1
|
Boroń A, Suchanecka A, Chmielowiec K, Śmiarowska M, Chmielowiec J, Strońska-Pluta A, Recław R, Grzywacz A. OPRM1 Gene Polymorphism in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:3067. [PMID: 38474311 DOI: 10.3390/ijms25053067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The main aims of the present study were to explore the relationship of the OPRM1 gene rs1074287 polymorphism in alcohol-dependent women with their personality traits and to try to find out whether any specific features may influence alcohol cravings and be a prognostic for alcohol dependency and treatment in AUD women. Our study found a notable correlation between openness and the interaction of the ORIM1 gene and AUD. The alcohol use disorder subjects with genotype AG showed a higher level of openness compared to the control group with genotypes AG (p = 0.0001) and AA (p = 0.0125). The alcohol use disorder subjects with the AA genotype displayed higher levels of openness than the control group with genotype AG (p = 0.0271). However, the alcohol use disorder subjects with the AA genotype displayed lower levels of openness than the control group with genotype GG (p = 0.0212). Our study indicates that openness as a personality trait is correlated with the OPRM1 gene rs1074287 polymorphism in alcohol-dependent women. These are the first data and results exploring such a relationship between opioid and alcohol pathways and the mental construction of AUD women. Personality traits such as openness to experience and neuroticism might play major roles in the addiction mechanism, especially in genetically predisposed females, independent of the reward system involved in the emotional disturbances that coexist with anxiety and depression.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-045 Zielona Góra, Poland
| | | | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-045 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Remigiusz Recław
- Foundation Strong in the Spirit, 60 Sienkiewicza St., 90-058 Łódź, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Grothusen JR, Blendy JA, Barr GA. A Brief Overview of the Neuropharmacology of Opioid Addiction. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2022; 9:491-496. [PMID: 36935906 PMCID: PMC10019698 DOI: 10.31480/2330-4871/165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The world is in the midst of an opioid crisis. Nearly 92,000 persons in the U.S. alone died from illicit drugs and prescription opioids in 2020 [1]. This number does not include the countless other individuals who die as a result of the violent crime that accompanies the illicit drug trade. To address this crisis, we need to appreciate aspects of drug addiction. The goal of this brief review is to highlight some major facets of addiction neurobiology, focused on opioids, to provide a basic understanding of the research and terminology encountered in more detailed in-depth articles and discussions on addiction.
Collapse
Affiliation(s)
- John R Grothusen
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Translational Research Laboratories, 125 South 31st St., Philadelphia, PA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
4
|
Brown TG, Xu J, Hurd YL, Pan YX. Dysregulated expression of the alternatively spliced variant mRNAs of the mu opioid receptor gene, OPRM1, in the medial prefrontal cortex of male human heroin abusers and heroin self-administering male rats. J Neurosci Res 2022; 100:35-47. [PMID: 32506472 PMCID: PMC8143898 DOI: 10.1002/jnr.24640] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/08/2022]
Abstract
Heroin, a mu agonist, acts through the mu opioid receptor. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to humans. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating various actions of mu opioids, including analgesia, tolerance, physical dependence, rewarding behavior, as well as addiction. In the present study, we examine expression of the OPRM1 splice variant mRNAs in the medial prefrontal cortex (mPFC), one of the major brain regions involved in decision-making and drug-seeking behaviors, of male human heroin abusers and male rats that developed stable heroin-seeking behavior using an intravenous heroin self-administration (SA) model. The results show similar expression profiles among multiple OPRM1 splice variants in both human control subjects and saline control rats, illustrating conservation of OPRM1 alternative splicing from rodent to humans. Moreover, the expressions of several OPRM1 splice variant mRNAs were dysregulated in the postmortem mPFCs from heroin abusers compared to the control subjects. Similar patterns were observed in the rat heroin SA model. These findings suggest potential roles of the OPRM1 splice variants in heroin addiction that could be mechanistically explored using the rat heroin SA model.
Collapse
Affiliation(s)
- Taylor G Brown
- Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jin Xu
- Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Xian Pan
- Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
6
|
Hauberg ME, Creus-Muncunill J, Bendl J, Kozlenkov A, Zeng B, Corwin C, Chowdhury S, Kranz H, Hurd YL, Wegner M, Børglum AD, Dracheva S, Ehrlich ME, Fullard JF, Roussos P. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat Commun 2020; 11:5581. [PMID: 33149216 PMCID: PMC7643171 DOI: 10.1038/s41467-020-19319-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
The chromatin landscape of human brain cells encompasses key information to understanding brain function. Here we use ATAC-seq to profile the chromatin structure in four distinct populations of cells (glutamatergic neurons, GABAergic neurons, oligodendrocytes, and microglia/astrocytes) from three different brain regions (anterior cingulate cortex, dorsolateral prefrontal cortex, and primary visual cortex) in human postmortem brain samples. We find that chromatin accessibility varies greatly by cell type and, more moderately, by brain region, with glutamatergic neurons showing the largest regional variability. Transcription factor footprinting implicates cell-specific transcriptional regulators and infers cell-specific regulation of protein-coding genes, long intergenic noncoding RNAs and microRNAs. In vivo transgenic mouse experiments validate the cell type specificity of several of these human-derived regulatory sequences. We find that open chromatin regions in glutamatergic neurons are enriched for neuropsychiatric risk variants, particularly those associated with schizophrenia. Integration of cell-specific chromatin data with a bulk tissue study of schizophrenia brains increases statistical power and confirms that glutamatergic neurons are most affected. These findings illustrate the utility of studying the cell-type-specific epigenome in complex tissues like the human brain, and the potential of such approaches to better understand the genetic basis of human brain function.
Collapse
Affiliation(s)
- Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Biao Zeng
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Chowdhury
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harald Kranz
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
7
|
Chromatin accessibility mapping of the striatum identifies tyrosine kinase FYN as a therapeutic target for heroin use disorder. Nat Commun 2020; 11:4634. [PMID: 32929078 PMCID: PMC7490718 DOI: 10.1038/s41467-020-18114-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder. Epigenetic mechanisms have emerged as contributors to the molecular impairments caused by exposure to environmental factors such as abused substances. Here the authors perform epigenetic profiling of the striatum and identify the tyrosine kinase FYN is an important driver of neurodegenerative-like pathology and drug-taking behaviour.
Collapse
|
8
|
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex. Front Neurosci 2020; 13:1392. [PMID: 31998063 PMCID: PMC6962106 DOI: 10.3389/fnins.2019.01392] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder (OUD) is characterized by compulsive drug taking despite adverse life consequences. Here, we sought to identify neurobiological consequences associated with the behavioral effects of contingent footshocks administered after escalation of oxycodone self-administration. To reach these goals, Sprague-Dawley rats were trained to self-administer oxycodone for 4 weeks and were then exposed to contingent electric footshocks. This paradigm helped to dichotomize rats into two distinct behavioral phenotypes: (1) those that reduce lever pressing (shock-sensitive) and (2) others that continue lever pressing (shock-resistant) for oxycodone during contingent punishment. The rats were euthanized at 2-h after the last oxycodone plus footshock session. The dorsal striata and prefrontal cortices were dissected for use in western blot and RT-qPCR analyses. All oxycodone self-administration rats showed significant decreased expression of Mu and Kappa opioid receptor proteins only in the dorsal striatum. However, expression of Delta opioid receptor protein was decreased in both brain regions. RT-qPCR analyses documented significant decreases in the expression of c-fos, fosB, fra2, junB, egr1, and egr2 mRNAs in the dorsal striatum (but not in PFC) of the shock-sensitive rats. In the PFC, junD expression was reduced in both phenotypes. However, egr3 mRNA expression was increased in the PFC of only shock-resistant rats. These results reveal that, similar to psychostimulants and alcohol, footshocks can dichotomize rats that escalated their intake of oxycodone into two distinct behavioral phenotypes. These animals also show significant differences in the mRNA expression of immediate early genes, mainly, in the dorsal striatum. The increases in PFC egr3 expression in the shock-resistant rats suggest that Egr3 might be involved in the persistence of oxycodone-associated memory under aversive conditions. This punishment-driven model may help to identify neurobiological substrates of persistent oxycodone taking and abstinence in the presence of adverse consequences.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
9
|
Tolami HF, Sharafshah A, Tolami LF, Keshavarz P. Haplotype-Based Association and In Silico Studies of OPRM1 Gene Variants with Susceptibility to Opioid Dependence Among Addicted Iranians Undergoing Methadone Treatment. J Mol Neurosci 2019; 70:504-513. [PMID: 31853823 DOI: 10.1007/s12031-019-01443-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
The associations of OPRM1 gene variants with opioid dependence have been demonstrated. This study investigated the association of rs495491, rs1799971 (A118G), rs589046, and rs10457090 variants of OPRM1 gene with opium dependence and their haplotypes among addicted individuals undergoing methadone treatment. Moreover, we investigated whether any of these variants were associated with libido dysfunction or insomnia among addicted people. A total of 404 individuals were genotyped by amplification refractory mutation system (ARMS) PCR. In silico studies were designed through homology modeling of A118G structures (N40 and D40) and docked with 41 FDA-approved drugs of OPRM1 protein by SWISS-MODEL, COACH, MolProbity, ProSA, Errat, Glide XP, and Autodock 4. Results revealed that rs495491, A118G, rs589046, and rs10457090 were significantly associated with opium dependence under recessive (P = 6.66E-10), dominant (P = 0.017), co-dominant (P = 0.001), and recessive (P = 9.28E-6) models of inheritance, respectively. Further analyses indicated three significant haplotypes including A-A-A-C (P-permutation < 1E-9), G-G-A-C (P-permutation = 0.04), and G-A-G-C (P-permutation = 8.69E-4). Genotype-phenotype associations of OPRM1 variants with insomnia and libido dysfunction showed no significant association. Docking showed the higher binding affinity of N40 rather than D40 model; however, methadone and morphine were bonded with D40 structure more powerful. Consequently, rs495491, A118G, rs589046, and rs10457090 were associated with opioid dependence among Iranians; also, A118G might be the most remarkable marker of OPRM1 owing to its vital structural roles.
Collapse
Affiliation(s)
- Hedyeh Fazel Tolami
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Laleh Fazel Tolami
- Medical and Emergency Management Center of Guilan, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
10
|
Jones JD, Mumtaz M, Manubay JM, Mogali S, Sherwin E, Martinez S, Comer SD. Assessing the contribution of opioid- and dopamine-related genetic polymorphisms to the abuse liability of oxycodone. Pharmacol Biochem Behav 2019; 186:172778. [PMID: 31493434 PMCID: PMC6801039 DOI: 10.1016/j.pbb.2019.172778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Attempts to identify opioid users at increased risk of escalating to opioid use disorder have had limited success. Data from a variety of sources suggest that genetic variation may mediate the subjective response to opioid drugs, and therefore contribute to their abuse potential. The goal of the current study was to observe the relationship between select genetic polymorphisms and the subjective effects of oxycodone under controlled clinical laboratory conditions. METHODS Non-dependent, volunteers with some history of prescription opioid exposure (N = 36) provided a blood sample for analyses of variations in the genes that encode for the μ-, κ- and δ-opioid receptors, and the dopamine metabolizing enzyme, catechol-O-methyltransferase (COMT). Participants then completed a single laboratory test session to evaluate the subjective and analgesic effects of oral oxycodone (0, 10, and 20 mg, cumulative dose = 30 mg). RESULTS Oxycodone produced typical μ-opioid receptor agonist effects, such as miosis, and decreased pain perception. Oxycodone also produced dose-dependent increases in positive subjective responses such as: drug "Liking" and "Good Effect." Genetic variants in the μ- (rs6848893) and δ-opioid receptor (rs581111) influenced the responses to oxycodone administration. Additionally, self-reported "Stimulated" effects of oxycodone varied significantly as a function of COMT rs4680 genotype. DISCUSSION The current study shows that the euphoric and stimulating effects of oxycodone can vary as a function of genetic variation. Though the relationship between the stimulating effects of opioids and their abuse liability is not well established, we know that the ability of opioids to provide intense feelings of pleasure is a significant motivator for continued use. If replicated, specific genetic variants may be useful in predicting who is at increased risk of developing maladaptive patterns of use following medical exposure to opioid analgesics.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA,Corresponding author: Jermaine D. Jones, Ph.D., Ph: 646-774-6113, Fx: 646-774-6111, ,
| | - Mudassir Mumtaz
- Translational Research Training Program in Addiction, City College of New York, 160 Convent Avenue, New York, NY 10031, USA,Sophie Davis School of Biomedical Education, 160 Convent Avenue, New York, NY10032, USA
| | - Jeanne M. Manubay
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Shanthi Mogali
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Elliana Sherwin
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Translational Research Training Program in Addiction, City College of New York, 160 Convent Avenue, New York, NY 10031, USA,Gordon F. Derner School of Psychology, Adelphi University, 1 South Avenue Garden City, NY 11530, USA
| | - Sandra D. Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
11
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Moningka H, Lichenstein S, Yip SW. Current understanding of the neurobiology of opioid use disorder: An overview. Curr Behav Neurosci Rep 2019; 6:1-11. [PMID: 34485022 PMCID: PMC8412234 DOI: 10.1007/s40473-019-0170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the neurobiological mechanisms underlying opioid use disorder (OUD) drawing from genetic, functional and structural magnetic resonance imaging (MRI) research. RECENT FINDINGS Preliminary evidence suggests an association between OUD and specific variants of the DRD2, δ-opioid receptor 1 (OPRD1) and μ-opioid receptor 1 (OPRM1) genes. Additionally, MRI research indicates functional and structural alterations in striatal and corticolimbic brain regions and pathways underlying reward, emotion/stress and cognitive control processes among individuals with OUD. SUMMARY Individual differences in genetic and functional and structural brain-based features are correlated with differences in OUD severity and treatment outcomes, and therefore may potentially one day be used to inform OUD treatment selection. However, given the heterogeneous findings reported, further longitudinal research across different stages of opioid addiction is needed to yield a convergent characterization of OUD and improve treatment and prevention.
Collapse
Affiliation(s)
- Hestia Moningka
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
- University College London, Division of Psychology and Language Sciences, London WC1H 0AP
| | - Sarah Lichenstein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
| | - Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
| |
Collapse
|
14
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
15
|
Abstract
The opioid epidemic is at the epicenter of the drug crisis, resulting in an inconceivable number of overdose deaths and exorbitant associated medical costs that have crippled many communities across the socioeconomic spectrum in the United States. Classic medications for the treatment of opioid use disorder predominantly target the opioid system and thus have been underutilized, in part due to their own potential for abuse and heavy regulatory burden for patients and clinicians. Opioid antagonists are now evolving in their use, not only to prevent acute overdoses but as extended-use treatment options. Strategies that target specific genetic and epigenetic factors, along with novel nonopioid medications, hold promise as future therapeutic interventions for opioid abuse. Success in increasing the treatment options in the clinical toolbox will, hopefully, help to end the historical pattern of recurring opioid epidemics. [AJP at 175: Remembering Our Past As We Envision Our Future Drug Addiction in Relation to Problems of Adolescence Zimmering and colleagues wrote in the midst of an opiate epidemic among young people that "only the human being, or rather certain types of human beings, will return to the enslaving, self-destructive habit." (Am J Psychiatry 1952; 109:272-278 )].
Collapse
Affiliation(s)
- Yasmin L. Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine, Addiction Institute, Mount Sinai Behavioral Health System, New York
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Kozlenkov A, Li J, Apontes P, Hurd YL, Byne WM, Koonin EV, Wegner M, Mukamel EA, Dracheva S. A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. SCIENCE ADVANCES 2018; 4:eaau6190. [PMID: 30263963 PMCID: PMC6157969 DOI: 10.1126/sciadv.aau6190] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 05/18/2023]
Abstract
Brain function depends on interaction of diverse cell types whose gene expression and identity are defined, in part, by epigenetic mechanisms. Neuronal DNA contains two major epigenetic modifications, methylcytosine (mC) and hydroxymethylcytosine (hmC), yet their cell type-specific landscapes and relationship with gene expression are poorly understood. We report high-resolution (h)mC analyses, together with transcriptome and histone modification profiling, in three major cell types in human prefrontal cortex: glutamatergic excitatory neurons, medial ganglionic eminence-derived γ-aminobutyric acid (GABA)ergic inhibitory neurons, and oligodendrocytes. We detected a unique association between hmC and gene expression in inhibitory neurons that differed significantly from the pattern in excitatory neurons and oligodendrocytes. We also found that risk loci associated with neuropsychiatric diseases were enriched near regions of reduced hmC in excitatory neurons and reduced mC in inhibitory neurons. Our findings indicate differential roles for mC and hmC in regulation of gene expression in different brain cell types, with implications for the etiology of human brain diseases.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junhao Li
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92037, USA
| | - Pasha Apontes
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Yasmin L. Hurd
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William M. Byne
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Eran A. Mukamel
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92037, USA
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Transl Psychiatry 2018; 8:122. [PMID: 29925858 PMCID: PMC6010434 DOI: 10.1038/s41398-017-0075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Daniil Sarkisyan
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Olga Kononenko
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hiroyuki Watanabe
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Victor M. Karpyak
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tatiana Yakovleva
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
18
|
Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability. Mol Psychiatry 2018; 23:1328-1335. [PMID: 28439100 PMCID: PMC5656565 DOI: 10.1038/mp.2017.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Abstract
Impulsivity, a multifaceted behavioral hallmark of attention-deficit/hyperactivity disorder (ADHD), strongly influences addiction vulnerability and other psychiatric disorders that incur enormous medical and societal burdens yet the neurobiological underpinnings linking impulsivity to disease remain poorly understood. Here we report the critical role of ventral striatal cAMP-response element modulator (CREM) in mediating impulsivity relevant to drug abuse vulnerability. Using an ADHD rat model, we demonstrate that impulsive animals are neurochemically and behaviorally more sensitive to heroin and exhibit reduced Crem expression in the nucleus accumbens core. Virally increasing Crem levels decreased impulsive action, thus establishing a causal relationship. Genetic studies in seven independent human populations illustrate that a CREM promoter variant at rs12765063 is associated with impulsivity, hyperactivity and addiction-related phenotypes. We also reveal a role of Crem in regulating striatal structural plasticity. Together, these results highlight that ventral striatal CREM mediates impulsivity related to substance abuse and suggest that CREM and its regulated network may be promising therapeutic targets.
Collapse
|
19
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Yakovleva T, Hansson AC, Sommer WH, Spanagel R, Bakalkin G. Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Mol Neurobiol 2018; 55:7049-7061. [PMID: 29383684 PMCID: PMC6061161 DOI: 10.1007/s12035-017-0844-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden.
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
20
|
Collins D, Randesi M, da Rosa JC, Zhang Y, Kreek MJ. Oprm1 A112G, a single nucleotide polymorphism, alters expression of stress-responsive genes in multiple brain regions in male and female mice. Psychopharmacology (Berl) 2018; 235:2703-2711. [PMID: 30027498 PMCID: PMC6132675 DOI: 10.1007/s00213-018-4965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND OPRM1 A118G, a functional human mu-opioid receptor (MOR) polymorphism, is associated with drug dependence and altered stress responsivity in humans as well as altered MOR signaling. MOR signaling can regulate many cellular processes, including gene expression, and many of the long-term, stable effects of drugs and stress may stem from changes in gene expression in diverse brain regions. A mouse model bearing an equivalent polymorphism (Oprm1 A112G) was previously generated and studied. Mice homozygous for the G112 allele show differences in opioid- and stress-related phenotypes. APPROACH The current study examines the expression of 24 genes related to drug and stress responsivity in the caudoputamen, nucleus accumbens, hypothalamus, hippocampus, and amygdala of drug-naïve, stress-minimized, male and female mice homozygous for either the G112 variant allele or the wild-type A112 allele. RESULTS We detected nominal genotype-dependent changes in gene expression of multiple genes. We also detected nominal sex-dependent as well as sex-by-genotype interaction effects on gene expression. Of these, four genotype-dependent differences survived correction for multiple testing: Avp and Gal in the hypothalamus and Oprl1 and Cnr1 in the hippocampus. CONCLUSIONS Changes in the regulation of these genes by mu-opioid receptors encoded by the G112 allele may be involved in some of the behavioral and molecular consequences of this polymorphism observed in mice.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Matthew Randesi
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Joel Correa da Rosa
- 0000 0001 2166 1519grid.134907.8Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yong Zhang
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Mary Jeanne Kreek
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
21
|
Freet CS, Alexander DN, Imperio CG, Ruiz-Velasco V, Grigson PS. Heroin-induced suppression of saccharin intake in OPRM1 A118G mice. Brain Res Bull 2017; 138:73-79. [PMID: 28939474 DOI: 10.1016/j.brainresbull.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The single nucleotide polymorphism of the μ-opioid receptor, OPRM1 A118G, has been associated with greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present studies, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in a model of heroin-induced devaluation of an otherwise palatable saccharin cue when repeated saccharin-heroin pairings occurred every 24h (Experiment 1) or every 48h (Experiment 2). The results showed that, while both the 118AA and 118GG mice demonstrated robust avoidance of the heroin-paired saccharin cue following daily taste-drug pairings, only the 118AA mice suppressed intake of the heroin-paired saccharin cue when 48h elapsed between each taste-drug pairing. Humanized 118GG mice, then, defend their intake of the sweet cue despite saccharin-heroin pairings and this effect is illuminated by the use of spaced, rather than massed, trials. Given that this pattern of strain difference is not evident with saccharin-cocaine pairings (Freet et al., 2015), reduced avoidance of the heroin-paired saccharin cue by the 118GG mice may be due to an interaction between the opiate and the subjects' drive for the sweet or, alternatively, to differential downstream sensitivity to the aversive kappa mediated properties of the drug. These alternative hypotheses are addressed.
Collapse
Affiliation(s)
- Christopher S Freet
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Caesar G Imperio
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| |
Collapse
|
22
|
Kozlenkov A, Jaffe AE, Timashpolsky A, Apontes P, Rudchenko S, Barbu M, Byne W, Hurd YL, Horvath S, Dracheva S. DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes (Basel) 2017; 8:genes8060152. [PMID: 28556790 PMCID: PMC5485516 DOI: 10.3390/genes8060152] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022] Open
Abstract
We employed Illumina 450 K Infinium microarrays to profile DNA methylation (DNAm) in neuronal nuclei separated by fluorescence-activated sorting from the postmortem orbitofrontal cortex (OFC) of heroin users who died from heroin overdose (N = 37), suicide completers (N = 22) with no evidence of heroin use and from control subjects who did not abuse illicit drugs and died of non-suicide causes (N = 28). We identified 1298 differentially methylated CpG sites (DMSs) between heroin users and controls, and 454 DMSs between suicide completers and controls (p < 0.001). DMSs and corresponding genes (DMGs) in heroin users showed significant differences in the preferential context of hyper and hypo DM. HyperDMSs were enriched in gene bodies and exons but depleted in promoters, whereas hypoDMSs were enriched in promoters and enhancers. In addition, hyperDMGs showed preference for genes expressed specifically by glutamatergic as opposed to GABAergic neurons and enrichment for axonogenesis- and synaptic-related gene ontology categories, whereas hypoDMGs were enriched for transcription factor activity- and gene expression regulation-related terms. Finally, we found that the DNAm-based “epigenetic age” of neurons from heroin users was younger than that in controls. Suicide-related results were more difficult to interpret. Collectively, these findings suggest that the observed DNAm differences could represent functionally significant marks of heroin-associated plasticity in the OFC.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
- The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA.
- Department of Biostatistics and Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | | | - Pasha Apontes
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| | | | - Mihaela Barbu
- Hospital for Special Surgery, New York, NY 10021, USA.
| | - William Byne
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
- The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yasmin L Hurd
- The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
- The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Egervari G, Landry J, Callens J, Fullard JF, Roussos P, Keller E, Hurd YL. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol Psychiatry 2017; 81:585-594. [PMID: 27863698 PMCID: PMC5346335 DOI: 10.1016/j.biopsych.2016.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain. METHODS We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights. RESULTS Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior. CONCLUSIONS Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - Joseph Landry
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - James Callens
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - John F Fullard
- Department of Psychiatry, Friedman Brain Institute; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Department of Psychiatry, Friedman Brain Institute; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, New York
| | - Eva Keller
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Yasmin L Hurd
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute.
| |
Collapse
|
24
|
Egervari G, Jutras-Aswad D, Landry J, Miller ML, Anderson SA, Michaelides M, Jacobs MM, Peter C, Yiannoulos G, Liu X, Hurd YL. A Functional 3'UTR Polymorphism (rs2235749) of Prodynorphin Alters microRNA-365 Binding in Ventral Striatonigral Neurons to Influence Novelty Seeking and Positive Reward Traits. Neuropsychopharmacology 2016; 41:2512-20. [PMID: 27074815 PMCID: PMC4987849 DOI: 10.1038/npp.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Genetic factors impact behavioral traits relevant to numerous psychiatric disorders and risk-taking behaviors, and different lines of evidence have indicated that discrete neurobiological systems contribute to such individual differences. In this study, we explored the relationship of genetic variants of the prodynorphin (PDYN) gene, which is enriched in the striatonigral/striatomesencephalic pathway, a key neuronal circuit implicated in positive 'Go' behavioral choice and action. Our multidisciplinary approach revealed that the single nucleotide polymorphism (SNP) rs2235749 (in high linkage disequilibrium with rs910080) modifies striatal PDYN expression via impaired binding of miR-365, a microRNA that targets the PDYN 3'-untranslated region (3'UTR), and is significantly associated to novelty- and reward-related behavioral traits in humans and translational animal models. Carriers of the rs2235749G allele exhibited increased levels of PDYN 3'UTR in vitro and had elevated mRNA expression in the medial nucleus accumbens shell (NAcSh) and caudate nucleus in postmortem human brains. There was an association of rs2235749 with novelty-seeking trait and a strong genotype-dose association with positive reinforcement behavior in control subjects, which differed in cannabis-dependent individuals. Using lentiviral miRZip-365 constructs selectively expressed in Pdyn-neurons of the NAcSh, we demonstrated that the Pdyn-miR365 interaction in the NAcSh directly influences novelty-seeking exploratory behavior and facilitates self-administration of natural reward. Overall, this translational study suggests that genetically determined miR-365-mediated epigenetic regulation of PDYN expression in mesolimbic striatonigral/striatomesencephalic circuits possibly contributes to novelty seeking and positive reinforcement traits.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Didier Jutras-Aswad
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Landry
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael L Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Ann Anderson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Michaelides
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle M Jacobs
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cyril Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgia Yiannoulos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xun Liu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Inagaki TK, Ray LA, Irwin MR, Way BM, Eisenberger NI. Opioids and social bonding: naltrexone reduces feelings of social connection. Soc Cogn Affect Neurosci 2016; 11:728-35. [PMID: 26796966 PMCID: PMC4847702 DOI: 10.1093/scan/nsw006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/28/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
Close social bonds are critical to a happy and fulfilled life and yet little is known, in humans, about the neurochemical mechanisms that keep individuals feeling close and connected to one another. According to the brain opioid theory of social attachment, opioids may underlie the contented feelings associated with social connection and may be critical to continued bonding. However, the role of opioids in feelings of connection toward close others has only begun to be examined in humans. In a double-blind, placebo-controlled, crossover study of naltrexone (an opioid antagonist), 31 volunteers took naltrexone for 4 days and placebo for 4 days (separated by a 10-day washout period). Participants came to the laboratory once on the last day of taking each drug to complete a task designed to elicit feelings of social connection. Participants also completed daily reports of feelings of social connection while on naltrexone and placebo. In line with hypotheses, and for the first time in humans, results demonstrated that naltrexone (vs placebo) reduced feelings of connection both in the laboratory and in daily reports. These results highlight the importance of opioids for social bonding with close others, lending support to the brain opioid theory of social attachment.
Collapse
Affiliation(s)
| | | | - Michael R. Irwin
- Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, USA
| | - Baldwin M. Way
- Department of Psychology and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
26
|
Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, Rietschel M, Roy A, Rujescu D, Saarikoski ST, Swan GE, Todorov AA, Vanyukov MM, Weiss RB, Bierut LJ, Saccone NL. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet 2016; 46:151-69. [PMID: 26392368 PMCID: PMC4752855 DOI: 10.1007/s10519-015-9737-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, US National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Juan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Key Laboratory of Brain Function and Disease, School of Life Sciences, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Culverhouse
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangning Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Helen M Kamens
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bettina Konte
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Leena Kovanen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Lisa N Legrand
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Whitney E Melroy
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark W Reid
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei-Hong Shen
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | | | - Paul Aveyard
- Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Olga Beltcheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dale S Cannon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Sven Cichon
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Norbert Dahmen
- Ökumenisches Hainich-Klinikum, Mühlhausen/Thüringen, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, 2031, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, 3010, Australia
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Ina Giegling
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Hardin
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Annette M Hartmann
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stefan Herms
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Colin A Hodgkinson
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Per Hoffmann
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Hyman Hops
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - David Huizinga
- Institute of Behavioral Science, University of Colorado, Boulder, CO, 80309, USA
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Eric O Johnson
- Behavioral Health Research Division, Research Triangle Institute International, Durham, NC, 27709, USA
| | - Elaine Johnstone
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Radka P Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ken S Krauter
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Susanne Lucae
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, King's College London, London, SE5 8BB, UK
| | | | - Karl Mann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Nicholas G Martin
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | - Manuel Mattheisen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Harvard School of Public Health, Boston, MA, 02115, USA
- Aarhus University, Aarhus, 8000, Denmark
| | - Grant W Montgomery
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | | | - Michael F Murphy
- Childhood Cancer Research Group, University of Oxford, Oxford, OX3 7LG, UK
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Momchil A Nikolov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Denise Nishita
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Markus M Nöthen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maureen Reynolds
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Monika Ridinger
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
- Psychiatric Hospital, Konigsfelden, Windisch, Switzerland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Noora Rouvinen-Lagerström
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, LVR Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christine Schmäl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Michael Soyka
- Department of Psychiatry, University of Munich, 3860, Munich, Germany
- Private Hospital Meiringen, Meiringen, Switzerland
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Michael Steffens
- Research Department, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Ming Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Norbert Wodarz
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | | | - Andrew W Bergen
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Jingchun Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
- Department of Genetics, Yale University, New Haven, CT, 06516, USA
- Department of Neurobiology, Yale University, New Haven, CT, 06516, USA
| | - David Goldman
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Ivo M Kremensky
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, and School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Alec Roy
- Psychiatry Service, Department of Veteran Affairs, New Jersey VA Health Care System, East Orange, NJ, 07018, USA
| | - Dan Rujescu
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Sirkku T Saarikoski
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael M Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
Kibitov АО, Krupitsky ЕМ, Blokhina ЕА, Verbitskaya ЕV, Brodyansky VМ, Alekseeva NP, Bushara NМ, Yaroslavtseva ТS, Palatkin VY, Masalov DV, Burakov АМ, Romanova ТN, Sulimov GY, Grinenko AY, Kosten Т, Nielsen D, Zvartau EE. [A pharmacogenetic analysis of dopaminergic and opioidergic genes in opioid addicts treated with the combination of naltrexone and guanfacine]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:36-48. [PMID: 28300812 DOI: 10.17116/jnevro201611611236-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To evaluate an effect of opioid receptor and dopamine system gene polymorphisms on the efficacy of combined treatment with oral naltrexone and guanfacine in a randomized double blinded double dummy placebo controlled clinical trial. MATERIAL AND METHODS Three hundred and one patients with opioid dependence were randomized into 4 treatment groups: naltrexone 50 mg/day + guanfacine 1 mg/day (N+G); naltrexone + placebo guanfacine (N+GP); placebo naltrexone + guanfacine (NP+G); double placebo (NP+GP). The primary outcome was treatment retention. All enrolled participants were genotyped for polymorphisms in the following genes: mu- (OPRM1), kappa-opioid receptors (OPRK1), catechol-O-methyltransferase (COMT), dopamine receptors types 2 (DRD2) and 4 (DRD4), dopamine-beta-hydroxylase, and dopamine transporter (SLC6A3, DAT1) and alpha-2-adrenoreceptor (ADRA2A) a pharmacological target of guanfacine. RESULTS The efficacy of the combination of naltrexone and guanfacine was comparable to naltrexone monotherapy. Regardless of treatment, several gene polymorphisms were associated with higher chance to complete the treatment program: allele Т DRD4 - 521 С/Т (rs1800955) (р=0.039; OR (95% CI)=3.7 (1.1-12.7); log-rank test: р=0.01); allele С DRD2 С957Т (rs6277) (р=0.03; HR=0.6 (0.34-0.95); genotype combination: DRD4 VNTR (LL) + OPRM1 A118G (rs1799971) (AA), р=0.051; DRD2 C957T (ТТ) + OPRM1 (rs1074287) (СС), р=0.025; DRD2 - 141С (II) + OPRM1 (rs510769) (АА), р=0.035; DBH Fau(СС) + OPRM1 (rs1074287) (СС), р=0.0497. Regardless of treatment several polymorphisms were associated with high risk of relapse: allele Т (rs510769) OPRM1 (р=0.053), allele А (rs1799971, A118G) OPRM1 (р=0.056), allele S exon III 48 bp DRD4 VNTR (р=0.001; HR=3.1 (ДИ 95% 1.57-6.18); genotype combinations: DRD4 - 521 С/Т (ТТ) + DRD2 Nco I (TT), р=0.026; DRD4 -521 С/Т (ТТ) + DRD2 -141 С (II), р=0.011; DRD4 - 521 С/Т (ТТ) + OPRM1 A118G (rs1799971) (AA), р=0.011; DRD2 Nco I(ТТ) + ADRA2A (СС), р=0.012; DRD2 Nco I(ТТ) + OPRM1 A118G (AA), р=0.02. The effects dependent on the treatment group were as follows: 1) in the N+G group, patients with the DRD4 -521 С/Т TT genotype had higher probability of completion of treatment program in comparison with other genotypes (CC and CT) (log-rank test: p=0.002); 2) in NP + GP group, patients with the OPRM1 rs510769 T allele had higher risk of relapse compared to the genotype GG (p=0.008) (FDR p<0.0125). CONCLUSION The additive effect of opioid receptor genes and dopaminergic system genes on outcomes of treatment opioid dependence with oral naltrexone and guanfacine was shown. Pharmacological effects of naltrexone and guanfacine were associated with genetic variants of the DRD4 - 521C/T polymorphism, since its effect was shown only in the N+G group. The effect of the OPRM1 rs510769 polymorphism was demonstrated in the double placebo group that was associated with personality traits (temperament, character) and determined compliance. Genetic analysis is useful for determining potential responders to treatment of opioid dependence; genotyping can increase the efficacy of pharmacotherapy.
Collapse
Affiliation(s)
- А О Kibitov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е М Krupitsky
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е А Blokhina
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е V Verbitskaya
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - V М Brodyansky
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - N P Alekseeva
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - N М Bushara
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т S Yaroslavtseva
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - V Yа Palatkin
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - D V Masalov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - А М Burakov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т N Romanova
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - G Yu Sulimov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - A Yа Grinenko
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т Kosten
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - D Nielsen
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - E E Zvartau
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
28
|
Jones JD, Luba RR, Vogelman JL, Comer SD. Searching for evidence of genetic mediation of opioid withdrawal by opioid receptor gene polymorphisms. Am J Addict 2015; 25:41-8. [PMID: 26692286 DOI: 10.1111/ajad.12316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous research has identified many genetic polymorphisms that appear to mediate the effects of opioid drugs. However, the relationship between genetic polymorphisms and the severity of opioid withdrawal has not yet been characterized. METHODS Data were collected from 48 daily heroin users who previously completed a standardized abstinence-induced or naloxone-precipitated withdrawal procedure to assess opioid dependence. The total withdrawal severity score (based on the COWS) from this procedure was correlated with genotype information for variants of OPRM1 (rs1799971; rs6848893), OPRD1 (rs10753331; rs2234918; rs581111; rs678849; rs1042114), and OPRK1 (rs6473797; rs963549). Genotype and other participant variables (age, race, sex, duration of drug use, concomitant drug use, route of opioid use) were used as predictors. RESULTS Of these variables, those individually correlated with a p < .2 were entered into a multivariate regression in order to identify the most predictive model. Three polymorphisms were significantly associated with severity of abstinence-induced withdrawal (n = 19) in the bivariate analysis (R): OPRM1 rs6848893 (.45), OPRD1 rs10753331 (.03), and rs678849 (.08), but only the OPRM1 rs6848893 was retained in the multivariate model (p < .001). For participants who underwent naloxone-precipitated withdrawal (n = 29) only OPRK1 rs6473797 (-.23) was significant in the bivariate analysis, though not retained in the final model. CONCLUSIONS These data provide evidence for genetic modulation of opioid withdrawal severity, and suggest there may be qualitative differences between withdrawal resulting from abstinence and antagonist-precipitated withdrawal. SCIENTIFIC SIGNIFICANCE This study demonstrates the importance and feasibility of incorporating genetic information into clinical addiction research.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, 10032, New York, New York
| | - Rachel R Luba
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, 10032, New York, New York
| | - Jonathan L Vogelman
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, 10032, New York, New York
| | - Sandra D Comer
- Division of Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 120, 10032, New York, New York
| |
Collapse
|
29
|
Kozlenkov A, Wang M, Roussos P, Rudchenko S, Barbu M, Bibikova M, Klotzle B, Dwork AJ, Zhang B, Hurd YL, Koonin EV, Wegner M, Dracheva S. Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res 2015; 44:2593-612. [PMID: 26612861 PMCID: PMC4824074 DOI: 10.1093/nar/gkv1304] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022] Open
Abstract
The brain is built from a large number of cell types which have been historically classified using location, morphology and molecular markers. Recent research suggests an important role of epigenetics in shaping and maintaining cell identity in the brain. To elucidate the role of DNA methylation in neuronal differentiation, we developed a new protocol for separation of nuclei from the two major populations of human prefrontal cortex neurons—GABAergic interneurons and glutamatergic (GLU) projection neurons. Major differences between the neuronal subtypes were revealed in CpG, non-CpG and hydroxymethylation (hCpG). A dramatically greater number of undermethylated CpG sites in GLU versus GABA neurons were identified. These differences did not directly translate into differences in gene expression and did not stem from the differences in hCpG methylation, as more hCpG methylation was detected in GLU versus GABA neurons. Notably, a comparable number of undermethylated non-CpG sites were identified in GLU and GABA neurons, and non-CpG methylation was a better predictor of subtype-specific gene expression compared to CpG methylation. Regions that are differentially methylated in GABA and GLU neurons were significantly enriched for schizophrenia risk loci. Collectively, our findings suggest that functional differences between neuronal subtypes are linked to their epigenetic specification.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY 10468, USA The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- James J. Peters VA Medical Center, Bronx, NY 10468, USA The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Mihaela Barbu
- Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yasmin L Hurd
- The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY 10468, USA The Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Henderson-Redmond AN, Yuill MB, Lowe TE, Kline AM, Zee ML, Guindon J, Morgan DJ. Morphine-induced antinociception and reward in "humanized" mice expressing the mu opioid receptor A118G polymorphism. Brain Res Bull 2015; 123:5-12. [PMID: 26521067 DOI: 10.1016/j.brainresbull.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids. Male and female mice homozygous for the "humanized" 118AA or 118GG alleles were evaluated to test the hypothesis that 118GG mice are less sensitive to the rewarding and antinociceptive effects of morphine. We found that 118AA and 118GG mice of both genders developed conditioned place preference for morphine. All mice developed tolerance to the antinociceptive and hypothermic effects of morphine. However, morphine tolerance was not different between AA and GG mice. We also examined sensitivity to the antinociceptive and hypothermic effects of cumulative morphine doses. We found that 118GG mice show reduced hypothermic and antinociceptive responses on the hotplate for 10mg/kg morphine. Finally, we examined basal pain response and morphine-induced antinociception in the formalin test for inflammatory pain. We found no gender or genotype differences in either basal pain response or morphine-induced antinociception in the formalin test. Our data suggests that homozygous expression of the GG allele in mice blunts morphine-induced hypothermia and hotplate antinociception but does not alter morphine CPP, morphine tolerance, or basal inflammatory pain response.
Collapse
Affiliation(s)
- Angela N Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Matthew B Yuill
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Tammy E Lowe
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Benedict College, Columbia, South Carolina 29204, United States
| | - Aaron M Kline
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Michael L Zee
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX 79430, United States.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
31
|
Mague SD, Port RG, McMullen ME, Carlson GC, Turner JR. Mouse model of OPRM1 (A118G) polymorphism has altered hippocampal function. Neuropharmacology 2015; 97:426-35. [PMID: 25986698 DOI: 10.1016/j.neuropharm.2015.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
A single nucleotide polymorphism (SNP) in the human μ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in a variety of drug addiction and pain sensitivity phenotypes; however, the extent of these adaptations and the mechanisms underlying these associations remain elusive. To clarify the functional mechanisms linking the OPRM1 A118G SNP to altered phenotypes, we used a mouse model possessing the equivalent nucleotide/amino acid substitution in the Oprm1 gene. In order to investigate the impact of this SNP on circuit function, we used voltage-sensitive dye imaging in hippocampal slices and in vivo electroencephalogram recordings of the hippocampus following MOPR activation. As the hippocampus contains excitatory pyramidal cells whose activity is highly regulated by a dense network of inhibitory neurons, it serves as an ideal structure to evaluate how putative receptor function abnormalities may influence circuit activity. We found that MOPR activation increased excitatory responses in wild-type animals, an effect that was significantly reduced in animals possessing the Oprm1 SNP. Furthermore, in order to assess the in vivo effects of this SNP during MOPR activation, EEG recordings of hippocampal activity following morphine administration corroborated a loss-of-function phenotype. In conclusion, as these mice have been shown to have similar MOPR expression in the hippocampus between genotypes, these data suggest that the MOPR A118G SNP results in a loss of receptor function.
Collapse
Affiliation(s)
- Stephen D Mague
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Russell G Port
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Michael E McMullen
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Greg C Carlson
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29036, USA.
| |
Collapse
|
32
|
Krupitsky ЕМ, Kibitov АО, Blokhina ЕА, Verbitskaya ЕV, Brodyansky VМ, Alekseeva NP, Bushara NМ, Yaroslavtseva ТS, Palatkin VY, Masalov DV, Burakov АМ, Romanova ТN, Sulimov GY, Kosten Т, Nielsen D, Zvartau EE, Woody D. [Stabilization of remission in patients with opioid dependence with naltrexone implant: a pharmacogenetic approach]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:14-23. [PMID: 26288297 DOI: 10.17116/jnevro20151154214-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM To evaluate the effect of opioid receptor genes and dopamine system genes polymorphisms on treatment outcomes of opioid dependence with implantable and oral naltrexone. MATERIAL AND METHODS Authors carried out a randomized double-blind, double-dummy, placebo-controlled clinical trial. Three hundred and six patients with opioid dependence were randomized into 3 equal treatment groups. The first group received implantation of 1000 mg naltrexone every 2 months during 6 months + oral naltrexone placebo; the second group - placebo implant every 2 months + oral naltrexone (50mg/day) and the third group - placebo implant + oral naltrexone placebo. It was genotyped polymorphisms in the following genes: mu-opioid receptor (OPRM1), kappa-opioid receptor (OPRK1), catechol-O-methyltransferase (COMT), dopamine receptors types 2 (DRD2) and 4 (DRD4), dopamine-beta-hydroxylase, and dopamine transporter (DAT1). RESULTS Regardless of treatment several polymorphisms of these genes were associated with high risk of relapse: an allele L (2R) DRD4 120bp (p=0.05; OR (95% CI)=3.3(1.1-10.1)); an allele С DRD2 NcoI (р=0,051; OR (95% CI)=2,86 (1,09-7,52)); the genotype 9.9 DAT VNTR 40bp (р=0,04; OR (95% CI)=1,4 (1,3-1,5)); on the contrary, (СС+СТ)-(ТТ)) variants of OPRK1-DRD2Ncol increased a chance to complete treatment program (р=0,004; OR (95% CI)=7.4 (1.8-30.4)), Kaplan-Meier survival analysis (р=0,016). The probability of completing treatment program by the carriers of these variants was higher in the oral naltrexone group (p=0.016), lower in the double placebo group (p=0.015), but did not influence on treatment outcomes in the naltrexone-implant group. CONCLUSION Naltrexone-implant is a highly effective medication for treatment of opioid dependence and its effectiveness exceeds that of oral naltrexone and placebo. The study has shown the joint influence of opioid receptor genes and genes of dopaminergic system on treatment outcomes of opioid dependence. Genetic analysis is useful for determining potential responders to naltrexone treatment of opioid dependence.
Collapse
Affiliation(s)
- Е М Krupitsky
- Pavlov First St. Petersburg State Medical University, St. Petersburg; Bekhterev St. Petersburg Research Psychoneurological Institute, St. Petersburg
| | - А О Kibitov
- National Research Center of Narcology, Moscow
| | - Е А Blokhina
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - Е V Verbitskaya
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | | | - N P Alekseeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - N М Bushara
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - Т S Yaroslavtseva
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - V Ya Palatkin
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - D V Masalov
- Leningrad Oblast Narcology Dispensary, Leningrad Oblast
| | - А М Burakov
- Leningrad Oblast Narcology Dispensary, Leningrad Oblast
| | - Т N Romanova
- Leningrad Oblast Narcology Dispensary, Leningrad Oblast
| | | | - Т Kosten
- Baylor College of Medicine, Houston, USA
| | - D Nielsen
- Baylor College of Medicine, Houston, USA
| | - E E Zvartau
- Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - D Woody
- Pennsylvanian University, USA
| |
Collapse
|
33
|
A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the μ opioid receptor gene OPRM1 via hnRNPH interactions. J Neurosci 2014; 34:11048-66. [PMID: 25122903 DOI: 10.1523/jneurosci.3986-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction.
Collapse
|
34
|
Strain differences in the expression of endocannabinoid genes and in cannabinoid receptor binding in the brain of Lewis and Fischer 344 rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:15-22. [PMID: 24607771 DOI: 10.1016/j.pnpbp.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 01/27/2023]
Abstract
The Lewis (LEW) and Fischer 344 (F344) rat strains have been proposed as a model to study certain genetic influences on drug use. These strains differ in terms of the self-administration of several drugs, and in their expression of various components of the dopaminergic, glutamatergic, GABAergic and endogenous opioid neurotransmitter systems. As the endocannabinoid system is linked to these systems, we investigated whether these two strains exhibit differences in cannabinoid receptor binding and in the expression of cannabinoid-related genes. Quantitative autoradiography of [(3)H]-CP 55,940 binding levels and real-time PCR assays were used. F344 rats displayed higher levels of cannabinoid receptor binding in the lateral globus pallidus and weaker CNR1 gene expression in the prefrontal cortex (PFc) than LEW rats. Moreover, the N-acyl phosphatidylethanolamine-specific phospholipase D/fatty acid amide hydrolase ratio was greater in the PFc and NAcc of F344 rats. Our results suggest that the endocannabinoid system may be a mediator of the individual differences that exist in the susceptibility to the rewarding effects of drugs of abuse.
Collapse
|
35
|
Di Narzo AF, Kozlenkov A, Roussos P, Hao K, Hurd Y, Lewis DA, Sibille E, Siever LJ, Koonin E, Dracheva S. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Hum Mol Genet 2014; 23:4801-13. [PMID: 24781207 DOI: 10.1093/hmg/ddu195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide.
Collapse
Affiliation(s)
| | - Alexey Kozlenkov
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences and
| | - Yasmin Hurd
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Lewis
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larry J Siever
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stella Dracheva
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
36
|
Haerian BS, Haerian MS. OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis. Pharmacogenomics 2014; 14:813-24. [PMID: 23651028 DOI: 10.2217/pgs.13.57] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The OPRM1 gene encodes the µ-opioid receptor, which is the primary site of action of most opioids. Several studies and three meta-analyses have examined a possible link between the exonic OPRM1 A118G (rs1799971) polymorphism and opioid dependence; however, results have been inconclusive. Therefore, a systematic review and meta-analysis have been carried out to examine whether this polymorphism is associated with opioid dependence. Thirteen studies (n = 9385), comprising 4601 opioid dependents and 4784 controls, which evaluated association of the OPRM1 rs1799971 polymorphism with susceptibility to opioids, were included in this study. Our meta-analysis showed significant association between this polymorphism and susceptibility to opioid dependence in overall studies under a codominant model, as well as susceptibility to opioid dependence or heroin dependence in Asians under an autosomal dominant model. The nonsynonymous OPRM1 rs1799971 might be a risk factor for addiction to opioids or heroin in an Asian population.
Collapse
Affiliation(s)
- Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
37
|
Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M, Klotzle B, Byne W, Lyddon R, Di Narzo AF, Hurd YL, Koonin EV, Dracheva S. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 2014; 42:109-27. [PMID: 24057217 PMCID: PMC3874157 DOI: 10.1093/nar/gkt838] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022] Open
Abstract
We applied Illumina Human Methylation450K array to perform a genomic-scale single-site resolution DNA methylation analysis in neuronal and nonneuronal (primarily glial) nuclei separated from the orbitofrontal cortex of postmortem human brain. The findings were validated using enhanced reduced representation bisulfite sequencing. We identified thousands of sites differentially methylated (DM) between neuronal and nonneuronal cells. The DM sites were depleted within CpG-island-containing promoters but enriched in predicted enhancers. Classification of the DM sites into those undermethylated in neurons (neuronal type) and those undermethylated in nonneuronal cells (glial type), combined with findings of others that methylation within control elements typically negatively correlates with gene expression, yielded large sets of predicted neuron-specific and non-neuron-specific genes. These sets of predicted genes were in excellent agreement with the available direct measurements of gene expression in human and mouse. We also found a distinct set of DNA methylation patterns that were unique for neuronal cells. In particular, neuronal-type differential methylation was overrepresented in CpG island shores, enriched within gene bodies but not in intergenic regions, and preferentially harbored binding motifs for a distinct set of transcription factors, including neuron-specific activity-dependent factors. Finally, non-CpG methylation was substantially more prevalent in neurons than in nonneuronal cells.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Panos Roussos
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alisa Timashpolsky
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Barbu
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Sergei Rudchenko
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Marina Bibikova
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Brandy Klotzle
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - William Byne
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lyddon
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Antonio Fabio Di Narzo
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yasmin L. Hurd
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stella Dracheva
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Anderson SAR, Michaelides M, Zarnegar P, Ren Y, Fagergren P, Thanos PK, Wang GJ, Bannon M, Neumaier JF, Keller E, Volkow ND, Hurd YL. Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression. J Clin Invest 2013; 123:5334-41. [PMID: 24231353 DOI: 10.1172/jci70395] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/12/2013] [Indexed: 01/13/2023] Open
Abstract
Negative affect is critical for conferring vulnerability to opiate addiction as reflected by the high comorbidity of opiate abuse with major depressive disorder (MDD). Rodent models implicate amygdala prodynorphin (Pdyn) as a mediator of negative affect; however, evidence of PDYN involvement in human negative affect is limited. Here, we found reduced PDYN mRNA expression in the postmortem human amygdala nucleus of the periamygdaloid cortex (PAC) in both heroin abusers and MDD subjects. Similar to humans, rats that chronically self-administered heroin had reduced Pdyn mRNA expression in the PAC at a time point associated with a negative affective state. Using the in vivo functional imaging technology DREAMM (DREADD-assisted metabolic mapping, where DREADD indicates designer receptors exclusively activated by designer drugs), we found that selective inhibition of Pdyn-expressing neurons in the rat PAC increased metabolic activity in the extended amygdala, which is a key substrate of the extrahypothalamic brain stress system. In parallel, PAC-specific Pdyn inhibition provoked negative affect-related physiological and behavioral changes. Altogether, our translational study supports a functional role for impaired Pdyn in the PAC in opiate abuse through activation of the stress and negative affect neurocircuitry implicated in addiction vulnerability.
Collapse
|
39
|
Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Mol Psychiatry 2013; 18:1205-10. [PMID: 23044706 PMCID: PMC3637428 DOI: 10.1038/mp.2012.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Opioid drugs are highly addictive and their abuse has a strong genetic load. Dopamine-glutamate interactions are hypothesized to be important for regulating neural systems central for addiction vulnerability. Balanced dopamine-glutamate interaction is mediated through several functional associations, including a physical link between discs, large homolog 4 (Drosophila) (DLG4, PSD-95) and dopamine receptor 1 (DRD1) within the postsynaptic density to regulate DRD1 trafficking. To address whether genetic associations with heroin abuse exist in relation to dopamine and glutamate and their potential interactions, we evaluated single-nucleotide polymorphisms of key genes within these systems in three populations of opiate abusers and controls, totaling 489 individuals from Europe and the United States. Despite significant differences in racial makeup of the separate samples, polymorphisms of DRD1 and DLG4 were found to be associated with opiate abuse. In addition, a strong gene-gene interaction between homer 1 homolog (Drosophila) (HOMER1) and DRD1 was predicted to occur in Caucasian subjects. This interaction was further analyzed by evaluating DRD1 genotype in relation to HOMER1b/c protein expression in postmortem tissue from a subset of Caucasian subjects. DRD1 rs265973 genotype correlated with HOMER1b/c levels in the striatum, but not cortex or amygdala; the correlation was inversed in opiate abusers as compared with controls. Cumulatively, these results support the hypothesis that there may be significant, genetically influenced interactions between glutamatergic and dopaminergic pathways in opiate abusers.
Collapse
|
40
|
Sillivan SE, Whittard JD, Jacobs MM, Ren Y, Mazloom AR, Caputi FF, Horvath M, Keller E, Ma’ayan A, Pan YX, Chiang LW, Hurd YL. ELK1 transcription factor linked to dysregulated striatal mu opioid receptor signaling network and OPRM1 polymorphism in human heroin abusers. Biol Psychiatry 2013; 74:511-9. [PMID: 23702428 PMCID: PMC4070524 DOI: 10.1016/j.biopsych.2013.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abuse of heroin and prescription opiate medications has grown to disturbing levels. Opioids mediate their effects through mu opioid receptors (MOR), but minimal information exists regarding MOR-related striatal signaling relevant to the human condition. The striatum is a structure central to reward and habitual behavior and neurobiological changes in this region are thought to underlie the pathophysiology of addiction disorders. METHODS We examined molecular mechanisms related to MOR in postmortem human brain striatal specimens from a homogenous European Caucasian population of heroin abusers and control subjects and in an animal model of heroin self-administration. Expression of ets-like kinase 1 (ELK1) was examined in relation to polymorphism of the MOR gene OPRM1 and drug history. RESULTS A characteristic feature of heroin abusers was decreased expression of MOR and extracellular regulated kinase signaling networks, concomitant with dysregulation of the downstream transcription factor ELK1. Striatal ELK1 in heroin abusers associated with the polymorphism rs2075572 in OPRM1 in a genotype dose-dependent manner and correlated with documented history of heroin use, an effect reproduced in an animal model that emphasizes a direct relationship between repeated heroin exposure and ELK1 dysregulation. A central role of ELK1 was evidenced by an unbiased whole transcriptome microarray that revealed ~20% of downregulated genes in human heroin abusers are ELK1 targets. Using chromatin immune precipitation, we confirmed decreased ELK1 promoter occupancy of the target gene Use1. CONCLUSIONS ELK1 is a potential key transcriptional regulatory factor in striatal disturbances associated with heroin abuse and relevant to genetic mutation of OPRM1.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - John D. Whittard
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Michelle M. Jacobs
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Yanhua Ren
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Amin R. Mazloom
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Francesca F. Caputi
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Monika Horvath
- Department of Forensic Medicine, Uppsala University, Uppsala, Sweden
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Eva Keller
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Ying-Xian Pan
- Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | | | - Yasmin L. Hurd
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|
41
|
On the Role of Genetic Testing for Personalized Drug Overdose Management. J Med Toxicol 2013; 9:294-5. [DOI: 10.1007/s13181-013-0318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Carpentier PJ, Arias Vasquez A, Hoogman M, Onnink M, Kan CC, Kooij JJS, Makkinje R, Iskandar S, Kiemeney LA, de Jong CAJ, Franke B, Buitelaar JK. Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: a pilot study of six candidate genes. Eur Neuropsychopharmacol 2013; 23:448-57. [PMID: 22841130 DOI: 10.1016/j.euroneuro.2012.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/01/2012] [Accepted: 07/09/2012] [Indexed: 11/16/2022]
Abstract
The shared genetic basis of attention deficit/hyperactivity disorder (ADHD) and substance use disorders (SUDs) was explored by investigating the association of candidate risk factors in neurotransmitter genes with both disorders. One hundred seven methadone maintenance treatment patients, 36 having an ADHD diagnosis, 176 adult patients with ADHD without SUDs, and 500 healthy controls were genotyped for variants in the DRD4 (exon 3 VNTR), DRD5 (upstream VNTR), HTR1B (rs6296), DBH (rs2519152), COMT (rs4680; Val158Met), and OPRM1 (rs1799971; 118A>G) genes. Association with disease was tested using logistic regression models. This pilot study was adequately powered to detect larger genetic effects (OR≥2) of risk alleles with a low frequency. Compared to controls, ADHD patients (with and without SUDs) showed significantly increased frequency of the DBH (rs2519152: OR 1.73; CI 1.15-2.59; P=0.008) and the OPRM1 risk genotypes (rs1799971: OR 1.71; CI 1.17-2.50; P=0.006). The DBH risk genotype was associated with ADHD diagnosis, with the association strongest in the pure ADHD group. The OPRM1 risk genotype increased the risk for the combined ADHD and SUD phenotype. The present study strengthens the evidence for a shared genetic basis for ADHD and addiction. The association of OPRM1 with the ADHD and SUD combination could help to explain the contradictory results of previous studies. The power limitations of the study restrict the significance of these findings: replication in larger samples is warranted.
Collapse
Affiliation(s)
- P J Carpentier
- Novadic-Kentron, Network for Addiction Treatment Services, Vught, The Netherlands; Reinier van Arkel groep, 's-Hertogenbosch, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clarke TK, Crist RC, Kampman KM, Dackis CA, Pettinati HM, O'Brien CP, Oslin DW, Ferraro TN, Lohoff FW, Berrettini WH. Low frequency genetic variants in the μ-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine. Neurosci Lett 2013; 542:71-5. [PMID: 23454283 PMCID: PMC3640707 DOI: 10.1016/j.neulet.2013.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/29/2022]
Abstract
The μ-opioid receptor (MOR) binds exogenous and endogenous opioids and is known to mediate the rewarding effects of drugs of abuse. Numerous genetic studies have sought to identify common genetic variation in the gene encoding MOR (OPRM1) that affects risk for drug addiction. The purpose of this study was to examine the contribution of rare coding variants in OPRM1 to the risk for addiction. Rare and low frequency variants were selected using the National Heart Lung and Blood Institute - Exome Sequencing Project (NHLBI-ESP) database, which has screened the exomes of over 6500 individuals. Two SNPs (rs62638690 and rs17174794) were selected for genotyping in 1377 European American individuals addicted to heroin and/or cocaine. Two different SNPs (rs1799971 and rs17174801) were genotyped in 1238 African American individuals addicted to heroin and/or cocaine. Using the minor allele frequencies from the NHLBI-ESP dataset as a comparison group, case-control association analyses were performed. Results revealed an association between rs62638690 and cocaine and heroin addiction in European Americans (p=0.02; 95% C.I. 0.47 [0.24-0.92]). This study suggests a potential role for rare OPRM1 variants in addiction disorders and highlights an area worthy of future study.
Collapse
Affiliation(s)
- Toni-Kim Clarke
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mura E, Govoni S, Racchi M, Carossa V, Ranzani GN, Allegri M, van Schaik RH. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res 2013; 6:331-53. [PMID: 23658496 PMCID: PMC3645947 DOI: 10.2147/jpr.s42040] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 118A>G single nucleotide polymorphism (SNP) in the μ-opioid receptor (OPRM1) gene has been the most described variant in pharmacogenetic studies regarding opioid drugs. Despite evidence for an altered biological function encoded by this variant, this knowledge is not yet utilized clinically. The aim of the present review was to collect and discuss the available information on the 118A>G SNP in the OPRM1 gene, at the molecular level and in its clinical manifestations. In vitro biochemical and molecular assays have shown that the variant receptor has higher binding affinity for β-endorphins, that it has altered signal transduction cascade, and that it has a lower expression compared with wild-type OPRM1. Studies using animal models for 118A>G have revealed a double effect of the variant receptor, with an apparent gain of function with respect to the response to endogenous opioids but a loss of function with exogenous administered opioid drugs. Although patients with this variant have shown a lower pain threshold and a higher drug consumption in order to achieve the analgesic effect, clinical experiences have demonstrated that patients carrying the variant allele are not affected by the increased opioid consumption in terms of side effects.
Collapse
Affiliation(s)
- Elisa Mura
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Trifilieff P, Martinez D. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence. Front Psychiatry 2013; 4:44. [PMID: 23760592 PMCID: PMC3669800 DOI: 10.3389/fpsyt.2013.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/14/2013] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the positron emission tomography (PET) imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.
Collapse
Affiliation(s)
- Pierre Trifilieff
- New York State Psychiatric Institute, Columbia University , New York, NY , USA ; NutriNeuro, UMR 1286 INRA, University Bordeaux 2 , Bordeaux , France
| | | |
Collapse
|
46
|
Bazov I, Kononenko O, Watanabe H, Kuntić V, Sarkisyan D, Taqi MM, Hussain MZ, Nyberg F, Yakovleva T, Bakalkin G. The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict Biol 2013; 18:161-9. [PMID: 21955155 DOI: 10.1111/j.1369-1600.2011.00366.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endogenous opioid system (EOS) plays a critical role in addictive processes. Molecular dysregulations in this system may be specific for different stages of addiction cycle and neurocircuitries involved and therefore may differentially contribute to the initiation and maintenance of addiction. Here we evaluated whether the EOS is altered in brain areas involved in cognitive control of addiction including the dorsolateral prefrontal cortex (dl-PFC), orbitofrontal cortex (OFC) and hippocampus in human alcohol-dependent subjects. Levels of EOS mRNAs were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and levels of dynorphins by radioimmunoassay (RIA) in post-mortem specimens obtained from 14 alcoholics and 14 controls. Prodynorphin mRNA and dynorphins in dl-PFC, κ-opioid receptor mRNA in OFC and dynorphins in hippocampus were up-regulated in alcoholics. No significant changes in expression of proenkephalin, and µ- and δ-opioid receptors were evident; pro-opiomelanocortin mRNA levels were below the detection limit. Activation of the κ-opioid receptor by up-regulated dynorphins in alcoholics may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oertel BG, Doehring A, Roskam B, Kettner M, Hackmann N, Ferreirós N, Schmidt PH, Lötsch J. Genetic-epigenetic interaction modulates μ-opioid receptor regulation. Hum Mol Genet 2012; 21:4751-60. [PMID: 22875838 DOI: 10.1093/hmg/dds314] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic and epigenetic mechanisms play important roles in protein expression, although at different levels. Genetic variations can alter CpG sites and thus influence the epigenetic regulation of mRNA expression, providing an increasingly recognized mechanism of functional consequences of genetic polymorphisms. One of those genetic effects is the association of reduced μ-opioid receptor expression with the functional genetic variant N40D (OPRM1 118A>G, rs1799971) that causes an amino acid exchange in the extracellular terminal of the μ-opioid receptor. We report that the nucleotide exchange at gene position +118 introduces a new CpG-methylation site into the OPRM1 DNA at position +117. This leads to an enhanced methylation of the OPRM1 DNA at this site and downstream. This epigenetic mechanism impedes μ-opioid receptor upregulation in brain tissue of Caucasian chronic opiate addicts, assessed postmortem. While in wild-type subjects, a reduced signalling efficiency associated with chronic heroin exposure was compensated by an increased receptor density, this upregulation was absent in carriers of the 118G receptor variant due to a diminished OPRM1 mRNA transcription. Thus, the OPRM1 118A>G SNP variant not only reduces µ-opioid receptor signalling efficiency, but, by a genetic-epigenetic interaction, reduces opioid receptor expression and therefore, depletes the opioid system of a compensatory reaction to chronic exposure. This demonstrates that a change in the genotype can cause a change in the epigenotype with major functional consequences.
Collapse
Affiliation(s)
- Bruno G Oertel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE. Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 2012; 10:435-52. [PMID: 22591368 PMCID: PMC3431547 DOI: 10.2174/157016212802138779] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 11/22/2022]
Abstract
Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be latently infected. Thus, neuronal dysfunction and injury result from cellular and viral toxins originating from HIV-1 infected/exposed glia. Importantly, subsets of glial cells including oligodendrocytes, as well as neurons, express µ-opioid receptors and therefore can be direct targets for heroin and morphine (the major metabolite of heroin in the CNS), which preferentially activate µ-opioid receptors. This review highlights findings that neuroAIDS is a glially driven disease, and that opiate abuse may act at multiple glial-cell types to further compromise neuron function and survival. The ongoing, reactive cross-talk between opiate drug and HIV-1 co-exposed microglia and astroglia appears to exacerbate critical proinflammatory and excitotoxic events leading to neuron dysfunction, injury, and potentially death. Opiates enhance synaptodendritic damage and a loss of synaptic connectivity, which is viewed as the substrate of cognitive deficits. We especially emphasize that opioid signaling and interactions with HIV-1 are contextual, differing among cell types, and even within subsets of the same cell type. For example, astroglia even within a single brain region are heterogeneous in their expression of µ-, δ-, and κ-opioid receptors, as well as CXCR4 and CCR5, and Toll-like receptors. Thus, defining the distinct targets engaged by opiates in each cell type, and among brain regions, is critical to an understanding of how opiate abuse exacerbates neuroAIDS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, 1217 East Marshall Street, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|
49
|
Jutras-Aswad D, Jacobs MM, Yiannoulos G, Roussos P, Bitsios P, Nomura Y, Liu X, Hurd YL. Cannabis-dependence risk relates to synergism between neuroticism and proenkephalin SNPs associated with amygdala gene expression: case-control study. PLoS One 2012; 7:e39243. [PMID: 22745721 PMCID: PMC3382183 DOI: 10.1371/journal.pone.0039243] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/17/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2) and proenkephalin (PENK) genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown. METHODOLOGY/PRINCIPAL FINDINGS Healthy young adults (18-27 years) with cannabis dependence and without a dependence diagnosis were studied (N = 50/group) in relation to a priori-determined single nucleotide polymorphisms (SNPs) of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997) significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers). Neuroticism mediated (15.3%-19.5%) the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect. CONCLUSIONS/SIGNIFICANCE Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk.
Collapse
Affiliation(s)
- Didier Jutras-Aswad
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michelle M. Jacobs
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Georgia Yiannoulos
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Panos Roussos
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yoko Nomura
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychology, Queens College, Queens, New York, United States of America
| | - Xun Liu
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yasmin L. Hurd
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- James J Peters VA Medical Center, New York, New York, United States of America
| |
Collapse
|
50
|
The genetics of the opioid system and specific drug addictions. Hum Genet 2012; 131:823-42. [PMID: 22547174 DOI: 10.1007/s00439-012-1172-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/15/2012] [Indexed: 12/21/2022]
Abstract
Addiction to drugs is a chronic, relapsing brain disease that has major medical, social, and economic complications. It has been established that genetic factors contribute to the vulnerability to develop drug addiction and to the effectiveness of its treatment. Identification of these factors may increase our understanding of the disorders, help in the development of new treatments and advance personalized medicine. In this review, we will describe the genetics of the major genes of the opioid system (opioid receptors and their endogenous ligands) in connection to addiction to opioids, cocaine, alcohol and methamphetamines. Particular emphasis is given to association and functional studies of specific variants. We will provide information on the sample populations and the size of each study, as well as a list of the variants implicated in association with addiction-related phenotypes, and with the effectiveness of pharmacotherapy for addiction.
Collapse
|