1
|
Kaya MK, Arslan S. Exploring the Potential Link between Acute Central Serous Chorioretinopathy and Trimethylamine N-Oxide, Phoenixin, Spexin, and Alarin Molecules. Biomolecules 2023; 13:1459. [PMID: 37892139 PMCID: PMC10604309 DOI: 10.3390/biom13101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Acute central serous chorioretinopathy (ACSCR) is a condition characterized by decreased visual acuity, macular thickening, and edema under the retinal layer. Although the underlying mechanisms of the disease are not fully understood, oxidative stress is considered to be a critical risk factor. The aim of this study was to shed light on the pathophysiology of ACSCR by investigating the levels of circulating trimethylamine N-oxide (TMAO), phoenixin (PNX), alarin (ALA), and spexin (SPX) molecules in ACSCR patients. METHODS The study included 30 ACSCR patients and 30 healthy individuals as controls. ACSCR was diagnosed using optical coherence tomography (OCT) imaging. Five mL blood samples were collected from all participants following overnight fasting. The levels of TMAO, PNX, ALA, and SPX in the blood samples were measured using the ELISA method. RESULTS Visual acuity was found to be significantly reduced in ACSCR patients compared to the control group (<0.05), while macular thickness was increased (<0.05). Furthermore, TMAO, PNX, and ALA levels were significantly higher in ACSCR patients (<0.05), while SPX levels were significantly lower compared to the control group (<0.05). In ACSCR patients, there was a positive correlation between macular thickness and TMAO, PNX, and ALA; there was, however, a negative correlation with SPX. Additionally, visual acuity was negatively correlated with TMAO, PNX, and ALA, while SPX levels decreased as visual acuity decreased. CONCLUSIONS These results demonstrate a correlation between the TMAO, PNX, ALA, and SPX levels of ACSCR patients and their visual acuity and macular thickness. Given the role of these molecules in ACSCR's pathophysiology, they hold promise as potential diagnostic, therapeutic, and follow-up markers in the future.
Collapse
|
2
|
She Y, Ge R, Gu X, Fang P, Zhang Z. Cardioprotective effects of neuropeptide galanin: Focusing on its roles against diabetic heart. Peptides 2023; 159:170918. [PMID: 36435275 DOI: 10.1016/j.peptides.2022.170918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Following an unprecedented rise in the number of the aged, the incidence of age-related diseases, such as diabetes and cardiovascular disease, is consequently increasing in the world. Type 2 diabetes mellitus (T2DM) is associated with excess cardiovascular morbidity and mortality. The diabetic heart is characterized by increased cardiomyocyte stiffness and fibrotic changes. Despite many factors resulting in cardiomyocyte injury and dysfunction in diabetes, insulin resistance is still a critical etiology of diabetic cardiomyopathy. Preclinical and clinical studies have revealed an intriguing role for galanin in the pathogenesis of insulin resistance and diabetic heart disease. A significant change in plasma galanin levels occurred in patients suffering from type 2 diabetes or cardiomyocyte injury. In turn, galanin may also distinctly mitigate hyperglycemia and insulin resistance in diabetes as well as increase glucose metabolism and mitochondrial biogenesis in cardiac muscle. Here, we critically review current data about the multivariate relationship among galanin, insulin resistance, and cardiac muscle to comprehensively evaluate the protective role of galanin and its receptors for the diabetic heart and to determine whether galanin receptor 2 agonists potentially represent a feasible way to treat diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Ran Ge
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Gu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Hamed AM, Fatah MA, Shams GM. Androgenetic Alopecia and Metabolic Syndrome: Is Alarin a Missing Link? THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2022; 15:32-37. [PMID: 35942015 PMCID: PMC9345189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND The field of research into the probable link between androgenetic alopecia (AGA) and metabolic syndrome (MetS) is rapidly expanding. The exact underlying pathogenesis yet to be identified. Alarin, a galanin neuropeptide, found to be elevated in patients with metabolic syndrome and may represent a potential link between AGA and MetS. OBJECTIVE The aim of this study was to assess serum levels of alarin in patients with AGA and investigate its possible correlation, if any, with criteria of MetS in those patients. METHODS The study included 50 male patients with AGA and 30 healthy controls. Weight, height, waist circumference, and body mass index (BMI) were all measured. Systolic and diastolic blood pressure readings were recorded. Serum level of lipids, fasting blood glucose (FBG) and alarin were also assessed. RESULTS Anthropometric measures, serum lipids, FBG, and serum alarin were much higher in patients with AGA compared to controls (p<0.05). Forty-one patients with AGA (82%) met the criteria for diagnosis of MetS. Serum level of alarin was significantly higher in those patients and correlated positively with severity and duration of AGA. CONCLUSION Serum level of alarin might represent a potential link between AGA and MetS, opening the door for better understanding of the pathogenesis of both conditions and the possible association between them.
Collapse
Affiliation(s)
- Ahmed Mohammed Hamed
- All authors are with the Department of Dermatology and Andrology and Faculty of Medicine at Benha University, in Banha, Egypt
| | - Marwa Abdel Fatah
- All authors are with the Department of Dermatology and Andrology and Faculty of Medicine at Benha University, in Banha, Egypt
| | - Ghada Mohamed Shams
- All authors are with the Department of Dermatology and Andrology and Faculty of Medicine at Benha University, in Banha, Egypt
| |
Collapse
|
4
|
TİMURKAAN M, AYYILDIZ H. Tip 2 diyabetli hastalarda angiopoietin benzeri protein 8 (ANGPTL8) ve Alarin düzeylerinin karşılaştırmalı bir değerlendirmesi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1038569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: Type 2 Diabetes Mellitus (T2DM) is one of the most serious public health problems that affect millions of people worldwide. There are 537 million adults diagnosed with diabetes worldwide and approximately 90% of these adults have type 2 diabetes. The study examined angiopoietin-like protein 8 (ANGPTL8) and Alarin levels of the patients diagnosed with T2DM in comparison with each other and with the healthy control group.
Materials and Methods: The study was conducted with a diabetes group consisting of 67 patients who were newly diagnosed with T2DM and who did not use any medication, and the control group consisting of 55 healthy people. ANGPTL8 and Alarin levels were measured using the ELISA (enzyme-linked immunosorbent assay) method.
Results: We found a significant increase in alarin and ANGPTL8 levels in the diabetic group compared to the control group. Furthermore, a positive correlation between Alarin levels and ANGPTL8, triglyceride, and insulin levels was found in the patient group. In addition, while both adipokines were higher in males in the patient group, both adipokines levels were lower in males than females in the control group, and there was a significant difference in ANGPTL8 levels.
Conclusion: High levels of ANGPTL8 and Alarin may facilitate the development of diabetes through the insulin resistance pathway. If this mechanism is more clearly elucidated, there may be a significant improvement in diabetic treatment projection.
Collapse
Affiliation(s)
| | - Hakan AYYILDIZ
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ELAZIĞ FETHİ SEKİN ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ
| |
Collapse
|
5
|
Gül FC, Kobat SG, Çelik F, Aydin S, Akkoç RF. Plasma and aqueous levels of alarin and adipsin ın patients with and without diabetic retinopathy. BMC Ophthalmol 2022; 22:176. [PMID: 35436912 PMCID: PMC9016965 DOI: 10.1186/s12886-022-02403-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Backround Diabetic retinopathy is a disease seen with microvascular complications as a result of hyperglycemia and insulin resistance. Alarin and Adipsin are molecules with a role in energy and glucose metabolism. The aim of this study was to determine plasma and aqueous levels of Alarin and Adipsin in patients with and without diabetic retinopathy to evaluate their potential roles in diabetic retinopathy. Methods The study included one eye from each of 20 cataract patients without diabetes (C), 20 cataract patients with diabetes and without diabetic retinopathy (DM + C), and 20 cataract patients with diabetes and diabetic retinopathy (DR + C). Plasma and aqueous humour samples were taken from all patients during the cataract operation. Alarin and Adipsin levels were examined with the enzyme-linked immunosorbent assay (ELISA) method. Results Both plasma and aqueous Alarin levels were significantly higher in the patients with diabetic retinopathy than in the control group (p < 0.001, p = 0.006). Adipsin levels were found to be significantly higher in plasma in the control group than in the DR + C group and significantly higher in aqueous in the DR + C group than in the control group (p < 0.001, p < 0.001). Conclusion These findings suggest that Alarin and Adipsin may play important role in diabetic retinopathy.
Collapse
Affiliation(s)
- Fatih Cem Gül
- Medical Doctor Ophthalmology Clinic, Universal Eye Center, Elazig, Turkey.
| | - Sabiha Güngör Kobat
- Medical Doctor Department of Ophthalmology Clinic, Firat University, Elazig, Turkey
| | - Fatih Çelik
- Medical Doctor Ophthalmology Clinic, Elazig City Hospital, Elazig, Turkey
| | - Süleyman Aydin
- Prof Dr Department of Biochemistry, Firat University, Elazig, Turkey
| | | |
Collapse
|
6
|
Zhu S, Hu X, Bennett S, Charlesworth O, Qin S, Mai Y, Dou H, Xu J. Galanin family peptides: Molecular structure, expression and roles in the neuroendocrine axis and in the spinal cord. Front Endocrinol (Lausanne) 2022; 13:1019943. [PMID: 36561569 PMCID: PMC9764007 DOI: 10.3389/fendo.2022.1019943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Galanin is a neurohormone as well as a neurotransmitter and plays versatile physiological roles for the neuroendocrine axis, such as regulating food intake, insulin level and somatostatin release. It is expressed in the central nervous system, including hypothalamus, pituitary, and the spinal cord, and colocalises with other neuronal peptides within neurons. Structural analyses reveal that the human galanin precursor is 104 amino acid (aa) residues in length, consisting of a mature galanin peptide (aa 33-62), and galanin message-associated peptide (GMAP; aa 63-104) at the C-terminus. GMAP appears to exhibit distinctive biological effects on anti-fungal activity and the spinal flexor reflex. Galanin-like peptide (GALP) has a similar structure to galanin and acts as a hypothalamic neuropeptide to mediate metabolism and reproduction, food intake, and body weight. Alarin, a differentially spliced variant of GALP, is specifically involved in vasoactive effect in the skin and ganglionic differentiation in neuroblastic tumors. Dysregulation of galanin, GALP and alarin has been implicated in various neuroendocrine conditions such as nociception, Alzheimer's disease, seizures, eating disorders, alcoholism, diabetes, and spinal cord conditions. Further delineation of the common and distinctive effects and mechanisms of various types of galanin family proteins could facilitate the design of therapeutic approaches for neuroendocrine diseases and spinal cord injury.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Samuel Bennett
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shengnan Qin
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Mohd Zahir I, Ogawa S, Dominic NA, Soga T, Parhar IS. Spexin and Galanin in Metabolic Functions and Social Behaviors With a Focus on Non-Mammalian Vertebrates. Front Endocrinol (Lausanne) 2022; 13:882772. [PMID: 35692389 PMCID: PMC9174643 DOI: 10.3389/fendo.2022.882772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 01/31/2023] Open
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides that are phylogenetically related and have descended from a common ancestral gene. Considerable attention has been given to these two multifunctional neuropeptides because they share GAL receptors 1,2, and 3. Since GAL and SPX-synthesizing neurons have been detected in several brain areas, therefore, it can be speculated that SPX and GAL are involved in various neurophysiological functions. Several studies have shown the functions of these two neuropeptides in energy regulation, reproduction, and response to stress. SPX acts as a satiety factor to suppress food intake, while GAL has the opposite effect as an orexigenic factor. There is evidence that SPX acts as an inhibitor of reproductive functions by suppressing gonadotropin release, while GAL modulates the activity of gonadotropin-releasing hormone (GnRH) neurons in the brain and gonadotropic cells in the pituitary. SPX and GAL are responsive to stress. Furthermore, SPX can act as an anxiolytic factor, while GAL exerts anti-depressant and pro-depressive effects depending on the receptor it binds. This review describes evidence supporting the central roles of SPX and GAL neuropeptides in energy balance, reproduction, stress, and social behaviors, with a particular focus on non-mammalian vertebrate systems.
Collapse
Affiliation(s)
- Izzati Mohd Zahir
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Tomoko Soga
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
8
|
Abebe EC, Mengstie MA, Seid MA, Malik T, Dejenie TA. The evolving roles of alarin in physiological and disease conditions, and its future potential clinical implications. Front Endocrinol (Lausanne) 2022; 13:1028982. [PMID: 36246892 PMCID: PMC9556965 DOI: 10.3389/fendo.2022.1028982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alarin is a member of the galanin family of neuropeptides that is widely expressed in the central nervous system and peripheral tissues in humans and rodents. It was initially isolated fifteen years ago in ganglionic cells of human neuroblastoma. Subsequently, it was demonstrated to be broadly distributed in the blood vessels, skin, eyes, peripheral and central nervous systems, thymus, gastrointestinal tract, and endocrine organs of different species. Alarin is a 25 amino acid neuropeptide derived from the alternative splicing of the GALP gene, missing exon 3. It is found to be involved in several physiological functions that include feeding behavior, energy homeostasis, glucose homeostasis, body temperature, and reproduction. It has also vasoactive, anti-inflammatory, anti-edema, and antimicrobial activities. However, the physiological effects of alarin have not been fully elucidated and the receptors that mediate these effects are not currently known. Unearthing the novel biological effects of alarin and its unidentified receptors will therefore be a task in future biomedical research. In addition, alarin is involved in various disease conditions, such as metabolic syndrome, obesity, insulin resistance, type 2 diabetes, diabetic retinopathy, hypertension, cardiac fibrosis, polycystic ovarian syndrome, and depression. Thus, alarin may serve as a promising tool for future pharmacological treatment and diagnosis. But further research is awaited to confirm whether alarin has a protective or pathological role in these diseases. This article provides a comprehensive review on the evolving implications of alarin in a variety of physiological and disease conditions, and its future perspectives.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Endeshaw Chekol Abebe,
| | - Misganaw Asmamaw Mengstie
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tabarak Malik
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Li M, Wu M, Zhu H, Hua Y, Ma Z, Yao J, Feng B, Shi B. Serum Tenascin-C and Alarin Levels Are Associated with Cardiovascular Diseases in Type 2 Diabetes Mellitus. Int J Endocrinol 2022; 2022:2009724. [PMID: 35493201 PMCID: PMC9050282 DOI: 10.1155/2022/2009724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tenascin-C (TNC), an extracellular matrix glycoprotein, is elevated in inflammatory and cardiovascular pathologies, whereas alarin, a novel orexigenic peptide, participates in insulin resistance and glycometabolism. The roles of these molecules in individuals with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), clinical conditions associating with metabolic disorders, and chronic inflammation, remain controversial. Our study aimed at determining the potential role of TNC and alarin in CVD adult patients with T2DM. METHODS This was a cross-sectional study. Basic and clinical information for 250 patients with T2DM were analyzed. Based on their cardiovascular disease status, participants were assigned into the CVD and non-CVD groups. Serum TNC and alarin levels were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum TNC and alarin concentrations in the CVD group were significantly higher than those of the non-CVD group. Moreover, serum TNC levels were positively correlated with age, waist circumference, and waist-hip ratio; however, they were negatively correlated with TC, LDL-C, and eGFR levels. Alarin levels were positively correlated with BMI, waist circumference, and hip circumference. In logistic regression models, TNC and alarin were also established to be independent determinants for CVD in T2DM patients and their increases were associated with CVD severity. Receiver operating characteristic (ROC) curve analysis showed that the area under curve (AUC) values for TNC and alarin were 0.68 and 0.67, respectively. TNC and alarin were good predictors of CVD occurrence. When the cutoff value for TNC was 134.05 pg/mL, its sensitivity was 69.47% while its specificity was 61.29%. When the cutoff value for alarin was 142.69 pg/mL, sensitivity and specificity were 38.95% and 90.97%, respectively. CONCLUSION Elevated TNC and alarin levels are independently associated with the occurrence and severity of CVD in T2DM individuals. Therefore, these two biomarkers are potential diagnostic and prognostic indicators for CVD in diabetics.
Collapse
Affiliation(s)
- Mingming Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mengjiao Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hua Zhu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yulin Hua
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zijun Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiayi Yao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bin Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Abebe EC, Mengstie MA, Seid MA, Dejenie TA. Regulatory effects and potential therapeutic implications of alarin in depression, and arguments on its receptor. Front Psychiatry 2022; 13:1051235. [PMID: 36506414 PMCID: PMC9732279 DOI: 10.3389/fpsyt.2022.1051235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Alarin is a pleiotropic peptide involved in a multitude of putative biological activities, notably, it has a regulatory effect on depression-like behaviors. Although further elucidating research is needed, animal-based cumulative evidence has shown the antidepressant-like effects of alarin. In light of its regulatory role in depression, alarin could be used as a promising antidepressant in future treatment for depression. Nevertheless, the available information is still insufficient and the therapeutic relevance of alarin in depression is still of concern. Moreover, a plethora of studies have reported that the actions of alarin, including antidepressant activities, are mediated by a separate yet unidentified receptor, highlighting the need for more extensive research. This review focuses on the current understanding of the regulatory effects and future therapeutic relevance of alarin on depression, and the arguments on its receptors.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Shen T, Liu Y, Dong S, Xu X, Wang X, Li Y, Zhou L. Alarin moderated myocardial hypertrophy via inhibiting cyclic adenosine monophosphate/protein kinase A signaling pathway to attenuate autophagy. Peptides 2021; 146:170669. [PMID: 34624429 DOI: 10.1016/j.peptides.2021.170669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Alarin could alleviate myocardial infarction-induced heart failure. The present study was to explore whether alarin could alleviate myocardial hypertrophy via inhibiting cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway to attenuate autophagy. Myocardial hypertrophy was induced by angiotensin (Ang) II infusion in vivo in mice and by Ang II treatment of neonatal rat cardiomyocytes (NRCMs) in vitro. The Ang II-induced hypertrophy and fibrosis of the heart were alleviated after alarin administration in mice. The increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (β-MHC), and the decreased alpha-myosin heavy chain (α-MHC) induced by Ang II were reversed by alarin treatment in NRCMs. Alarin inhibited the increases of cAMP and PKA in NRCMs. Treatment with cAMP or overexpression of PKA blocked the attenuating effects of alarin on Ang II-induced hypertrophy in NRCMs. Alarin reduced the Ang II-induced increases of LC3, Beclin 1, autophagy-related gene (Atg)3 and Atg5 in NRCMs. The overexpression of cAMP and PKA reversed the alleviating effects of alarin on the increased autophagy induced by Ang II in NRCMs. These results indicated that alarin could moderate cardiac remodeling. Alarin improved myocardial hypertrophy via inhibiting the cAMP/PKA signaling pathway to attenuate autophagy.
Collapse
Affiliation(s)
- Tongtong Shen
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| | - Yu Liu
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| | - Shuangshuang Dong
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| | - Xiaohong Xu
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| | - Xinxin Wang
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Limin Zhou
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China.
| |
Collapse
|
12
|
Li J, Ding H, Li Y, Zhou H, Wang W, Mei Y, Zhang R. Alarin alleviated cardiac fibrosis via attenuating oxidative stress in heart failure rats. Amino Acids 2021; 53:1079-1089. [PMID: 34089389 PMCID: PMC8241797 DOI: 10.1007/s00726-021-03005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
The present study was to explore whether alarin could alleviate heart failure (HF) and attenuate cardia fibrosis via inhibiting oxidative stress. The fibrosis of cardiac fibroblasts (CFs) was induced by angiotensin (Ang) II. HF models were induced by ligation of the left anterior descending artery to cause ischemia myocardial infarction (MI) in Sprague–Dawley rats. Alarin (1.0 nM/kg/d) was administrated by intraperitoneal injection for 28 days. The decreases of left ventricular (LV) ejection fraction (EF), fractional shortening (FS), the maximum of the first differentiation of LV pressure (LV ± dp/dtmax) and LV systolic pressure (LVSP), and the increases of LV volume in systole (LVVS), LV volume in diastole (LVVD), LV end-systolic diameter (LVESD) and LV end-diastolic diameter (LVEDD) in MI rats were improved by alarin treatment. The increases in the expression levels of collagen I, collagen III, and transforming growth factor (TGF)-β were inhibited by alarin treatment in CFs and in the hearts of MI rats. The levels of NADPH oxidase (Nox) activity, superoxide anions and malondialdehyde (MDA) levels were increased, and the level of superoxide dismutase (SOD) activity was reduced in Ang II-treated CFs, which were reversed by alarin. Nox1 overexpression reversed the effects of alarin on attenuating the increases of collagen I, collagen III and TGF-β expression levels induced by Ang II in CFs. These results indicated that alarin improved HF and cardiac fibrosis via inhibiting oxidative stress in HF rats. Nox1 played important roles in the regulation of alarin effects on attenuating CFs fibrosis induced by Ang II.
Collapse
Affiliation(s)
- Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Hao Ding
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hao Zhou
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Wanhong Wang
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Ronglin Zhang
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China. .,Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
13
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
14
|
Kilinc F, Demircan F, Gozel N, Onalan E, Karatas A, Pekkolay Z, Özdemir FA. ASSESSMENT OF SERUM ALARIN LEVELS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2020; 16:165-169. [PMID: 33029232 DOI: 10.4183/aeb.2020.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We aimed to investigate the potential relationship between plasma alarin levels and type 2 diabetes mellitus (T2DM). PATIENTS AND METHOD We included 154 participants, divided into four groups in a cross-sectional study design. The first group includes patients with T2DM without complications (n=30), the second group patients with T2DM with microvascular complications (T2DM-noC n=32), the third group patients with T2DM with macrovascular complications, T2DM-MV (n=32) and the last group is the healthy control group (n=60). RESULTS In our study 94 patients were diabetic; 47 females and 47 males. The control group consists of 60 people, 30 women and 30 men. It was found that these had a significant (p>0.05) variation in serum alarin levels among the T2DM (T2DM-noC=3.1±0.7 ng/mL T2DM-mV=2.8±0.4 ng/mL, T2DM-MV= 3.6±0.4 ng/mL) versus control group (15.6±2.6).We failed to find a significant variation of serum alarin levels (p>0.05) between T2DM subgroups. Serum alarin levels were significantly higher among control patients (p<0.05). There was no difference between diabetic sub-groups. CONCLUSION We concluded that serum alarin levels in patients with T2DM are lower than in normal people. Further studies are needed to investigate the possible prognostic value of alarin in clinical practice in T2DM.
Collapse
Affiliation(s)
- F Kilinc
- Firat University, School of Medicine, Dept. of Endocrinology, Turkey
| | - F Demircan
- Private Etik Life Medical Center Dept. of Internal Diseases, Istanbul, Turkey
| | - N Gozel
- Dept. of Internal Medicine, Turkey
| | - E Onalan
- Dept. of Medical Biology, Turkey
| | - A Karatas
- Dept. of Rheumatology, Elazig, Turkey
| | - Z Pekkolay
- Dicle University, School of Medicine, Dept. of Endocrinology, Diyarbakir, Turkey
| | - F A Özdemir
- Bingol University, School of Sciences, Dept. of Molecular Biology and Genetics, Bingol, Turkey
| |
Collapse
|
15
|
The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci Rep 2020; 10:1892. [PMID: 32024913 PMCID: PMC7002689 DOI: 10.1038/s41598-020-58884-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Ascidians are the sister group of vertebrates and occupy a critical position in explorations of the evolution of the endocrine and nervous systems of chordates. Here, we describe the complete ventral peptidergic system in adult transgenic Ciona robusta (Ciona intestinalis Type A) which expresses the Kaede reporter gene driven by the prohormone convertase 2 (PC2) gene promoter. Numerous PC2 promoter-driven fluorescent (Kaede-positive) non-neural cells were distributed in the blood sinus located at the anterior end of the pharynx, suggesting the acquisition of a peptidergic circulatory system in Ciona. Kaede-positive ciliated columnar cells, rounded cells, and tall ciliated cells were observed in the alimentary organs, including the endostyle, pharynx, esophagus, stomach, and intestine, suggesting that digestive functions are regulated by multiple peptidergic systems. In the heart, Kaede-positive neurons were located in the ring-shaped plexus at both ends of the myocardium. Nerve fiber-like tracts ran along the raphe and appeared to be connected with the plexuses. Such unique structures suggest a role for the peptidergic system in cardiac function. Collectively, the present anatomic analysis revealed the major framework of the ventral peptidergic system of adult Ciona, which could facilitate investigations of peptidergic regulation of the pharynx, endostyle, alimentary tissues, and heart.
Collapse
|
16
|
Fang P, Yu M, Shi M, Bo P, Zhang Z. Galanin peptide family regulation of glucose metabolism. Front Neuroendocrinol 2020; 56:100801. [PMID: 31705911 DOI: 10.1016/j.yfrne.2019.100801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Recent preclinical and clinical studies have indicated that the galanin peptide family may regulate glucose metabolism and alleviate insulin resistance, which diminishes the probability of type 2 diabetes mellitus. The galanin was discovered in 1983 as a gut-derived peptide hormone. Subsequently, galanin peptide family was found to exert a series of metabolic effects, including the regulation of gut motility, body weight and glucose metabolism. The galanin peptide family in modulating glucose metabolism received recently increasing recognition because pharmacological activiation of galanin signaling might be of therapeutic value to improve insuin resistance and type 2 diabetes mellitus. To date, however, few papers have summarized the role of the galanin peptide family in modulating glucose metabolism and insulin resistance. In this review we summarize the metabolic effect of galanin peptide family and highlight its glucoregulatory action and discuss the pharmacological value of galanin pathway activiation for the treatment of glucose intolerance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
17
|
Li MQ, Li JY, Xie L. [Level of circulating Alarin in obese children and its association with insulin resistance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:983-986. [PMID: 31642431 PMCID: PMC7389740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/29/2019] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the level of circulating Alarin in obese children and its association with various metabolic parameters. METHODS A total of 86 obese children with a body mass index (BMI) above the 95th percentile were enrolled as the obesity group, and 82 healthy children, matched for age and sex, with a BMI below the 85th percentile were enrolled as the healthy control group. According to the presence or absence of insulin resistance (IR), the obesity group was further divided into an IR group with 27 children and a non-IR group with 59 children. Related anthropometric parameters, including body height, body weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP), were measured, and BMI was calculated. Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), fasting insulin (FINS), and fasting blood glucose (FBG) were measured. The area under the receiver operating characteristic curve (AUC) for glucose and insulin, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and whole-body insulin sensitivity index (WBISI) were calculated. ELISA was used to measure the level of circulating Alarin. RESULTS The obesity group had a significantly higher level of circulating Alarin than the healthy control group (P<0.01). The IR group had a significantly higher level of circulating Alarin than the non-IR group (P<0.01). Circulating Alarin was positively correlated with BMI, TG, FBG, AUC-glucose, AUC-FINS, and HOMA-IR (P<0.05) and was negatively correlated with WBISI (P<0.05). The circulating Alarin level had a linear regression relationship with BMI, FBG, and HOMA-IR, among which HOMA-IR had the greatest influence on the circulating Alarin level (P<0.05). CONCLUSIONS There is a significant increase in the circulating Alarin level in obese children, which may be associated with the development of obesity and IR.
Collapse
Affiliation(s)
- Man-Qin Li
- Pediatric Intensive Care Unit, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | | | | |
Collapse
|
18
|
Li MQ, Li JY, Xie L. [Level of circulating Alarin in obese children and its association with insulin resistance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:983-986. [PMID: 31642431 PMCID: PMC7389740 DOI: 10.7499/j.issn.1008-8830.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the level of circulating Alarin in obese children and its association with various metabolic parameters. METHODS A total of 86 obese children with a body mass index (BMI) above the 95th percentile were enrolled as the obesity group, and 82 healthy children, matched for age and sex, with a BMI below the 85th percentile were enrolled as the healthy control group. According to the presence or absence of insulin resistance (IR), the obesity group was further divided into an IR group with 27 children and a non-IR group with 59 children. Related anthropometric parameters, including body height, body weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP), were measured, and BMI was calculated. Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), fasting insulin (FINS), and fasting blood glucose (FBG) were measured. The area under the receiver operating characteristic curve (AUC) for glucose and insulin, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and whole-body insulin sensitivity index (WBISI) were calculated. ELISA was used to measure the level of circulating Alarin. RESULTS The obesity group had a significantly higher level of circulating Alarin than the healthy control group (P<0.01). The IR group had a significantly higher level of circulating Alarin than the non-IR group (P<0.01). Circulating Alarin was positively correlated with BMI, TG, FBG, AUC-glucose, AUC-FINS, and HOMA-IR (P<0.05) and was negatively correlated with WBISI (P<0.05). The circulating Alarin level had a linear regression relationship with BMI, FBG, and HOMA-IR, among which HOMA-IR had the greatest influence on the circulating Alarin level (P<0.05). CONCLUSIONS There is a significant increase in the circulating Alarin level in obese children, which may be associated with the development of obesity and IR.
Collapse
Affiliation(s)
- Man-Qin Li
- Pediatric Intensive Care Unit, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | | | | |
Collapse
|
19
|
Hu W, Fan X, Zhou B, Li L, Tian B, Fang X, Xu X, Liu H, Yang G, Liu Y. Circulating alarin concentrations are high in patients with type 2 diabetes and increased by glucagon-like peptide-1 receptor agonist treatment: An Consort-compliant study. Medicine (Baltimore) 2019; 98:e16428. [PMID: 31305464 PMCID: PMC6641675 DOI: 10.1097/md.0000000000016428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CONTEXT Alarin has been reported to be relative to food intake and an increase in body weight. However, to date, no report has demonstrated the relationship between circulating alarin and diabetes in humans. OBJECTIVE The objective of this study is to gain insight into the possible role of alarin in humans. DESIGN AND METHODS 164 patients with newly diagnosed type 2 diabetes mellitus (nT2DM), 112 IGT and 134 healthy subjects were recruited for this study. In an interventional study, 29 nT2DM patients were treated by a weekly GLP-1RA for 6 months. Plasma alarin concentrations were measured by ELISA. RESULTS Circulating alarin concentrations were significantly higher in both IGT and nT2DM subjects than in healthy individuals (0.40 ± 0.14 and 0.54 ± 0.24 vs 0.37 ± 0.10 μg/L, P < .05 or P < .01), whereas in T2DM patients, circulating alarin levels were higher than in IGT subjects. Circulating alarin positively correlated with FBG, HbA1c, HOMA-IR, AUCglucose and TNFα (P < .05 or P < .01). Multivariate logistic regression revealed that circulating alarin levels were correlated with IGT and T2DM. GLP-1RA treatment for 6 months increased circulating alarin levels in T2DM patients (from 0.34 ± 0.10 for baseline, to 0.39 ± 0.14 for 12 weeks, and finally to 0.38 ± 0.15 μg/L for 24 weeks; vs. pre-treatment P < .05). CONCLUSIONS These data suggest that alarin might be involved in the pathogenesis of T2DM in humans. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR-OCS-13003185 (18/03/2013 ).
Collapse
Affiliation(s)
- Wenjing Hu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases
| | - Xiaoyun Fan
- Chongqing Prevention and Treatment Hospital for Occupational Diseases
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University
| | - Bo Tian
- Chongqing Prevention and Treatment Hospital for Occupational Diseases
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Xiaohui Xu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gangyi Yang
- Chongqing Prevention and Treatment Hospital for Occupational Diseases
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Yongsheng Liu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases
| |
Collapse
|
20
|
Jabari S, Schrödl F, Kaser-Eichberger A, Kofler B, Brehmer A. Alarin in different human intestinal epithelial cell types. Histochem Cell Biol 2019; 151:513-520. [PMID: 30612153 DOI: 10.1007/s00418-018-1763-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Alarin (AL), a new member of the galanin family, has been localized in various CNS regions, mainly in rodents. Among other effects, it modulates food intake. Therefore, we analyzed the immunohistochemical distribution pattern of AL in human intestinal epithelia. Cryosections of 12 human bowel samples were immunohistochemically double-stained for AL and α-defensin 5 (αD; first set). Two further sets of sections were quadruple-stained either (second set) for AL, chromogranin (CG), synaptophysin (SY), and somatostatin (SO) or (third set) for AL, CG, Peptide Y (PY), and 5-hydroxytryptamine (5-HT). Slides were digitized and quantitative analysis of co-localization rates was undertaken. Small bowel: most of AL-positive cells (56%) were αD-positive Paneth cells located within the base of the crypts (first set). In the second set, about 27% of AL-labeled cells were co-reactive for SY and CG, likely representing entero-endocrine cells. In the third set, the largest subpopulation of AL-positive cells was not co-reactive for other markers applied (89%); most of them were likely Paneth cells. Large bowel: co-localization of AL with αD was not detected (first set). In the second set, AL was frequently co-localized with the other three markers applied (68%). In the third set, AL was frequently co-localized with 5-HT and CG (31%) as well as with PY and 5-HT (22%). Due to its presence in various enteroendocrine as well as Paneth cells, AL may be involved in different physiological and pathological processes.
Collapse
Affiliation(s)
- Samir Jabari
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Falk Schrödl
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University, Salzburg, Austria.,Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University, Salzburg, Austria.,Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Mikó A, Füredi N, Tenk J, Rostás I, Soós S, Solymár M, Székely M, Balaskó M, Brunner SM, Kofler B, Pétervári E. Acute central effects of alarin on the regulation on energy homeostasis. Neuropeptides 2017; 64:117-122. [PMID: 27625299 DOI: 10.1016/j.npep.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/04/2016] [Indexed: 12/17/2022]
Abstract
Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed.
Collapse
Affiliation(s)
- Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Nóra Füredi
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Ildikó Rostás
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Szilvia Soós
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Miklós Székely
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise - THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise - THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria.
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Hungary.
| |
Collapse
|
22
|
Zhuang F, Li M, Gao X, Wang Y, Wang D, Ma X, Ma T, Gu S. The antidepressant-like effect of alarin is related to TrkB-mTOR signaling and synaptic plasticity. Behav Brain Res 2016; 313:158-171. [PMID: 27374162 DOI: 10.1016/j.bbr.2016.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022]
Abstract
Alarin is a newly derived neuropeptide from a splice variant of the galanin-like peptide gene. We previously showed that alarin has an antidepressant-like effect by increasing the activity of the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways, mediated by the tropomyosin-related kinase B receptor in the unpredictable chronic mild stress (UCMS) mouse model. Administration of rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, prevents the rapid antidepressant-like effect induced by ketamine in animal models, indicating a vital role of mTOR in depression pathophysiology. mTOR is a target of the ERK and AKT pathways that regulates the initiation of protein translation via its downstream components: ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Therefore, we hypothesized that the antidepressant-like effects of alarin were achieved by activating ERK/AKT pathways, increasing the activity of mTOR and its downstream signaling components that contribute to protein synthesis required for synaptic plasticity. Our results suggest that intracerebroventricular administration of alarin significantly ameliorates depression-like behaviors in the UCMS mouse model. Furthermore, alarin restored UCMS-induced reductions of p70S6K and post-synaptic density 95 (PSD-95) mRNA levels, and of phospho-mTOR and phospho-4EBP1 in the prefrontal cortex, hippocampus, hypothalamus, and olfactory bulb. Additionally, alarin reversed the UCMS-induced downregulation of PSD-95 and synapsin I protein expression in these brain regions. Thus, the antidepressant-like effects of alarin may be mediated by restoring decreased activity of the mTOR signaling pathway and expression of synaptic proteins. Our findings help advance the understanding of depression pathophysiology.
Collapse
Affiliation(s)
- Fuzhi Zhuang
- Department of Pharmacy, The First People's Hospital of Wujiang, Suzhou 215200, China
| | - Mei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dongdong Wang
- Department of Pharmacy, The People's Hospital of Jiangyin, Wuxi 214400, China
| | - Xing Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tengfei Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuling Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
23
|
Botz B, Kemény Á, Brunner SM, Sternberg F, Csepregi J, Mócsai A, Pintér E, McDougall JJ, Kofler B, Helyes Z. Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis. J Mol Neurosci 2016; 59:260-9. [PMID: 26941032 PMCID: PMC4884566 DOI: 10.1007/s12031-016-0732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.
Collapse
Affiliation(s)
- Bálint Botz
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Janka Csepregi
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Erika Pintér
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jason J McDougall
- Departments of Pharmacology and Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Zsuzsanna Helyes
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
24
|
Petschner P, Juhasz G, Tamasi V, Adori C, Tothfalusi L, Hökfelt T, Bagdy G. Chronic venlafaxine treatment fails to alter the levels of galanin system transcripts in normal rats. Neuropeptides 2016; 57:65-70. [PMID: 26891823 DOI: 10.1016/j.npep.2016.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
Abstract
It is widely accepted that efficacy and speed of current antidepressants' therapeutic effect are far from optimal. Thus, there is a need for the development of antidepressants with new mechanisms of action. The neuropeptide galanin and its receptors (GalR1, GalR2 and GalR3) are among the promising targets. However, it is not clear whether or not the galanin system is involved in the antidepressant effect exerted by the currently much used inhibitors of the reuptake of serotonin and/or noradrenaline. To answer this question we administered the selective serotonin and noradrenaline reuptake inhibitor (SNRI) venlafaxine (40mg/kg/day via osmotic minipumps) to normal rats and examined the levels of the transcripts for galanin and GalR1-3 after a 3-week venlafaxine treatment in the dorsal raphe, hippocampus and frontal cortex. These areas are known to be involved in the effects of antidepressants and in depression itself. Venlafaxine failed to alter the expression of any of the galanin system genes in these areas. Our results show that one of the most efficient, currently used SNRIs does not alter transcript levels of galanin or its three receptors in normal rats. These findings suggest that the pro- and antidepressive-like effects of galanin reported in animal experiments may employ a novel mechanism(s).
Collapse
Affiliation(s)
- Peter Petschner
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Hungary
| | - Viola Tamasi
- Department of Genetics-, Cell and Immunobiology, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Tomas Hökfelt
- Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary.
| |
Collapse
|
25
|
Zhuang F, Zhou X, Gao X, Lou D, Bi X, Qin S, Sun C, Ye P, Wang Y, Ma T, Li M, Gu S. Cytokines and glucocorticoid receptors are associated with the antidepressant-like effect of alarin. Peptides 2016; 76:115-29. [PMID: 26779986 DOI: 10.1016/j.peptides.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/06/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
Abstract
Little is known about the physiological or pharmacological properties of alarin, a new neuropeptide belonging to the galanin family. We previously showed that alarin has an antidepressant-like effect and is associated with a decrease in the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis that is observed in patients with depression using unpredictable chronic mild stress (UCMS) mouse model of depression. However, the mechanisms underlying these effects have not been uncovered. Inflammatory cytokines are reportedly associated with depression. Animal studies and cytokine immune therapy in humans suggest that pro-inflammatory cytokines induce depressive symptomatology and potently activate the HPA axis, whereas anti-inflammatory cytokines may decrease activation. Thus, we first determined the levels of inflammatory cytokines in the blood and brain to evaluate whether the antidepressant-like effect of alarin in UCMS-treated mice is related to its regulation of these inflammatory cytokines. Pro-inflammatory cytokines disrupt the function and/or expression of glucocorticoid receptors (GRs), which mediate the negative feedback of glucocorticoids on the HPA axis to keep it from being overactivated. We next explored the expression level of GRs in the brains of mice subjected to UCMS and to the administration of alarin. We found that intracerebroventricular administration of alarin significantly ameliorated depression-like behaviors in the UCMS-treated mice. Alarin restored the UCMS-induced an increase in the levels of the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α and a decrease in the anti-inflammatory cytokine IL-10 level in the blood, prefrontal cortex, hippocampus and hypothalamus. Alarin also reversed the UCMS-induced down-regulation of GR expression in these brain regions. Thus, the antidepressant-like effects of alarin may be mediated by restoring altered pro-inflammatory and anti-inflammatory cytokine levels and GR expression to decrease HPA axis hyperactivity. Our findings provide additional knowledge to interpret the pathophysiology of depression.
Collapse
Affiliation(s)
- Fuzhi Zhuang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Xue Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Xin Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Dan Lou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Xuesheng Bi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Shoujun Qin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Chuxiao Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Peng Ye
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Tengfei Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Mei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China
| | - Shuling Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Xuzhou 221004, China.
| |
Collapse
|
26
|
Zhang Z, Wu Y, Sheng S, Guo L, He B, Fang P, Shi M, Bo P, Zhu Y. Intracerebroventricular Injection of Alarin Increased Glucose Uptake in Skeletal Muscle of Diabetic Rats. PLoS One 2015; 10:e0139327. [PMID: 26439383 PMCID: PMC4595443 DOI: 10.1371/journal.pone.0139327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
In order to investigate the central effect of alarin on glucose uptake, we administered alarin and/ or its inhibitor, ala6-25Cys into the cerebral ventricles of the type 2 diabetic rats. Then the relative parameters about glucose uptake in skeletal muscles were measured. We found that central treatment with alarin significantly increased the food intake, body weight and glucose infusion rates in hyperinsulinemic euglycemic clamp tests of the animals. Besides, the treatment also enhanced 2-deoxy-[3H]-D-glucose uptake, vesicle-associated membrane protein 2 contents, glucose transporter 4 protein and mRNA expression, as well as pAktThr308, pAktSer473 and total Akt levels in muscle cells, but reduced plasma glucose and insulin levels of the rats. All of the alarin-inducing events may be antagonised by central injection of ala6-25Cys. These results suggest that central administration of alarin stimulates glucose uptake mediated by activation of Akt signal pathway in type 2 diabetic animals.
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Yongkang Wu
- Department of Neurosurgery, First People's Hospital, Yangzhou University, Yangzhou, China, 225001
| | - Shudong Sheng
- School of Medicine, Yangzhuo Polytechnic College, Yangzhou, Jiangsu, China, 225009
| | - Lili Guo
- Key Laboratory of Gerontal Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Biao He
- Key Laboratory of Gerontal Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Penghua Fang
- Key Laboratory of Gerontal Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Mingyi Shi
- Key Laboratory of Gerontal Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
- Key Laboratory of Gerontal Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China, 225001
| |
Collapse
|
27
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-9. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
28
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
29
|
Schrödl F, Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Krefft K, Kofler B, Brandtner H, Reitsamer HA. Alarin in cranial autonomic ganglia of human and rat. Exp Eye Res 2014; 131:63-8. [PMID: 25497346 DOI: 10.1016/j.exer.2014.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
Abstract
Extrinsic and intrinsic sources of the autonomic nervous system contribute to choroidal innervation, thus being responsible for the control of choroidal blood flow, aqueous humor production or intraocular pressure. Neuropeptides are involved in this autonomic control, and amongst those, alarin has been recently introduced. While alarin is present in intrinsic choroidal neurons, it is not clear if these are the only source of neuronal alarin in the choroid. Therefore, we here screened for the presence of alarin in human cranial autonomic ganglia, and also in rat, a species lacking intrinsic choroidal innervation. Cranial autonomic ganglia (i.e., ciliary, CIL; pterygopalatine, PPG; superior cervical, SCG; trigeminal ganglion, TRI) of human and rat were prepared for immunohistochemistry against murine and human alarin, respectively. Additionally, double staining experiments for alarin and choline acetyltransferase (ChAT), tyrosine hydroxilase (TH), substance P (SP) were performed in human and rat ganglia for unequivocal identification of ganglia. For documentation, confocal laser scanning microscopy was used, while quantitative RT-PCR was applied to confirm immunohistochemical data and to detect alarin mRNA expression. In humans, alarin-like immunoreactivity (alarin-LI) was detected in intrinsic neurons and nerve fibers of the choroidal stroma, but was lacking in CIL, PPG, SCG and TRI. In rat, alarin-LI was detected in only a minority of cranial autonomic ganglia (CIL: 3.5%; PPG: 0.4%; SCG: 1.9%; TRI: 1%). qRT-PCR confirmed the low expression level of alarin mRNA in rat ganglia. Since alarin-LI was absent in human cranial autonomic ganglia, and only present in few neurons of rat cranial autonomic ganglia, we consider it of low impact in extrinsic ocular innervation in those species. Nevertheless, it seems important for intrinsic choroidal innervation in humans, where it could serve as intrinsic choroidal marker.
Collapse
Affiliation(s)
- Falk Schrödl
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria; Department of Anatomy, Paracelsus Medical University, Strubergasase 21, 5020, Salzburg, Austria.
| | - Alexandra Kaser-Eichberger
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Barbara Bogner
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Christian Runge
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Daniela Bruckner
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Karolina Krefft
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Laura-Bassi Centre of Expertise, THERAPEP, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Herwig Brandtner
- Department of Legal Medicine, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020, Salzburg, Austria
| | - Herbert A Reitsamer
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| |
Collapse
|
30
|
Mikó A, Balla P, Tenk J, Balaskó M, Soós S, Székely M, Brunner S, Kofler B, Pétervári E. Thermoregulatory effect of alarin, a new member of the galanin peptide family. Temperature (Austin) 2014; 1:51-6. [PMID: 27583281 PMCID: PMC4972515 DOI: 10.4161/temp.29790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 02/08/2023] Open
Abstract
In the background of obesity, among other factors, regulatory alterations in energy balance affecting peptide systems may also be assumed. Regulation of energy balance does not only involve maintenance of body weight but also that of metabolic rate and core temperature. The contribution of alarin, a new member of the potentially orexigenic galanin peptide family, to the regulation of energy metabolism has been recently suggested. Our aim was to analyze the thermoregulatory effects of alarin in rats.
Adult male Wistar rats received full-length alarin (alarin 1–25), its truncated form (alarin 6–25Cys) or scrambled alarin in various doses intracerebroventricularly at different ambient temperatures. Oxygen consumption, heat loss (assessed by tail skin temperature) and core temperature of rats were recorded in an indirect calorimeter system.
Upon alarin injection at 25 °C, an increase in oxygen consumption and continuous tail skin vasoconstriction induced a slow rise in core temperature that reached 0.5 °C by 120 and 1.0 °C by 180 min. At cooler or slightly warmer temperatures similar responses were seen. Neither the truncated nor the scrambled alarin elicited any significant thermoregulatory response, however, the truncated form antagonized the hyperthermic actions of the full-length peptide.
Alarin appears to elicit a slow hypermetabolic, hyperthermic response in rats. Such a thermoregulatory response would characterize a catabolic (anorexic and hypermetabolic) mediator. Further investigations are needed to clarify the complex role of alarin in energy homeostasis.
Collapse
Affiliation(s)
- Alexandra Mikó
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Péter Balla
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Judit Tenk
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Márta Balaskó
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Szilvia Soós
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Miklós Székely
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| | - Susanne Brunner
- Laura Bassi Centre of Expertise; THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism; Department of Pediatrics; Paracelsus Medical University; Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise; THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism; Department of Pediatrics; Paracelsus Medical University; Salzburg, Austria
| | - Erika Pétervári
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| |
Collapse
|
31
|
Wang M, Chen Q, Li M, Zhou W, Ma T, Wang Y, Gu S. Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice. Peptides 2014; 56:163-72. [PMID: 24768903 DOI: 10.1016/j.peptides.2014.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
Abstract
Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).
Collapse
Affiliation(s)
- Ming Wang
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Qian Chen
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Mei Li
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Wei Zhou
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Tengfei Ma
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Yun Wang
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Shuling Gu
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
32
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
33
|
Eberhard N, Weis S, Reitsamer H, Kofler B. Expression of alarin in ependymoma and choroid plexus tumors. J Neurooncol 2013; 114:165-71. [DOI: 10.1007/s11060-013-1177-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/02/2013] [Indexed: 01/24/2023]
|
34
|
Deng C, Hsueh AJW. Evolution of a potential hormone antagonist following gene splicing during primate evolution. PLoS One 2013; 8:e64610. [PMID: 23724068 PMCID: PMC3665846 DOI: 10.1371/journal.pone.0064610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of genes generates novel mRNAs, leading to the evolution of new functional proteins. Cholecystokinin (CCK) induces the release of pancreatic enzymes and the contraction of the gallbladder to promote the digestion of fat and proteins. CCK activates two G-protein-coupled receptors, CCKA and CCKB. Here, we showed that a CCKsv (splicing variant), originated de novo during Catarrhini evolution by including a portion of intronic sequence of the CCK gene, encodes novel C-terminal peptide sequence followed by a new poly-adenylation signal. CCKsv is expressed in many human tissues and likely a secreted peptide retaining the original signal peptide and the N-terminal proteolytic processing signal, together with novel C-terminal sequences. Although CCKsv cannot activate CCK receptors, it partially inhibits the CRE- or SRF-driven reporter activities stimulated by wide type CCK-8 mediated by both CCK receptors. Co-treatment with CCKsv also partially antagonizes Ewing tumor cell growth stimulated by CCK-8. Our study provides an example of new peptide hormone antagonist evolution in primates.
Collapse
Affiliation(s)
- Cheng Deng
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, United States of America.
| | | |
Collapse
|
35
|
Merchenthaler I, Rotoli G, Peroski M, Grignol G, Dudas B. Catecholaminergic system innervates galanin-immunoreactive neurons in the human diencephalon. Neuroscience 2013; 238:327-34. [DOI: 10.1016/j.neuroscience.2013.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/15/2022]
|
36
|
Wada A, Wong PF, Hojo H, Hasegawa M, Ichinose A, Llanes R, Kubo Y, Senba M, Ichinose Y. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity. Biochem Biophys Res Commun 2013; 434:223-7. [PMID: 23537644 DOI: 10.1016/j.bbrc.2013.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 12/17/2022]
Abstract
Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.
Collapse
Affiliation(s)
- Akihiro Wada
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fraley GS, Leathley E, Nickols A, Gerometta E, Coombs E, Colton S, Gallemore S, Lindberg A, Kofler B. Alarin 6-25Cys antagonizes alarin-specific effects on food intake and luteinizing hormone secretion. Neuropeptides 2013; 47:37-41. [PMID: 23009720 DOI: 10.1016/j.npep.2012.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/17/2012] [Accepted: 08/07/2012] [Indexed: 12/17/2022]
Abstract
Previous data from our labs and from others have demonstrated that intracerebroventricular (ICV) injection of alarin has orexigenic activity and significantly increases plasma luteinizing hormone (LH) secretion in a gonadotropin-releasing hormone (GnRH) dependent manner. The purpose of the current experiments was to determine if the amino acids at the amino-terminal end of the alarin peptide are critical for alarin's effects on reproductive and feeding systems. First, we injected male mice ICV with full-length alarin (Ala1-25) or peptide fragments missing residues at the amino-terminal end (Ala3-25 or Ala6-25 Cys). Neither peptide fragment alone, significantly increased food intake in male mice compared to controls. Second, ICV injection of Ala1-25, but not Ala3-25, significantly (p < 0.01) increased GnRH-mediated LH secretion. Surprisingly, Ala6-25 Cys significantly (p < 0.05) inhibited plasma LH secretion and inhibited Ala1-25 actions. In conclusion, elimination of the first five amino acids of alarin not only abolishes the biological activity of alarin, but becomes an antagonist to alarin-specific effects. Furthermore, Ala6-25 Cys seems to act as a specific antagonist to putative alarin receptors and therefore may be an important tool in identifying alarin-specific receptors.
Collapse
Affiliation(s)
- Gregory S Fraley
- Department of Biology & Neuroscience Program, Hope College, Holland, MI 49423, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schrödl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Eberhard N, Santic R, Kofler B, Reitsamer HA. Distribution of the regulatory peptide alarin in the eye of various species. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2012.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Fang P, Yu M, Shi M, Zhang Z, Sui Y, Guo L, Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012; 179:115-20. [PMID: 22909974 DOI: 10.1016/j.ygcen.2012.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) is defined as abdominal central obesity, atherogenic dyslipidemia, insulin resistance, glucose intolerance and hypertension. The rapid increasing prevalence of MetS and the consequent diseases, such as type 2 diabetes mellitus and cardiovascular disorder, are becoming a global epidemic health problem. Despite considerable research into the etiology of this complex disease, the precise mechanism underlying MetS and the association of this complex disease with the development of type 2 diabetes mellitus and increased cardiovascular disease remains elusive. Therefore, researchers continue to actively search for new MetS treatments. Recent animal studies have indicated that the galanin peptide family of peptides may increase food intake, glucose intolerance, fat preference and the risk for obesity and dyslipidemia while decreasing insulin resistance and blood pressure, which diminishes the probability of type 2 diabetes mellitus and hypertension. To date, however, few papers have summarized the role of the galanin peptide family in modulating MetS. Through a summary of available papers and our recent studies, this study reviews the updated evidences of the effect that the galanin peptide family has on the clustering of MetS components, including obesity, dyslipidemia, insulin resistance and hypertension. This line of research will further deepen our understanding of the relationship between the galanin peptide family and the mechanisms underlying MetS, which will help develop new therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Fraley GS, Leathley E, Lundy N, Chheng E, King I, Kofler B. Effects of alarin on food intake, body weight and luteinizing hormone secretion in male mice. Neuropeptides 2012; 46:99-104. [PMID: 22245586 DOI: 10.1016/j.npep.2011.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 02/02/2023]
Abstract
Alarin is a member of the galanin family of neuropeptides that includes galanin and galanin-like peptide (GALP). Alarin is an alternate transcript of the GALP gene and is expressed in the brain and periphery. Recently, it was shown in male rats that alarin is an orexigenic peptide that also regulates reproductive hormone secretion. We hypothesized that alarin would also have similar central effects on feeding and luteinizing hormone (LH) secretion in mice as observed in rats. To test this hypothesis, we treated male mice with alarin intracerebroventricularly (i.c.v.) and measured its effects on food intake, body weight, body temperature, LH secretion, and Fos induction. We observed that i.c.v. injection of 1.0 nmol alarin significantly increased immediate food intake (p<0.01) from 30 to 120 min post-injection and relative body weight (p<0.05) after 24 h. Alarin had no effect on body temperature compared to controls. Alarin increased LH levels in male mice, an effect that was dependent on gonadotropin-Releasing-Hormone (GnRH) signaling. Furthermore, alarin-stimulated Fos immunoreactivity was observed in diencephalic nuclei, including the hypothalamic dorsomedial nucleus and the bed nucleus of the stria terminalis. Our studies demonstrated that alarin, like other members of the galanin peptide family, is a neuromediator of food intake and reproductive hormone secretion in male mice.
Collapse
Affiliation(s)
- Gregory S Fraley
- Department of Biology, Neuroscience Program, Hope College, Holland, MI 49423, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 2012; 63:18-30. [PMID: 22369786 DOI: 10.1016/j.neuropharm.2012.02.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/23/2011] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.
Collapse
|
42
|
Webling KEB, Runesson J, Bartfai T, Langel Ü. Galanin receptors and ligands. Front Endocrinol (Lausanne) 2012; 3:146. [PMID: 23233848 PMCID: PMC3516677 DOI: 10.3389/fendo.2012.00146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.
Collapse
Affiliation(s)
- Kristin E. B. Webling
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- *Correspondence: Kristin E. B. Webling, Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm University, Svante Arrheniusv. 21A, 10691 Stockholm, Sweden. e-mail:
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
| | - Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- Institute of Technology, University of TartuTartu, Estonia
| |
Collapse
|
43
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
44
|
Eberhard N, Mayer C, Santic R, Navio RP, Wagner A, Bauer HC, Sperk G, Boehm U, Kofler B. Distribution of alarin immunoreactivity in the mouse brain. J Mol Neurosci 2011; 46:18-32. [PMID: 21647713 PMCID: PMC3260429 DOI: 10.1007/s12031-011-9546-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/05/2011] [Indexed: 02/04/2023]
Abstract
Alarin is a 25 amino acid peptide that belongs to the galanin peptide family. It is derived from the galanin-like peptide gene by a splice variant, which excludes exon 3. Alarin was first identified in gangliocytes of neuroblastic tumors and later shown to have a vasoactive function in the skin. Recently, alarin was demonstrated to stimulate food intake as well as the hypothalamic–pituitary–gonadal axis in rodents, suggesting that it might be a neuromodulatory peptide in the brain. However, the individual neurons in the central nervous system that express alarin have not been identified. Here, we determined the distribution of alarin-like immunoreactivity (alarin-LI) in the adult murine brain. The specificity of the antibody against alarin was demonstrated by the absence of labeling after pre-absorption of the antiserum with synthetic alarin peptide and in transgenic mouse brains lacking neurons expressing the GALP gene. Alarin-LI was observed in different areas of the murine brain. A high intensity of alarin-LI was detected in the accessory olfactory bulb, the medial preoptic area, the amygdala, different nuclei of the hypothalamus such as the arcuate nucleus and the ventromedial hypothalamic nucleus, the trigeminal complex, the locus coeruleus, the ventral chochlear nucleus, the facial nucleus, and the epithelial layer of the plexus choroideus. The distinct expression pattern of alarin in the adult mouse brain suggests potential functions in reproduction and metabolism.
Collapse
Affiliation(s)
- Nicole Eberhard
- Department of Pediatrics, Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumormetabolism, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Christian Mayer
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, Hamburg, 20253 Hamburg Germany
| | - Radmila Santic
- Department of Pediatrics, Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumormetabolism, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Ruben Peco Navio
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, Hamburg, 20253 Hamburg Germany
| | - Andrea Wagner
- Department of Organismic Biology, University of Salzburg, Salzburg, 5020 Austria
- Department of Applied Cell Biology, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Hans Christian Bauer
- Department of Organismic Biology, University of Salzburg, Salzburg, 5020 Austria
- Department of Applied Cell Biology, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, 6020 Austria
| | - Ulrich Boehm
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, Hamburg, 20253 Hamburg Germany
| | - Barbara Kofler
- Department of Pediatrics, Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumormetabolism, Paracelsus Medical University, Salzburg, 5020 Austria
| |
Collapse
|
45
|
Abstract
Galanin, one of the many (> 100) neuropeptides, was discovered in 1983 based on its C-terminal amidation motif. Over the years, three more members of the galanin family have been identified, and three galanin receptors have been cloned. Work in many laboratories has provided evidence that this peptide can act as a transmitter, modulator, and growth factor and that it is involved in a number of, especially, disease-related processes. In this introduction, we provide some historical aspects on the galanin research and how the field has developed over three decades.
Collapse
Affiliation(s)
- T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
46
|
Sawyer I, Smillie SJ, Bodkin JV, Fernandes E, O'Byrne KT, Brain SD. The vasoactive potential of kisspeptin-10 in the peripheral vasculature. PLoS One 2011; 6:e14671. [PMID: 21347414 PMCID: PMC3036649 DOI: 10.1371/journal.pone.0014671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022] Open
Abstract
Splice products of the Kiss1 protein (kisspeptins) have been shown to be involved in a diverse range of functions, including puberty, metastasis and vasoconstriction in large human arteries. Circulating Kisspeptin-10 (Kp-10) plasma levels are low in normal individuals but are elevated during various disease states as well as pregnancy. Here, we investigated the potential of Kp-10, the shortest biologically active kisspeptin, to influence microvascular effects, concentrating on the cutaneous vasculature. Kp-10 caused a dose-dependent increase in oedema formation (0.3-10 nmol/injection site), assessed by Evans Blue albumin dye extravasation, in the dorsal skin of CD1 mice. Oedema formation was shown to be inhibited by the histamine H(1) receptor antagonist mepyramine. The response was characterised by a ring of pallor at the injection site in keeping with vasoconstrictor activity. Therefore, changes in dorsal skin blood flow were assessed by clearance of intradermally injected (99m)technetium. Kp-10 was found to significantly reduce clearance, in keeping with decreased blood flow and providing further evidence for vasoconstrictor activity. The decreased clearance was partially inhibited by co-treatment with the cyclo-oxygenase inhibitor indomethacin. Finally evidence for the kisspeptin receptor gene (Kiss1R), but not the kisspeptin peptide gene (Kiss1), mRNA expression was observed in heart, aorta and kidney samples from normal and angiotensin II induced hypertensive mice, with similar mRNA levels observed in each. We have evidence for two peripheral vasoactive roles for kisspeptin-10. Firstly, plasma extravasation indicative of ability to induce oedema formation and secondly decreased peripheral blood flow, indicating microvascular constriction. Thus Kp-10 has vasoactive properties in the peripheral microvasculature.
Collapse
Affiliation(s)
- Iain Sawyer
- Vascular Biology Section, Cardiovascular Division, King's College London, British Heart Foundation Centre, London, United Kingdom
| | - Sarah-Jane Smillie
- Vascular Biology Section, Cardiovascular Division, King's College London, British Heart Foundation Centre, London, United Kingdom
| | - Jennifer V. Bodkin
- Vascular Biology Section, Cardiovascular Division, King's College London, British Heart Foundation Centre, London, United Kingdom
| | - Elizabeth Fernandes
- Vascular Biology Section, Cardiovascular Division, King's College London, British Heart Foundation Centre, London, United Kingdom
| | - Kevin T. O'Byrne
- Division of Women's Health, King's College London, London, United Kingdom
| | - Susan D. Brain
- Vascular Biology Section, Cardiovascular Division, King's College London, British Heart Foundation Centre, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Abstract
The immune system defends the organism against invading pathogens. In recent decades it became evident that elimination of such pathogens, termination of inflammation, and restoration of host homeostasis all depend on bidirectional crosstalk between the immune system and the neuroendocrine system. This crosstalk is mediated by a complex network of interacting molecules that modulates inflammation and cell growth. Among these mediators are neuropeptides released from neuronal and non-neuronal components of the central and peripheral nervous systems, endocrine tissues, and cells of the immune system. Neuropeptide circuitry controls tissue inflammation and maintenance, and an imbalance of pro- and anti-inflammatory neuropeptides results in loss of host homeostasis and triggers inflammatory diseases. The galanin peptide family is undoubtedly involved in the regulation of inflammatory processes, and the aim of this review is to provide up-to-date knowledge from the literature concerning the regulation of galanin and its receptors in the nervous system and peripheral tissues in experimental models of inflammation. We also highlight the effects of galanin and other members of the galanin peptide family on experimentally induced inflammation and discuss these data in light of an anti-inflammatory role for this family of peptides.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology, Paracelsus Medical University Salzburg, Muellner-Hauptstrasse 48, A-5020 Salzburg, Austria
| | | |
Collapse
|
48
|
Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KEL, Chaudery F, Hunter G, Busbridge M, Leavy EM, Ghatei MA, Bloom SR, Murphy KG. Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol 2011; 161:601-13. [PMID: 20880399 DOI: 10.1111/j.1476-5381.2010.00893.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alarin is a recently discovered member of the galanin peptide family encoded by a splice variant of galanin-like peptide (GALP) mRNA. Galanin and GALP regulate energy homeostasis and reproduction. We therefore investigated the effects of alarin on food intake and gonadotrophin release. EXPERIMENTAL APPROACH Alarin was administered into the third cerebral ventricle (i.c.v.) of rats, and food intake or circulating hormone levels were measured. The effect of alarin on the hypothalamo-pituitary-gonadal axis was investigated in vitro using hypothalamic and anterior pituitary explants, and immortalized cell lines. Receptor binding assays were used to determine whether alarin binds to galanin receptors. KEY RESULTS The i.c.v. administration of alarin (30 nmol) to ad libitum fed male rats significantly increased acute food intake to 500%, and plasma luteinizing hormone (LH) levels to 170% of responses to saline. In vitro, 100 nM alarin stimulated neuropeptide Y (NPY) and gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants from male rats, and 1000 nM alarin increased GnRH release from GT1-7 cells. In vivo, pretreatment with the GnRH receptor antagonist cetrorelix prevented the increase in plasma LH levels observed following i.c.v. alarin administration. Receptor binding studies confirmed alarin did not bind to any known galanin receptor, or compete with radiolabelled galanin for hypothalamic binding sites. CONCLUSIONS AND IMPLICATIONS These results suggest alarin is a novel orexigenic peptide, and that it increases circulating LH levels via hypothalamic GnRH. Further work is required to identify the receptor(s) mediating the biological effects of alarin.
Collapse
Affiliation(s)
- C K Boughton
- Department of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shiba K, Kageyama H, Takenoya F, Shioda S. Galanin-like peptide and the regulation of feeding behavior and energy metabolism. FEBS J 2011; 277:5006-13. [PMID: 21126314 DOI: 10.1111/j.1742-4658.2010.07933.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.
Collapse
Affiliation(s)
- Kanako Shiba
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Lawrence C, Fraley GS. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction. Front Neuroendocrinol 2011; 32:1-9. [PMID: 20558195 PMCID: PMC2950899 DOI: 10.1016/j.yfrne.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/26/2010] [Accepted: 06/09/2010] [Indexed: 12/30/2022]
Abstract
Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino acid neuropeptide. GALP shares sequence homology to galanin (1-13) in position 9-21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP's role may be independent of the known galanin receptors. In this review, we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP's effects, and (5) discuss the possibility that GALP may mediate its effects via an as yet unidentified GALP-specific receptor.
Collapse
|