1
|
Wu J, Zhang Y, Li W, Tang H, Zhou Y, You D, Chu X, Li H, Shang J, Qi N, Ye BC. Mycobacterium tuberculosis Suppresses Inflammatory Responses in Host through Its Cholesterol Metabolites. ACS Infect Dis 2024; 10:3650-3663. [PMID: 39360613 DOI: 10.1021/acsinfecdis.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cholesterol is a key carbon source for Mycobacterium tuberculosis (Mtb) survival and persistence within macrophages. However, little is known about the role of cholesterol metabolism by Mtb in host-Mtb interplay. Here, we report the immune suppression mediated by Mtb's cholesterol metabolites. Conducting the cholesterol metabolic profiling and loss-of-function experiments, we show that the cholesterol oxidation products catalyzed by a thiolase FadA5 from Mtb H37Ra, 4-androstenedione (AD), and its derivant 1,4-androstenedione (ADD) inhibit the expression of pro-inflammatory cytokines and thus promote bacterial survival in bone marrow-derived macrophages (BMDMs). Our time-resolved fluorescence resonance energy transfer (TR-FRET)-based screening further identifies the nuclear receptor LXRα as the target of ADD. Activation of LXRα via ADD impedes the nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling and reduces cholesterol accumulation in lipid rafts upon TLR4 simulation, thereby compromising the inflammatory responses. Our findings provide the evidence that Mtb could suppress the host immunity through its cholesterol metabolic enzyme and products, which are potential targets for screening novel anti-tuberculosis (TB) agents.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yong Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenqi Li
- Department of Basic Research, Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Hanbing Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jinsai Shang
- Department of Basic Research, Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Nan Qi
- Department of Basic Research, Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhen J, Abuliken Y, Yan Y, Gao C, Jiang Z, Huang T, Le TTT, Xiang L, Li P, Xie J. Mycobacterium LacI-type Transcription Regulator Rv3575c Affects Host Innate Immunity by Regulating Bacterial mce4 Operon-Mediated Cholesterol Transport. ACS Infect Dis 2024; 10:3618-3630. [PMID: 39236267 DOI: 10.1021/acsinfecdis.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mycobacterium tuberculosis has evolved a highly specialized system to snatch essential nutrients from its host, among which host-derived cholesterol has been established as one main carbon source for M. tuberculosis to survive within granulomas. The uptake, catabolism, and utilization of cholesterol are important for M. tuberculosis to sustain within the host largely via remodeling of the bacterial cell walls. However, the regulatory mechanism of cholesterol uptake and its impact on bacterium fate within infected hosts remain elusive. Here, we found that M. tuberculosis LacI-type transcription regulator Rv3575c negatively regulates its mce4 family gene transcription. Overexpression of Rv3575c impaired the utilization of cholesterol as the sole carbon source by Mycobacterium smegmatis, activating the host's innate immune response and triggering cell pyroptosis. The M. smegmatis homologue of Rv3575c MSMEG6044 knockout showed enhanced hydrophobicity and permeability of the cell wall and resistance to ethambutol, suppressed the host innate immune response to M. smegmatis, and promoted the survival of M. smegmatis in macrophages and infected mouse lungs, leading to reduced transcriptional levels of TNFα and IL-6. In summary, these data indicate a role of Rv3575c in the pathogenesis of mycobacteria and reveal the key function of Rv3575c in cholesterol transport in mycobacteria.
Collapse
Affiliation(s)
- Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuerigu Abuliken
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thi Thu Thuy Le
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liying Xiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
3
|
Wang X, Ke X, Dong H, Liu Z, Zheng Y. High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system. Biotechnol J 2024; 19:e2400387. [PMID: 39295572 DOI: 10.1002/biot.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
21-Hydroxy-20-methylpregn-4-en-3-one (4-HBC, bisnoralcohol) is a crucial intermediate for the synthesis of steroidal drugs. Significant challenges including by-products formation and poor substrate solubility were still confronted in its main synthetic route by microbial conversion from phytosterol. Construction of a direct bioconversion pathway to 4-HBC and an efficient substrate emulsion system is therefore urgently required. In this study, three novel isoenzymes of 3-ketosteroid-Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KsH) in Mycobacterium neoaurum were excavated and identified as KstD4, KstD5, and KsHA3. A strain capable of fully directing the synthesis of 4-HBC was metabolically engineered via serial genetic deletion combined with enhanced expression of cholesterol oxidase (ChOx2) and enoyl-CoA hydratase (EchA19). Moreover, a micro-emulsion system combined with soybean oil and hydroxypropyl-β-cyclodextrin improved substrate solubility and bioavailability. In batch fermentation, molar yield of 96.7% with 39.5 g L-1 4-HBC was obtained from 50 g L-1 phytosterol. Our findings demonstrate the potential for industrial-scale biosynthesis of 4-HBC.
Collapse
Affiliation(s)
- Xinxin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hongduo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
5
|
Cereijo AE, Ferretti MV, Iglesias AA, Álvarez HM, Asencion Diez MD. Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1. Biol Chem 2024; 405:325-340. [PMID: 38487862 DOI: 10.1515/hsz-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024]
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Collapse
Affiliation(s)
- Antonela Estefania Cereijo
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - María Victoria Ferretti
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Alberto Alvaro Iglesias
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Héctor Manuel Álvarez
- Instituto de Biociencias de la Patagonia (INBIOP), 28226 Universidad Nacional de la Patagonia San Juan Bosco y CONICET , Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Matías Damian Asencion Diez
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| |
Collapse
|
6
|
Dechow SJ, Abramovitch RB. Targeting Mycobacterium tuberculosis pH-driven adaptation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001458. [PMID: 38717801 PMCID: PMC11165653 DOI: 10.1099/mic.0.001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.
Collapse
Affiliation(s)
- Shelby J. Dechow
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Zhan T, Jacoby C, Jede M, Knapp B, Ferlaino S, Günter A, Drepper F, Müller M, Weber S, Boll M. Bacterial stigmasterol degradation involving radical flavin delta-24 desaturase and molybdenum-dependent C26 hydroxylase. J Biol Chem 2024; 300:107243. [PMID: 38556086 PMCID: PMC11061730 DOI: 10.1016/j.jbc.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024] Open
Abstract
Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4β4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.
Collapse
Affiliation(s)
- Tingyi Zhan
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Christian Jacoby
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Martin Jede
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Bettina Knapp
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Sascha Ferlaino
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Andreas Günter
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Li X, Zhang R, Li J, Liu N, Chen X, Liu Y, Zhao G, Ding K, Yao P, Feng J, Wu Q, Zhu D, Ma Y. Chemo-Enzymatic Strategy for the Efficient Synthesis of Steroidal Drugs with 10α-Methyl Group and a Side Chain at C17-Position from Biorenewable Phytosterols. JACS AU 2024; 4:1356-1364. [PMID: 38665665 PMCID: PMC11040700 DOI: 10.1021/jacsau.3c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Steroidal pharmaceuticals with a 10α-methyl group or without the methyl group at C10-position are important medicines, but their synthesis is quite challenging, due to that the natural steroidal starting materials usually have a 10β-methyl group which is difficult to be inverted to 10α-methyl group. In this study, 3-((1R,3aS,4S,7aR)-1-((S)-1-hydroxypropan-2-yl)-7a-methyl-5-oxooctahydro-1H-inden-4-yl) propanoic acid (HIP-IPA, 2e) was demonstrated as a valuable intermediate for the synthesis of this kind of active pharmaceutical ingredients (APIs) with a side chain at C17-position. Knockout of a β-hydroxyacyl-CoA dehydrogenase gene and introduction of a sterol aldolase gene into the genetically modified strains of Mycobacterium fortuitum (ATCC 6841) resulted in strains N13Δhsd4AΩthl and N33Δhsd4AΩthl, respectively. Both strains transformed phytosterols into 2e. Compound 2e was produced in 62% isolated yield (25 g) using strain N13Δhsd4AΩthl, and further converted to (3S,3aS,9aS,9bS)-3-acetyl-3a,6-dimethyl-1,2,3,3a,4,5,8,9,9a,9b-decahydro-7H-cyclopenta[a]naphthalen-7-one, which is the key intermediate for the synthesis of dydrogesterone. This study not only overcomes a challenging synthetic problem by enabling an efficient synthesis of dydrogesterone-like steroidal APIs from phytosterols, the well-recognized cheap and readily available biobased raw materials, but also provides insights for redesigning the metabolic pathway of phytosterols to produce other new compounds of relevance to the steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Xuemei Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Rui Zhang
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Jianjiong Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Na Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Xi Chen
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Yiyin Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Gang Zhao
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, China
| | - Kai Ding
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, China
| | - Peiyuan Yao
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Jinhui Feng
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Qiaqing Wu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Dunming Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Yanhe Ma
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| |
Collapse
|
9
|
Song H, Zhang Z, Cao C, Tang Z, Gui J, Liu W. Biocatalytic Steroidal 9α-Hydroxylation and Fragmentation Enable the Concise Chemoenzymatic Synthesis of 9,10-Secosteroids. Angew Chem Int Ed Engl 2024; 63:e202319624. [PMID: 38376063 DOI: 10.1002/anie.202319624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
9,10-Secosteroids are an important group of marine steroids with diverse biological activities. Herein, we report a chemoenzymatic strategy for the concise, modular, and scalable synthesis of ten naturally occurring 9,10-secosteroids from readily available steroids in three to eight steps. The key feature lies in utilizing a Rieske oxygenase-like 3-ketosteroid 9α-hydroxylase (KSH) as the biocatalyst to achieve efficient C9-C10 bond cleavage and A-ring aromatization of tetracyclic steroids through 9α-hydroxylation and fragmentation. With synthesized 9,10-secosteroides, structure-activity relationship was evaluated based on bioassays in terms of previously unexplored anti-infective activity. This study provides experimental evidence to support the hypothesis that the biosynthetic pathway through which 9,10-secosteroids are formed in nature shares a similar 9α-hydroxylation and fragmentation cascade. In addition to the development of a biomimetic approach for 9,10-secosteroid synthesis, this study highlights the great potential of chemoenzymatic strategies in chemical synthesis.
Collapse
Affiliation(s)
- Hanxin Song
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhijun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Roth AT, Philips JA, Chandra P. The role of cholesterol and its oxidation products in tuberculosis pathogenesis. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00042. [PMID: 38693938 PMCID: PMC11060060 DOI: 10.1097/in9.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.
Collapse
Affiliation(s)
- Andrew T. Roth
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Wang Z, Qiu H, Chen Y, Chen X, Fu C, Yu L. Microbial metabolism of diosgenin by a novel isolated Mycolicibacterium sp. HK-90: A promising biosynthetic platform to produce 19-carbon and 21-carbon steroids. Microb Biotechnol 2024; 17:e14415. [PMID: 38381074 PMCID: PMC10880577 DOI: 10.1111/1751-7915.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Green manufacture of steroid precursors from diosgenin by microbial replacing multistep chemical synthesis has been elusive. It is currently limited by the lack of strain and degradation mechanisms. Here, we demonstrated the feasibility of this process using a novel strain Mycolicibacterium sp. HK-90 with efficiency in diosgenin degradation. Diosgenin degradation by strain HK-90 involves the selective removal of 5,6-spiroketal structure, followed by the oxygenolytic cleavage of steroid nuclei. Bioinformatic analyses revealed the presence of two complete steroid catabolic gene clusters, SCG-1 and SCG-2, in the genome of strain HK-90. SCG-1 cluster was found to be involved in classic phytosterols or cholesterol catabolic pathway through the deletion of key kstD1 gene, which promoted the mutant m-∆kstD1 converting phytosterols to intermediate 9α-hydroxyandrostenedione (9-OHAD). Most impressively, global transcriptomics and characterization of key genes suggested SCG-2 as a potential gene cluster encoding diosgenin degradation. The gene inactivation of kstD2 in SCG-2 resulted in the conversion of diosgenin to 9-OHAD and 9,16-dihydroxy-pregn-4-ene-3,20-dione (9,16-(OH)2 -PG) in mutant m-ΔkstD2. Moreover, the engineered strain mHust-ΔkstD1,2,3 with a triple deletion of kstDs was constructed, which can stably accumulate 9-OHAD by metabolizing phytosterols, and accumulate 9-OHAD and 9,16-(OH)2 -PG from diosgenin. Diosgenin catabolism in strain mHust-ΔkstD1,2,3 was revealed as a progression through diosgenone, 9,16-(OH)2 -PG, and 9-OHAD to 9α-hydroxytestosterone (9-OHTS). So far, this work is the first report on genetically engineered strain metabolizing diosgenin to produce 21-carbon and 19-carbon steroids. This study presents a promising biosynthetic platform for the green production of steroid precursors, and provide insights into the complex biochemical mechanism of diosgenin catabolism.
Collapse
Affiliation(s)
- Zhikuan Wang
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| | - Hailiang Qiu
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| | - Yulong Chen
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of BiotechnologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Molecular BiophysicsMinistry of EducationWuhanChina
- Hubei Engineering Research Center for Both Edible and Medicinal ResourcesWuhanChina
| |
Collapse
|
12
|
Brown KL, Krekhno JMC, Xing S, Huan T, Eltis LD. Cholesterol-Mediated Coenzyme A Depletion in Catabolic Mutants of Mycobacteria Leads to Toxicity. ACS Infect Dis 2024; 10:107-119. [PMID: 38054469 DOI: 10.1021/acsinfecdis.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cholesterol is a critical growth substrate for Mycobacterium tuberculosis (Mtb) during infection, and the cholesterol catabolic pathway has been targeted for the development of new antimycobacterial agents. A key metabolite in cholesterol catabolism is 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP). Many of the HIP metabolites are acyl-coenzyme A (CoA) thioesters, whose accumulation in deletion mutants can cause cholesterol-mediated toxicity. We used LC-MS/MS analysis to demonstrate that deletion of genes involved in HIP catabolism leads to acyl-CoA accumulation with concomitant depletion of free CoASH, leading to dysregulation of central metabolic pathways. CoASH and acyl-CoAs inhibited PanK, the enzyme that catalyzes the first step in the transformation of pantothenate to CoASH. Inhibition was competitive with respect to ATP with Kic values ranging from 9 μM for CoASH to 57 μM for small acyl-CoAs and 180 ± 30 μM for cholesterol-derived acyl-CoA. These findings link two critical metabolic pathways and suggest that therapeutics targeting cholesterol catabolic enzymes could both prevent the utilization of an important growth substrate and simultaneously sequester CoA from essential cellular processes, leading to bacterial toxicity.
Collapse
Affiliation(s)
- Kirstin L Brown
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jessica M C Krekhno
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Shipei Xing
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
13
|
Zhu X, Wang X, Zhang J, Wang X. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Biotechnol J 2024; 19:e2300439. [PMID: 38129322 DOI: 10.1002/biot.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
9α-Hydroxyandroster-4-ene-3,17-dione (9-OH-AD) is a representative steroid drug intermediate that can be prepared by phytosterols (PS) biotransformation with mycobacteria in a resting cell-cyclodextrin system. In this study, over-expression of 17β-hydroxysteroid dehydrogenase (Hsd4A) was testified to enhance the side-chain degradation of PS and to reduce the incomplete degradation by-products. Meanwhile, the complete degradation product 4-androstene-3,17-dione (AD) was increased due to the lack of 3-Ketosteroid 9α-Hydroxylase (KshA1) activities. To increase the production and purity of 9-OH-AD, the metabolic pathway of the side-chain degradation of PS and 9-position hydroxylation was modulated by balancing the over-expression of Hsd4A and KshA1 in mycobacteria and reducing the bioconversion rate via lowering the ratio of PS and cyclodextrin. The production and purity of 9-OH-AD in broth were improved from 22.18 g L-1 and 77.13% to 28.27 g L-1 and 87.84%, with a molar yield of 78.32%.
Collapse
Affiliation(s)
- Xiaomei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Liu X, He B, Zhang J, Yuan C, Han S, Du G, Shi J, Sun J, Zhang B. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Appl Microbiol Biotechnol 2023; 107:7635-7646. [PMID: 37831185 DOI: 10.1007/s00253-023-12812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Androst-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) are important drug intermediates that can be biosynthesized from phytosterols. However, the C9 hydroxylation of steroids via 3-ketosteroid 9α-hydroxylase (KSH) limits AD and 4-HBC accumulation. Five active KshAs, the oxidation component of KSH, were identified in Mycobacterium fortuitum ATCC 35855 for the first time. The deletion of kshAs indicated that the five KshA genes were jointly responsible for C9 hydroxylation during phytosterol biotransformation. MFKDΔkshA, the five KshAs deficient strain, blocked C9 hydroxylation and produced 5.37 g/L AD and 0.55 g/L 4-HBC. The dual function reductase Opccr knockout and 17β-hydroxysteroid dehydrogenase Hsd4A enhancement reduced 4-HBC content from 8.75 to 1.72% and increased AD content from 84.13 to 91.34%, with 8.24 g/L AD being accumulated from 15 g/L phytosterol. In contrast, hsd4A and thioesterase fadA5 knockout resulted in the accumulation of 5.36 g/L 4-HBC from 10 g/L phytosterol. We constructed efficient AD (MFKDΔkshAΔopccr_hsd4A) and 4-HBC (MFKDΔkshAΔhsd4AΔfadA5) producers and provided insights for further metabolic engineering of the M. fortuitum ATCC 35855 strain for steroid productions. KEY POINTS: • Five active KshAs were first identified in M. fortuitum ATCC 35855. • Deactivation of all five KshAs blocks the steroid C9 hydroxylation reaction. • AD or 4-HBC production was improved by Hsd4A, FadA5, and Opccr modification.
Collapse
Affiliation(s)
- Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beiru He
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Zhao YQ, Liu YJ, Song L, Yu D, Liu K, Liu K, Gao B, Tao XY, Xiong LB, Wang FQ, Wei DZ. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:121. [PMID: 37533054 PMCID: PMC10398937 DOI: 10.1186/s13068-023-02376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Harnessing engineered Mycolicibacteria to convert cheap phytosterols into valuable steroid synthons is a basic way in the industry for the production of steroid hormones. Thus, C-19 and C-22 steroids are the two main types of commercial synthons and the products of C17 side chain degradation of phytosterols. During the conversion process of sterols, C-19 and C-22 steroids are often produced together, although one may be the main product and the other a minor byproduct. This is a major drawback of the engineered Mycolicibacteria for industrial application, which could be attributed to the co-existence of androstene-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) sub-pathways in the degradation of the sterol C17 side chain. Since the key mechanism underlying the HBC sub-pathway has not yet been clarified, the above shortcoming has not been resolved so far. RESULTS The key gene involved in the putative HBC sub-pathway was excavated from the genome of M. neoaurum by comparative genomic analysis. Interestingly, an aldolase- encoding gene, atf1, was identified to be responsible for the first reaction of the HBC sub-pathway, and it exists as a conserved operon along with a DUF35-type gene chsH4, a reductase gene chsE6, and a transcriptional regulation gene kstR3 in the genome. Subsequently, atf1 and chsH4 were identified as the key genes involved in the HBC sub-pathway. Therefore, an updated strategy was proposed to develop engineered C-19 or C-22 steroid-producing strains by simultaneously modifying the AD and HBC sub-pathways. Taking the development of 4-HBC and 9-OHAD-producing strains as examples, the improved 4-HBC-producing strain achieved a 20.7 g/L production titer with a 92.5% molar yield and a 56.4% reduction in byproducts, and the improved 9-OHAD producing strain achieved a 19.87 g/L production titer with a 94.6% molar yield and a 43.7% reduction in byproduct production. CONCLUSIONS The excellent performances of these strains demonstrated that the primary operon involved in the HBC sub-pathway improves the industrial strains in the conversion of phytosterols to steroid synthons.
Collapse
Affiliation(s)
- Yun-Qiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lu Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Dingyan Yu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
16
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Grigg JC, Copp JN, Krekhno JMC, Liu J, Ibrahimova A, Eltis LD. Deciphering the biosynthesis of a novel lipid in Mycobacterium tuberculosis expands the known roles of the nitroreductase superfamily. J Biol Chem 2023; 299:104924. [PMID: 37328106 PMCID: PMC10404671 DOI: 10.1016/j.jbc.2023.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mycobacterium tuberculosis's (Mtb) success as a pathogen is due in part to its sophisticated lipid metabolic programs, both catabolic and biosynthetic. Several of Mtb lipids have specific roles in pathogenesis, but the identity and roles of many are unknown. Here, we demonstrated that the tyz gene cluster in Mtb, previously implicated in resistance to oxidative stress and survival in macrophages, encodes the biosynthesis of acyl-oxazolones. Heterologous expression of tyzA (Rv2336), tyzB (Rv2338c) and tyzC (Rv2337c) resulted in the biosynthesis of C12:0-tyrazolone as the predominant compound, and the C12:0-tyrazolone was identified in Mtb lipid extracts. TyzA catalyzed the N-acylation of l-amino acids, with highest specificity for l-Tyr and l-Phe and lauroyl-CoA (kcat/KM = 5.9 ± 0.8 × 103 M-1s-1). In cell extracts, TyzC, a flavin-dependent oxidase (FDO) of the nitroreductase (NTR) superfamily, catalyzed the O2-dependent desaturation of the N-acyl-L-Tyr produced by TyzA, while TyzB, a ThiF homolog, catalyzed its ATP-dependent cyclization. The substrate preference of TyzB and TyzC appear to determine the identity of the acyl-oxazolone. Phylogenetic analyses revealed that the NTR superfamily includes a large number of broadly distributed FDOs, including five in Mtb that likely catalyze the desaturation of lipid species. Finally, TCA1, a molecule with activity against drug-resistant and persistent tuberculosis, failed to inhibit the cyclization activity of TyzB, the proposed secondary target of TCA1. Overall, this study identifies a novel class of Mtb lipids, clarifies the role of a potential drug target, and expands our understanding of the NTR superfamily.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine N Copp
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M C Krekhno
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aygun Ibrahimova
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Li S, Qu Y. Structural study of medium-long chain fatty acyl-CoA ligase FadD8 from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2023; 672:65-71. [PMID: 37336126 DOI: 10.1016/j.bbrc.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
In mycobacteria, lipids are important components of the cell wall and play a critical role for pathogenic activities. Lipids need to be activated before participating in many biological pathways. FadD proteins are members of the adenylate-forming superfamily, catalyzing activation of fatty acids. FadD8 is one of the 34 Mycobacterium tuberculosis FadD proteins, which was reported to be a putative medium-long chain fatty acyl-CoA ligase. Previous studies showed FadD8 from Mycobacterium smegmatis exhibited higher activity with oxidized cholesterol than fatty acids. However, the catalytic mechanism of the FadD8 is still exclusive. Here, we reported the crystal structure of FadD8 from Mycobacterium tuberculosis, which forms homodimer. Structural analysis revealed presence of a relatively narrow pocket compared to other FadD proteins and a novel alternative pocket, implying distinct substrate binding preference. We propose that FadD8 plays a vital role in cholesterol utilization and metabolism by catalyzing activation of cholesterol. Collectively, our findings provide novel information for the further studies of the inhibitor and drug development.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Yunhui Qu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
19
|
Ghith A, Bruning JB, Bell SG. The oxidation of cholesterol derivatives by the CYP124 and CYP142 enzymes from Mycobacterium marinum. J Steroid Biochem Mol Biol 2023; 231:106317. [PMID: 37141947 DOI: 10.1016/j.jsbmb.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
The CYP124 and CYP142 families of bacterial cytochrome P450 monooxygenases (CYPs), catalyze the oxidation of methyl branched lipids, including cholesterol, as one of the initial activating steps in their catabolism. Both enzymes are reported to supplement the CYP125 family of P450 enzymes. These CYP125 enzymes are found in the same bacteria, and are the primary cholesterol/cholest-4-en-3-one metabolizing enzymes. To further understand the role of the CYP124 and CYP142 cytochrome P450s we investigated the Mycobacterium marinum enzymes, MmarCYP124A1 and CYP142A3, with various cholesterol analogues with modifications on the A and B rings of the steroid. We assessed the substrate binding and catalytic activity of each enzyme. Neither enzyme could bind or oxidize cholesteryl acetate or 3,5-cholestadiene, which have modifications at the C3 hydroxyl moiety of cholesterol. The CYP142 enzyme was better able to accommodate and oxidize cholesterol analogues which have changes on the A/B rings including cholesterol-5α,6α-epoxide and diastereomers of 5-cholestan-3-ol. The CYP124 enzyme was more tolerant of changes at C7 of the cholesterol B ring, e.g., 7-ketocholesterol than in the A ring. The selectivity for oxidation at the ω-carbon of a branched chain was observed in all steroids that were oxidized. The 7-ketocholesterol-bound MmarCYP124A1 enzyme from M. marinum, was structurally characterized by X-ray crystallography to 1.81Å resolution. The 7-ketocholesterol-bound X-ray crystal structure of the MmarCYP124A1 enzyme revealed that the substrate binding mode of this cholesterol derivative was altered compared to those observed with other non-steroidal ligands. The structure provided an explanation for the selectivity of the enzyme for terminal methyl hydroxylation.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
20
|
Zhang J, Zhang R, Song S, Su Z, Shi J, Cao H, Zhang B. Whole-Genome Analysis of Mycobacterium neoaurum DSM 1381 and the Validation of Two Key Enzymes Affecting C22 Steroid Intermediates in Sterol Metabolism. Int J Mol Sci 2023; 24:ijms24076148. [PMID: 37047121 PMCID: PMC10094492 DOI: 10.3390/ijms24076148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/14/2023] Open
Abstract
Mycobacterium neoaurum DSM 1381 originated from Mycobacterium neoaurum ATCC 25790 by mutagenesis screening is a strain of degrading phytosterols and accumulating important C22 steroid intermediates, including 22-hydroxy-23, 24-bisnorchola-4-en-3-one (4-HP) and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (HPD). However, the metabolic mechanism of these C22 products in M. neoaurum DSM 1381 remains unknown. Therefore, the whole-genome sequencing and comparative genomics analysis of M. neoaurum DSM 1381 and its parent strain M. neoaurum ATCC 25790 were performed to figure out the mechanism. As a result, 28 nonsynonymous single nucleotide variants (SNVs), 17 coding region Indels, and eight non-coding region Indels were found between the genomes of the two strains. When the wild-type 3-ketosteroid-9α-hydroxylase subunit A1 (KshA1) and β-hydroxyacyl-CoA dehydrogenase (Hsd4A) were overexpressed in M. neoaurum DSM 1381, the steroids were transformed into the 4-androstene-3, 17- dione (AD) and 1,4-androstadiene-3,17-dione (ADD) instead of C22 intermediates. This result indicated that 173N of KshA1 and 171K of Hsd4A are indispensable to maintaining their activity, respectively. Amino acid sequence alignment analysis show that both N173D in KshA1 and K171E in Hsd4A are conservative sites. The 3D models of these two enzymes were predicted by SWISS-MODEL and AlphaFold2 to understand the inactivation of the two key enzymes. These results indicate that K171E in Hsd4A may destroy the inaction between the NAD+ with the NH3+ and N173D in KshA1 and may disrupt the binding of the catalytic domain to the substrate. A C22 steroid intermediates-accumulating mechanism in M. neoaurum DSM 1381 is proposed, in which the K171E in Hsd4A leads to the enzyme's inactivation, which intercepts the C19 sub-pathways and accelerates the C22 sub-pathways, and the N173D in KshA1 leads to the enzyme's inactivation, which blocks the degradation of C22 intermediates. In conclusion, this study explained the reasons for the accumulation of C22 intermediates in M. neoaurum DSM 1381 by exploring the inactivation mechanism of the two key enzymes.
Collapse
Affiliation(s)
- Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Zhang
- BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Avenue Saint Paul, Minneapolis, MN 55108, USA
| | - Shikui Song
- Protein Engineering and Biopharmaceutical Sciences Laboratory, Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Protein Engineering and Biopharmaceutical Sciences Laboratory, Hubei University of Technology, Wuhan 430068, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijin Cao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Ghith A, Bruning JB, Bell SG. The catalytic activity and structure of the lipid metabolizing CYP124 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2023; 737:109554. [PMID: 36842492 DOI: 10.1016/j.abb.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
22
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
23
|
Jin Y, Peng J, Tian W, Chang Z. A Keto Reductase Involved in Steroid Degradation in Mycolicibacterium neoaurum. Chem Biodivers 2023; 20:e202200800. [PMID: 36564340 DOI: 10.1002/cbdv.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Phytosterols can be used by microorganisms as carbon and energy sources and completely degraded into CO2 and H2 O. The catabolic pathway of phytosterols was well characterized in many microorganisms. Blocking the steroid core ring degradation by deletions of fadE30 and fadD3 genes, two important steroid intermediates, 3aα-H-4α-(3'-Propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (sitolactone, or HIL) and 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) can be accumulated. They are currently used to synthesize nor-steroid drugs with an α-methyl group or without the methyl group at the C10 -position, such as estrone and norethindrone. In this study, a key gene involved in the bioconversion of HIP to HIL was identified in Mycolicibacterium neoaurum. Through heterologous expression, gene hipR was found to be involved in the reduction of the C5 keto group of HIP to a hydroxy group, leading to spontaneously lactonization into HIL in vitro. Through gene complementation and knockout, HipR functions were verified and two HIP degradation pathways in vivo were elucidated. The finding of this research facilitated the understanding of the metabolic pathway of sterols, and was directly applied to engineering robust production strains by overexpression or knockout of related genes.
Collapse
Affiliation(s)
- Ying Jin
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
- Shenyang Botai Pharmaceutical Ltd., 7 Xihe Shibei Street, Tiexi District, Shenyang, 110000, P. R. China
| | - Jinjin Peng
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Wei Tian
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Zunxue Chang
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
- Shenyang Botai Pharmaceutical Ltd., 7 Xihe Shibei Street, Tiexi District, Shenyang, 110000, P. R. China
| |
Collapse
|
24
|
Hsiao TH, Chou CH, Chen YL, Wang PH, Brandon-Mong GJ, Lee TH, Wu TY, Li PT, Li CW, Lai YL, Tseng YL, Shih CJ, Chen PH, Chen MJ, Chiang YR. Circulating androgen regulation by androgen-catabolizing gut bacteria in male mouse gut. Gut Microbes 2023; 15:2183685. [PMID: 36843073 PMCID: PMC9980454 DOI: 10.1080/19490976.2023.2183685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Abnormally high circulating androgen levels have been considered a causative factor for benign prostatic hypertrophy and prostate cancer in men. Recent animal studies on gut microbiome suggested that gut bacteria are involved in sex steroid metabolism; however, the underlying mechanisms and bacterial taxa remain elusive. Denitrifying betaproteobacteria Thauera spp. are metabolically versatile and often distributed in the animal gut. Thauera sp. strain GDN1 is an unusual betaproteobacterium capable of catabolizing androgen under both aerobic and anaerobic conditions. We administered C57BL/6 mice (aged 7 weeks) with strain GDN1 through oral gavage. The strain GDN1 administration caused a minor increase in the relative abundance of Thauera (≤0.1%); however, it has profound effects on the host physiology and gut bacterial community. The results of our ELISA assay and metabolite profile analysis indicated an approximately 50% reduction in serum androgen levels in the strain GDN1-administered male mice. Moreover, androgenic ring-cleaved metabolites were detected in the fecal extracts of the strain GDN1-administered mice. Furthermore, our RT - qPCR results revealed the expression of the androgen catabolism genes in the gut of the strain GDN1-administered mice. We found that the administered strain GDN1 regulated mouse serum androgen levels, possibly because it blocked androgen recycling through enterohepatic circulation. This study discovered that sex steroids serve as a carbon source of gut bacteria; moreover, host circulating androgen levels may be regulated by androgen-catabolizing gut bacteria. Our data thus indicate the possible applicability of androgen-catabolic gut bacteria as potent probiotics in alternative therapy of hyperandrogenism.
Collapse
Affiliation(s)
| | - Chia-Hong Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan City, Taiwan,Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, Japan
| | | | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Ting Li
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Lin Tseng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Po-Hao Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan,Livia Shan-Yu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan,Yin-Ru Chiang Biodiversity Research Center, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei115, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan,Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan,CONTACT Mei-Jou Chen Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
25
|
Luengo JM, Olivera ER. Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas. Methods Mol Biol 2023; 2704:51-83. [PMID: 37642838 DOI: 10.1007/978-1-0716-3385-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and/or other steroids (e.g., testosterone and 4-androsten-3,17-dione) under aerobic conditions through the 9,10-seco pathway. From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemically defined media containing some cyclopentane-perhydrophenanthrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the route involved in bile acids and androgens, the 9,10-seco pathway in this bacterium. In this manuscript, we describe the most relevant methods used in our lab for the identification of the chromosomal location and nucleotide sequence of the catabolic genes (or gene clusters) encoding the enzymes of this pathway, and the tools useful to establish the role of some of the enzymes that participate in this route.
Collapse
Affiliation(s)
- José M Luengo
- Departamento de Biología Molecular (Área de Bioquímica y Biología Molecular), Facultad de Veterinaria, Universidad de León, León, Spain
| | - Elias R Olivera
- Departamento de Biología Molecular (Área de Bioquímica y Biología Molecular), Facultad de Veterinaria, Universidad de León, León, Spain.
| |
Collapse
|
26
|
Lobastova T, Fokina V, Pozdnyakova-Filatova I, Tarlachkov S, Shutov A, Donova M. Insight into Different Stages of Steroid Degradation in Thermophilic Saccharopolyspora hirsuta VKM Ac-666 T Strain. Int J Mol Sci 2022; 23:ijms232416174. [PMID: 36555813 PMCID: PMC9782250 DOI: 10.3390/ijms232416174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Steroids are abundant molecules in nature, and various microorganisms evolved to utilize steroids. Thermophilic actinobacteria play an important role in such processes. However, very few thermophiles have so far been reported capable of degrading or modifying natural sterols. Recently, genes putatively involved in the sterol catabolic pathway have been revealed in the moderately thermophilic actinobacterium Saccharopolyspora hirsuta VKM Ac-666T, but peculiarities of strain activity toward sterols are still poorly understood. S. hirsuta catalyzed cholesterol bioconversion at a rate significantly inferior to that observed for mesophilic actinobacteria (mycobacteria and rhodococci). Several genes related to different stages of steroid catabolism increased their expression in response to cholesterol as was shown by transcriptomic studies and verified by RT-qPCR. Sequential activation of genes related to the initial step of cholesterol side chain oxidation (cyp125) and later steps of steroid core degradation (kstD3, kshA, ipdF, and fadE30) was demonstrated for the first time. The activation correlates with a low cholesterol conversion rate and intermediate accumulation by the strain. The transcriptomic analyses revealed that the genes involved in sterol catabolism are linked functionally, but not transcriptionally. The results contribute to the knowledge on steroid catabolism in thermophilic actinobacteria and could be used at the engineering of microbial catalysts.
Collapse
Affiliation(s)
- Tatyana Lobastova
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Victoria Fokina
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Irina Pozdnyakova-Filatova
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Sergey Tarlachkov
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Andrey Shutov
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Marina Donova
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
27
|
Moopanar K, Nyide ANG, Senzani S, Mvubu NE. Clinical strains of Mycobacterium tuberculosis exhibit differential lipid metabolism-associated transcriptome changes in in vitro cholesterol and infection models. Pathog Dis 2022; 81:6889515. [PMID: 36509392 PMCID: PMC9936260 DOI: 10.1093/femspd/ftac046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Many studies have identified host-derived lipids, characterised by the abundance of cholesterol, as a major source of carbon nutrition for Mycobacterium tuberculosis during infection. Members of the Mycobacterium tuberculosis complex are biologically different with regards to degree of disease, host range, pathogenicity and transmission. Therefore, the current study aimed at elucidating transcriptome changes during early infection of pulmonary epithelial cells and on an in vitro cholesterol-rich minimal media, in M. tuberculosis clinical strains F15/LAM4/KZN and Beijing, and the laboratory H37Rv strain. Infection of pulmonary epithelial cells elicited the upregulation of fadD28 and hsaC in both the F15/LAM4/KZN and Beijing strains and the downregulation of several other lipid-associated genes. Growth curve analysis revealed F15/LAM4/KZN and Beijing to be slow growers in 7H9 medium and cholesterol-supplemented media. RNA-seq analysis revealed strain-specific transcriptomic changes, thereby affecting different metabolic processes in an in vitro cholesterol model. The differential expression of these genes suggests that the genetically diverse M. tuberculosis clinical strains exhibit strain-specific behaviour that may influence their ability to metabolise lipids, specifically cholesterol, which may account for phenotypic differences observed during infection.
Collapse
Affiliation(s)
- Kynesha Moopanar
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Asanda Nomfundo Graduate Nyide
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Sibusiso Senzani
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st floor, Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - Nontobeko Eunice Mvubu
- Corresponding author. Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.Tel: +27 31 260 7404; E-mail:
| |
Collapse
|
28
|
Tian K, Meng Q, Li S, Chang M, Meng F, Yu Y, Li H, Qiu Q, Shao J, Huo H. Mechanism of 17β-estradiol degradation by Rhodococcus equi via the 4,5-seco pathway and its key genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120021. [PMID: 36037852 DOI: 10.1016/j.envpol.2022.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Steroid estrogens have been detected in oceans, rivers, lakes, groundwaters, soils, and even urban water supply systems, thereby inevitably imposing serious impacts on human health and ecological safety. Indeed, many estrogen-degrading bacterial strains and degradation pathways have been reported, with the 4,5-seco pathway being particularly important. However, few studies have evaluated the use of the 4,5-seco pathway by actinomycetes to degrade 17β-estradiol (E2). In this study, 5 genes involved in E2 degradation were identified in the Rhodococcus equi DSSKP-R-001 (R-001) genome and then heterologously expressed to confirm their functions. The transformation of E2 with hsd17b14 reached 63.7% within 30 h, resulting in transformation into estrone (E1). Furthermore, we found that At1g12200-encoded flavin-binding monooxygenase (FMOAt1g12200) can transform E1 at a rate of 51.6% within 30 h and can transform E1 into 4-hydroxyestrone (4-OH E1). In addition, catA and hsaC genes were identified to further transform 4-OH E1 at a rate of 97-99%, and this reaction was accomplished by C-C cleavage at the C4 position of the A ring of 4-OH E1. This study represents the first report on the roles of these genes in estrogen degradation and provides new insights into the mechanisms of microbial estrogen metabolism and a better understanding of E2 degradation via the 4,5-seco pathway by actinomycetes.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Qi Meng
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fanxing Meng
- Jilin Province Water Resources and Hydropower Consultative Company of PR China, Changchun City, Jilin Province, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Junhua Shao
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Jilin Province Laboratory of Water Pollution Control and Resource Engineering, Changchun, 130117, China.
| |
Collapse
|
29
|
Comparative Genomic Analysis of Carbofuran-Degrading Sphingomonads Reveals the Carbofuran Catabolism Mechanism in
Sphingobium
sp. Strain CFD-1. Appl Environ Microbiol 2022; 88:e0102422. [PMID: 36314801 PMCID: PMC9680625 DOI: 10.1128/aem.01024-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the extensive use of carbofuran over the past 50 years, bacteria have evolved catabolic pathways to mineralize this insecticide, which plays an important role in eliminating carbofuran residue in the environment. In this study, the
cfd
gene cluster, responsible for the catabolism of carbofuran phenol, was predicted by comparing sphingomonad genomes.
Collapse
|
30
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
31
|
Mater V, Eisner S, Seidel C, Schneider D. The peripherally membrane-attached protein MbFACL6 of Mycobacterium tuberculosis activates a broad spectrum of substrates. J Mol Biol 2022; 434:167842. [PMID: 36179886 DOI: 10.1016/j.jmb.2022.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The infectious disease tuberculosis is one of the fifteen most common causes of death worldwide (according to the WHO). About every fourth person is infected with the main causative agent Mycobacterium tuberculosis (Mb). A characteristic of the pathogen is its entrance into a dormant state in which a phenotypic antibiotic resistance is achieved. To target resistant strains, novel dormancy-specific targets are very promising. Such a possible target is the Mb "fatty acid-CoA ligase 6" (MbFACL6), which activates fatty acids and thereby modulates the accumulation of triacylglycerol-containing lipid droplets that are used by Mb as an energy source during dormancy. We investigated the membrane association of MbFACL6 in E. coli and its specific activity towards different substrates after establishing a novel MbFACL6 activity assay. Despite a high homology to the mammalian family of fatty acid transport proteins, which are typically transmembrane proteins, our results indicate that MbFACL6 is a peripheral membrane-attached protein. Furthermore, MbFACL6 tolerates a broad spectrum of substrates including saturated and unsaturated fatty acids (C12-C20), some cholic acid derivatives, and even synthetic fatty acids, such as 9(E)-nitrooleicacid. Therefore, the substrate selectivity of MbFACL6 appears to be much broader than previously assumed.
Collapse
Affiliation(s)
- Veronika Mater
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Sabine Eisner
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Cornelia Seidel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| |
Collapse
|
32
|
Bacterial Hydratases Involved in Steroid Side Chain Degradation Have Distinct Substrate Specificities. J Bacteriol 2022; 204:e0023622. [PMID: 36000836 PMCID: PMC9491828 DOI: 10.1128/jb.00236-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacterial MaoC family enoyl coenzyme A (CoA) hydratases catalyze the addition of water across the double bond of CoA esters during steroid side chain catabolism. We determined that heteromeric MaoC type hydratases, exemplified by ChsH1-ChsH2Mtb of Mycobacterium tuberculosis and CasM-CasORjost from Rhodococcus jostii RHA1, are specific toward a 3-carbon side chain steroid metabolite, consistent with their roles in the last β-oxidation cycle of steroid side chain degradation. Hydratases containing two fused MaoC domains are responsible for the degradation of longer steroid side chains. These hydratases, encoded in the cholesterol degradation gene clusters of M. tuberculosis and R. jostii RHA1, have broad specificity and were able to catalyze the hydration of the 5-carbon side chain of both cholesterol and bile acid metabolites. Surprisingly, the homologous hydratases from the bile acid degradation pathway have low catalytic efficiencies or no activity toward the 5-carbon side chain bile acid metabolites, cholyl-enoyl-CoA, lithocholyl-enoyl-CoA, and chenodeoxycholyl-enoyl-CoA. Instead, these hydratases preferred a cholate metabolite with oxidized steroid rings and a planar ring structure. Together, the results suggest that ring oxidation occurs prior to side chain degradation in the actinobacterial bile acid degradation pathway. IMPORTANCE Characterization of the substrate specificity of hydratases described here will facilitate the development of specific inhibitors that may be useful as novel therapeutics against M. tuberculosis and to metabolically engineer bacteria to produce steroid pharmaceuticals with desired steroid rings and side chain structures.
Collapse
|
33
|
Gibson AJ, Stiens J, Passmore IJ, Faulkner V, Miculob J, Willcocks S, Coad M, Berg S, Werling D, Wren BW, Nobeli I, Villarreal-Ramos B, Kendall SL. Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria. mBio 2022; 13:e0067222. [PMID: 35862770 PMCID: PMC9426507 DOI: 10.1128/mbio.00672-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ian J. Passmore
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Josephous Miculob
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Coad
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | | | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
34
|
Ghith A, Doherty DZ, Bruning JB, Russell RA, De Voss JJ, Bell SG. The Structures of the Steroid Binding CYP142 Cytochrome P450 Enzymes from Mycobacterium ulcerans and Mycobacterium marinum. ACS Infect Dis 2022; 8:1606-1617. [PMID: 35881654 DOI: 10.1021/acsinfecdis.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The steroid binding CYP142 cytochrome P450 enzymes of Mycobacterium species are involved in the metabolism of cholesterol and its derivatives. The equivalent enzyme from Mycobacterium ulcerans was studied to compare the degree of functional conservation between members of this CYP family. We compared substrate binding of the CYP142A3 enzymes of M. ulcerans and M. marinum and CYP142A1 from M. tuberculosis using UV-vis spectroscopy. The catalytic oxidation of cholesterol derivatives by all three enzymes was undertaken. Both CYP142A3 enzymes were structurally characterized by X-ray crystallography. The amino acid sequences of the CYP142A3 enzymes are more similar to CYP142A1 from M. tuberculosis than CYP142A2 from Mycolicibacterium smegmatis. Both CYP142A3 enzymes have substrate binding properties, which are more resemblant to CYP142A1 than CYP142A2. The cholest-4-en-3-one-bound X-ray crystal structure of both CYP142A3 enzymes were determined at a resolution of <1.8 Å, revealing the substrate binding mode at a high level of detail. The structures of the cholest-4-en-3-one binding CYP142 enzymes from M. ulcerans and M. marinum demonstrate how the steroid binds in the active site of these enzymes. They provide an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation to form 26-hydroxy derivatives. These enzymes in pathogenic Mycobacterium species are candidates for inhibition. The work here demonstrates that similar drug molecules could target these CYP142 enzymes from different species in order to combat Buruli ulcer or tuberculosis.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2234, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
35
|
Theriault ME, Pisu D, Wilburn KM, Lê-Bury G, MacNamara CW, Michael Petrassi H, Love M, Rock JM, VanderVen BC, Russell DG. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun Biol 2022; 5:685. [PMID: 35810253 PMCID: PMC9271047 DOI: 10.1038/s42003-022-03650-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the cause of the human pulmonary disease tuberculosis (TB), contributes to approximately 1.5 million deaths every year. Prior work has established that lipids are actively catabolized by Mtb in vivo and fulfill major roles in Mtb physiology and pathogenesis. We conducted a high-throughput screen to identify inhibitors of Mtb survival in its host macrophage. One of the hit compounds identified in this screen, sAEL057, demonstrates highest activity on Mtb growth in conditions where cholesterol was the primary carbon source. Transcriptional and functional data indicate that sAEL057 limits Mtb’s access to iron by acting as an iron chelator. Furthermore, pharmacological and genetic inhibition of iron acquisition results in dysregulation of cholesterol catabolism, revealing a previously unappreciated linkage between these pathways. Characterization of sAEL057’s mode of action argues that Mtb’s metabolic regulation reveals vulnerabilities in those pathways that impact central carbon metabolism. An inhibitor of Mycobacterium tuberculosis (Mtb) survival acts as an iron chelator, demonstrating that iron deprivation alters Mtb cholesterol and central carbon metabolism.
Collapse
Affiliation(s)
- Monique E Theriault
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Case W MacNamara
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - H Michael Petrassi
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Melissa Love
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Ror2-mediated cholesterol accumulation regulates autophagic activity within BCG-infected macrophages. Microb Pathog 2022; 167:105564. [DOI: 10.1016/j.micpath.2022.105564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
|
37
|
Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proc Natl Acad Sci U S A 2022; 119:e2201632119. [PMID: 35380903 PMCID: PMC9169745 DOI: 10.1073/pnas.2201632119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efforts to improve tuberculosis therapy include optimizing multidrug regimens to take advantage of drug–drug synergies. However, the complex host environment has a profound effect on bacterial metabolic state and drug activity, making predictions of optimal drug combinations difficult. In this study, we leverage a newly developed library of conditional knockdown Mycobacterium tuberculosis mutants in which genetic depletion of essential genes mimics the effect of drug therapy. This tractable system allowed us to assess the effect of growth condition on predicted drug–drug interactions. We found that these interactions can be differentially sensitive to the metabolic state, and select in vitro–defined interactions can be leveraged to accelerate bacterial killing during infection. These findings suggest strategies for optimizing tuberculosis therapy. Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
Collapse
|
38
|
Navas LE, Zahn M, Bajwa H, Grigg JC, Wolf ME, Chan ACK, Murphy MEP, McGeehan JE, Eltis LD. Characterization of a phylogenetically distinct extradiol dioxygenase involved in the bacterial catabolism of lignin-derived aromatic compounds. J Biol Chem 2022; 298:101871. [PMID: 35346686 PMCID: PMC9062432 DOI: 10.1016/j.jbc.2022.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/28/2022] Open
Abstract
The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M-1 s-1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates' binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate's alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.
Collapse
Affiliation(s)
- Laura E Navas
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Harbir Bajwa
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection. mSphere 2022; 7:e0003322. [PMID: 35306876 PMCID: PMC9044949 DOI: 10.1128/msphere.00033-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network (TRN). While many studies have sought to characterize specific portions of the M. tuberculosis TRN, and some studies have performed system-level analysis, few have been able to provide a network-based model of the TRN that also provides the relative shifts in transcriptional regulator activity triggered by changing environments. Here, we compiled a compendium of nearly 650 publicly available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsupervised machine learning method to obtain a quantitative, top-down TRN. It consists of 80 independently modulated gene sets known as “iModulons,” 41 of which correspond to known regulons. These iModulons explain 61% of the variance in the organism’s transcriptional response. We show that iModulons (i) reveal the function of poorly characterized regulons, (ii) describe the transcriptional shifts that occur during environmental changes such as shifting carbon sources, oxidative stress, and infection events, and (iii) identify intrinsic clusters of regulons that link several important metabolic systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional regulation and presents a knowledge-enhanced database of all published high-quality RNA-seq data for this organism to date. IMPORTANCEMycobacterium tuberculosis H37Rv is one of the world's most impactful pathogens, and a large part of the success of the organism relies on the differential expression of its genes to adapt to its environment. The expression of the organism's genes is driven primarily by its transcriptional regulatory network, and most research on the TRN focuses on identifying and quantifying clusters of coregulated genes known as regulons. While previous studies have relied on molecular measurements, in the manuscript we utilized an alternative technique that performs machine learning to a large data set of transcriptomic data. This approach is less reliant on hypotheses about the role of specific regulatory systems and allows for the discovery of new biological findings for already collected data. A better understanding of the structure of the M. tuberculosis TRN will have important implications in the design of improved therapeutic approaches.
Collapse
|
40
|
Lata S, Mahatha AC, Mal S, Gupta UD, Kundu M, Basu J. Unravelling novel roles of the Mycobacterium tuberculosis transcription factor Rv0081 in regulation of the nucleoid-associated proteins Lsr2 and EspR, cholesterol utilization and subversion of lysosomal trafficking in macrophages. Mol Microbiol 2022; 117:1104-1120. [PMID: 35304930 DOI: 10.1111/mmi.14895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Further, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal traffickingof M. tuberculosisand granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emergesas a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.
Collapse
Affiliation(s)
- Suruchi Lata
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Amar Chandra Mahatha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|
41
|
Li J, Wang B, Yang Q, Si H, Zhao Y, Zheng Y, Peng W. Enabling Efficient Genetic Manipulations in a Rare Actinomycete Pseudonocardia alni Shahu. Front Microbiol 2022; 13:848964. [PMID: 35308340 PMCID: PMC8928166 DOI: 10.3389/fmicb.2022.848964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudonocardia species are emerging as important microorganisms of global concern with unique and increasingly significant ecological roles and represent a prominent source of bioactive natural products, but genetic engineering of these organisms for biotechnological applications is greatly hindered due to the limitation of efficient genetic manipulation tools. In this regard, we report here the establishment of an efficient genetic manipulation system for a newly isolated strain, Pseudonocardia alni Shahu, based on plasmid conjugal transfer from Escherichia coli to Pseudonocardia. Conjugants were yielded upon determining the optimal ratio between the donor and recipient cells, and designed genome modifications were efficiently accomplished, including exogenous gene integration based on an integrative plasmid and chromosomal stretch removal by homologous recombination using a suicidal non-replicating vector. Collectively, this work has made the P. alni Shahu accessible for genetic engineering, and provided an important reference for developing genetic manipulation methods in other rare actinomycetes.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Han Si
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuting Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yanli Zheng,
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- Wenfang Peng,
| |
Collapse
|
42
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
43
|
Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol 2022; 12:775326. [PMID: 34975863 PMCID: PMC8714672 DOI: 10.3389/fimmu.2021.775326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.
Collapse
Affiliation(s)
- Pooja Agarwal
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
44
|
Zhang X, Huang Z, Wang D, Zhang Y, Eser BE, Gu Z, Dai R, Gao R, Guo Z. A new thermophilic extradiol dioxygenase promises biodegradation of catecholic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126860. [PMID: 34399224 DOI: 10.1016/j.jhazmat.2021.126860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Extradiol dioxygenases (EDOs) catalyze the meta cleavage of catechol into 2-hydroxymuconaldehyde, a critical step in the degradation of aromatic compounds in the environment. In the present work, a novel thermophilic extradiol dioxygenase from Thermomonospora curvata DSM43183 was cloned, expressed, and characterized by phylogenetic and biochemical analyses. This enzyme exhibited excellent thermo-tolerance, displaying optimal activity at 50 °C, remaining >40% activity at 70 °C. Structural modeling and molecular docking demonstrated that both active center and pocket-construction loops locate at the C-terminal domain. Site-specific mutants D285A, H205V, F301V based on a rational design were obtained to widen the entrance of substrates; resulting in significantly improved catalytic performance for all the 3 mutants. Compared to the wild-type, the mutant D285A showed remarkably improved activities with respect to the 3,4-dihydroxyphenylacetic acid, catechol, and 3-chlorocatechol, by 17.7, 6.9, and 3.7-fold, respectively. The results thus verified the effectiveness of modeling guided design; and confirmed that the C-terminal loop structure indeed plays a decisive role in determining catalytic ring-opening efficiency and substrate specificity of the enzyme. This study provided a novel thermostable dioxygenase with a broad substrate promiscuity for detoxifying environmental pollutants and provided a new thinking for further enzyme engineering of EDOs.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China; Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Dan Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zhenyu Gu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Rongrong Dai
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China.
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| |
Collapse
|
45
|
Lu Y, Sun L, Pang J, Li C, Wang X, Hu X, Li G, Li X, Zhang Y, Wang H, Yang X, You X. Roles of cysteine in the structure and metabolic function of Mycobacterium tuberculosis CYP142A1. RSC Adv 2022; 12:24447-24455. [PMID: 36128375 PMCID: PMC9425443 DOI: 10.1039/d2ra04257f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
CYP142A1 is a cytochrome P450 (CYP) enzyme expressed in Mycobacterium tuberculosis (Mtb), which supports the growth of Mtb H37Rv relying on cholesterol, in the absence of CYP125A1. Since cysteine residues usually play a fundamental role in maintaining the structure and function of CYP enzymes, in this study, we aimed to determine the potential biochemical functions of six cysteine residues except for the heme-binding cysteine in the amino acid sequence of recombinant Mtb CYP142A1 by replacing each one using site-directed mutagenesis. Recombinant CYP142A1 mutants were heterologously expressed, purified, and analyzed using ESI-MS, far-UV CD spectroscopy, UV-vis spectrophotometric titration, and metabolic function assays. Substitution of the cysteine residues caused various effects on the structure and function of CYP142A1. Separate substitution of the six cysteine residues resulted in numerous changes in the secondary structure, expression level, substrate-binding ability, inhibitor-binding ability, thermal stability and oxidation efficiency of the enzyme. These results contribute to our understanding of the biochemical roles of cysteine residues in the structure and function of Mtb CYP enzymes, especially their effects on the structure and function of CYP142A1. Substitution of the six cysteine residues resulted in changes in Mtb CYP142A1 structure, binding ability, thermal stability and oxidation efficiency.![]()
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilan Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
47
|
Steroid Metabolism in Thermophilic Actinobacterium Saccharopolyspora hirsuta VKM Ac-666 T. Microorganisms 2021; 9:microorganisms9122554. [PMID: 34946155 PMCID: PMC8708139 DOI: 10.3390/microorganisms9122554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.
Collapse
|
48
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
49
|
Identification of the EdcR Estrogen-Dependent Repressor in Caenibius tardaugens NBRC 16725: Construction of a Cellular Estradiol Biosensor. Genes (Basel) 2021; 12:genes12121846. [PMID: 34946795 PMCID: PMC8700777 DOI: 10.3390/genes12121846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
In this work, Caenibius tardaugens NBRC 16725 (strain ARI-1) (formerly Novosphingobium tardaugens) was isolated due to its capacity to mineralize estrogenic endocrine disruptors. Its genome encodes the edc genes cluster responsible for the degradation of 17β-estradiol, consisting of two putative operons (OpA and OpB) encoding the enzymes of the upper degradation pathway. Inside the edc cluster, we identified the edcR gene encoding a TetR-like protein. Genetic studies carried out with C. tardaugens mutants demonstrated that EdcR represses the promoters that control the expression of the two operons. These genetic analyses have also shown that 17β-estradiol and estrone, the second intermediate of the degradation pathway, are the true effectors of EdcR. This regulatory system has been heterologously expressed in Escherichia coli, foreseeing its use to detect estrogens in environmental samples. Genome comparisons have identified a similar regulatory system in the edc cluster of Altererythrobacter estronivorus MHB5, suggesting that this regulatory arrangement has been horizontally transferred to other bacteria.
Collapse
|
50
|
Kung JW, Meier AK, Willistein M, Weidenweber S, Demmer U, Ermler U, Boll M. Structural Basis of Cyclic 1,3-Diene Forming Acyl-Coenzyme A Dehydrogenases. Chembiochem 2021; 22:3173-3177. [PMID: 34555236 PMCID: PMC9293079 DOI: 10.1002/cbic.202100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The biologically important, FAD‐containing acyl‐coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti‐1,2‐elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4‐elimination at C3 and C6 of cyclohex‐1‐ene‐1‐carboxyl‐CoA (Ch1CoA) to cyclohex‐1,5‐diene‐1‐carboxyl‐CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl‐CoA. Based on high‐resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD‐N5 to favor the biologically relevant C3,C6‐ over the C3,C4‐dehydrogenation activity. The C1,C2‐dehydrogenation activity was regained by structure‐inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3‐diene building blocks.
Collapse
Affiliation(s)
- Johannes W Kung
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Anne-Katrin Meier
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Sina Weidenweber
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|