. We specifically examined the D156H-T159S ChR2 variant, which demonstrated a tail current that was somewhat responsive to light and voltage, with a single-channel current of around 9fA, similar to wt-ChR2 as determined by stationary noise analysis. To further investigate, we used nonstationary noise analysis in cell-attached patching mode, which revealed that the tail current's single-channel current falls within the same range as the peak current, albeit with mild contamination from adaptation and desensitization. This finding strongly supports the notion that a portion of the ChR2 molecules open or re-open at the end of illumination, leading to further membrane depolarization.
Collapse
Affiliation(s)
- TiShang Zheng
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| | - HengQi Wei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| | - CongJian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| |
Collapse
|
5
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
6
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Gowrishankar R, Gat A, Malan D, Brown BJ, Dine J, Imambocus BN, Levy R, Sauter K, Litvin A, Regev N, Subramaniam S, Abrera K, Summarli D, Goren EM, Mizrachi G, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Bruchas MR, Soba P, Oren-Suissa M, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits. Nat Methods 2024; 21:1275-1287. [PMID: 38811857 PMCID: PMC11239505 DOI: 10.1038/s41592-024-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniela Malan
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Bobbie J Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | | | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Khalid Abrera
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Dustin Summarli
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Eva Madeline Goren
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- University of Michigan, Ann Arbor, MI, USA
| | - Gili Mizrachi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Soba
- LIMES-Institute, University of Bonn, Bonn, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Sela M, Church JR, Schapiro I, Schneidman-Duhovny D. RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning. J Chem Inf Model 2024; 64:4630-4639. [PMID: 38829021 PMCID: PMC11200256 DOI: 10.1021/acs.jcim.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.
Collapse
Affiliation(s)
- Meitar Sela
- The
Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jonathan R. Church
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dina Schneidman-Duhovny
- The
Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
8
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Bryson JB, Kourgiantaki A, Jiang D, Demosthenous A, Greensmith L. An optogenetic cell therapy to restore control of target muscles in an aggressive mouse model of amyotrophic lateral sclerosis. eLife 2024; 12:RP88250. [PMID: 38236205 PMCID: PMC10945574 DOI: 10.7554/elife.88250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.
Collapse
Affiliation(s)
- J Barney Bryson
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Kourgiantaki
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Katada Y, Yoshida K, Serizawa N, Lee D, Kobayashi K, Negishi K, Okano H, Kandori H, Tsubota K, Kurihara T. Highly sensitive visual restoration and protection via ectopic expression of chimeric rhodopsin in mice. iScience 2023; 26:107716. [PMID: 37720108 PMCID: PMC10504486 DOI: 10.1016/j.isci.2023.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Photoreception requires amplification by mammalian rhodopsin through G protein activation, which requires a visual cycle. To achieve this in retinal gene therapy, we incorporated human rhodopsin cytoplasmic loops into Gloeobacter rhodopsin, thereby generating Gloeobacter and human chimeric rhodopsin (GHCR). In a murine model of inherited retinal degeneration, we induced retinal GHCR expression by intravitreal injection of a recombinant adeno-associated virus vector. Retinal explant and visual thalamus electrophysiological recordings, behavioral tests, and histological analysis showed that GHCR restored dim-environment vision and prevented the progression of retinal degeneration. Thus, GHCR may be a potent clinical tool for the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuho Yoshida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Nutritional Sciences, Toyo University, Kita-ku, Tokyo 115-8650, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc., Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
13
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Hyung S, Park JH, Jung K. Application of optogenetic glial cells to neuron-glial communication. Front Cell Neurosci 2023; 17:1249043. [PMID: 37868193 PMCID: PMC10585272 DOI: 10.3389/fncel.2023.1249043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Park
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Jung
- DAWINBIO Inc., Hanam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
16
|
Tajima S, Kim YS, Fukuda M, Jo Y, Wang PY, Paggi JM, Inoue M, Byrne EFX, Kishi KE, Nakamura S, Ramakrishnan C, Takaramoto S, Nagata T, Konno M, Sugiura M, Katayama K, Matsui TE, Yamashita K, Kim S, Ikeda H, Kim J, Kandori H, Dror RO, Inoue K, Deisseroth K, Kato HE. Structural basis for ion selectivity in potassium-selective channelrhodopsins. Cell 2023; 186:4325-4344.e26. [PMID: 37652010 PMCID: PMC7615185 DOI: 10.1016/j.cell.2023.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.
Collapse
Affiliation(s)
- Seiya Tajima
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Fukuda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - YoungJu Jo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eamon F X Byrne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Seiwa Nakamura
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | | | - Shunki Takaramoto
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan
| | - Toshiki E Matsui
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Suhyang Kim
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hisako Ikeda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Jaeah Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
17
|
Hong JK, Moon HJ, Shin HJ. Optical EUS Activation to Relax Sensitized Micturition Response. Life (Basel) 2023; 13:1961. [PMID: 37895343 PMCID: PMC10608351 DOI: 10.3390/life13101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to activate the external urethral sphincter (EUS), which plays a critical role in micturition control, through optogenetics and to determine its potential contribution to the stabilization of sensitized micturition activity. The viral vector (AAV2/8-CMV-hChR2(H134R)-EGFP) is utilized to introduce light-gated ion channels (hChR2/H134R) into the EUS of wild-type C57BL/6 mice. Following the induction of sensitized micturition activity using weak acetic acid (0.1%) in anesthetized mice, optical stimulation of the EUS muscle tissue expressing channel rhodopsin is performed using a 473 nm laser light delivered through optical fibers, and the resulting changes in muscle activation and micturition activity are examined. Through EMG (electromyography) measurements, it is confirmed that optical stimulation electrically activates the EUS muscle in mice. Analysis of micturition activity using cystometry reveals a 70.58% decrease in the micturition period and a 70.27% decrease in the voiding volume due to sensitized voiding. However, with optical stimulation, the micturition period recovers to 101.49%, and the voiding volume recovered to 100.22%. Stimulation of the EUS using optogenetics can alleviate sensitized micturition activity and holds potential for application in conjunction with other micturition control methods.
Collapse
Affiliation(s)
| | | | - Hyun-Joon Shin
- Bionics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (J.-K.H.); (H.-J.M.)
| |
Collapse
|
18
|
Kaminosono J, Kambe Y, Tanimoto A, Kuwaki T, Yamashita A. The physiological response during optogenetic-based cardiac pacing in awake freely moving mice. Front Physiol 2023; 14:1130956. [PMID: 37736488 PMCID: PMC10509767 DOI: 10.3389/fphys.2023.1130956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/10/2023] [Indexed: 09/23/2023] Open
Abstract
There are several methods to control a heart rate, such as electrical stimulation and drug administration. However, these methods may be invasive or affect other organs. Recently, an optogenetic-based cardiac pacing method has enabled us to stimulate the cardiac muscle in non-contact. In many previous studies, the pacing was applied ex vivo or in anesthetized animals. Therefore, the physiologic response of animals during optogenetic pacing remains unclear. Here, we established a method of optogenetic-based cardiac pacing in awake, freely moving mice and simultaneously measured electrocardiogram, blood pressure, and respiration. As a result, light-induced myocardial contraction produces blood flow and indirectly affects the respiration rhythm. Additionally, light illumination enabled heart rate recovery in bradycardic mice. These findings may be employed for further research that relates a heartbeat state to animal behavior. Together, this method may drive the development of less invasive pacemakers without pacing leads.
Collapse
Affiliation(s)
- Jun Kaminosono
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Medical Neuropharmacology, Wakayama Medical University School of Pharmaceutical Sciences, Wakayama, Japan
| |
Collapse
|
19
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Ledri M, Andersson M, Wickham J, Kokaia M. Optogenetics for controlling seizure circuits for translational approaches. Neurobiol Dis 2023:106234. [PMID: 37479090 DOI: 10.1016/j.nbd.2023.106234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The advent of optogenetic tools has had a profound impact on modern neuroscience research, revolutionizing our understanding of the brain. These tools offer a remarkable ability to precisely manipulate specific groups of neurons with an unprecedented level of temporal precision, on the order of milliseconds. This breakthrough has significantly advanced our knowledge of various physiological and pathophysiological processes in the brain. Within the realm of epilepsy research, optogenetic tools have played a crucial role in investigating the contributions of different neuronal populations to the generation of seizures and hyperexcitability. By selectively activating or inhibiting specific neurons using optogenetics, researchers have been able to elucidate the underlying mechanisms and identify key players involved in epileptic activity. Moreover, optogenetic techniques have also been explored as innovative therapeutic strategies for treating epilepsy. These strategies aim to halt seizure progression and alleviate symptoms by utilizing the precise control offered by optogenetics. The application of optogenetic tools has provided valuable insights into the intricate workings of the brain during epileptic episodes. For instance, researchers have discovered how distinct interneuron populations contribute to the initiation of seizures (ictogenesis). They have also revealed how remote circuits in regions such as the cerebellum, septum, or raphe nuclei can interact with hyperexcitable networks in the hippocampus. Additionally, studies have demonstrated the potential of closed-loop systems, where optogenetics is combined with real-time monitoring, to enable precise, on-demand control of seizure activity. Despite the immense promise demonstrated by optogenetic approaches, it is important to acknowledge that many of these techniques are still in the early stages of development and have yet to reach potential clinical applications. The transition from experimental research to practical clinical use poses numerous challenges. In this review, we aim to introduce optogenetic tools, provide a comprehensive survey of their application in epilepsy research, and critically discuss their current potential and limitations in achieving successful clinical implementation for the treatment of human epilepsy. By addressing these crucial aspects, we hope to foster a deeper understanding of the current state and future prospects of optogenetics in epilepsy treatment.
Collapse
Affiliation(s)
- Marco Ledri
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Jenny Wickham
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden.
| |
Collapse
|
21
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Malan D, Brown BJ, Dine J, Levy R, Litvin A, Regev N, Subramaniam S, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Soba P, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547328. [PMID: 37425961 PMCID: PMC10327178 DOI: 10.1101/2023.07.01.547328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Malan
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Bobbie J. Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Present address: Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- LIMES-Institute, University of Bonn, Bonn, Germany
| | - Yuval Nir
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J. Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Tsukamoto H, Kubo Y. A self-inactivating invertebrate opsin optically drives biased signaling toward Gβγ-dependent ion channel modulation. Proc Natl Acad Sci U S A 2023; 120:e2301269120. [PMID: 37186850 PMCID: PMC10214182 DOI: 10.1073/pnas.2301269120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Animal opsins, light-sensitive G protein-coupled receptors, have been used for optogenetic tools to control G protein-dependent signaling pathways. Upon G protein activation, the Gα and Gβγ subunits drive different intracellular signaling pathways, leading to complex cellular responses. For some purposes, Gα- and Gβγ-dependent signaling needs to be separately modulated, but these responses are simultaneously evoked due to the 1:1 stoichiometry of Gα and Gβγ Nevertheless, we show temporal activation of G protein using a self-inactivating invertebrate opsin, Platynereis c-opsin1, drives biased signaling for Gβγ-dependent GIRK channel activation in a light-dependent manner by utilizing the kinetic difference between Gβγ-dependent and Gα-dependent responses. The opsin-induced transient Gi/o activation preferentially causes activation of the kinetically fast Gβγ-dependent GIRK channels rather than slower Gi/oα-dependent adenylyl cyclase inhibition. Although similar Gβγ-biased signaling properties were observed in a self-inactivating vertebrate visual pigment, Platynereis c-opsin1 requires fewer retinal molecules to evoke cellular responses. Furthermore, the Gβγ-biased signaling properties of Platynereis c-opsin1 are enhanced by genetically fusing with RGS8 protein, which accelerates G protein inactivation. The self-inactivating invertebrate opsin and its RGS8-fusion protein can function as optical control tools biased for Gβγ-dependent ion channel modulation.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biology, Kobe University, Kobe657-8501, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki444-8585, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi 332-0012, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama240-0193, Japan
| |
Collapse
|
23
|
Konrad KR, Gao S, Zurbriggen MD, Nagel G. Optogenetic Methods in Plant Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:313-339. [PMID: 37216203 DOI: 10.1146/annurev-arplant-071122-094840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.
Collapse
Affiliation(s)
- Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Würzburg, Germany;
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany;
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| |
Collapse
|
24
|
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini R, Foa L, Lin JY. Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539674. [PMID: 37214843 PMCID: PMC10197587 DOI: 10.1101/2023.05.06.539674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein - Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Collapse
Affiliation(s)
- Jayde Lockyer
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
- Current affiliation, Moores Cancer Center, School of Medicine, Division of Regenerative Medicine, University of California, San Diego, California, USA
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Owen Marshall
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
25
|
Zhao S, Zhang T, Tong W. Application of optogenetics in the study of gastrointestinal motility: A mini review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16. [DOI: 10.1142/s1793545822300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Disorders of gastrointestinal (GI) motility are associated with various symptoms such as nausea, vomiting, and constipation. However, the underlying causes of impaired GI motility remain unclear, which has led to variation in the efficacy of therapies to treat GI dysfunction. Optogenetics is a novel approach through which target cells can be precisely controlled by light and has shown great potential in GI motility research. Here, we summarized recent studies of GI motility patterns utilizing optogenetic devices and focused on the ability of opsins, which are genetically expressed in different types of cells in the gut, to regulate the excitability of target cells. We hope that our review of recent findings regarding optogenetic control of GI cells broadens the scope of application for optogenetics in GI motility studies.
Collapse
Affiliation(s)
- Song Zhao
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| | - Ting Zhang
- Department of General Surgery, The 983th Hospital of Joint Logistic Support Force of People’s Liberation Army, Tianjin, P. R. China
| | - Weidong Tong
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| |
Collapse
|
26
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
27
|
Qiao J, Peng H, Dong B. Development and Application of an Optogenetic Manipulation System to Suppress Actomyosin Activity in Ciona Epidermis. Int J Mol Sci 2023; 24:ijms24065707. [PMID: 36982781 PMCID: PMC10054466 DOI: 10.3390/ijms24065707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Studying the generation of biomechanical force and how this force drives cell and tissue morphogenesis is challenging for understanding the mechanical mechanisms underlying embryogenesis. Actomyosin has been demonstrated to be the main source of intracellular force generation that drives membrane and cell contractility, thus playing a vital role in multi-organ formation in ascidian Ciona embryogenesis. However, manipulation of actomyosin at the subcellular level is impossible in Ciona because of the lack of technical tools and approaches. In this study, we designed and developed a myosin light chain phosphatase fused with a light-oxygen-voltage flavoprotein from Botrytis cinerea (MLCP-BcLOV4) as an optogenetics tool to control actomyosin contractility activity in the Ciona larva epidermis. We first validated the light-dependent membrane localization and regulatory efficiency on mechanical forces of the MLCP-BcLOV4 system as well as the optimum light intensity that activated the system in HeLa cells. Then, we applied the optimized MLCP-BcLOV4 system in Ciona larval epidermal cells to realize the regulation of membrane elongation at the subcellular level. Moreover, we successfully applied this system on the process of apical contraction during atrial siphon invagination in Ciona larvae. Our results showed that the activity of phosphorylated myosin on the apical surface of atrial siphon primordium cells was suppressed and apical contractility was disrupted, resulting in the failure of the invagination process. Thus, we established an effective technique and system that provide a powerful approach in the study of the biomechanical mechanisms driving morphogenesis in marine organisms.
Collapse
Affiliation(s)
- Jinghan Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Hongzhe Peng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel.: +86-532-8590-6576
| |
Collapse
|
28
|
Bieber M, Schwerin S, Kreuzer M, Klug C, Henzler M, Schneider G, Haseneder R, Kratzer S. s-ketamine enhances thalamocortical and corticocortical synaptic transmission in acute murine brain slices via increased AMPA-receptor-mediated pathways. Front Syst Neurosci 2022; 16:1044536. [PMID: 36618009 PMCID: PMC9814968 DOI: 10.3389/fnsys.2022.1044536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Despite ongoing research efforts and routine clinical use, the neuronal mechanisms underlying the anesthesia-induced loss of consciousness are still under debate. Unlike most anesthetics, ketamine increases thalamic and cortical activity. Ketamine is considered to act via a NMDA-receptor antagonism-mediated reduction of inhibition, i.e., disinhibition. Intact interactions between the thalamus and cortex constitute a prerequisite for the maintenance of consciousness and are thus a promising target for anesthetics to induce loss of consciousness. In this study, we aim to characterize the influence of s-ketamine on the thalamocortical network using acute brain-slice preparation. We performed whole-cell patch-clamp recordings from pyramidal neurons in cortical lamina IV and thalamocortical relay neurons in acute brain slices from CB57BL/6N mice. Excitatory postsynaptic potentials (EPSPs) were obtained via electrical stimulation of the cortex with a bipolar electrode that was positioned to lamina II/III (electrically induced EPSPs, eEPSPs) or via optogenetic activation of thalamocortical relay neurons (optogenetically induced EPSPs, oEPSPs). Intrinsic neuronal properties (like resting membrane potential, membrane threshold for action potential generation, input resistance, and tonic action potential frequency), as well as NMDA-receptor-dependent and independent spontaneous GABAA-receptor-mediated inhibitory postsynaptic currents (sIPSCs) were evaluated. Wilcoxon signed-rank test (level of significance < 0.05) served as a statistical test and Cohen's U3_1 was used to determine the actual effect size. Within 20 min, s-ketamine (5 μM) significantly increased both intracortical eEPSPs as well as thalamocortical oEPSPs. NMDA-receptor-mediated intracortical eEPSPs were significantly reduced. Intrinsic neuronal properties of cortical pyramidal neurons from lamina IV and thalamocortical relay neurons in the ventrobasal thalamic complex were not substantially affected. Neither a significant effect on NMDA-receptor-dependent GABAA sIPSCs (thought to underly a disinhibitory effect) nor a reduction of NMDA-receptor independent GABAA sIPSCs was observed. Both thalamocortical and intracortical AMPA-receptor-mediated EPSPs were significantly increased.In conclusion, our findings show no evidence for a NMDA-receptor antagonism-based disinhibition, but rather suggest an enhanced thalamocortical and intracortical synaptic transmission, which appears to be driven via increased AMPA-receptor-mediated transmission.
Collapse
|
29
|
Surdin T, Preissing B, Rohr L, Grömmke M, Böke H, Barcik M, Azimi Z, Jancke D, Herlitze S, Mark MD, Siveke I. Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience 2022; 26:105828. [PMID: 36632066 PMCID: PMC9826949 DOI: 10.1016/j.isci.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.
Collapse
Affiliation(s)
- Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Bianca Preissing
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maike Barcik
- Cardiovascular Research Institute Düsseldorf, Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Corresponding author
| | - Melanie D. Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany,Corresponding author
| |
Collapse
|
30
|
Optogenetic interrogation of cell signalling: human neuropsin (hOPN5) represents a potent tool for controlling the Gq pathway with light. Pflugers Arch 2022; 474:1217-1219. [PMID: 36319864 PMCID: PMC9663387 DOI: 10.1007/s00424-022-02765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
|
31
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
32
|
Barneschi L, Marsili E, Pedraza-González L, Padula D, De Vico L, Kaliakin D, Blanco-González A, Ferré N, Huix-Rotllant M, Filatov M, Olivucci M. On the fluorescence enhancement of arch neuronal optogenetic reporters. Nat Commun 2022; 13:6432. [PMID: 36307417 PMCID: PMC9616920 DOI: 10.1038/s41467-022-33993-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter.
Collapse
Affiliation(s)
- Leonardo Barneschi
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Emanuele Marsili
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.8250.f0000 0000 8700 0572University of Durham, Department of Chemistry, South Road, Durham, DH1 3LE United Kingdom ,grid.5337.20000 0004 1936 7603Present Address: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Laura Pedraza-González
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.5395.a0000 0004 1757 3729Present Address: Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy
| | - Daniele Padula
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Danil Kaliakin
- grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Alejandro Blanco-González
- grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Nicolas Ferré
- grid.462456.70000 0004 4902 8637Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille, Cedex 20 France
| | - Miquel Huix-Rotllant
- grid.462456.70000 0004 4902 8637Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille, Cedex 20 France
| | - Michael Filatov
- grid.258803.40000 0001 0661 1556Department of Chemistry, Kyungpook National University, Daegu, 702-701 South Korea
| | - Massimo Olivucci
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA ,grid.11843.3f0000 0001 2157 9291University of Strasbourg Institute for Advanced Studies, 5, alleé duGeń eŕ al Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
33
|
vom Dahl C, Müller CE, Berisha X, Nagel G, Zimmer T. Coupling the Cardiac Voltage-Gated Sodium Channel to Channelrhodopsin-2 Generates Novel Optical Switches for Action Potential Studies. MEMBRANES 2022; 12:907. [PMID: 36295666 PMCID: PMC9607247 DOI: 10.3390/membranes12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Voltage-gated sodium (Na+) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na+ influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na+ channel (Nav1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Nav1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K+ channels on the AP shape, we co-expressed either Kv1.2 or hERG with one of the Nav1.5-ChR2 fusions. As expected, both delayed rectifier K+ channels shortened AP duration significantly. Kv1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na+ current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na+ channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.
Collapse
Affiliation(s)
- Christian vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Xhevat Berisha
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Georg Nagel
- Institute of Physiology—Neurophysiology, Julius Maximilians University, 97070 Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| |
Collapse
|
34
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Abstract
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.
Collapse
|
36
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
37
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
38
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
40
|
Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure 2022; 30:1075-1087.e4. [PMID: 35588733 DOI: 10.1016/j.str.2022.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest human receptor family and involved in virtually every physiological process. One hallmark of their function is specific coupling to selected signaling pathways. The ability to tune this coupling would make development of receptors with new capabilities possible. Complexes of GPCRs and G-proteins have recently been resolved at high resolution, but this information was in only few cases harnessed for rational receptor engineering. Here, we demonstrate structure-guided optimization of light-activated OptoXRs. Our hypothesis was that incorporation of GPCR-Gα contacts would lead to improved coupling. We first evaluated structure-based alignments for chimeric receptor fusion. We then show in a light-activated β2AR that including Gα contacts increased signaling 7- to 20-fold compared with other designs. In turn, contact elimination diminished function. Finally, this platform allowed optimization of a further OptoXR and spectral tuning. Our work exemplifies structure-based OptoXR development for targeted cell and network manipulation.
Collapse
|
41
|
Hui Y, Zheng X, Zhang H, Li F, Yu G, Li J, Zhang J, Gong X, Guo G. Strategies for Targeting Neural Circuits: How to Manipulate Neurons Using Virus Vehicles. Front Neural Circuits 2022; 16:882366. [PMID: 35571271 PMCID: PMC9099413 DOI: 10.3389/fncir.2022.882366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Viral strategies are the leading methods for mapping neural circuits. Viral vehicles combined with genetic tools provide the possibility to visualize entire functional neural networks and monitor and manipulate neural circuit functions by high-resolution cell type- and projection-specific targeting. Optogenetics and chemogenetics drive brain research forward by exploring causal relationships among different brain regions. Viral strategies offer a fresh perspective for the analysis of the structure-function relationship of the neural circuitry. In this review, we summarize current and emerging viral strategies for targeting neural circuits and focus on adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Yuqing Hui
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Jifeng Zhang,
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Xiaobing Gong,
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- *Correspondence: Guoqing Guo,
| |
Collapse
|
42
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
43
|
Pinto BI, Bassetto CAZ, Bezanilla F. Optocapacitance: physical basis and its application. Biophys Rev 2022; 14:569-577. [PMID: 35528029 PMCID: PMC9042976 DOI: 10.1007/s12551-022-00943-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/13/2022] [Indexed: 12/22/2022] Open
Abstract
The observation that membrane capacitance increases with temperature has led to the development of new methods of neuronal stimulation using light. The optocapacitive effect refers to a light-induced change in capacitance produced by the heating of the membrane through a photothermal effect. This change in capacitance manifests as a current, named optocapacitive current that depolarizes cells and therefore can be used to stimulate excitable tissues. Here, we discuss how optocapacitance arises from basic membrane properties, the characteristics of the optocapacitive current, its use for neuronal stimulation, and the challenges for its application in vivo.
Collapse
Affiliation(s)
- Bernardo I. Pinto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 USA
| | - Carlos A. Z. Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 USA ,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
44
|
Schwitalla JC, Pakusch J, Mücher B, Brückner A, Depke DA, Fenzl T, De Zeeuw CI, Kros L, Hoebeek FE, Mark MD. Controlling absence seizures from the cerebellar nuclei via activation of the G q signaling pathway. Cell Mol Life Sci 2022; 79:197. [PMID: 35305155 PMCID: PMC8934336 DOI: 10.1007/s00018-022-04221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.
Collapse
Affiliation(s)
| | - Johanna Pakusch
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alexander Brückner
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Dominic Alexej Depke
- European Institute of Molecular Imaging, University of Münster, 48149, Münster, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA, Amsterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands
| | - Freek E Hoebeek
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
45
|
Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer's disease research and therapy. Mol Brain 2022; 15:20. [PMID: 35197102 PMCID: PMC8867657 DOI: 10.1186/s13041-022-00905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic plasticity and neuronal circuits are the most vulnerable in Alzheimer’s disease, but the exact mechanism is unknown. Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer's disease, optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optogenetically driven methods have helped expand our knowledge of Alzheimer's disease, and how optogenetic interventions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.
Collapse
Affiliation(s)
- Parsa Mirzayi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
46
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
47
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
48
|
Vickstrom CR, Snarrenberg ST, Friedman V, Liu QS. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Mol Psychiatry 2022; 27:640-651. [PMID: 34145393 PMCID: PMC9190069 DOI: 10.1038/s41380-021-01181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.
Collapse
|
49
|
Abstract
Optogenetics has revolutionized not only neuroscience but also had an impact on muscle physiology and cell biology. Rhodopsin-based optogenetics started with the discovery of the light-gated cation channels, called channelrhodopsins. Together with the light-driven ion pumps, these channels allow light-mediated control of electrically excitable cells in culture tissue and living animals. They can be activated (depolarized) or silenced (hyperpolarized) by light with incomparably high spatiotemporal resolution. Optogenetics allows the light manipulation of cells under electrode-free conditions in a minimally invasive manner. Through modern genetic techniques, virus-induced transduction can be performed with extremely high cell specificity in tissue and living animals, allowing completely new approaches for analyzing neural networks, behavior studies, and investigations of neurodegenerative diseases. First clinical trials for the optogenetic recovery of vision are underway.This chapter provides a comprehensive description of the structure and function of the different light-gated channels and some new light-activated ion pumps. Some of them already play an essential role in optogenetics while others are supposed to become important tools for more specialized applications in the future.At the moment, a large number of publications are available concerning intrinsic mechanisms of microbial rhodopsins. Mostly they describe CrChR2 and its variants, as CrChR2 is still the most prominent optogenetic tool. Therefore, many biophysically and biochemically oriented groups contributed to the overwhelming mass of information on this unique ion channel's molecular mechanism. In this context, the function of new optogenetic tools is discussed, which is essential for rational optimization of the optogenetic approach for an eventual biomedical application. The comparison of the effectivity of ion pumps versus ion channels is discussed as well.Applications of rhodopsins-based optogenetic tools are also discussed in the chapter. Because of the enormous number of these applications in neuroscience, only exemplary studies on cell culture neural tissue, muscle physiology, and remote control of animal behavior are presented.
Collapse
Affiliation(s)
- Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Baillie JS, Stoyek MR, Quinn TA. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart. Front Physiol 2021; 12:748570. [PMID: 35002753 PMCID: PMC8733579 DOI: 10.3389/fphys.2021.748570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins ("reporters" and "actuators"), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.
Collapse
Affiliation(s)
- Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|