1
|
Dunn HA, Dhaliwal SK, Chang CT, Martemyanov KA. Distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, synaptic localization, and dimerization. J Biol Chem 2025; 301:108073. [PMID: 39675706 PMCID: PMC11758950 DOI: 10.1016/j.jbc.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs). However, little is known about ELFN1 organization and regulation, which likely govern and precede its ultimate trans-synaptic engagement with group III mGluRs. Herein, we report that the intracellular ELFN1 domain controls membrane trafficking and post-synaptic localization of ELFN1. We pinpoint a ∼30 amino acid juxtamembranous region required for membrane-targeting and discover that ELFN1 exists as an obligate homodimer prior to its trafficking to the membrane. We determine that ELFN1 homodimerization is not appreciably affected by the intracellular region and instead utilizes the extracellular leucine rich repeats (LRR) domain. We find that a single membrane-targeting motif located in one protomer is sufficient for effective trafficking of the ELFN1 homodimer. We further demonstrate that the closest ELFN1 homolog, synaptic adhesion molecule ELFN2, exhibits similar properties and participates in heterodimerization with ELFN1. This establishes distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, post-synaptic localization, and dimerization while indicating conservation of the mechanisms across the ELFN subfamily of cell adhesion molecules.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.
| | - Simran K Dhaliwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Chu-Ting Chang
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA.
| |
Collapse
|
2
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
3
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Li M, Lan X, Shi X, Zhu C, Lu X, Pu J, Lu S, Zhang J. Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5. Nat Commun 2024; 15:7519. [PMID: 39209876 PMCID: PMC11362167 DOI: 10.1038/s41467-024-51999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Two-thirds of signaling hormones and one-third of approved drugs exert their effects by binding and modulating the G protein-coupled receptors (GPCRs) activation. While the activation mechanism for monomeric GPCRs has been well-established, little is known about GPCRs in dimeric form. Here, by combining transition pathway generation, extensive atomistic simulation-based Markov state models, and experimental signaling assays, we reveal an asymmetric, stepwise millisecond allosteric activation mechanism for the metabotropic glutamate receptor subtype 5 receptor (mGlu5), an obligate dimeric class C GPCR. The dynamic picture is presented that agonist binding induces dimeric ectodomains compaction, amplified by the precise association of the cysteine-rich domains, ultimately loosely bringing the intracellular 7-transmembrane (7TM) domains into proximity and establishing an asymmetric TM6-TM6 interface. The active inter-domain interface enhances their intra-domain flexibility, triggering the activation of micro-switches crucial for downstream signal transduction. Furthermore, we show that the positive allosteric modulator stabilizes both the active inter-domain 7TM interface and an open, extended intra-domain ICL2 conformation. This stabilization leads to the formation of a pseudo-cavity composed of the ICL2, ICL3, TM3, and C-terminus, which facilitates G protein coordination. Our strategy may be generalizable for characterizing millisecond events in other allosteric systems.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinchao Shi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xun Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Zhuang R, Yan Z, Gao Y, Nurmamat A, Zhang S, Xiu M, Zhou Y, Pang Y, Li D, Zhao L, Liu X, Han Y. Evolutionary and functional analysis of metabotropic glutamate receptors in lampreys. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1861-1877. [PMID: 38951427 DOI: 10.1007/s10695-024-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.
Collapse
Affiliation(s)
- Ruyu Zhuang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Zihao Yan
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yicheng Gao
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ayqeqan Nurmamat
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Shuyuan Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Min Xiu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yuesi Zhou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ya Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ding Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Liang Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Cristiano N, Cabayé A, Brabet I, Glatthar R, Tora A, Goudet C, Bertrand HO, Goupil-Lamy A, Flor PJ, Pin JP, McCort-Tranchepain I, Acher FC. Novel Inhibitory Site Revealed by XAP044 Mode of Action on the Metabotropic Glutamate 7 Receptor Venus Flytrap Domain. J Med Chem 2024; 67:11662-11687. [PMID: 38691510 DOI: 10.1021/acs.jmedchem.3c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metabotropic glutamate (mGlu) receptors play a key role in modulating most synapses in the brain. The mGlu7 receptors inhibit presynaptic neurotransmitter release and offer therapeutic possibilities for post-traumatic stress disorders or epilepsy. Screening campaigns provided mGlu7-specific allosteric modulators as the inhibitor XAP044 (Gee et al. J. Biol. Chem. 2014). In contrast to other mGlu receptor allosteric modulators, XAP044 does not bind in the transmembrane domain but to the extracellular domain of the mGlu7 receptor and not at the orthosteric site. Here, we identified the mode of action of XAP044, combining synthesis of derivatives, modeling and docking experiments, and mutagenesis. We propose a unique mode of action of these inhibitors, preventing the closure of the Venus flytrap agonist binding domain. While acting as a noncompetitive antagonist of L-AP4, XAP044 and derivatives act as apparent competitive antagonists of LSP4-2022. These data revealed more potent XAP044 analogues and new possibilities to target mGluRs.
Collapse
Affiliation(s)
- Nunzia Cristiano
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
| | - Alexandre Cabayé
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
- BIOVIA Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Isabelle Brabet
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Ralf Glatthar
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Amelie Tora
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Cyril Goudet
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Peter J Flor
- Laboratory of Molecular and Cellular Neurobiology, Faculty of Biology and Preclinical Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Jean-Philippe Pin
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
| | - Francine C Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR 8003, 75006 Paris, France
| |
Collapse
|
7
|
Zhu X, Luo M, An K, Shi D, Hou T, Warshel A, Bai C. Exploring the activation mechanism of metabotropic glutamate receptor 2. Proc Natl Acad Sci U S A 2024; 121:e2401079121. [PMID: 38739800 PMCID: PMC11126994 DOI: 10.1073/pnas.2401079121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| | - Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, People's Republic of China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA90089-1062
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| |
Collapse
|
8
|
Latorraca NR, Sabaat S, Habrian C, Bleier J, Stanley C, Marqusee S, Isacoff EY. Domain coupling in activation of a family C GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582567. [PMID: 38464305 PMCID: PMC10925283 DOI: 10.1101/2024.02.28.582567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The G protein-coupled metabotropic glutamate receptors form homodimers and heterodimers with highly diverse responses to glutamate and varying physiological function. The molecular basis for this diversity remains poorly delineated. We employ molecular dynamics, single-molecule spectroscopy, and hydrogen-deuterium exchange to dissect the pathway of activation triggered by glutamate. We find that activation entails multiple loosely coupled steps and identify a novel pre-active intermediate whose transition to the active state forms dimer interactions that set signaling efficacy. Such subunit interactions generate functional diversity that differs across homodimers and heterodimers. The agonist-bound receptor is remarkably dynamic, with low occupancy of G protein-coupling conformations, providing considerable headroom for modulation of the landscape by allosteric ligands. Sites of sequence diversity within the dimerization interface and diverse coupling between activation rearrangements may contribute to precise decoding of glutamate signals and transients over broad spatial and temporal scales.
Collapse
Affiliation(s)
- Naomi R. Latorraca
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
| | - Sam Sabaat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
| | - Chris Habrian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
| | - Julia Bleier
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
- Department of Chemistry, University of California, Berkeley, California, 94720 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720 USA
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720 USA
- Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Weill Neurohub, University of California, Berkeley, California, 94720 USA
- Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| |
Collapse
|
9
|
Shimohata A, Rai D, Akagi T, Usui S, Ogiwara I, Kaneda M. The intracellular C-terminal domain of mGluR6 contains ER retention motifs. Mol Cell Neurosci 2023; 126:103875. [PMID: 37352898 DOI: 10.1016/j.mcn.2023.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Metabotropic glutamate receptor 6 (mGluR6) predominantly localizes to the postsynaptic sites of retinal ON-bipolar cells, at which it recognizes glutamate released from photoreceptors. The C-terminal domain (CTD) of mGluR6 contains a cluster of basic amino acids resembling motifs for endoplasmic reticulum (ER) retention. We herein investigated whether these basic residues are involved in regulating the subcellular localization of mGluR6 in 293T cells expressing mGluR6 CTD mutants using immunocytochemistry, immunoprecipitation, and flow cytometry. We showed that full-length mGluR6 localized to the ER and cell surface, whereas mGluR6 mutants with 15- and 20-amino acid deletions from the C terminus localized to the ER, but were deficient at the cell surface. We also demonstrated that the cell surface deficiency of mGluR6 mutants was rescued by introducing an alanine substitution at basic residues within the CTD. The surface-deficient mGluR6 mutant still did not localize to the cell surface and was retained in the ER when co-expressed with surface-expressible constructs, including full-length mGluR6, even though surface-deficient and surface-expressible constructs formed heteromeric complexes. The co-expression of the surface-deficient mGluR6 mutant reduced the surface levels of surface-expressible constructs. These results indicate that basic residues in the mGluR6 CTD served as ER retention signals. We suggest that exposed ER retention motifs in the aberrant assembly containing truncated or misfolded mGluR6 prevent these protein complexes from being transported to the cell surface.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiko Usui
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
10
|
Lecat-Guillet N, Quast RB, Liu H, Bourrier E, Møller TC, Rovira X, Soldevila S, Lamarque L, Trinquet E, Liu J, Pin JP, Rondard P, Margeat E. Concerted conformational changes control metabotropic glutamate receptor activity. SCIENCE ADVANCES 2023; 9:eadf1378. [PMID: 37267369 PMCID: PMC10413646 DOI: 10.1126/sciadv.adf1378] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Robert B. Quast
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Hongkang Liu
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | | | - Thor C. Møller
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | | | | | - Eric Trinquet
- PerkinElmer Cisbio, Parc Marcel Boiteux, 30200 Codolet, France
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Sanematsu K, Yamamoto M, Nagasato Y, Kawabata Y, Watanabe Y, Iwata S, Takai S, Toko K, Matsui T, Wada N, Shigemura N. Prediction of dynamic allostery for the transmembrane domain of the sweet taste receptor subunit, TAS1R3. Commun Biol 2023; 6:340. [PMID: 37012338 PMCID: PMC10070457 DOI: 10.1038/s42003-023-04705-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The sweet taste receptor plays an essential role as an energy sensor by detecting carbohydrates. However, the dynamic mechanisms of receptor activation remain unclear. Here, we describe the interactions between the transmembrane domain of the G protein-coupled sweet receptor subunit, TAS1R3, and allosteric modulators. Molecular dynamics simulations reproduced species-specific sensitivity to ligands. We found that a human-specific sweetener, cyclamate, interacted with the mouse receptor as a negative allosteric modulator. Agonist-induced allostery during receptor activation was found to destabilize the intracellular part of the receptor, which potentially interfaces with the Gα subunit, through ionic lock opening. A common human variant (R757C) of the TAS1R3 exhibited a reduced response to sweet taste, in support of our predictions. Furthermore, histidine residues in the binding site acted as pH-sensitive microswitches to modulate the sensitivity to saccharin. This study provides important insights that may facilitate the prediction of dynamic activation mechanisms for other G protein-coupled receptors.
Collapse
Affiliation(s)
- Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Masato Yamamoto
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Nagasato
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yu Watanabe
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiro Matsui
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naohisa Wada
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
12
|
Owen AE, Louis H, Agwamba EC, Udoikono AD, Manicum ALE. Antihypotensive potency of p-synephrine: Spectral analysis, molecular properties and molecular docking investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
14
|
Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput Biol 2022; 18:e1010384. [PMID: 36580448 PMCID: PMC9833559 DOI: 10.1371/journal.pcbi.1010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/11/2023] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.
Collapse
|
15
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
16
|
Shrivastava A, Mathur K, Verma RK, Jayadev Magani SK, Vyas DK, Singh A. Molecular dynamics study of tropical calcific pancreatitis (TCP) associated calcium-sensing receptor single nucleotide variation. Front Mol Biosci 2022; 9:982831. [PMID: 36275616 PMCID: PMC9581290 DOI: 10.3389/fmolb.2022.982831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Tropical Calcific Pancreatitis (TCP) is a chronic non-alcoholic pancreatitis characterised by extensive calcification. The disease usually appears at a younger age and is more common in tropical regions. This disease’s progression can lead to pancreatic diabetes, which can subsequently lead to pancreatic cancer. The CASR gene encodes a calcium-sensing receptor (CaSR), which is a GPCR protein of class C. It is expressed in the islets of Langerhans, the parathyroid gland, and other tissues. It primarily detects small gradients in circulating calcium concentrations and couples this information to intracellular signalling, which helps to regulate PTH (parathyroid hormone) secretion and mineral ion homeostasis. From co-leading insulin release, CaSR modulates ductal HCO3− secretion, Ca2+ concentration, cell-cell communication, β-cell proliferation, and intracellular Ca2+ release. In pancreatic cancer, the CaSR limits cell proliferation. TCP-related four novel missense mutations P163R, I427S, D433H and V477A, found in CaSR extracellular domain (ECD) protein, which were reported in the mutTCPdb Database (https://lms.snu.edu.in/mutTCPDB/index.php). P163R mutation occurs in ligand-binding domain 1 (LBD-1) of the CaSR ECD. To investigate the influence of these variations on protein function and structural activity multiple in-silico prediction techniques such as SIFT, PolyPhen, CADD scores, and other methods have been utilized. A 500 ns molecular dynamic simulation was performed on the CaSR ECD crystal structure and the corresponding mutated models. Furthermore, Principal Component Analysis (PCA) and Essential Dynamics analysis were used to forecast collective motions, thermodynamic stabilities, and the critical subspace crucial to CaSR functions. The results of molecular dynamic simulations showed that the mutations P163R, I427S, D433H, and V477A caused conformational changes and decreased the stability of protein structures. This study also demonstrates the significance of TCP associated mutations. As a result of our findings, we hypothesised that the investigated mutations may have an effect on the protein’s structure and ability to interact with other molecules, which may be related to the protein’s functional impairment.
Collapse
Affiliation(s)
- Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Kartavya Mathur
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Rohit Kumar Verma
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Sri Krishna Jayadev Magani
- Cancer Biology Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- *Correspondence: Sri Krishna Jayadev Magani, ; Ashutosh Singh,
| | - Deepak Krishna Vyas
- Department of Biotechnology, Lachoo Memorial College of Science and Technology, Jodhpur, RJ, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- *Correspondence: Sri Krishna Jayadev Magani, ; Ashutosh Singh,
| |
Collapse
|
17
|
Goolam MA, Brown AP, Edwards KT, Gregory KJ, Leach K, Conigrave AD. Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca 2+ Sensing but Not G Protein Interaction. J Bone Miner Res 2022; 37:1787-1807. [PMID: 35848051 PMCID: PMC9545990 DOI: 10.1002/jbmr.4651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mahvash A Goolam
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Alice P Brown
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Kimberly T Edwards
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| |
Collapse
|
18
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.
Collapse
|
19
|
Zhang J, Dong B, Yang L. Molecular Characterization and Expression Analysis of Putative Class C (Glutamate Family) G Protein-Coupled Receptors in Ascidian Styela clava. BIOLOGY 2022; 11:782. [PMID: 35625509 PMCID: PMC9138782 DOI: 10.3390/biology11050782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, we performed the genome-wide domain analysis and sequence alignment on the genome of Styela clava, and obtained a repertoire of 204 putative GPCRs, which exhibited a highly reduced gene number compared to vertebrates and cephalochordates. In this repertoire, six Class C GPCRs, including four metabotropic glutamate receptors (Sc-GRMs), one calcium-sensing receptor (Sc-CaSR), and one gamma-aminobutyric acid (GABA) type B receptor 2-like (Sc-GABABR2-like) were identified, with the absence of type 1 taste and vomeronasal receptors. All the Sc-GRMs and Sc-CaSR contained the typical "Venus flytrap" and cysteine-rich domains required for ligand binding and subsequent propagation of conformational changes. In swimming larvae, Sc-grm3 and Sc-casr were mainly expressed at the junction of the sensory vesicle and tail nerve cord while the transcripts of Sc-grm4, Sc-grm7a, and Sc-grm7b appeared at the anterior trunk, which suggested their important functions in neurotransmission. The high expression of these Class C receptors at tail-regression and metamorphic juvenile stages hinted at their potential involvement in regulating metamorphosis. In adults, the transcripts were highly expressed in several peripheral tissues, raising the possibility that S. clava Class C GPCRs might function as neurotransmission modulators peripherally after metamorphosis. Our study systematically characterized the ancestral chordate Class C GPCRs to provide insights into the origin and evolution of these receptors in chordates and their roles in regulating physiological and morphogenetic changes relevant to the development and environmental adaption.
Collapse
Affiliation(s)
- Jin Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Likun Yang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
20
|
Schamber MR, Vafabakhsh R. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Nat Commun 2022; 13:2194. [PMID: 35459864 PMCID: PMC9033857 DOI: 10.1038/s41467-022-29897-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Transfer of information across membranes is fundamental to the function of all organisms and is primarily initiated by transmembrane receptors. For many receptors, how ligand sensitivity is fine-tuned and how disease associated mutations modulate receptor conformation to allosterically affect receptor sensitivity are unknown. Here we map the activation of the calcium-sensing receptor (CaSR) - a dimeric class C G protein-coupled receptor (GPCR) and responsible for maintaining extracellular calcium in vertebrates. We show that CaSR undergoes unique conformational rearrangements compared to other class C GPCRs owing to specific structural features. Moreover, by analyzing disease associated mutations, we uncover a large permissiveness in the architecture of the extracellular domain of CaSR, with dynamics- and not specific receptor topology- determining the effect of a mutation. We show a structural hub at the dimer interface allosterically controls CaSR activation via focused electrostatic repulsion. Changes in the surface charge distribution of this hub, which is highly variable between organisms, finely tune CaSR sensitivity. This is potentially a general tuning mechanism for other dimeric receptors.
Collapse
Affiliation(s)
- Michael R Schamber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
21
|
Diepeveen J, Moerdijk‐Poortvliet TCW, van der Leij FR. Molecular insights into human taste perception and umami tastants: A review. J Food Sci 2022; 87:1449-1465. [PMID: 35301715 PMCID: PMC9314127 DOI: 10.1111/1750-3841.16101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/08/2023]
Abstract
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
Collapse
Affiliation(s)
- Johan Diepeveen
- Research Group Marine Biobased SpecialtiesChemistry Department, HZ University of Applied SciencesVlissingenThe Netherlands
| | | | - Feike R. van der Leij
- Research and Innovation Centre Agri, Food & Life Sciences (RIC‐AFL)Inholland University of Applied SciencesDelftThe Netherlands
| |
Collapse
|
22
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
23
|
Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Cells 2022; 11:cells11071097. [PMID: 35406660 PMCID: PMC8998116 DOI: 10.3390/cells11071097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Our senses define our view of the world. They allow us to adapt to environmental stimuli and are essential for communication and social behaviour. For most humans, seeing and hearing are central senses for their daily life. Our eyes and ears respond to an extraordinary broad range of stimuli covering about 12 log units of light intensity or acoustic power, respectively. The cellular basis is represented by sensory cells (photoreceptors in the retina and inner hair cells in the cochlea) that convert sensory inputs into electrical signals. Photoreceptors and inner hair cells have developed a specific pre-synaptic structure, termed synaptic ribbon, that is decorated with numerous vesicles filled with the excitatory neurotransmitter glutamate. At these ribbon synapses, glutamatergic signal transduction is guided by distinct sets of metabotropic glutamate receptors (mGluRs). MGluRs belong to group II and III of the receptor classification can inhibit neuronal activity, thus protecting neurons from overstimulation and subsequent degeneration. Consequently, dysfunction of mGluRs is associated with vision and hearing disorders. In this review, we introduce the principle characteristics of ribbon synapses and describe group II and III mGluRs in these fascinating structures in the retina and cochlea.
Collapse
|
24
|
Qi L, Gao X, Pan D, Sun Y, Cai Z, Xiong Y, Dang Y. Research progress in the screening and evaluation of umami peptides. Compr Rev Food Sci Food Saf 2022; 21:1462-1490. [PMID: 35201672 DOI: 10.1111/1541-4337.12916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Umami is an important element affecting food taste, and the development of umami peptides is a topic of interest in food-flavoring research. The existing technology used for traditional screening of umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of high-throughput screening, which limits the rapid development of umami peptides. The difficulty in performing a standard measurement of umami intensity is another problem that restricts the development of umami peptides. The existing methods are not sensitive and specific, making it difficult to achieve a standard evaluation of umami taste. This review summarizes the umami receptors and umami peptides, focusing on the problems restricting the development of umami peptides, high-throughput screening, and establishment of evaluation standards. The rapid screening of umami peptides was realized based on molecular docking technology and a machine learning method, and the standard evaluation of umami could be realized with a bionic taste sensor. The progress of rapid screening and evaluation methods significantly promotes the study of umami peptides and increases its application in the seasoning industry.
Collapse
Affiliation(s)
- Lulu Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yongzhao Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Acher FC, Cabayé A, Eshak F, Goupil-Lamy A, Pin JP. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022; 204:108886. [PMID: 34813860 DOI: 10.1016/j.neuropharm.2021.108886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) have been discovered almost four decades ago. Since then, their pharmacology has been largely developed as well as their structural organization. Indeed mGluRs are attractive therapeutic targets for numerous psychiatric and neurological disorders because of their modulating role of synaptic transmission. The more recent drug discovery programs have mostly concentrated on allosteric modulators. However, orthosteric agonists and antagonists have remained unavoidable pharmacological tools as, although not expected, many of them can reach the brain, or can be modified to reach the brain. This review focuses on the most common orthosteric ligands as well as on the few allosteric modulators interacting with the glutamate binding domain. The 3D-structures of these ligands at their binding sites are reported. For most of them, X-Ray structures or docked homology models are available. Because of the high conservation of the binding site, subtype selective agonists were not easy to find. Yet, some were discovered when extending their chemical structures in order to reach selective sites of the receptors.
Collapse
Affiliation(s)
- Francine C Acher
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France.
| | - Alexandre Cabayé
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France; BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Floriane Eshak
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| |
Collapse
|
26
|
McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021; 199:108801. [PMID: 34547332 DOI: 10.1016/j.neuropharm.2021.108801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the β4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
27
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Hofmann CS, Carrington S, Keller AN, Gregory KJ, Niswender CM. Regulation and functional consequences of mGlu 4 RNA editing. RNA (NEW YORK, N.Y.) 2021; 27:1220-1240. [PMID: 34244459 PMCID: PMC8457003 DOI: 10.1261/rna.078729.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Birds
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Models, Molecular
- Neurons/cytology
- Neurons/metabolism
- Nucleic Acid Conformation
- Point Mutation
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- RNA Editing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Reptiles
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christopher S Hofmann
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sheridan Carrington
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Andrew N Keller
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
29
|
Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, Geng Y. Structural insights into the activation of human calcium-sensing receptor. eLife 2021; 10:68578. [PMID: 34467854 PMCID: PMC8476121 DOI: 10.7554/elife.68578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and agonist+PAM bound states. Complemented with previously reported structures of CaSR, we show that in addition to the full inactive and active states, there are multiple intermediate states during the activation of CaSR. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data show that agonist binding leads to compaction of the dimer, proximity of the cysteine-rich domains, large-scale transitions of seven-transmembrane domains, and inter- and intrasubunit conformational changes of seven-transmembrane domains to accommodate downstream transducers. Our results reveal the structural basis for activation mechanisms of CaSR and clarify the mode of action of Ca2+ ions and L-amino acid leading to the activation of the receptor.
Collapse
Affiliation(s)
- Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhanyu Ding
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Jia
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhong Shi
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyang Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Homodimerization of a proximal region within the C-terminus of the orphan G-protein coupled receptor GPR179. Neurochem Int 2021; 149:105150. [PMID: 34333057 DOI: 10.1016/j.neuint.2021.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
G-protein coupled receptors exhibit numerous biological functions. The orphan G-protein coupled receptor GPR179 is a central component of a 1 Megadalton large signalling complex in the ON-pathway of the mammalian retina that assembles multiple proteins, including the metabotropic glutamate receptor mGluR6. Dimer formation is a hallmark of G-protein coupled receptors and some use intracellular C-termini for dimerization. Here we tested the dimerization properties of the intracellular C-terminal domains of mGluR6 and GPR179. While the C-termini of GPR179 and mGluR6 did not interact, we detected a robust homodimerization of a proximal region in the GPR179 C-terminus. Mapping studies defined a linear stretch of 64 amino acids as dimerization region. Bioinformatic analysis indicated that this dimerization region might adopt an α-helical structure that is predicted to dimerize by forming a coiled-coil. Based on these data, we speculate that homodimerization of GPR179 might contribute to the formation of large signalling complexes in the mammalian retina.
Collapse
|
31
|
|
32
|
Defining the Homo- and Heterodimerization Propensities of Metabotropic Glutamate Receptors. Cell Rep 2021; 31:107605. [PMID: 32375054 PMCID: PMC7271767 DOI: 10.1016/j.celrep.2020.107605] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/10/2020] [Indexed: 01/02/2023] Open
Abstract
The eight metabotropic glutamate receptors (mGluRs) serve critical modulatory roles throughout the nervous system. The molecular diversity of mGluRs is thought to be further expanded by the formation of heterodimers, but the co-expression of mGluR subtypes at the cellular level and the relative propensities of heterodimer formation are not well known. Here, we analyze single-cell RNA sequencing data and find that cortical pyramidal cells express multiple mGluR subtypes with distinct profiles for different receptor combinations. We then develop quantitative, fluorescence-based assays to define the relative homo- and heterodimer propensities across group-I, -II, and -III mGluRs. We find a strong preference for heterodimerization in a number of cases, including mGluR2 with mGluR3, which we confirm in frontal cortex using in situ RNA hybridization and co-immunoprecipitation. Together, our findings support the biological relevance of mGluR heterodimerization and highlight the complex landscape of mGluR populations in the brain.
Collapse
|
33
|
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. SCIENCE ADVANCES 2021; 7:7/23/eabg1483. [PMID: 34088669 PMCID: PMC8177707 DOI: 10.1126/sciadv.abg1483] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.
Collapse
Affiliation(s)
- Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ziyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaozhe Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yangfei Xing
- State Key Laboratory of Medical Genomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
- Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
34
|
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021; 29:539-551. [PMID: 34194261 PMCID: PMC8233523 DOI: 10.1016/j.jsps.2021.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.
Collapse
Key Words
- AC, Adenylyl Cyclase
- Arrestin
- CCR, Chemokine Receptor
- COX, Cyclooxygenase
- DAG, Diacylglycerol
- Drugs
- ERK, Extracellular signal-Regulated Kinase
- G proteins
- GIP, Gastric Inhibitory Peptide
- GLP1R, Glucagon-Like Peptide-1 Receptor
- GPCR
- GRKs
- GRKs, G protein-coupled Receptor Kinases
- Heterodimerization
- IP3, Inositol 1,4,5-triphosphate
- MAPK, Mitogen-Activated Protein Kinase
- NMDA, N-Methyl D-Aspartate
- Nbs, Nanobodies
- PAR-1, Protease Activated Receptor 1
- PIP2, Phosphatidylinositol-4,5-bisphosphate
- PKA, Protein Kinase A
- Signaling
- cAMP, cyclic AMP
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, AMU Aligarh, UP, India
| | - Asma Alonazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - F Al-Zoghaibi
- Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, MBC:03, Riyadh 11211, Saudi Arabia
| |
Collapse
|
35
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
36
|
Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021; 10:e67027. [PMID: 33880992 PMCID: PMC8102066 DOI: 10.7554/elife.67027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G-protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. Although numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here, we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric, and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.
Collapse
Affiliation(s)
- Jordana K Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Alexa Strauss
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| | | | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Martin J Lohse
- Max Delbrück Center for Molecular MedicineBerlinGermany
- ISAR Bioscience InstitutePlanegg-MunichGermany
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| |
Collapse
|
37
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
38
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
39
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
40
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
41
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
42
|
Zhu W, He W, Wang F, Bu Y, Li X, Li J. Prediction, molecular docking and identification of novel umami hexapeptides derived from Atlantic cod (
Gadus morhua
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Wei He
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Fei Wang
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Ying Bu
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University Jinzhou Liaoning 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| |
Collapse
|
43
|
Zhang J, Qu L, Wu L, Tang X, Luo F, Xu W, Xu Y, Liu ZJ, Hua T. Structural insights into the activation initiation of full-length mGlu1. Protein Cell 2020; 12:662-667. [PMID: 33278019 PMCID: PMC8310541 DOI: 10.1007/s13238-020-00808-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaomeng Tang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
44
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
45
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
46
|
Rai D, Akagi T, Shimohata A, Ishii T, Gangi M, Maruyama T, Wada-Kiyama Y, Ogiwara I, Kaneda M. Involvement of the C-terminal domain in cell surface localization and G-protein coupling of mGluR6. J Neurochem 2020; 158:837-848. [PMID: 33067823 DOI: 10.1111/jnc.15217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/25/2020] [Accepted: 10/11/2020] [Indexed: 01/05/2023]
Abstract
Metabotropic glutamate receptor 6, mGluR6, interacts with scaffold proteins and Gβγ subunits via its intracellular C-terminal domain (CTD). The mGluR6 pathway is critically involved in the retinal processing of visual signals. We herein investigated whether the CTD (residues 840-871) was necessary for mGluR6 cell surface localization and G-protein coupling using mGluR6-CTD mutants with immunocytochemistry, surface biotinylation assays, and electrophysiological approaches. We used 293T cells and primary hippocampal neurons as model systems. We examined C-terminally truncated mGluR6 and showed that the removal of up to residue 858 did not affect surface localization or glutamate-induced G-protein-mediated responses, whereas a 15-amino acid deletion (Δ857-871) impaired these functions. However, a 21-amino acid deletion (Δ851-871) restored surface localization and glutamate-dependent responses, which were again attenuated when the entire CTD was removed. The sequence alignment of group III mGluRs showed conserved amino acids resembling an ER retention motif in the CTD. These results suggest that the intracellular CTD is required for the cell surface transportation and receptor function of mGluR6, whereas it may contain regulatory elements for intracellular trafficking and signaling.
Collapse
Affiliation(s)
- Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
47
|
Kurth M, Lolicato F, Sandoval-Perez A, Amaya-Espinosa H, Teslenko A, Sinning I, Beck R, Brügger B, Aponte-Santamaría C. Cholesterol Localization around the Metabotropic Glutamate Receptor 2. J Phys Chem B 2020; 124:9061-9078. [PMID: 32954729 DOI: 10.1021/acs.jpcb.0c05264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptor (mGluR) 2 plays a key role in the central nervous system. mGluR2 has been shown to be regulated by its surrounding lipid environment, especially by cholesterol, by an unknown mechanism. Here, using a combination of biochemical approaches, photo-cross-linking experiments, and molecular dynamics simulations we show the interaction of cholesterol with at least two, but potentially five more, preferential sites on the mGluR2 transmembrane domain. Our simulations demonstrate that surface matching, rather than electrostatic interactions with specific amino acids, is the main factor defining cholesterol localization. Moreover, the cholesterol localization observed here is similar to the sterol-binding pattern previously described in silico for other members of the mGluR family. Biochemical assays suggest little influence of cholesterol on trafficking or dimerization of mGluR2. Nevertheless, simulations revealed a significant reduction of residue-residue contacts together with an alteration in the internal mechanical stress at the cytoplasmic side of the helical bundle when cholesterol was present in the membrane. These alterations may be related to destabilization of the basal state of mGluR2. Due to the high sequence conservation of the transmembrane domains of mGluRs, the molecular interaction of cholesterol and mGluR2 described here is also likely to be relevant for other members of the mGLuR family.
Collapse
Affiliation(s)
- Markus Kurth
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Angelica Sandoval-Perez
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Alexandra Teslenko
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Rainer Beck
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Park D, Park S, Song J, Kang M, Lee S, Horak M, Suh YH. N‐linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J 2020; 34:14977-14996. [DOI: 10.1096/fj.202001544r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Da‐ha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sunha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Jae‐man Song
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Minji Kang
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences Institute of Experimental Medicine of the Czech Academy of Sciences Prague 4 Czech Republic
| | - Young Ho Suh
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
49
|
Kashani-Amin E, Tabatabaei-Malazy O, Sakhteman A, Larijani B, Ebrahim-Habibi A. A Systematic Review on Popularity, Application and Characteristics of Protein Secondary Structure Prediction Tools. Curr Drug Discov Technol 2020; 16:159-172. [PMID: 29493456 DOI: 10.2174/1570163815666180227162157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple Secondary Structure Prediction (SSP) options is challenging. The current study is an insight into currently favored methods and tools, within various contexts. OBJECTIVE A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. METHODS Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of the 209 studies were finally found eligible to extract data. RESULTS Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating an SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. CONCLUSION This study provides a comprehensive insight into the recent usage of SSP tools which could be helpful for selecting a proper tool.
Collapse
Affiliation(s)
- Elaheh Kashani-Amin
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal Chemistry and Natural Products Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Hack YL, Crabtree EE, Avila F, Sutton RB, Grahn R, Oh A, Gilger B, Bellone RR. Whole-genome sequencing identifies missense mutation in GRM6 as the likely cause of congenital stationary night blindness in a Tennessee Walking Horse. Equine Vet J 2020; 53:316-323. [PMID: 32654228 DOI: 10.1111/evj.13318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The only known genetic cause of congenital stationary night blindness (CSNB) in horses is a 1378 bp insertion in TRPM1. However, an affected Tennessee Walking Horse was found to have no copies of this variant. OBJECTIVES To identify the genetic cause for CSNB in an affected Tennessee Walking Horse. STUDY DESIGN Case report detailing a whole-genome sequencing (WGS) approach to identify a causal variant. METHODS A complete ophthalmic exam, including an electroretinogram (ERG), was performed on suspected CSNB-affected horse. WGS data were generated from the case and compared with data from seven other breeds (n = 29). One hundred candidate genes were evaluated for coding variants homozygous in the case and absent in all other horses. Protein modelling was used to assess the functional effects of the identified variant. A random cohort of 90 unrelated Tennessee Walking Horses and 273 horses from additional breeds were screened to estimate allele frequency of the GRM6 variant. RESULTS ERG results were consistent with CSNB. WGS analysis identified a missense mutation in metabotropic glutamate receptor 6 (GRM6) (c.533C>T p.Thr178Met). This single nucleotide polymorphism (SNP) is predicted to be deleterious and protein modelling supports impaired binding of the neurotransmitter glutamate. This variant was not detected in 273 horses from three additional breeds. The estimated allele frequency in Tennessee Walking Horses is 10%. MAIN LIMITATIONS Limited phenotype information for controls and no additional cases with which to replicate this finding. CONCLUSIONS We identified a likely causal recessive missense variant in GRM6. Based on protein modelling, this variant alters GRM6 binding, and thus signalling from the retinal rod cell to the ON-bipolar cell, impairing vision in low light conditions. Given the 10% population allele frequency, it is likely that additional affected horses exist in this breed and further work is needed to identify and examine these animals.
Collapse
Affiliation(s)
- Yael L Hack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth E Crabtree
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Felipe Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Roger B Sutton
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Robert Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Annie Oh
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian Gilger
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA.,Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|