1
|
Burak MF, Tuncman G, Ayci AN, Chetal K, Seropian GYL, Inouye K, Lai ZW, Dagtekin N, Sadreyev RI, Israel E, Hotamışlıgil GS. An Adipo-Pulmonary Axis Mediated by FABP4 Hormone Defines a Therapeutic Target Against Obesity-Induced Airway Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603433. [PMID: 39071372 PMCID: PMC11275790 DOI: 10.1101/2024.07.15.603433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity-related airway disease is a clinical condition without a clear description and effective treatment. Here, we define this pathology and its unique properties, which differ from classic asthma phenotypes, and identify a novel adipo-pulmonary axis mediated by FABP4 hormone as a critical mediator of obesity-induced airway disease. Through detailed analysis of murine models and human samples, we elucidate the dysregulated lipid metabolism and immunometabolic responses within obese lungs, particularly highlighting the stress response activation and downregulation of surfactant-related genes, notably SftpC. We demonstrate that FABP4 deficiency mitigates these alterations, demonstrating a key role in obesity-induced airway disease pathogenesis. Importantly, we identify adipose tissue as the source of FABP4 hormone in the bronchoalveolar space and describe strong regulation in the context of human obesity, particularly among women. Finally, our exploration of antibody-mediated targeting of circulating FABP4 unveils a novel therapeutic avenue, addressing a pressing unmet need in managing obesity-related airway disease. These findings not only define the presence of a critical adipo-pulmonary endocrine link but also present FABP4 as a therapeutic target for managing this unique airway disease that we refer to as fatty lung disease associated with obesity. One Sentence Summary Investigating FABP4's pivotal role in obesity-driven airway disease, this study unveils an adipo-pulmonary axis with potential therapeutic implications.
Collapse
|
2
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
3
|
van der Ark-Vonk EM, Puijk MV, Pasterkamp G, van der Laan SW. The Effects of FABP4 on Cardiovascular Disease in the Aging Population. Curr Atheroscler Rep 2024; 26:163-175. [PMID: 38698167 PMCID: PMC11087245 DOI: 10.1007/s11883-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.
Collapse
Affiliation(s)
- Ellen M van der Ark-Vonk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Mike V Puijk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Başarır Sivri FN, Çiftçi S. A New Insight into Fatty Acid Binding Protein 4 Mechanisms and Therapeutic Implications in Obesity-Associated Diseases: A Mini Review. Mol Nutr Food Res 2024; 68:e2300840. [PMID: 38593305 DOI: 10.1002/mnfr.202300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Indexed: 04/11/2024]
Abstract
Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Feyza Nur Başarır Sivri
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| | - Seda Çiftçi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| |
Collapse
|
5
|
Khan A, Zahid MA, Mohammad A, Agouni A. Structure-guided engineering and molecular simulations to design a potent monoclonal antibody to target aP2 antigen for adaptive immune response instigation against type 2 diabetes. Front Immunol 2024; 15:1357342. [PMID: 38524133 PMCID: PMC10960362 DOI: 10.3389/fimmu.2024.1357342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Diabetes mellitus (DM) is recognized as one of the oldest chronic diseases and has become a significant public health issue, necessitating innovative therapeutic strategies to enhance patient outcomes. Traditional treatments have provided limited success, highlighting the need for novel approaches in managing this complex disease. Methods In our study, we employed graph signature-based methodologies in conjunction with molecular simulation and free energy calculations. The objective was to engineer the CA33 monoclonal antibody for effective targeting of the aP2 antigen, aiming to elicit a potent immune response. This approach involved screening a mutational landscape comprising 57 mutants to identify modifications that yield significant enhancements in binding efficacy and stability. Results Analysis of the mutational landscape revealed that only five substitutions resulted in noteworthy improvements. Among these, mutations T94M, A96E, A96Q, and T94W were identified through molecular docking experiments to exhibit higher docking scores compared to the wild-type. Further validation was provided by calculating the dissociation constant (KD), which showed a similar trend in favor of these mutations. Molecular simulation analyses highlighted T94M as the most stable complex, with reduced internal fluctuations upon binding. Principal components analysis (PCA) indicated that both the wild-type and T94M mutant displayed similar patterns of constrained and restricted motion across principal components. The free energy landscape analysis underscored a single metastable state for all complexes, indicating limited structural variability and potential for high therapeutic efficacy against aP2. Total binding free energy (TBE) calculations further supported the superior performance of the T94M mutation, with TBE values demonstrating the enhanced binding affinity of selected mutants over the wild-type. Discussion Our findings suggest that the T94M substitution, along with other identified mutations, significantly enhances the therapeutic potential of the CA33 antibody against DM by improving its binding affinity and stability. These results not only contribute to a deeper understanding of antibody-antigen interactions in the context of DM but also provide a valuable framework for the rational design of antibodies aimed at targeting this disease more effectively.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Bajetto A, Pattarozzi A, Sirito R, Barbieri F, Florio T. Metformin potentiates immunosuppressant activity and adipogenic differentiation of human umbilical cord-mesenchymal stem cells. Int Immunopharmacol 2023; 124:111078. [PMID: 37844465 DOI: 10.1016/j.intimp.2023.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Metformin, a first-line drug for type-2 diabetes, displays pleiotropic effects on inflammation, aging, and cancer. Obesity triggers a low-grade chronic inflammation leading to insulin resistance, characterized by increased pro-inflammatory cytokines produced by adipocytes and infiltrated immune cells, which contributes to metabolic syndrome. We investigated metformin's differentiation and immunoregulatory properties of human umbilical cord-mesenchymal stem cells (UC-MSC), as cellular basis of its beneficial role in metabolic dysfunctions. Isolation, characterization and multilineage differentiation of UC-MSC were performed using standard protocols and flow-cytometry. Metformin effects on UC-MSC growth was assessed by colony formation and MTT assay, gene and protein expression by qRT-PCR, and western blot analysis. Proliferation of peripheral blood mononuclear cells (PBMCs) co-cultured with metformin-treated UC-MSC-conditioned media was evaluated by dye dilution assay. We show that metformin decreases proliferation and colony formation of UC-MSCs and enhances their adipogenic lineage commitment. Metformin (3 mM) increases PPARγ and downregulates FABP4 mRNA both in basal and in adipogenic culture conditions; however, the modulation of PPARγ expression is unrelated to the antiproliferative effects. Moreover, metformin inhibits UC-MSC inflammatory activity reducing the expression of IL-6, MCP-1, and COX-2. Conditioned media, collected from metformin-treated UC-MSCs, down-regulate CD3+ T lymphocyte growth in stimulated PBMCs and, in particular, reduce the CD8+ T cell population. These results indicate that metformin may favor new adipocyte formation and potentiate immune suppressive properties of UC-MSCs. Thus, adipose tissue regeneration and anti-inflammatory activity may represent possible mechanisms by which metformin exerts its positive effect on lipid metabolism.
Collapse
Affiliation(s)
- Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Rodolfo Sirito
- Section of Obstetrics and Gynaecology, International Evangelical Hospital, 16122 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
7
|
Bakhtiyari A, Bakhtiyari S, Peymani M, Haghani K, Norozi S. Association of fatty acid binding protein-4 (FABP-4) T87C and rs8192688 gene polymorphisms and FABP-4 level with cardiovascular disease susceptibility in type 2 diabetic patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:427-440. [PMID: 37814502 DOI: 10.1080/15257770.2023.2265943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) is known to cause dyslipidemia and increase the risk of cardiovascular disease (CVD). Fatty acid binding protein (FABP)-4 plays a significant role in various stages of T2DM and CVD. Although it has been demonstrated that genetic variations of the FABP-4 gene can affect insulin sensitivity, the results obtained so far are controversial. The aim of this study was to investigate the possible association between T87C and rs8192688 polymorphisms and serum levels of FABP-4 with CVD susceptibility in T2DM patients. The study included 70 healthy controls, 70 individuals with T2DM, and 70 T2DM patients with CVD. Genomic DNA was extracted, and FABP-4 T87C and rs8192688 gene polymorphic sites were amplified using the ARMS-PCR method. Lipid profile and FABP-4 serum levels were significantly higher in T2DM patients with CVD compared to those with only T2DM (p < 0.05). Additionally, FABP-4 T87C gene polymorphism (TC genotypes) and dominant model (TT vs. TC + CC) were significantly associated with a decreased risk of both T2DM and T2DM with CVD patients (p < 0.05). Patients carrying TC + CC genotypes had significantly lower levels of triglyceride and FABP-4 compared to those carrying the TT genotype (p < 0.05). There was no significant association between FABP-4 rs8192688 polymorphism and either T2DM or CVD disease. It appears that FABP-4 T87C polymorphism decreases FABP-4 levels leading to decreased serum TG levels. Since both T2DM and CVD have inflammatory backgrounds, reducing inflammation can improve insulin sensitivity and lower TG levels in these patients.
Collapse
Affiliation(s)
- Amin Bakhtiyari
- Department of Biology, Islamic Azad University, Shahrekord, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, IL, USA
| | - Maryam Peymani
- Department of Biology, Islamic Azad University, Shahrekord, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Siros Norozi
- Department of Cardiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
8
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
9
|
Inouye KE, Prentice KJ, Lee A, Wang ZB, Dominguez-Gonzalez C, Chen MX, Riveros JK, Burak MF, Lee GY, Hotamışlıgil GS. Endothelial-derived FABP4 constitutes the majority of basal circulating hormone and regulates lipolysis-driven insulin secretion. JCI Insight 2023; 8:e164642. [PMID: 37279064 PMCID: PMC10443803 DOI: 10.1172/jci.insight.164642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Fatty acid binding protein 4 (FABP4) is a lipid chaperone secreted from adipocytes upon stimulation of lipolysis. Circulating FABP4 levels strongly correlate with obesity and metabolic pathologies in experimental models and humans. While adipocytes have been presumed to be the major source of hormonal FABP4, this question has not been addressed definitively in vivo. We generated mice with Fabp4 deletion in cells known to express the gene - adipocytes (Adipo-KO), endothelial cells (Endo-KO), myeloid cells (Myeloid-KO), and the whole body (Total-KO) - to examine the contribution of these cell types to basal and stimulated plasma FABP4 levels. Unexpectedly, baseline plasma FABP4 was not significantly reduced in Adipo-KO mice, whereas Endo-KO mice showed ~87% reduction versus WT controls. In contrast, Adipo-KO mice exhibited ~62% decreased induction of FABP4 responses to lipolysis, while Endo-KO mice showed only mildly decreased induction, indicating that adipocytes are the main source of increases in FABP4 during lipolysis. We did not detect any myeloid contribution to circulating FABP4. Surprisingly, despite the nearly intact induction of FABP4, Endo-KO mice showed blunted lipolysis-induced insulin secretion, identical to Total-KO mice. We conclude that the endothelium is the major source of baseline hormonal FABP4 and is required for the insulin response to lipolysis.
Collapse
Affiliation(s)
- Karen E. Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Kacey J. Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Zeqiu B. Wang
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Carla Dominguez-Gonzalez
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Mu Xian Chen
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Jillian K. Riveros
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - M. Furkan Burak
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Grace Y. Lee
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Gökhan S. Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Prentice KJ, Lee A, Cedillo P, Inouye KE, Ertunc ME, Riveros JK, Lee GY, Hotamisligil GS. Sympathetic tone dictates the impact of lipolysis on FABP4 secretion. J Lipid Res 2023; 64:100386. [PMID: 37172691 PMCID: PMC10248869 DOI: 10.1016/j.jlr.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Levels of circulating fatty acid binding protein 4 (FABP4) protein are strongly associated with obesity and metabolic disease in both mice and humans, and secretion is stimulated by β-adrenergic stimulation both in vivo and in vitro. Previously, lipolysis-induced FABP4 secretion was found to be significantly reduced upon pharmacological inhibition of adipose triglyceride lipase (ATGL) and was absent from adipose tissue explants from mice specifically lacking ATGL in their adipocytes (ATGLAdpKO). Here, we find that upon activation of β-adrenergic receptors in vivo, ATGLAdpKO mice unexpectedly exhibited significantly higher levels of circulating FABP4 as compared with ATGLfl/fl controls, despite no corresponding induction of lipolysis. We generated an additional model with adipocyte-specific deletion of both FABP4 and ATGL (ATGL/FABP4AdpKO) to evaluate the cellular source of this circulating FABP4. In these animals, there was no evidence of lipolysis-induced FABP4 secretion, indicating that the source of elevated FABP4 levels in ATGLAdpKO mice was indeed from the adipocytes. ATGLAdpKO mice exhibited significantly elevated corticosterone levels, which positively correlated with plasma FABP4 levels. Pharmacological inhibition of sympathetic signaling during lipolysis using hexamethonium or housing mice at thermoneutrality to chronically reduce sympathetic tone significantly reduced FABP4 secretion in ATGLAdpKO mice compared with controls. Therefore, activity of a key enzymatic step of lipolysis mediated by ATGL, per se, is not required for in vivo stimulation of FABP4 secretion from adipocytes, which can be induced through sympathetic signaling.
Collapse
Affiliation(s)
- Kacey J Prentice
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Lee
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paulina Cedillo
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen E Inouye
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Meric Erikci Ertunc
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jillian K Riveros
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gökhan S Hotamisligil
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
El-Ryalat S, Irshaid Y, Abujbara M, El-Khateeb M, Ajlouni K. Adipocyte "Fatty Acid Binding Protein" Gene Polymorphisms ( rs1054135, rs16909196 and rs16909187) in Jordanians with Obesity and Type 2 Diabetes Mellitus. Balkan J Med Genet 2023; 25:63-70. [PMID: 37265971 PMCID: PMC10230837 DOI: 10.2478/bjmg-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Background Obesity, type 2 diabetes mellitus (T2DM), and dyslipidemia may result from the interactions of genetic and environmental factors. There are controversial reports concerning the association of polymorphisms (rs1054135, rs16909196 and rs16909187) in the gene of adipocyte fatty acid binding protein (FABP4) with obesity and T2DM. Therefore, we designed this study to determine the association of these polymorphisms with obesity, T2DM, and dyslipidemia among Jordanian subjects. Methods The study was approved by the National Center for Diabetes, Endocrinology, and Genetics (NCDEG) Institutional Review Board (IRB). A total of 397 subjects were enrolled in the study and divided into four groups as described in materials and methods section. The fatty acid binding protein 4 (FABP4) gene containing (rs1054135, rs16909196 and rs16909187) single nucleotide polymorphisms (SNP) was amplified by polymerase chain reaction (PCR) followed by Sanger DNA sequencing of the PCR product. Results None of the three SNPs were associated with T2DM (p > 0.05). The rs16909187 and rs16909196 were significantly associated with obesity. The wild type (CC) of rs16909187 was significantly higher among the overweight and obese group compared with normal weight controls (OD = 2.17, 95% CI = 1.18 - 3.96, p =0.01). The wild type of rs16909196 (AA) was significantly higher among the overweight and obese group compared to controls, (OD = 2.26, 95% CI = 1.24 - 4.14, p = 0.01). These results may indicate that the wild-type may be a risk factor for obesity.Only the rs1054135 SNP was significantly associated with increased low density lipoprotein (LDL) levels in the overweight and obese group compared with the controls (p = 0.03). Conclusions The wild-type genotypes of rs16909196 and rs16909187 may be risk factors for obesity but not T2DM. None of the three SNPs was associated with T2DM.
Collapse
Affiliation(s)
- S.W. El-Ryalat
- Department of Pharmacology, College of Medicine, the University of Jordan, AmmanJordan
| | - Y.M. Irshaid
- Department of Pharmacology, College of Medicine, the University of Jordan, AmmanJordan
| | - M. Abujbara
- The National Center for Diabetes, Endocrinology, and Genetics, Amman11942, Jordan
| | - M. El-Khateeb
- The National Center for Diabetes, Endocrinology, and Genetics, Amman11942, Jordan
| | - K.M. Ajlouni
- The National Center for Diabetes, Endocrinology, and Genetics, Amman11942, Jordan
| |
Collapse
|
12
|
Farrell M, Fairfield H, Karam M, D'Amico A, Murphy CS, Falank C, Pistofidi RS, Cao A, Marinac CR, Dragon JA, McGuinness L, Gartner CG, Iorio RD, Jachimowicz E, DeMambro V, Vary C, Reagan MR. Targeting the fatty acid binding proteins disrupts multiple myeloma cell cycle progression and MYC signaling. eLife 2023; 12:e81184. [PMID: 36880649 PMCID: PMC9995119 DOI: 10.7554/elife.81184] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy with only a 53% 5-year survival rate. There is a critical need to find new multiple myeloma vulnerabilities and therapeutic avenues. Herein, we identified and explored a novel multiple myeloma target: the fatty acid binding protein (FABP) family. In our work, myeloma cells were treated with FABP inhibitors (BMS3094013 and SBFI-26) and examined in vivo and in vitro for cell cycle state, proliferation, apoptosis, mitochondrial membrane potential, cellular metabolism (oxygen consumption rates and fatty acid oxidation), and DNA methylation properties. Myeloma cell responses to BMS309403, SBFI-26, or both, were also assessed with RNA sequencing (RNA-Seq) and proteomic analysis, and confirmed with western blotting and qRT-PCR. Myeloma cell dependency on FABPs was assessed using the Cancer Dependency Map (DepMap). Finally, MM patient datasets (CoMMpass and GEO) were mined for FABP expression correlations with clinical outcomes. We found that myeloma cells treated with FABPi or with FABP5 knockout (generated via CRISPR/Cas9 editing) exhibited diminished proliferation, increased apoptosis, and metabolic changes in vitro. FABPi had mixed results in vivo, in two pre-clinical MM mouse models, suggesting optimization of in vivo delivery, dosing, or type of FABP inhibitors will be needed before clinical applicability. FABPi negatively impacted mitochondrial respiration and reduced expression of MYC and other key signaling pathways in MM cells in vitro. Clinical data demonstrated worse overall and progression-free survival in patients with high FABP5 expression in tumor cells. Overall, this study establishes the FABP family as a potentially new target in multiple myeloma. In MM cells, FABPs have a multitude of actions and cellular roles that result in the support of myeloma progression. Further research into the FABP family in MM is warrented, especially into the effective translation of targeting these in vivo.
Collapse
Affiliation(s)
- Mariah Farrell
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Heather Fairfield
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michelle Karam
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Anastasia D'Amico
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Connor S Murphy
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Carolyne Falank
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | | | - Amanda Cao
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Catherine R Marinac
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | | | - Lauren McGuinness
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Carlos G Gartner
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Reagan Di Iorio
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Edward Jachimowicz
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Victoria DeMambro
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Calvin Vary
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michaela R Reagan
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
13
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
14
|
Peng J, Wen W, Wang R, Li K, Xiao G, Li C. The galloyl moiety enhances inhibitory activity of polyphenols against adipogenic differentiation in 3T3-L1 preadipocytes. Food Funct 2022; 13:5275-5286. [PMID: 35441186 DOI: 10.1039/d1fo04179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have proved that the characteristic galloyl moiety in polyphenols is crucial for their biological activities. However, whether the presence of the galloyl moiety in the structure of polyphenols has a great contribution to their inhibition of adipogenic differentiation is not clear. Therefore, in this study, seven polyphenols with different galloylation degrees were chosen for exploring the contribution of the galloyl group to the lipid-lowering property of polyphenols and its molecular mechanism. Our results showed that the existence of the galloyl moiety in the structure of polyphenols was necessary for their inhibition of adipogenic differentiation, which could help to delay cells from entering the G2/M phase as well as to hinder the MCE process in the early stage of differentiation and the downstream PPARγ and C/EBPα related MAPK signaling pathway, probably via binding to IR and disturbing the α-helix in its conformation. Our finding highlighted that the existence of galloyl groups in polyphenols was crucial for their anti-adipogenic activity, and provided new insights into the mechanism by which galloylated polyphenols suppress adipocyte differentiation.
Collapse
Affiliation(s)
- Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan 430070, China. .,College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China.
| | - Wenjun Wen
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China.
| | - Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan 430070, China.
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan 430070, China.
| | - Gengsheng Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
15
|
Performing training in water improves glucose homeostasis and lipocalins in women with type 2 diabetes mellitus. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yang S, Li S, Chang J. Discovery of Cobimetinib as a novel A-FABP inhibitor using machine learning and molecular docking-based virtual screening. RSC Adv 2022; 12:13500-13510. [PMID: 35520131 PMCID: PMC9066360 DOI: 10.1039/d2ra01057g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Adipocyte fatty acid-binding protein (A-FABP, also called FABP4, aP2) is an adipokine identified as a critical regulator of metabolic function due to its dual functions of fatty acid transport and pro-inflammation. Because of the high therapeutic potential of A-FABP inhibition for the treatment of metabolic diseases and related vascular complications, numerous inhibitors have been developed against A-FABP. However, none of these inhibitors have been approved for use in patients due to severe side effects. Here, we used a virtual screening (VS) strategy to identify potential inhibitors of A-FABP in the latest FDA-approved drug library (∼2600 compounds), aiming to explore the existing drugs with proven safety profiles. We firstly combined ligand-based machine learning and structure-based molecular docking to develop a screening pipeline for identifying A-FABP inhibitors. The screening of FDA-approved drugs identified four compounds (Cobimetinib, Larotrectinib, Pantoprazole, and Vildagliptin) with the highest scores, whose inhibitory effects on A-FABP were further assessed in cellular assays. Among the selected compounds, Cobimetinib significantly inhibited the activation of the JNK/c-Jun signaling pathway by A-FABP in mouse macrophages without causing obvious cytotoxicity. In summary, we present an integrated VS pipeline for A-FABP inhibitor screening, and identified Cobimetinib as a novel A-FABP inhibitor that may be repurposed for the treatment of metabolic diseases and associated vascular complications.
Collapse
Affiliation(s)
- Shilun Yang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
| | - Simeng Li
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlei Chang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Huang NW, Lin JH, Jhan JY, Hsu BG, Chang JC. Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. J Cardiovasc Dev Dis 2022; 9:jcdd9040105. [PMID: 35448081 PMCID: PMC9032052 DOI: 10.3390/jcdd9040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
Old age has been proven to be related to progressed arterial or aortic stiffness. Aortic stiffness is an independent predictor of all-cause and cardiovascular disease mortalities in patients who have undergone coronary artery bypass grafting (CABG) surgery. Higher serum concentrations of adipocyte fatty-acid-binding protein (A-FABP) could be considered a predictor of aortic stiffness in patients with hypertension or diabetes mellitus. This study aims to investigate the relationships between A-FABP and aortic stiffness in patients who have received CABG. A total of 84 CABG patients were enrolled in our study from September 2018 to May 2019. Serum A-FABP levels were determined using a commercial enzyme immunoassay. Carotid−femoral pulse wave velocity (cfPWV) > 10 m/s was defined as aortic stiffness. Of the 84 CABG patients, 28 (33.3%) with aortic stiffness had a higher average age; exhibited higher rates of diabetes; and had higher serum creatinine, C-reactive protein, and A-FABP levels compared to controls. Multivariable logistic regression revealed that serum A-FABP levels (odds ratio (OR) = 1.068, 95% confidence interval (CI) 1.017−1.121, p = 0.008) and age (OR = 1.204, 95% CI 1.067−1.359, p = 0.003) were independent predictors of aortic stiffness. Multivariable stepwise linear regression revealed significant positive correlations of age and A-FABP levels with cfPWV values. Serum A-FABP level is positively correlated with cfPWV values, and a high serum A-FABP level is associated with aortic stiffness in patients who have undergone CABG.
Collapse
Affiliation(s)
- Nai-Wei Huang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Jin-You Jhan
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Bang-Gee Hsu
- Division of Nephrology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| | - Jui-Chih Chang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| |
Collapse
|
18
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
19
|
Prentice KJ, Saksi J, Robertson LT, Lee GY, Inouye KE, Eguchi K, Lee A, Cakici O, Otterbeck E, Cedillo P, Achenbach P, Ziegler AG, Calay ES, Engin F, Hotamisligil GS. A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature 2021; 600:720-726. [PMID: 34880500 DOI: 10.1038/s41586-021-04137-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Lauren T Robertson
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Karen E Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Kosei Eguchi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Ozgur Cakici
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Emily Otterbeck
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Paulina Cedillo
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Feyza Engin
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.,Departments of Biomolecular Chemistry and Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
20
|
Yang Z, Yang D, Tan F, Wong CW, Yang JY, Zhou D, Cai Z, Lin SH. Multi-Omics Comparison of the Spontaneous Diabetes Mellitus and Diet-Induced Prediabetic Macaque Models. Front Pharmacol 2021; 12:784231. [PMID: 34880765 PMCID: PMC8645867 DOI: 10.3389/fphar.2021.784231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of diabetes mellitus has been increasing for decades worldwide. To develop safe and potent therapeutics, animal models contribute a lot to the studies of the mechanisms underlying its pathogenesis. Dietary induction using is a well-accepted protocol in generating insulin resistance and diabetes models. In the present study, we reported the multi-omics profiling of the liver and sera from both peripheral blood and hepatic portal vein blood from Macaca fascicularis that spontaneously developed Type-2 diabetes mellitus with a chow diet (sDM). The other two groups of the monkeys fed with chow diet and high-fat high-sugar (HFHS) diet, respectively, were included for comparison. Analyses of various omics datasets revealed the alterations of high consistency. Between the sDM and HFHS monkeys, both the similar and unique alterations in the lipid metabolism have been demonstrated from metabolomic, transcriptomic, and proteomic data repeatedly. The comparison of the proteome and transcriptome confirmed the involvement of fatty acid binding protein 4 (FABP4) in the diet-induced pathogenesis of diabetes in macaques. Furthermore, the commonly changed genes between spontaneous diabetes and HFHS diet-induced prediabetes suggested that the alterations in the intra- and extracellular structural proteins and cell migration in the liver might mediate the HFHS diet induction of diabetes mellitus.
Collapse
Affiliation(s)
- Zhu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Fancheng Tan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chi Wai Wong
- Guangzhou Huazhen Biosciences Co., Ltd., Guangzhou, China
| | - James Y. Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Zhou S, Wang X, Shi J, Han Q, He L, Tang W, Zhang A. Serum fatty acid binding protein 4 levels are associated with abdominal aortic calcification in peritoneal dialysis patients. Ren Fail 2021; 43:1539-1548. [PMID: 34789046 PMCID: PMC8604498 DOI: 10.1080/0886022x.2021.2003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Fatty acid binding protein 4 (FABP4) is an adipokine that was mainly derived from adipocytes and macrophages. Vascular calcification (VC) is highly prevalent in peritoneal dialysis (PD) patients and could predict their cardiovascular mortality. The pathogenesis of VC is complex, and adipokines may play an important role in it. This study aimed to examine the relationship between serum FABP4 and VC in PD patients. Methods Serum FABP4 was measured by enzyme-linked immunosorbent assay. According to the median value of serum FABP4, the participants were divided into the low FABP4 group and the high FABP4 group. Lateral plain X-ray films of abdomen were used to evaluate the abdominal aortic calcification (AAC) score. The participants were divided into the high AAC score group (AAC score ≥4, indicating moderate or heavy VC) and the low AAC score group (AAC score <4, indicating no or mild VC). Results 116 PD patients were involved in the study. The AAC score and the proportion of patients with an AAC score ≥4 of the high FABP4 group were significantly higher than those of the low FABP4 group. Serum FABP4 of the high AAC score group was significantly higher than that of the low AAC score group [164.5 (138.4, 362.8) ng/mL versus 144.7 (123.8, 170.1) ng/mL, p = 0.002]. Serum FABP4 was positively associated with the AAC score according to the multivariate linear regression analysis. In the multivariate logistic regression analysis, serum FABP4 was the independent influencer of an AAC score ≥4. Conclusions Serum FABP4 is positively associated with the AAC score and is an independent marker of AAC in PD patients.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Junbao Shi
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qingfeng Han
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Lian He
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wen Tang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Ron I, Lerner RK, Rathaus M, Livne R, Ron S, Barhod E, Hemi R, Tirosh A, Strauss T, Ofir K, Goldstein I, Pessach IM, Tirosh A. The adipokine FABP4 is a key regulator of neonatal glucose homeostasis. JCI Insight 2021; 6:138288. [PMID: 34676825 PMCID: PMC8564897 DOI: 10.1172/jci.insight.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
During pregnancy, fetal glucose production is suppressed, with rapid activation immediately postpartum. Fatty acid–binding protein 4 (FABP4) was recently demonstrated as a regulator of hepatic glucose production and systemic metabolism in animal models. Here, we studied the role of FABP4 in regulating neonatal glucose hemostasis. Serum samples were collected from pregnant women with normoglycemia or gestational diabetes at term, from the umbilical circulation, and from the newborns within 6 hours of life. The level of FABP4 was higher in the fetal versus maternal circulation, with a further rise in neonates after birth of approximately 3-fold. Neonatal FABP4 inversely correlated with blood glucose, with an approximately 10-fold increase of FABP4 in hypoglycemic neonates. When studied in mice, blood glucose of 12-hour-old WT, Fabp4–/+, and Fabp4–/– littermate mice was 59 ± 13 mg/dL, 50 ± 11 mg/dL, and 43 ± 11 mg/dL, respectively. Similar to our observations in humans, FABP4 levels in WT mouse neonates were approximately 8-fold higher compared with those in adult mice. RNA sequencing of the neonatal liver suggested altered expression of multiple glucagon-regulated pathways in Fabp4–/– mice. Indeed, Fabp4–/– liver glycogen was inappropriately intact, despite a marked hypoglycemia, with rapid restoration of normoglycemia upon injection of recombinant FABP4. Our data suggest an important biological role for the adipokine FABP4 in the orchestrated regulation of postnatal glucose metabolism.
Collapse
Affiliation(s)
- Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Reut Kassif Lerner
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Amit Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Endocrine Cancer Genomics Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Tzipora Strauss
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neonatology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Keren Ofir
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai M Pessach
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Dahlström EH, Saksi J, Forsblom C, Uglebjerg N, Mars N, Thorn LM, Harjutsalo V, Rossing P, Ahluwalia TS, Lindsberg PJ, Sandholm N, Groop PH. The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes. Diabetes 2021; 70:2391-2401. [PMID: 34244239 DOI: 10.2337/db21-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Emma H Dahlström
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Saksi
- Neurology, Neurocenter, Helsinki University Hospital, and Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Nina Mars
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Perttu J Lindsberg
- Neurology, Neurocenter, Helsinki University Hospital, and Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
24
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
25
|
A-FABP in Metabolic Diseases and the Therapeutic Implications: An Update. Int J Mol Sci 2021; 22:ijms22179386. [PMID: 34502295 PMCID: PMC8456319 DOI: 10.3390/ijms22179386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adipocyte fatty acid-binding protein (A-FABP), which is also known as ap2 or FABP4, is a fatty acid chaperone that has been further defined as a fat-derived hormone. It regulates lipid homeostasis and is a key mediator of inflammation. Circulating levels of A-FABP are closely associated with metabolic syndrome and cardiometabolic diseases with imminent diagnostic and prognostic significance. Numerous animal studies have elucidated the potential underlying mechanisms involving A-FABP in these diseases. Recent studies demonstrated its physiological role in the regulation of adaptive thermogenesis and its pathological roles in ischemic stroke and liver fibrosis. Due to its implication in various diseases, A-FABP has become a promising target for the development of small molecule inhibitors and neutralizing antibodies for disease treatment. This review summarizes the clinical and animal findings of A-FABP in the pathogenesis of cardio-metabolic diseases in recent years. The underlying mechanism and its therapeutic implications are also highlighted.
Collapse
|
26
|
Mukherjee R, Aich P. The starch-rich diet causes lipidemia while the fat-rich diet induces visceral adiposity, meta-inflammation, and insulin resistance differentially in immune biased mouse strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Jeng PH, Huang TR, Wang CC, Chen WL. Clinical Relevance of Urine Flow Rate and Exposure to Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105372. [PMID: 34070005 PMCID: PMC8157826 DOI: 10.3390/ijerph18105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/06/2023]
Abstract
Background: Polycyclic aromatic hydrocarbon (PAH) metabolites have received increasing attention because several of these organic substances are highly carcinogenic or mutagenic. Exposure to PAHs is associated with many harmful health effects; however, we are not aware of any study that has explored the exposure to PAHs and urinary conditions in the general population. The present work aimed to investigate the correlation among PAH and urine flow rate (UFR). Method: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2009–2012 were used in our study. A total of 4172 participants and a total of nine PAH metabolites were examined. The UFR was measured as the amount of urine excreted in a period of time (mL/h). Several covariates were adjusted in linear regression models. Result: After adjusting for variables, the PAH metabolites in urine showed a significant correlation with UFR. Dose-dependent associations between PAH metabolites in the urine and UFR were also found. Higher quartiles of PAH metabolites in urine exhibited higher regression coefficients. Conclusion: Our study highlighted that PAH metabolites in urine had a strong association with decreased UFR in the US adult population. These findings support the possibility that PAH exposure is related to bladder dysfunction. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Po-Hsuan Jeng
- Department of General Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.J.); (T.-R.H.)
- Department of Surgery, Division of Urology, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Tien-Ru Huang
- Department of General Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.J.); (T.-R.H.)
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chung-Ching Wang
- Department of Family and Community Medicine, Division of Family Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Wei-Liang Chen
- Department of Family and Community Medicine, Division of Family Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Family and Community Medicine, Division of Geriatric Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923311 (ext. 16567)
| |
Collapse
|
28
|
Lee CH, Lui DTW, Lam KSL. Adipocyte Fatty Acid-Binding Protein, Cardiovascular Diseases and Mortality. Front Immunol 2021; 12:589206. [PMID: 33815359 PMCID: PMC8017191 DOI: 10.3389/fimmu.2021.589206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
It has been increasingly recognized that inflammation plays an important role in the pathogenesis of cardiovascular disease (CVD). In obesity, adipose tissue inflammation, especially in the visceral fat depots, contributes to systemic inflammation and promotes the development of atherosclerosis. Adipocyte fatty acid-binding protein (AFABP), a lipid chaperone abundantly secreted from the adipocytes and macrophages, is one of the key players mediating this adipose-vascular cross-talk, in part via its interaction with c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) to form a positive feedback loop, and perpetuate inflammatory responses. In mice, selective JNK inactivation in the adipose tissue significantly reduced the expression of AFABP in their adipose tissue, as well as circulating AFABP levels. Importantly, fat transplant experiments showed that adipose-specific JNK inactivation in the visceral fat was sufficient to protect mice with apoE deficiency from atherosclerosis, with the beneficial effects attenuated by the continuous infusion of recombinant AFABP, supporting the role of AFABP as the link between visceral fat inflammation and atherosclerosis. In humans, raised circulating AFABP levels are associated with incident metabolic syndrome, type 2 diabetes and CVD, as well as non-alcoholic steatohepatitis, diabetic nephropathy and adverse renal outcomes, all being conditions closely related to inflammation and enhanced CV mortality. Collectively, these clinical data have provided support to AFABP as an important adipokine linking obesity, inflammation and CVD. This review will discuss recent findings on the role of AFABP in CVD and mortality, the possible underlying mechanisms, and pharmacological inhibition of AFABP as a potential strategy to combat CVD.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| | - David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Karen S L Lam
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Elevated circulating FABP4 concentration predicts cardiovascular death in a general population: a 12-year prospective study. Sci Rep 2021; 11:4008. [PMID: 33597568 PMCID: PMC7889640 DOI: 10.1038/s41598-021-83494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid-binding protein 4 (FABP4) is secreted from adipose tissue and acts as an adipokine, and an elevated circulating FABP4 level is associated with metabolic disorders and atherosclerosis. However, little is known about the causal link between circulating FABP4 level and mortality in a general population. We investigated the relationship between FABP4 concentration and mortality including cardiovascular death during a 12-year period in subjects of the Tanno-Sobetsu Study, a population-based cohort (n = 721, male/female: 302/419). FABP4 concentration at baseline was significantly higher in female subjects than in male subjects. All-cause death occurred in 123 (male/female: 74/49) subjects, and 34 (male/female: 20/14) and 42 (male/female: 26/16) subjects died of cardiovascular events and cancer, respectively. When divided into 3 groups according to tertiles of FABP4 level at baseline by sex (T1–T3), Kaplan–Meier survival curves showed that there were significant differences in rates of all-cause death and cardiovascular death, but not cancer death, among the groups. Multivariable Cox proportional hazard model analysis with a restricted cubic spline showed that hazard ratio (HR) for cardiovascular death, but not that for all-cause death, significantly increased with a higher FABP4 level at baseline after adjustment of age and sex. The risk of cardiovascular death after adjustment of age, sex, body mass index and levels of brain natriuretic peptide and high-sensitivity C-reactive protein in the 3rd tertile (T3) group (HR: 4.96, 95% confidence interval: 1.20–22.3) was significantly higher than that in the 1st tertile (T1) group as the reference. In conclusion, elevated circulating FABP4 concentration predicts cardiovascular death in a general population.
Collapse
|
30
|
Qi Y, Fu S, He X, Wang B, Da L, Te R, Yuejun M, Suzhen S, Zhang W, Liu Y. Preliminary comparison of skin transcriptome from sheep with different wool fibre diameters. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Wool is one of the most important animal fibres for the textile industry, and its diameter directly affects its economic value. However, the molecular mechanisms underlying wool fibre diameter (FD) in sheep have not been fully elucidated.
Aims
The aims of the work were to make an initial comparison of skin transcriptomes from sheep with wool of high and low FD, and to identify key genes affecting FD.
Methods
High-throughput RNA-Seq technology was employed to explore the skin transcriptome, using three sheep with fine wool (FD <21.0 μm) and three sheep with coarse wool (FD >27.0 μm).
Key results
We obtained 28607228 bp of clean sequence data, 78.9% (±3.8%) of which uniquely aligned to the reference genome across the six samples. In total, 19914 mRNA transcripts were expressed (FPKM >0) in the six skin samples, among which were certain well-known genes involved in the skin–hair cycle, such as KRTAP7-1, KRT14, Wnt10b, Wnt2b, β-catenin and FGF5. Furthermore, 467 genes were significantly differentially expressed between the fine-wool and coarse-wool groups, including 21 genes with upregulated and 446 genes with downregulated expression in the sheep with lower FD. These differentially expressed genes were particularly enriched in the gene ontology processes related to lipid metabolism, skin development, differentiation and immune function (P < 0.05). The biological processes were involved in collagen catabolism, negative regulation of macromolecule metabolism, steroid hormone stimulation and lipid metabolism. A significant Kyoto Encyclopedia of Genes and Genomes pathway involving the metabolism of lipids and lipoproteins was also enriched, revealing that lipid metabolism might be one of the key factors affecting FD. The expression of these differentially expressed genes that were involved in the metabolism of lipids and lipoproteins pathway was verified by quantitative real-time PCR (qPCR). The correlation between the mRNA expression level from qPCR and RNA-Seq data was 0.999 (P < 0.001).
Conclusions
The 467 differentially expressed genes, especially those involved in lipid metabolism and immune function, may play key roles in wool follicle metabolism and the expression of wool FD.
Implications
This study provided valuable data for future studies aimed at elucidating the mechanisms that underlie wool follicle metabolism and wool FD. The work may also have implications for studies of the human hair follicle.
Collapse
|
31
|
Using proximity extension proteomics assay to discover novel biomarkers associated with circulating leptin levels in patients with type 2 diabetes. Sci Rep 2020; 10:13097. [PMID: 32753620 PMCID: PMC7403414 DOI: 10.1038/s41598-020-69473-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
We aimed to discover novel associations between leptin and circulating proteins which could link leptin to the development of cardiovascular disease in patients with type 2 diabetes (T2DM). In a discovery phase, we investigated associations between 88 plasma proteins, assessed with a proximity extension assay, and plasma leptin in a cohort of middle-aged patients with T2DM. Associations passing the significance threshold of a False discovery rate of 5% (corresponding to p < 0.0017) were replicated in patients with T2DM in an independent cohort. We also investigated if proteins mediated the longitudinal association between plasma leptin and the incidence of major cardiovascular events (MACE). One protein, adipocyte fatty acid binding protein (A-FABP), was significantly associated with leptin in both the discovery phase [95% CI (0.06, 0.17) p = 0.00002] and the replication cohort [95% CI (0.12, 0.39) p = 0.0003]. Multiplicative interaction analyses in the two cohorts suggest a stronger association between A-FABP and leptin in men than in women. In longitudinal analyses, the association between leptin and MACE was slightly attenuated after adding A-FABP to the multivariate model. Our analysis identified a consistent association between leptin and A-FABP in two independent cohorts of patients with T2DM, particularly in men.Trial registration: ClinicalTrials.gov identifier NCT01049737.
Collapse
|
32
|
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Abou-Samra M, Selvais CM, Dubuisson N, Brichard SM. Adiponectin and Its Mimics on Skeletal Muscle: Insulin Sensitizers, Fat Burners, Exercise Mimickers, Muscling Pills … or Everything Together? Int J Mol Sci 2020; 21:ijms21072620. [PMID: 32283840 PMCID: PMC7178193 DOI: 10.3390/ijms21072620] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin (ApN) is a hormone abundantly secreted by adipocytes and it is known to be tightly linked to the metabolic syndrome. It promotes insulin-sensitizing, fat-burning, and anti-atherosclerotic actions, thereby effectively counteracting several metabolic disorders, including type 2 diabetes, obesity, and cardiovascular diseases. ApN is also known today to possess powerful anti-inflammatory/oxidative and pro-myogenic effects on skeletal muscles exposed to acute or chronic inflammation and injury, mainly through AdipoR1 (ApN specific muscle receptor) and AMP-activated protein kinase (AMPK) pathway, but also via T-cadherin. In this review, we will report all the beneficial and protective properties that ApN can exert, specifically on the skeletal muscle as a target tissue. We will highlight its effects and mechanisms of action, first in healthy skeletal muscle including exercised muscle, and second in diseased muscle from a variety of pathological conditions. In the end, we will go over some of AdipoRs agonists that can be easily produced and administered, and which can greatly mimic ApN. These interesting and newly identified molecules could pave the way towards future therapeutic approaches to potentially prevent or combat not only skeletal muscle disorders but also a plethora of other diseases with sterile inflammation or metabolic dysfunction.
Collapse
|
34
|
Egbuche O, Biggs ML, Ix JH, Kizer JR, Lyles MF, Siscovick DS, Djoussé L, Mukamal KJ. Fatty Acid Binding Protein-4 and Risk of Cardiovascular Disease: The Cardiovascular Health Study. J Am Heart Assoc 2020; 9:e014070. [PMID: 32248728 PMCID: PMC7428637 DOI: 10.1161/jaha.119.014070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background FABP‐4 (fatty acid binding protein‐4) is a lipid chaperone in adipocytes and has been associated with prognosis in selected clinical populations. We investigated the associations between circulating FABP‐4, risk of incident cardiovascular disease (CVD), and risk of CVD mortality among older adults with and without established CVD. Methods and Results In the Cardiovascular Health Study, we measured FABP4 levels in stored specimens from the 1992–993 visit and followed participants for incident CVD if they were free of prevalent CVD at baseline and for CVD mortality through June 2015. We used Cox regression to estimate hazard ratios for incident CVD and CVD mortality per doubling in serum FABP‐4 adjusted for age, sex, race, field center, waist circumference, blood pressure, lipids, fasting glucose, and C‐reactive protein. Among 4026 participants free of CVD and 681 with prevalent CVD, we documented 1878 cases of incident CVD and 331 CVD deaths, respectively. In adjusted analyses, FABP‐4 was modestly associated with risk of incident CVD (mean, 34.24; SD, 18.90; HR, 1.10 per doubling in FABP‐4, 95% CI, 1.00–1.21). In contrast, FABP‐4 was more clearly associated with risk of CVD mortality among participants without (HR hazard ratio 1.24, 95% CI, 1.10–1.40) or with prevalent CVD (HR hazard ratio 1.57, 95% CI, 1.24–1.98). These associations were not significantly modified by sex, age, and waist circumference. Conclusions Serum FABP‐4 is modestly associated with risk of incident CVD even after adjustment for standard risk factors, but more strongly associated with CVD mortality among older adults with and without established CVD.
Collapse
Affiliation(s)
- Obiora Egbuche
- Division of Cardiovascular Disease Morehouse School of Medicine Atlanta GA
| | - Mary L Biggs
- Cardiovascular Health Research Unit University of Washington Seattle WA
| | - Joachim H Ix
- Division of Nephrology Department of Medicine University of California San Diego CA
| | - Jorge R Kizer
- Division of Cardiology Veterans Affairs Medical Center University of California San Francisco CA
| | - Mary F Lyles
- Department of Gerontology School of Medicine Wake Forest University Winston-Salem NC
| | | | - Luc Djoussé
- Division of Aging Department of Medicine Brigham and Women's Hospital Boston MA
| | - Kenneth J Mukamal
- Division of General Medicine Beth Israel Deaconess Medical Center Boston MA
| |
Collapse
|
35
|
Gormez S, Erdim R, Akan G, Caynak B, Duran C, Gunay D, Sozer V, Atalar F. Relationships between visceral/subcutaneous adipose tissue FABP4 expression and coronary atherosclerosis in patients with metabolic syndrome. Cardiovasc Pathol 2019; 46:107192. [PMID: 31927390 DOI: 10.1016/j.carpath.2019.107192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cytoplasmic fatty acid-binding proteins facilitate the transport of lipids to specific compartments in cells. Fatty acid-binding protein 4 (FABP4), also known as aP2 or A-FABP, plays a key role in the development of atherosclerosis, insulin resistance, obesity, and metabolic syndrome (MS). The FABP4 polymorphisms are associated with protein expression changes in vitro and metabolic and vascular alterations in vivo. The aim of this study was to investigate the association between FABP4 messenger ribonucleic acid (mRNA) expression levels in epicardial (EAT), pericardial (PAT), and subcutaneous adipose tissues (SAT), and the extent of coronary atherosclerosis in coronary artery disease (CAD) patients with MS. Furthermore, the relationship between the extent of coronary atherosclerosis and epicardial adipose tissue volume (EATV) and FABP4 gene variations was evaluated. PATIENTS AND METHODS A total of 37 patients undergoing coronary artery bypass grafting because of CAD (MS CAD group) and 23 non-MS patients undergoing heart valve surgery (control group) were included. Coronary angiography was performed for all patients and the extent of coronary atherosclerosis was assessed using the Sullivan's scoring system. The mRNA expression levels of FABP4 gene in EAT, PAT, and SAT, and FABP4 polymorphisms were analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS An increased FABP4 expression was observed in EAT and PAT of MS CAD group compared to controls. In the MS CAD group, FABP4 mRNA expression levels in EAT was 2.8-fold higher compared to PAT. The expression of FABP4 in EAT was positively correlated with the extent of atherosclerosis and EATV in MS CAD group (r = 0.588, P= 0.001, r = 0.174, P = 0.001, respectively). There were no correlations between PAT and SAT versus the extent of atherosclerosis and EATV. The FABP4 EAT mRNA expression levels were found to significantly increase in mutant allele carriers of rs1054135, whereas they significantly decreased in mutant allele carriers of rs77878271 (T-87C) in MS CAD group (P < 0.05). The extent of atherosclerosis was also found to be significantly associated with rs1054135 (P < 0.05). A cut-off point of 57.5 cm3 EATV was used indicating the presence of CAD with a significant area under the curve of 0.783%, 98% sensitivity, and 100% specificity (95% CI 0.620-0.880; P < 0.05). CONCLUSIONS Our study results suggest that FABP4 expression in EAT is strongly associated with the extent of atherosclerosis and EATV in MS CAD patients.
Collapse
Affiliation(s)
- Selcuk Gormez
- Department of Cardiology, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Turkey
| | - Refik Erdim
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gokce Akan
- MUHAS Genetics Laboratory, MUHAS, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Barıs Caynak
- Department of Cardiovascular Surgery, Istanbul Bilim University, Istanbul, Turkey
| | - Cihan Duran
- Department of Radiology, Istanbul Bilim University, Istanbul, Turkey
| | - Demet Gunay
- Sisli Florence Nightingale Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Istanbul, Turkey
| | - Fatmahan Atalar
- Department of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
36
|
Papathanasiou AE, Briana DD, Gavrili S, Georgantzi S, Papathoma E, Marmarinos A, Christou C, Voulgaris K, Gourgiotis D, Malamitsi‐Puchner A. Cord blood fatty acid-binding protein-4 levels are upregulated at both ends of the birthweight spectrum. Acta Paediatr 2019; 108:2083-2088. [PMID: 31025416 DOI: 10.1111/apa.14826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
AIM Fatty acid-binding protein-4 (FABP4) is an adipokine associated with obesity and signs of the metabolic syndrome. We aimed to investigate at birth in term neonates with normal and abnormal intrauterine growth concentrations of FABP4 and associate them with various perinatal parameters. METHODS Serum cord blood FABP4 levels were prospectively determined by ELISA in 80 singleton term appropriate-for-gestational-age (AGA), intrauterine growth-restricted (IUGR) and large-for-gestational-age (LGA) neonates. RESULTS Compared to the AGA group, cord blood FABP4 levels were increased in the IUGR and LGA groups. Additionally, they were higher in early-term than full-term neonates. A significant U-shaped correlation was recorded between serum FABP4 levels and birthweight. A significant negative correlation between cord blood FABP4 and gestational age in the whole study population was noted. CONCLUSION Cord blood FABP4 levels were significantly higher at the extremes of foetal growth at term and negatively correlated with gestational age, being increased in early-term versus full-term neonates. Further longitudinal studies with larger sample sizes are required to elucidate FABP4 implication in foetal growth and its association with future adverse cardiometabolic outcomes in the offspring.
Collapse
Affiliation(s)
| | - Despina D. Briana
- Medical School National and Kapodistrian University of Athens Athens Greece
| | - Stavroula Gavrili
- Neonatal Intensive Care Unit ‘Alexandra’ University and State Maternity Hospital Athens Greece
| | - Sophia Georgantzi
- Neonatal Intensive Care Unit ‘Alexandra’ University and State Maternity Hospital Athens Greece
| | - Evangelia Papathoma
- Neonatal Intensive Care Unit ‘Alexandra’ University and State Maternity Hospital Athens Greece
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry‐Molecular Diagnostics 2nd Department of Pediatrics National and Kapodistrian University of Athens Athens Greece
| | | | | | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry‐Molecular Diagnostics 2nd Department of Pediatrics National and Kapodistrian University of Athens Athens Greece
| | | |
Collapse
|
37
|
Ménégaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis 2019; 291:52-61. [PMID: 31693943 DOI: 10.1016/j.atherosclerosis.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
Among the pathways involved in the regulation of macrophage functions, the metabolism of unsaturated fatty acids is central. Indeed, unsaturated fatty acids act as precursors of bioactive molecules such as prostaglandins, leukotrienes, resolvins and related compounds. As components of phospholipids, they have a pivotal role in cell biology by regulating membrane fluidity and membrane-associated cellular processes. Finally, polyunsaturated fatty acids (PUFAs) are also endowed with ligand properties for numerous membrane or nuclear receptors. Although myeloid cells are dependent on the metabolic context for the uptake of essential FAs, recent studies showed that these cells autonomously handle the synthesis of n-3 and n-6 long chain PUFAs such as arachidonic acid and eicosapentaenoic acid. Moreover, targeting PUFA metabolism in macrophages influences pathological processes, including atherosclerosis, by modulating macrophage functions. Omics evidence also supports a role for macrophage PUFA metabolism in the development of cardiometabolic diseases in humans. Currently, there is a renewed interest in the role of n-3/n-6 PUFAs and their oxygenated derivatives in the onset of atherosclerosis and plaque rupture. Purified n-3 FA supplementation appears as a potential strategy in the treatment and prevention of cardiovascular diseases. In this context, the ability of immune cells to handle and to synthesize very long chain PUFA must absolutely be integrated and better understood.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France.
| |
Collapse
|
38
|
Josephrajan A, Hertzel AV, Bohm EK, McBurney MW, Imai SI, Mashek DG, Kim DH, Bernlohr DA. Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1-Dependent Manner. Diabetes 2019; 68:1767-1777. [PMID: 31171562 PMCID: PMC6702637 DOI: 10.2337/db18-1367] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is a leaderless lipid carrier protein primarily expressed by adipocytes and macrophages that not only functions intracellularly but is also secreted. The secretion is mediated via unconventional mechanism(s), and in a variety of species, metabolic dysfunction is correlated with elevated circulating FABP4 levels. In diabetic animals, neutralizing antibodies targeting serum FABP4 increase insulin sensitivity and attenuate hepatic glucose output, suggesting the functional importance of circulating FABP4. Using animal and cell-based models, we show that FABP4 is secreted from white, but not brown, adipose tissue in response to lipolytic stimulation in a sirtuin-1 (SIRT1)-dependent manner via a mechanism that requires some, but not all, autophagic components. Silencing of early autophagic genes such as Ulk1/2, Fip200, or Beclin-1 or chemical inhibition of ULK1/2 or VPS34 attenuated secretion, while Atg5 knockdown potentiated FABP4 release. Genetic knockout of Sirt1 diminished secretion, and serum FABP4 levels were undetectable in Sirt1 knockout mice. In addition, blocking SIRT1 by EX527 attenuated secretion while activating SIRT1 by resveratrol-potentiated secretion. These studies suggest that FABP4 secretion from adipocytes is regulated by SIRT1 and requires early autophagic components.
Collapse
Affiliation(s)
- Ajeetha Josephrajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ellie K Bohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael W McBurney
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Ottawa, Ontario, Canada
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
39
|
Lai YH, Lin YL, Wang CH, Kuo CH, Hsu BG. Positive Association of Serum Adipocyte Fatty Acid Binding Protein Level With Peripheral Artery Disease in Hemodialysis Patients. Ther Apher Dial 2019; 24:300-306. [PMID: 31433560 DOI: 10.1111/1744-9987.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
Adipocyte fatty acid binding protein is positively associated with atherosclerosis. Peripheral arterial disease is associated with an increased mortality in hemodialysis patients. This study aimed to evaluate the relationship between serum adipocyte fatty acid binding protein levels and peripheral arterial disease by ankle-brachial index in hemodialysis patients. Among the 90 chronic hemodialysis recipients, 20 patients (22.2%) were in the low ankle-brachial index group who had a higher prevalence of diabetes, hyperlipidemia, statin use, older age, higher body fat mass, higher serum adipocyte fatty acid binding protein level, and lower serum creatinine level compared with patients in the control group. After statistical analysis, body fat mass (P = 0.006) and creatinine level (P = 0.018) were shown to be the independent predictors of adipocyte fatty acid binding protein level. Serum adipocyte fatty acid binding protein (P = 0.021) was found to be positively associated with peripheral arterial disease in hemodialysis patients.
Collapse
Affiliation(s)
- Yu-Hsien Lai
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Ph.D. Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Yu-Li Lin
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chiu-Huang Kuo
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
40
|
Ghosh AK, Mau T, O'Brien M, Yung R. Novel role of autophagy-associated Pik3c3 gene in gonadal white adipose tissue browning in aged C57/Bl6 male mice. Aging (Albany NY) 2019; 10:764-774. [PMID: 29695642 PMCID: PMC5940123 DOI: 10.18632/aging.101426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023]
Abstract
Adipose tissue dysfunction is associated with inflammation, metabolic syndrome and other diseases in aging. Recent work has demonstrated that compromised autophagy activity in aging adipose tissue promotes ER stress responses, contributing to adipose tissue and systemic inflammation in aging. Phosphatidylinositol 3-kinase catalytic subunit type 3 (Pik3c3) is an 887 amino acid lipid kinase that regulates intracellular membrane trafficking and autophagy activity. To address the mechanistic link between autophagy and ER stress response in aging adipose tissue, we generated a line of adipose tissue-specific Pik3c3 knock out (~mutant mice) with the Fabp4 (Fatty acid binding protein 4) promoter driven Cre recombinase system. We found elevated ER stress response signaling with reduced autophagy activity without any significant change on adiposity or glucose tolerance in early life of Pik3c3 mutant mice. Interestingly, middle- and old-aged mutant mice exhibited improved glucose tolerance (GTT) and reduced adiposity compared to age and sex-matched littermates. In addition, adipose tissue-specific Pik3c3 mutants display reduced expression of adiposity-associated genes with the signature of adipose tissue browning phenotypes in old age. Overall, the results suggest that altered adipose tissue characteristics due to autophagy inhibition early in life has beneficial effects that promote adipose tissue browning and improves glucose tolerance in late-life.
Collapse
Affiliation(s)
- Amiya Kumar Ghosh
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin O'Brien
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Geriatric Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| |
Collapse
|
41
|
Is maternal lipid profile in early pregnancy associated with pregnancy complications and blood pressure in pregnancy and long term postpartum? Am J Obstet Gynecol 2019; 221:150.e1-150.e13. [PMID: 30940559 DOI: 10.1016/j.ajog.2019.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND An atherogenic lipid profile is a risk factor for the initiation and progression of atherosclerosis. This ultimately leads to cardiovascular disease. Women with a history of hypertensive disorders of pregnancy are at increased risk of sustained hypertension and cardiovascular disease later in life. Currently it is unclear whether dyslipidemia during pregnancy contributes to these risks. OBJECTIVE The objective of the study was to determine the associations between early pregnancy maternal lipid profile, hypertensive disorders of pregnancy, and blood pressure during and years after pregnancy. STUDY DESIGN We included 5690 women from the Generation R Study, an ongoing population-based prospective birth cohort. Two hundred eighteen women (3.8%) developed gestational hypertension and 139 (2.4%) preeclampsia. A maternal lipid profile consisting of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, remnant cholesterol, and non-high-density lipoprotein cholesterol was determined in early pregnancy (median, 13.4 weeks of gestation). Systolic and diastolic blood pressures were measured in early, mid-, and late pregnancy and 6 and 9 years after pregnancy. RESULTS Triglycerides and remnant cholesterol in early pregnancy were positively associated with preeclampsia. Maternal lipid levels in early pregnancy were not associated with gestational hypertension. Total cholesterol, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and especially triglycerides and remnant cholesterol were positively associated with blood pressure in pregnancy and 6 and 9 years after pregnancy. Triglycerides and remnant cholesterol are positively associated with sustained hypertension 6 and 9 years after pregnancy. CONCLUSION An atherogenic lipid profile in early pregnancy reflecting impaired triglyceride-rich lipoprotein metabolism is independently associated with preeclampsia and blood pressure throughout pregnancy but also with sustained hypertension long term postpartum. Lipid levels in early pregnancy may help to identify women at risk for future hypertension and perhaps also women at risk for future cardiovascular disease.
Collapse
|
42
|
Baran A, Kiluk P, Świderska M, Maciaszek M, Myśliwiec H, Flisiak I. Adipocyte Fatty Acid-Binding Protein as a Novel Marker of Psoriasis and Clinical Response to Acitretin. Lipids 2019; 54:445-452. [PMID: 31281982 DOI: 10.1002/lipd.12173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
Psoriasis is a systemic disease associated with metabolic syndrome and cardiometabolic diseases. Adipocyte fatty acid-binding protein (A-FABP, FABP4) is a relevant mediator of lipid metabolism and several comorbidities development. Aim of the study was to explore the possible role of FABP4 in psoriasis and assess its relationship with disease activity, inflammation or metabolic disturbances, and impact of systemic treatment. Fasting blood samples were obtained from 33 patients with active plaque-type psoriasis before and after 12 weeks of therapy and from 11 healthy volunteers. Serum FABP4 concentrations were analyzed by the enzyme-linked immunosorbent assay (ELISA) and statistically analyzed for their correlations with clinical outcomes and the treatment introduced. Serum FABP4 levels were significantly increased in psoriatics compared to controls (p = 0.03). No relationship between the protein and psoriasis severity expressed through psoriasis area and severity index (PASI) was noted (p = 0.57). FABP4 did not correlate with CRP (p = 0.41), lipid profile, and body mass index (BMI) nor the glucose level or liver enzyme activity. FABP4 significantly correlated with morphotic blood elements. After total therapy, FABP4 did not statistically change (p = 0.07), but significantly decreased after administering acitretin (p = 0.03). FABP4 is a potential marker of psoriasis and clinical outcome after therapy with acitretin. Adipocyte-type FABP may be related to hematological disorders or obesity-mediated comorbidities in psoriasis.
Collapse
Affiliation(s)
- Anna Baran
- Department of Dermatology and Venereology Medical University of Bialystok, 15-540 Bialystok, Zurawia 14 St, Poland
| | - Paulina Kiluk
- Department of Dermatology and Venereology Medical University of Bialystok, 15-540 Bialystok, Zurawia 14 St, Poland
| | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Mickiewicza 2C St, Poland
| | - Magdalena Maciaszek
- Department of Infectious Diseases and Hepatology Medical University of Bialystok, 15-540 Bialystok, Zurawia 14 St, Poland
| | - Hanna Myśliwiec
- Department of Dermatology and Venereology Medical University of Bialystok, 15-540 Bialystok, Zurawia 14 St, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology Medical University of Bialystok, 15-540 Bialystok, Zurawia 14 St, Poland
| |
Collapse
|
43
|
Baran A, Kiluk P, Maciaszek M, Świderska M, Flisiak I. Liver fatty acid-binding protein might be a predictive marker of clinical response to systemic treatment in psoriasis. Arch Dermatol Res 2019; 311:389-397. [PMID: 30993401 PMCID: PMC6546856 DOI: 10.1007/s00403-019-01917-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Fatty acid-binding proteins play an inconclusive role in lipid metabolism and cardiometabolic diseases (CMDs) which are closely related with psoriasis. Aim of the study was to investigate the diagnostic value of serum liver fatty acid-binding protein (FABP1) level and associations with disease severity, inflammation or metabolic parameters and influence of systemic treatment in psoriatic patients. The study included thirty-three patients with active plaque-type psoriasis and eleven healthy volunteers. Blood samples were obtained before and after 12 weeks of therapy with methotrexate and acitretin. Serum FABP1 concentrations were analyzed by the enzyme-linked immunosorbent assay. Statistical analysis was performed for correlation of FABP1 with anthropometric, metabolic or inflammatory indices and treatment used. Serum liver-type FABP levels were significantly increased in psoriatic patients compared to the controls (p < 0.001). No statistical correlations between FABP1 and PASI (p = 0.25) was noted, however patients with severe psoriasis had the highest level of FABP1. No significance with metabolic parameters was obtained, beside a positive significant relation with BMI after therapy (p = 0.03). Liver-type FABP significantly correlated with CRP (p = 0.01) and morphotic blood elements. Systemic treatment combined resulted in significant decrease of FABP1 (p = 0.04), regardless of the drug: p = 0.1 in acitretin group, p = 0.3 in methotrexate group. Liver-type FABP might be a novel marker of psoriasis and predictor of clinical response to systemic therapy. FABP1 could be involved in CMDs risk assessment and perhaps link psoriasis with hematological disorders.
Collapse
Affiliation(s)
- Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St, 15-540, Białystok, Poland.
| | - Paulina Kiluk
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St, 15-540, Białystok, Poland
| | - Magdalena Maciaszek
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Zurawia 14 St, 15-540, Białystok, Poland
| | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C St, 15-222, Białystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St, 15-540, Białystok, Poland
| |
Collapse
|
44
|
Prentice KJ, Saksi J, Hotamisligil GS. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res 2019; 60:734-740. [PMID: 30705117 PMCID: PMC6446704 DOI: 10.1194/jlr.s091793] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 12/15/2022] Open
Abstract
Although counterregulatory hormones and mediators of the fight-or-flight responses are well defined at many levels, how energy stores per se are integrated into this system remains an enigmatic question. Recent years have seen the adipose tissue become a central focus for mediating intracellular signaling and communication through the release of a variety of bioactive lipids and substrates, as well as various adipokines. A critical integration node among these mediators and responses is controlled by FA binding protein 4 (FABP4), also known as adipocyte protein 2 (aP2), which is highly expressed in adipose tissue and functions as a lipid chaperone protein. Recently, it was demonstrated that FABP4 is a secreted hormone that has roles in maintaining glucose homeostasis, representing a key juncture facilitating communication between energy-storage systems and distant organs to respond to life-threatening situations. However, chronic engagement of FABP4 under conditions of immunometabolic stress, such as obesity, exacerbates a number of immunometabolic diseases, including diabetes, asthma, cancer, and atherosclerosis. In both preclinical mouse models and humans, levels of circulating FABP4 have been correlated with metabolic disease incidence, and reducing FABP4 levels or activity is associated with improved metabolic health. In this review, we will discuss the intriguing emerging biology of this protein, including potential therapeutic options for targeting circulating FABP4.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA; Broad Institute of Harvard and MIT Cambridge, MA.
| |
Collapse
|
45
|
Liang X, Gupta K, Quintero JR, Cernadas M, Kobzik L, Christou H, Pier GB, Owen CA, Çataltepe S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J 2019; 33:3562-3574. [PMID: 30462529 PMCID: PMC6988858 DOI: 10.1096/fj.201802002r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4), an intracellular lipid chaperone and adipokine, is expressed by lung macrophages, but the function of macrophage-FABP4 remains elusive. We investigated the role of FABP4 in host defense in a murine model of Pseudomonas aeruginosa pneumonia. Compared with wild-type (WT) mice, FABP4-deficient (FABP4-/-) mice exhibited decreased bacterial clearance and increased mortality when challenged intranasally with P. aeruginosa. These findings in FABP4-/- mice were associated with a delayed neutrophil recruitment into the lungs and were followed by greater acute lung injury and inflammation. Among leukocytes, only macrophages expressed FABP4 in WT mice with P. aeruginosa pneumonia. Chimeric FABP4-/- mice with WT bone marrow were protected from increased mortality seen in chimeric WT mice with FABP4-/- bone marrow during P. aeruginosa pneumonia, thus confirming the role of macrophages as the main source of protective FABP4 against that infection. There was less production of C-X-C motif chemokine ligand 1 (CXCL1) in FABP4-/- alveolar macrophages and lower airway CXCL1 levels in FABP4-/- mice. Delivering recombinant CXCL1 to the airways protected FABP4-/- mice from increased susceptibility to P. aeruginosa pneumonia. Thus, macrophage-FABP4 has a novel role in pulmonary host defense against P. aeruginosa infection by facilitating crosstalk between macrophages and neutrophils via regulation of macrophage CXCL1 production.-Liang, X., Gupta, K., Rojas Quintero, J., Cernadas, M., Kobzik, L., Christou, H., Pier, G. B., Owen, C. A., Çataltepe, S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuela Cernadas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Sule Çataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperones, contribute to systemic metabolic regulation via several lipid signaling pathways. Fatty acid-binding protein 4 (FABP4), known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays important roles in the development of insulin resistance and atherosclerosis in relation to metabolically driven low-grade and chronic inflammation, referred to as ‘metaflammation’. FABP4 is secreted from adipocytes in a non-classical pathway associated with lipolysis and acts as an adipokine for the development of insulin resistance and atherosclerosis. Circulating FABP4 levels are associated with several aspects of metabolic syndrome and cardiovascular disease. Ectopic expression and function of FABP4 in cells and tissues are also related to the pathogenesis of several diseases. Pharmacological modification of FABP4 function by specific inhibitors, neutralizing antibodies or antagonists of unidentified receptors would be novel therapeutic strategies for several diseases, including obesity, diabetes mellitus, atherosclerosis and cardiovascular disease. Significant roles of FABP4 as a lipid chaperone in physiological and pathophysiological conditions and the possibility of FABP4 being a therapeutic target for metabolic and cardiovascular diseases are discussed in this review.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
47
|
Xiao Y, Xiao X, Xu A, Chen X, Tang W, Zhou Z. Circulating adipocyte fatty acid-binding protein levels predict the development of subclinical atherosclerosis in type 2 diabetes. J Diabetes Complications 2018; 32:1100-1104. [PMID: 30314766 DOI: 10.1016/j.jdiacomp.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the prospective association of circulating adipocyte fatty acid-binding protein (A-FABP) levels with the development of subclinical atherosclerosis in patients with type 2 diabetes in an 8-year prospective study. METHODS A total of 170 patients with newly diagnosed type 2 diabetes were recruited in the study and 133 patients completed the follow-up of 8 years. Baseline plasma A-FABP levels were measured with enzyme-linked immunosorbent assays. The role of A-FABP in predicting the development of subclinical atherosclerosis over 8 years was analyzed using multiple logistic regression. RESULTS Of the 133 patients without subclinical atherosclerosis at baseline, a total of 100 had progressed to subclinical atherosclerosis over 8 years. Baseline A-FABP level was significantly higher in patients who had progressed to subclinical atherosclerosis at year 8 compared with ones who had not developed subclinical atherosclerosis after adjustment for sex (15.3 [12.1-23.2] versus 13.3 [10.0-18.9] ng/ml, P = 0.021). High baseline A-FABP level was an independent predictor for the development of subclinical atherosclerosis in patients with type 2 diabetes (odds ratio: 16.24, P = 0.022). CONCLUSIONS Circulating A-FABP levels predict the development of subclinical atherosclerosis in type 2 diabetes patients.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Xiaoyu Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| | - Xiaoyan Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120, China.
| | - Weili Tang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| |
Collapse
|
48
|
Hartwig S, De Filippo E, Göddeke S, Knebel B, Kotzka J, Al-Hasani H, Roden M, Lehr S, Sell H. Exosomal proteins constitute an essential part of the human adipose tissue secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:140172. [PMID: 30502511 DOI: 10.1016/j.bbapap.2018.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/18/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Adipose tissue is an endocrine organ, secreting various adipokines, either directly or via extracellular vesicles, including exosomes. Exosomes are vesicles of 40-150 nm size that represent a novel concept of biomolecule release. We purified exosomes from isolated primary human preadipocytes differentiated to mature adipocytes. The analyses of these exosomal preparations by LC-MS identified 884 proteins, so called exoadipokines. The comparison of exoadipokines with previously identified human exosome-associated proteins in ExoCarta database show an overlap of 817 proteins, but also revealed 67 proteins not assigned to human exosomes, yet. We further compared all exoadipokines to our previously reported reference secretome of human adipose tissue (http://diabesityprot.org/), finding 212 common proteins, whereas 672 proteins were specific for the exosomal fraction. Bioinformatic analyses revealed that the 212 common proteins can be assigned to all major functions of adipose tissue secreted proteins e.g. molecules involved in fibrotic processes or inflammation. In contrast, the exosome-specific proteins were rather assigned to signaling pathways and membrane-mediated processes. In conclusion, the isolation of exosomes allows to further specify the functionality of adipokines and exoadipokines as part of the adipocyte secretome in signaling and interorgan crosstalk.
Collapse
Affiliation(s)
- Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany
| | - Elisabetta De Filippo
- German Center for Diabetes Research (DZD e.V.), München, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| | - Simon Göddeke
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany
| | - Jorg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), München, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany.
| | - Henrike Sell
- German Center for Diabetes Research (DZD e.V.), München, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
49
|
Serum FABP4 concentrations decrease after Roux-en-Y gastric bypass but not after intensive medical management. Surgery 2018; 165:571-578. [PMID: 30287050 DOI: 10.1016/j.surg.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Serum concentrations of fatty acid binding protein 4, an adipose tissue fatty acid chaperone, have been correlated with insulin resistance and cardiovascular risk factors. The objective of this study were to assess relationships among Roux-en-Y gastric bypass, intensive lifestyle modification and medical management protocol, fatty acid binding protein 4, and metabolic parameters in obese patients with severe type 2 diabetes mellitus; and to evaluate the relative contribution of abdominal subcutaneous adipose and visceral adipose to the secretion of fatty acid binding protein 4. METHODS Participants were randomly assigned to intensive lifestyle modification and medical management protocol (n = 29) or to intensive lifestyle modification and medical management protocol augmented with Roux-en-Y gastric bypass (n = 34). Relationships among fatty acid binding protein 4 and demographic characteristics, metabolic parameters, and 12-month changes in these values were examined. Visceral and subcutaneous adipose tissue explants from obese nondiabetic patients (n = 5) were obtained and treated with forskolin to evaluate relative secretion of fatty acid binding protein 4 in the different adipose tissue depots. RESULTS The intensive lifestyle modification and medical management protocol and Roux-en-Y gastric bypass cohorts had similar fasting serum fatty acid binding protein 4 concentrations at baseline. At 1 year, mean serum fatty acid binding protein 4 decreased by 42% in Roux-en-Y gastric bypass participants (P = .002) but did not change significantly in the intensive lifestyle modification and medical management protocol cohort. Percentage of weight change was not a significant predictor of 12-month fatty acid binding protein 4 within treatment arm or in multivariate models adjusted for treatment arm. In adipose tissue explants, fatty acid binding protein 4 was secreted similarly between visceral and subcutaneous adipose tissue. CONCLUSION After Roux-en-Y gastric bypass, fatty acid binding protein 4 is reduced 12 months after surgery but not after intensive lifestyle modification and medical management protocol in patients with type 2 diabetes mellitus. Fatty acid binding protein 4 was secreted similarly between subcutaneous and visceral adipose tissue explants.
Collapse
|
50
|
Systematic RNA-interference in primary human monocyte-derived macrophages: A high-throughput platform to study foam cell formation. Sci Rep 2018; 8:10516. [PMID: 30002403 PMCID: PMC6043567 DOI: 10.1038/s41598-018-28790-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage-derived foam cells are key regulators of atherogenesis. They accumulate in atherosclerotic plaques and support inflammatory processes by producing cytokines and chemokines. Identifying factors that regulate macrophage lipid uptake may reveal therapeutic targets for coronary artery disease (CAD). Here, we establish a high-throughput screening workflow to systematically identify genes that impact the uptake of DiI-labeled low-density lipoprotein (LDL) into monocyte-derived primary human macrophages. For this, monocytes isolated from peripheral blood were seeded onto 384-well plates, solid-phase transfected with siRNAs, differentiated in vitro into macrophages, and LDL-uptake per cell was measured by automated microscopy and quantitative image analysis. We applied this workflow to study how silencing of 89 genes impacts LDL-uptake into cells from 16 patients with CAD and 16 age-matched controls. Silencing of four novel genes (APOC1, CMTM6, FABP4, WBP5) reduced macrophage LDL-uptake. Additionally, knockdown of the chemokine receptor CXCR4 reduced LDL-uptake, most likely through a G-protein coupled mechanism that involves the CXCR4 ligand macrophage-induced factor (MIF), but is independent of CXCL12. We introduce a high-throughput strategy to systematically study gene function directly in primary CAD-patient cells. Our results propose a function for the MIF/CXCR4 signaling pathway, as well as several novel candidate genes impacting lipid uptake into human macrophages.
Collapse
|