1
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
2
|
Zheng H, He J, Mok GSP, Qiu Z. Ultrasound Neuromodulation for Sleep and Neurological Disorder Therapy: A Path to Clinical Translation. ACS Chem Neurosci 2024; 15:3797-3799. [PMID: 39448062 DOI: 10.1021/acschemneuro.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Ultrasound neuromodulation is a promising noninvasive technique capable of penetrating the skull and precisely targeting deep brain regions with millimeter accuracy. Recent studies have demonstrated that transcranial ultrasound stimulation (TUS) of sleep-related brain areas can induce sleep in mice and even trigger a reversible, hibernation-like state without causing damage. Beyond its utility in preclinical models of central nervous system diseases, such as epilepsy, tremors, Alzheimer's disease, and depression, TUS holds significant potential for clinical translation. Given that many neurological disorders, including Alzheimer's and Parkinson's disease, are associated with sleep abnormalities, leveraging clinical TUS applications for these diseases also creates a pathway for translating this technology to sleep modulation in human use. These findings highlight the potential for ultrasound neuromodulation to advance neuroscience research and clinical applications in sleep control.
Collapse
Affiliation(s)
- Hanming Zheng
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau 999078, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Jiaru He
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau 999078, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau 999078, China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| |
Collapse
|
3
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Fan Z, Zhu Y, Suzuki C, Suzuki Y, Watanabe Y, Watanabe T, Abe T. Binaural beats at 0.25 Hz shorten the latency to slow-wave sleep during daytime naps. Sci Rep 2024; 14:26062. [PMID: 39478090 PMCID: PMC11525714 DOI: 10.1038/s41598-024-76059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Binaural beats can entrain neural oscillations and modulate behavioral states. However, the effect of binaural beats, particularly those with slow frequencies (< 1 Hz), on sleep remains poorly understood. We hypothesized that 0.25-Hz beats can entrain neural oscillations and enhance slow-wave sleep by shortening its latency or increasing its duration. To investigate this, we included 12 healthy participants (six women; mean age, 25.4 ± 2.6 years) who underwent four 90-min afternoon nap sessions, comprising a sham condition (without acoustic stimulation) and three binaural-beat conditions (0, 0.25, or 1 Hz) with a 250-Hz carrier tone. The acoustic stimuli, delivered through earphones, were sustained throughout the 90-min nap period. Both N2- and N3- latencies were shorter in the 0.25-Hz binaural beats condition than in the sham condition. We observed no significant results regarding neural entrainment at slow frequencies, such as 0.25 and 1 Hz, and the modulation of sleep oscillations, including delta and sigma activity, by binaural beats. In conclusion, this study demonstrated the potential of binaural beats at slow frequencies, specifically 0.25 Hz, for inducing slow-wave sleep in generally healthy populations.
Collapse
Affiliation(s)
- Zhiwei Fan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- The Japan Society for the Promotion of Science (JSPS) Foreign Researcher, Tokyo, Japan
| | - Yunyao Zhu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
6
|
He J, Chan SH, Lin J, Tsang HW. Integration of tai chi and repetitive transcranial magnetic stimulation for sleep disturbances in older adults: A pilot randomized controlled trial. Sleep Med 2024; 122:35-44. [PMID: 39121822 DOI: 10.1016/j.sleep.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The arousal state has been demonstrated to be involved in the fundamental pathophysiological mechanism of sleep disturbances. Tai chi (TC) and repetitive transcranial magnetic stimulation (rTMS) have been documented to alleviate sleep disturbances by interfering with different arousal components. It is reasonable to assume that combining TC and rTMS could induce synergistic and longer-lasting benefits for sleep disturbances. METHODS Thirty-eight older community-dwelling people were randomly assigned to one of three groups: TC plus rTMS (n = 12), TC alone (n = 13), and treat-as-usual (TAU) (n = 13). The interventions were conducted three times per week for 4 weeks for the two intervention groups. The primary outcome was the insomnia severity, while the secondary outcomes were the actigraphy-assessed sleep patterns, use of hypnotic medications, mood states, and quality of life. The mediator outcomes included self-reported somatic arousal and cognitive arousal as well as electroencephalogram (EEG)-assessed cortical arousal. The assessments were conducted at baseline (T0), post-intervention (T1), and 3-month follow-up (T2). RESULTS Significant improvements in the insomnia severity were observed in the TC plus rTMS group compared with the TAU group at T1 (Cohen's d = 1.62, p = 0.003) and T2 (Cohen's d = 1.97, p < 0.001). In contrast, significant improvements in the TC alone group were found only at T2 (Cohen's d = 1.03, p = 0.010) when compared with the TAU group. Significant interaction effects were noted on the actigraphy-assessed sleep efficiency (p = 0.015) and total sleep time (p = 0.004), depression (p = 0.003) and stress scores (p = 0.002), and mental function in relation to quality of life (p = 0.042). However, none of the mediators elucidated how combining TC and rTMS could improve the insomnia severity. CONCLUSION The research findings are expected to guide further clinical practice in the management of sleep disturbances among older adults using various interventions. Future studies are needed to unravel the underlying mechanism and optimize the protocol to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Jiali He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sunny Hw Chan
- Centre for Health and Clinical Research, University of the West of England, United Kingdom
| | - Jingxia Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Hector Wh Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Wang Y, Liu J, Gao F, Xie W, Chen J, Gu H, Wang F, Zhong C, Li K, Zhuang S, Cheng X, Jin H, Zhang J, Mao C, Liu C. Lack variation of low slow-wave activity over time in the frontal region in NREM sleep may be associated with dyskinesia in Parkinson's disease. CNS Neurosci Ther 2024; 30:e70058. [PMID: 39370848 PMCID: PMC11456717 DOI: 10.1111/cns.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVE Levodopa-induced dyskinesia (DYS) adversely affects the quality of life of Parkinson's disease (PD) patients. However, few studies have focused on the relationship between DYS and sleep and electroencephalography (EEG). Our study aimed to establish the objective physiological indicators assessed by polysomnography (PSG) that are associated with DYS in PD patients. METHODS We enrolled 122 patients with PD, divided into two groups: PD with DYS (n = 27) and PD without DYS group (non-DYS, n = 95). The demographics and clinical characteristics and sleep assessment in the two groups were collected. More importantly, overnight six-channel PSG parameters were compared in the two groups. We also compared different bands and brain regions of average power spectral density within each group. RESULTS Compared with the non-DYS group, the DYS group tended to have a significantly higher percentage of nonrapid eye movement sleep (NREM). Gender, levodopa equivalent daily dose (LEDD), rapid eye movement (REM) sleep (min), and the NREM percentage were positively correlated with the occurrence of DYS. After adjusting for gender, disease duration, LEDD, taking amantadine or not, and Montreal Cognitive Assessment (MoCA), NREM%, N3%, and REM (min), the percentage of NREM sleep (p = 0.035), female (p = 0.002), and LEDD (p = 0.005), and REM sleep time (min) (p = 0.012) were still associated with DYS. There was no significant difference in whole-night different bands of average power spectral density between two groups. There was no significant difference in normalized average power spectral density of slow wave activity (SWA) (0.5-2 Hz, 0.5-4 Hz, and 2-4 Hz) of early and late NREM sleep in the DYS group. Dynamic normalized average power spectral density of SWA of low-frequency (0.5-2 Hz) reduction in the frontal region (p = 0.013) was associated with DYS in logistic regression after adjusting for confounding factors. CONCLUSION PD patients with DYS have substantial sleep structure variations. Higher NREM percentage and less REM percentage were observed in PD patients with DYS. Dynamic normalized average power spectral density of low-frequency (0.5-2 Hz) SWA reduction in the frontal area could be a new electrophysiological marker of DYS in PD.
Collapse
Affiliation(s)
- Yi‐Ming Wang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun‐Yi Liu
- Department of NeurologyDu Shu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Fan Gao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei‐ye Xie
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Han‐Ying Gu
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Chong‐Ke Zhong
- Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouChina
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Sheng Zhuang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jin‐Ru Zhang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cheng‐Jie Mao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chun‐Feng Liu
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. Clin Neurophysiol 2024; 164:138-148. [PMID: 38865780 PMCID: PMC11246810 DOI: 10.1016/j.clinph.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring. OBJECTIVE To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. METHODS In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. RESULTS Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. SIGNIFICANCE EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Christopher C Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jessica M Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA.
| |
Collapse
|
10
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
11
|
Parmigiani S, Cline CC, Sarkar M, Forman L, Truong J, Ross JM, Gogulski J, Keller CJ. Real-time optimization to enhance noninvasive cortical excitability assessment in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596317. [PMID: 38853941 PMCID: PMC11160722 DOI: 10.1101/2024.05.29.596317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective We currently lack a robust noninvasive method to measure prefrontal excitability in humans. Concurrent TMS and EEG in the prefrontal cortex is usually confounded by artifacts. Here we asked if real-time optimization could reduce artifacts and enhance a TMS-EEG measure of left prefrontal excitability. Methods This closed-loop optimization procedure adjusts left dlPFC TMS coil location, angle, and intensity in real-time based on the EEG response to TMS. Our outcome measure was the left prefrontal early (20-60 ms) and local TMS-evoked potential (EL-TEP). Results In 18 healthy participants, this optimization of coil angle and brain target significantly reduced artifacts by 63% and, when combined with an increase in intensity, increased EL-TEP magnitude by 75% compared to a non-optimized approach. Conclusions Real-time optimization of TMS parameters during dlPFC stimulation can enhance the EL-TEP. Significance Enhancing our ability to measure prefrontal excitability is important for monitoring pathological states and treatment response.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Christopher C. Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Lily Forman
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jessica M. Ross
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Corey J. Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| |
Collapse
|
12
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
13
|
Santamaria L, Kashif I, McGinley N, Lewis PA. Memory reactivation in slow wave sleep enhances relational learning in humans. Commun Biol 2024; 7:288. [PMID: 38459227 PMCID: PMC10923908 DOI: 10.1038/s42003-024-05947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Sleep boosts the integration of memories, and can thus facilitate relational learning. This benefit may be due to memory reactivation during non-REM sleep. We set out to test this by explicitly cueing reactivation using a technique called targeted memory reactivation (TMR), in which sounds are paired with learned material in wake and then softly played during subsequent sleep, triggering reactivation of the associated memories. We specifically tested whether TMR in slow wave sleep leads to enhancements in inferential thinking in a transitive inference task. Because the Up-phase of the slow oscillation is more responsive to cues than the Down-phase, we also asked whether Up-phase stimulation is more beneficial for such integration. Our data show that TMR during the Up-Phase boosts the ability to make inferences, but only for the most distant inferential leaps. Up-phase stimulation was also associated with detectable memory reinstatement, whereas Down-phase stimulation led to below-chance performance the next morning. Detection of memory reinstatement after Up-state stimulation was negatively correlated with performance on the most difficult inferences the next morning. These findings demonstrate that cueing memory reactivation at specific time points in sleep can benefit difficult relational learning problems.
Collapse
Affiliation(s)
- Lorena Santamaria
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Ibad Kashif
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Niall McGinley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
14
|
Kaufmann A, Parmigiani S, Kawagoe T, Zabaroff E, Wells B. Two models of mind blanking. Eur J Neurosci 2024; 59:786-795. [PMID: 37778749 DOI: 10.1111/ejn.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Mind blanking is a mental state in which attention does not bring any perceptual input into conscious awareness. As this state is still largely unexplored, we suggest that a comprehensive understanding of mind blanking can be achieved through a multifaceted approach combining self-assessment methods, neuroimaging and neuromodulation. In this article, we explain how electroencephalography and transcranial magnetic stimulation could be combined to help determine whether mind blanking is associated with a lack of mental content or a lack of linguistically or conceptually determinable mental content. We also question whether mind blanking occurs spontaneously or intentionally and whether these two forms are instantiated by the same or different neural correlates.
Collapse
Affiliation(s)
- Angelica Kaufmann
- Institut für Philosophie II, Ruhr-Universität Bochum, Bochum, Germany
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Toshikazu Kawagoe
- School of Humanities and Science, Kyushu Campus, Tokai University, Kumamoto, Japan
| | - Elliot Zabaroff
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Barnaby Wells
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Alipour M, Seok S, Mednick SC, Malerba P. A classification-based generative approach to selective targeting of global slow oscillations during sleep. Front Hum Neurosci 2024; 18:1342975. [PMID: 38415278 PMCID: PMC10896842 DOI: 10.3389/fnhum.2024.1342975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Background Given sleep's crucial role in health and cognition, numerous sleep-based brain interventions are being developed, aiming to enhance cognitive function, particularly memory consolidation, by improving sleep. Research has shown that Transcranial Alternating Current Stimulation (tACS) during sleep can enhance memory performance, especially when used in a closed-loop (cl-tACS) mode that coordinates with sleep slow oscillations (SOs, 0.5-1.5Hz). However, sleep tACS research is characterized by mixed results across individuals, which are often attributed to individual variability. Objective/Hypothesis This study targets a specific type of SOs, widespread on the electrode manifold in a short delay ("global SOs"), due to their close relationship with long-term memory consolidation. We propose a model-based approach to optimize cl-tACS paradigms, targeting global SOs not only by considering their temporal properties but also their spatial profile. Methods We introduce selective targeting of global SOs using a classification-based approach. We first estimate the current elicited by various stimulation paradigms, and optimize parameters to match currents found in natural sleep during a global SO. Then, we employ an ensemble classifier trained on sleep data to identify effective paradigms. Finally, the best stimulation protocol is determined based on classification performance. Results Our study introduces a model-driven cl-tACS approach that specifically targets global SOs, with the potential to extend to other brain dynamics. This method establishes a connection between brain dynamics and stimulation optimization. Conclusion Our research presents a novel approach to optimize cl-tACS during sleep, with a focus on targeting global SOs. This approach holds promise for improving cl-tACS not only for global SOs but also for other physiological events, benefiting both research and clinical applications in sleep and cognition.
Collapse
Affiliation(s)
- Mahmoud Alipour
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University School of Medicine, Columbus, OH, United States
| | - SangCheol Seok
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine CA, United States
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University School of Medicine, Columbus, OH, United States
| |
Collapse
|
16
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
17
|
Carroll EE, Der-Nigoghossian C, Alkhachroum A, Appavu B, Gilmore E, Kromm J, Rohaut B, Rosanova M, Sitt JD, Claassen J. Common Data Elements for Disorders of Consciousness: Recommendations from the Electrophysiology Working Group. Neurocrit Care 2023; 39:578-585. [PMID: 37606737 DOI: 10.1007/s12028-023-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society's Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group. METHODS After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into "disease core," "basic," "supplemental," and "exploratory." Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs. RESULTS After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group. CONCLUSIONS Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.
Collapse
Affiliation(s)
- Elizabeth E Carroll
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | | | | | - Brian Appavu
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Emily Gilmore
- Divisions of Neurocritical Care and Emergency Neurology and Epilepsy, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Yale New Haven Hospital, New Haven, CT, USA
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Benjamin Rohaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, Centre national de la recherche scientifique, Assistance Publique-Hôpitaux de Paris, Neurosciences, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jacobo Diego Sitt
- Paris Brain Institute (ICM), Centre national de la recherche scientifique, Paris, France
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
18
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524867. [PMID: 36711689 PMCID: PMC9882363 DOI: 10.1101/2023.01.20.524867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and that EL-TEP amplitude is inversely related to muscle artifact. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. Methods In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. Results Stimulation location significantly influenced EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. Significance Early local TMS-evoked potentials (EL-TEPs) can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols. Highlights Early local TMS-evoked potentials (EL-TEPs) varied significantly across the dlPFC as a function of TMS target.TMS targets with less muscle artifact had significantly larger EL-TEPs.Selection of a postero-medial target increased EL-TEPs by 102% compared to anterior targets.
Collapse
|
19
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
21
|
Andrillon T. How we sleep: From brain states to processes. Rev Neurol (Paris) 2023; 179:649-657. [PMID: 37625978 DOI: 10.1016/j.neurol.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
All our lives, we alternate between wakefulness and sleep with direct consequences on our ability to interact with our environment, the dynamics and contents of our subjective experience, and our brain activity. Consequently, sleep has been extensively characterised in terms of behavioural, phenomenological, and physiological changes, the latter constituting the gold standard of sleep research. The common view is thus that sleep represents a collection of discrete states with distinct neurophysiological signatures. However, recent findings challenge such a monolithic view of sleep. Indeed, there can be sharp discrepancies in time and space in the activity displayed by different brain regions or networks, making it difficult to assign a global vigilance state to such a mosaic of contrasted dynamics. Viewing sleep as a multidimensional continuum rather than a succession of non-overlapping and mutually exclusive states could account for these local aspects of sleep. Moving away from the focus on sleep states, sleep can also be investigated through the brain processes that are present in sleep, if not necessarily specific to sleep. This focus on processes rather than states allows to see sleep for what it does rather than what it is, avoiding some of the limitations of the state perspective and providing a powerful heuristic to understand sleep. Indeed, what is sleep if not a process itself that makes up wake up every morning with a brain cleaner, leaner and less cluttered.
Collapse
Affiliation(s)
- T Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm, CNRS, 75013 Paris, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
22
|
LaGoy AD, Kubala AG, Deering S, Germain A, Markwald RR. Dawn of a New Dawn: Advances in Sleep Health to Optimize Performance. Sleep Med Clin 2023; 18:361-371. [PMID: 37532375 DOI: 10.1016/j.jsmc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Optimal sleep health is a critical component to high-level performance. In populations such as the military, public service (eg, firefighters), and health care, achieving optimal sleep health is difficult and subsequently deficiencies in sleep health may lead to performance decrements. However, advances in sleep monitoring technologies and mitigation strategies for poor sleep health show promise for further ecological scientific investigation within these populations. The current review briefly outlines the relationship between sleep health and performance as well as current advances in behavioral and technological approaches to improving sleep health for performance.
Collapse
Affiliation(s)
- Alice D LaGoy
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Andrew G Kubala
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Sean Deering
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | | | - Rachel R Markwald
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA.
| |
Collapse
|
23
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
24
|
Park KS, Choi SH, Yoon H. Modulation of sleep using noninvasive stimulations during sleep. Biomed Eng Lett 2023; 13:329-341. [PMID: 37519871 PMCID: PMC10382438 DOI: 10.1007/s13534-023-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023] Open
Abstract
Among the various sleep modulation methods for improving sleep, three methods using noninvasive stimulation during sleep have been reviewed and summarized. The first method involves noninvasive direct brain stimulation to induce a current directly in the brain cortex. Electrically or magnetically applied stimulations trigger electrical events such as slow oscillations or sleep spindles, which can also be recorded by an electroencephalogram. The second method involves sensory stimulation during sleep, which provides stimulation through the sensory pathway to invoke equivalent brain activity like direct brain stimulation. Olfactory, vestibular, and auditory stimulation methods have been used, resulting in several sleep-modulating effects, which are characteristic and depend on the experimental paradigm. The third method is to modulate sleep by shifting the autonomic balance affecting sleep homeostasis. To strengthen parasympathetic dominance, stimulation was applied to decrease heart rate by synchronizing the heart rhythm. These noninvasive stimulation methods can strengthen slow-wave sleep, consolidate declarative or procedural memory, and modify sleep macrostructure. These stimulation methods provide evidence and possibility for sleep modulation in our daily life as an alternative method for the treatment of disturbed sleep and enhancing sleep quality and performance beyond the average level.
Collapse
Affiliation(s)
- Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080 Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897 Korea
| | - Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, 03016 Korea
| |
Collapse
|
25
|
Richter K, Kellner S, Licht C. rTMS in mental health disorders. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:943223. [PMID: 37577037 PMCID: PMC10417823 DOI: 10.3389/fnetp.2023.943223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2023] [Indexed: 08/15/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an innovative and non-invasive technique used in the diagnosis and treatment of psychiatric and neurological disorders. Repetitive TMS (rTMS) can modulate neuronal activity, neuroplasticity and arousal of the waking and sleeping brain, and, more generally, overall mental health. Numerous studies have examined the predictors of the efficacy of rTMS on clinical outcome variables in various psychiatric disorders. These predictors often encompass the stimulated brain region's location, electroencephalogram (EEG) activity patterns, potential morphological and neurophysiological anomalies, and individual patient's response to treatment. Most commonly, rTMS is used in awake patients with depression, catatonia, and tinnitus. Interestingly, rTMS has also shown promise in inducing slow-wave oscillations in insomnia patients, opening avenues for future research into the potential beneficial effects of these oscillations on reports of non-restorative sleep. Furthermore, neurophysiological measures emerge as potential, disease-specific biomarkers, aiding in predicting treatment response and monitoring post-treatment changes. The study posits the convergence of neurophysiological biomarkers and individually tailored rTMS treatments as a gateway to a new era in psychiatric care. The potential of rTMS to induce slow-wave activity also surfaces as a significant contribution to personalized treatment approaches. Further investigations are called for to validate the imaging and electrophysiological biomarkers associated with rTMS. In conclusion, the potential for rTMS to significantly redefine treatment strategies through personalized approaches could enhance the outcomes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kneginja Richter
- Paracelsus Medical Private University, Nuremberg, Germany
- Department for Social Sciences, Georg Simon Ohm University of Applied Sciences Nuremberg, Nuremberg, Germany
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Stefanie Kellner
- Department for Social Sciences, Georg Simon Ohm University of Applied Sciences Nuremberg, Nuremberg, Germany
| | | |
Collapse
|
26
|
Marmelshtein A, Eckerling A, Hadad B, Ben-Eliyahu S, Nir Y. Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex. Curr Biol 2023; 33:2925-2940.e6. [PMID: 37385257 PMCID: PMC7617130 DOI: 10.1016/j.cub.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/30/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Insufficient sleep is commonplace in modern lifestyle and can lead to grave outcomes, yet the changes in neuronal activity accumulating over hours of extended wakefulness remain poorly understood. Specifically, which aspects of cortical processing are affected by sleep deprivation (SD), and whether they also affect early sensory regions, remain unclear. Here, we recorded spiking activity in the rat auditory cortex along with polysomnography while presenting sounds during SD followed by recovery sleep. We found that frequency tuning, onset responses, and spontaneous firing rates were largely unaffected by SD. By contrast, SD decreased entrainment to rapid (≥20 Hz) click trains, increased population synchrony, and increased the prevalence of sleep-like stimulus-induced silent periods, even when ongoing activity was similar. Recovery NREM sleep was associated with similar effects as SD with even greater magnitude, while auditory processing during REM sleep was similar to vigilant wakefulness. Our results show that processes akin to those in NREM sleep invade the activity of cortical circuits during SD, even in the early sensory cortex.
Collapse
Affiliation(s)
- Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anabel Eckerling
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hadad
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| |
Collapse
|
27
|
Zavecz Z, Shah VD, Murillo OG, Vallat R, Mander BA, Winer JR, Jagust WJ, Walker MP. NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer's disease pathology. BMC Med 2023; 21:156. [PMID: 37138290 PMCID: PMC10155344 DOI: 10.1186/s12916-023-02811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of β-amyloid (Aβ) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS We demonstrated that NREM SWA significantly moderates the effect of Aβ status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aβ burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aβ pathological burden, and thus without the same need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aβ status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vyoma D Shah
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Olivia G Murillo
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Raphael Vallat
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92617, USA
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew P Walker
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
28
|
Closed-Loop tACS Delivered during Slow-Wave Sleep Reduces Retroactive Interference on a Paired-Associates Learning Task. Brain Sci 2023; 13:brainsci13030468. [PMID: 36979277 PMCID: PMC10046133 DOI: 10.3390/brainsci13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen’s d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen’s d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.
Collapse
|
29
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
30
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
31
|
Wilson DA, Fleming G, Williams CRO, Teixeira CM, Smiley JF, Saito M. Somatostatin neuron contributions to cortical slow wave dysfunction in adult mice exposed to developmental ethanol. Front Neurosci 2023; 17:1127711. [PMID: 37021136 PMCID: PMC10067632 DOI: 10.3389/fnins.2023.1127711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Transitions between sleep and waking and sleep-dependent cortical oscillations are heavily dependent on GABAergic neurons. Importantly, GABAergic neurons are especially sensitive to developmental ethanol exposure, suggesting a potential unique vulnerability of sleep circuits to early ethanol. In fact, developmental ethanol exposure can produce long-lasting impairments in sleep, including increased sleep fragmentation and decreased delta wave amplitude. Here, we assessed the efficacy of optogenetic manipulations of somatostatin (SST) GABAergic neurons in the neocortex of adult mice exposed to saline or ethanol on P7, to modulate cortical slow-wave physiology. Methods SST-cre × Ai32 mice, which selectively express channel rhodopsin in SST neurons, were exposed to ethanol or saline on P7. This line expressed similar developmental ethanol induced loss of SST cortical neurons and sleep impairments as C57BL/6By mice. As adults, optical fibers were implanted targeting the prefrontal cortex (PFC) and telemetry electrodes were implanted in the neocortex to monitor slow-wave activity and sleep-wake states. Results Optical stimulation of PFC SST neurons evoked slow-wave potentials and long-latency single-unit excitation in saline treated mice but not in ethanol mice. Closed-loop optogenetic stimulation of PFC SST neuron activation on spontaneous slow-waves enhanced cortical delta oscillations, and this manipulation was more effective in saline mice than P7 ethanol mice. Discussion Together, these results suggest that SST cortical neurons may contribute to slow-wave impairment after developmental ethanol.
Collapse
Affiliation(s)
- Donald A Wilson
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States
| | - G Fleming
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - C R O Williams
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - C M Teixeira
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - J F Smiley
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
32
|
Moreira CG, Hofmann P, Müllner A, Baumann CR, Ginde VR, Kollarik S, Morawska MM, Noain D. Down-phase auditory stimulation is not able to counteract pharmacologically or physiologically increased sleep depth in traumatic brain injury rats. J Sleep Res 2022; 31:e13615. [PMID: 35474362 PMCID: PMC9786351 DOI: 10.1111/jsr.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022]
Abstract
Modulation of slow-wave activity, either via pharmacological sleep induction by administering sodium oxybate or sleep restriction followed by a strong dissipation of sleep pressure, has been associated with preserved posttraumatic cognition and reduced diffuse axonal injury in traumatic brain injury rats. Although these classical strategies provided promising preclinical results, they lacked the specificity and/or translatability needed to move forward into clinical applications. Therefore, we recently developed and implemented a rodent auditory stimulation method that is a scalable, less invasive and clinically meaningful approach to modulate slow-wave activity by targeting a particular phase of slow waves. Here, we assessed the feasibility of down-phase targeted auditory stimulation of slow waves and evaluated its comparative modulatory strength in relation to the previously employed slow-wave activity modulators in our rat model of traumatic brain injury. Our results indicate that, in spite of effectively reducing slow-wave activity in both healthy and traumatic brain injury rats via down-phase targeted stimulation, this method was not sufficiently strong to counteract the boost in slow-wave activity associated with classical modulators, nor to alter concomitant posttraumatic outcomes. Therefore, the usefulness and effectiveness of auditory stimulation as potential standalone therapeutic strategy in the context of traumatic brain injury warrants further exploration.
Collapse
Affiliation(s)
- Carlos G. Moreira
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pascal Hofmann
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Adrian Müllner
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland,University Center of Competence Sleep & Health Zurich (CRPP)University of ZurichZurichSwitzerland,Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| | - Varun R. Ginde
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Sedef Kollarik
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Marta M. Morawska
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Daniela Noain
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland,University Center of Competence Sleep & Health Zurich (CRPP)University of ZurichZurichSwitzerland,Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| |
Collapse
|
33
|
Wang T, Wang X, Tian Y, Gang W, Li X, Yan J, Yuan Y. Modulation effect of low-intensity transcranial ultrasound stimulation on REM and NREM sleep. Cereb Cortex 2022; 33:5238-5250. [PMID: 36376911 DOI: 10.1093/cercor/bhac413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer’s disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.
Collapse
Affiliation(s)
- Teng Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Xingran Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Yanfei Tian
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Wei Gang
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Xiaoli Li
- Beijing Normal University State Key Laboratory of Cognitive Neuroscience and Learning, , Beijing 100875 , China
| | - Jiaqing Yan
- North China University of Technology College of Electrical and Control Engineering, , Beijing 100041 , China
| | - Yi Yuan
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| |
Collapse
|
34
|
Liu S, Lei Q, Liu Y, Zhang X, Li Z. Acoustic Stimulation Improves Memory and Reverses the Contribution of Chronic Sleep Deprivation to Pathology in 3xTgAD Mice. Brain Sci 2022; 12:1509. [PMID: 36358435 PMCID: PMC9688064 DOI: 10.3390/brainsci12111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Acoustic stimulation during sleep is believed to enhance slow waves, which are critical to memory consolidation. However, clinical trials of acoustic stimulation have yielded mixed results concerning its effectiveness in improving human memory. A few studies have implied that acoustic stimulation ameliorates the pathology of Alzheimer's disease (AD) in mice with normal sleep. Here, we explored the effect of acoustic stimulation on 3xTgAD mice suffering from chronic sleep deprivation, as these data may shed light on the potential use of acoustic stimulation in AD patients with insomnia. Methods: Twenty-four 8-month-old 3xTgAD mice were randomly and equally divided into three groups: the normal sleep group (S group), the sleep deprivation group (SD group), and the acoustic stimulation group (AS group). During a 14-day sleep intervention, the SD and AS groups received 6 h of sleep deprivation per day, and the AS group also received acoustic stimulation in the dark phase. Then, the mice underwent Morris water maze (MWM) tests and arterial spin labelling (ASL) magnetic resonance imaging (MRI) scans and were sacrificed for pathological evaluation. Results: The three groups showed similar stress levels. The S and AS groups exhibited better spatial memory, better brain perfusion, and milder amyloid β (Aβ) and tau pathology than the SD group, although no significant discrepancies were found between the S and AS groups. Conclusion: Acoustic stimulation may exert a protective effect in 3xTgAD mice by improving spatial memory, enhancing the blood supply of the brain, and reversing the contribution of chronic sleep deprivation to Aβ and tau pathology to mimic the effect of normal sleep patterns.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qingfeng Lei
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yunyun Liu
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaofeng Zhang
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Shenzhen Research Institute, Sun Yat-sen University, Shenzhen 518000, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| |
Collapse
|
35
|
de Freitas PH, Monteiro RC, Bertani R, Perret CM, Rodrigues PC, Vicentini J, de Morais TMG, Rozental SF, Galvão GF, de Mattos F, Vasconcelos FA, Dorio IS, Hayashi CY, dos Santos JR, Werneck GL, Tocquer CTF, Capitão C, da Cruz LCH, Tulviste J, Fiorani M, da Silva MM, Paiva WS, Podell K, Federoff HJ, Patel DH, Lado F, Goldberg E, Llinás R, Bennett MV, Rozental R. E.L., a modern-day Phineas Gage: Revisiting frontal lobe injury. LANCET REGIONAL HEALTH. AMERICAS 2022; 14:100340. [PMID: 36777390 PMCID: PMC9903712 DOI: 10.1016/j.lana.2022.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND How the prefrontal cortex (PFC) recovers its functionality following lesions remains a conundrum. Recent work has uncovered the importance of transient low-frequency oscillatory activity (LFO; < 4 Hz) for the recovery of an injured brain. We aimed to determine whether persistent cortical oscillatory dynamics contribute to brain capability to support 'normal life' following injury. METHODS In this 9-year prospective longitudinal study (08/2012-2021), we collected data from the patient E.L., a modern-day Phineas Gage, who suffered from lesions, impacting 11% of his total brain mass, to his right PFC and supplementary motor area after his skull was transfixed by an iron rod. A systematic evaluation of clinical, electrophysiologic, brain imaging, neuropsychological and behavioural testing were used to clarify the clinical significance of relationship between LFO discharge and executive dysfunctions and compare E.L.´s disorders to that attributed to Gage (1848), a landmark in the history of neurology and neuroscience. FINDINGS Selective recruitment of the non-injured left hemisphere during execution of unimanual right-hand movements resulted in the emergence of robust LFO, an EEG-detected marker for disconnection of brain areas, in the damaged right hemisphere. In contrast, recruitment of the damaged right hemisphere during contralateral hand movement, resulted in the co-activation of the left hemisphere and decreased right hemisphere LFO to levels of controls enabling performance, suggesting a target for neuromodulation. Similarly, transcranial magnetic stimulation (TMS), used to create a temporary virtual-lesion over E.L.'s healthy hemisphere, disrupted the modulation of contralateral LFO, disturbing behaviour and impairing executive function tasks. In contrast to Gage, reasoning, planning, working memory, social, sexual and family behaviours eluded clinical inspection by decreasing LFO in the delta frequency range during motor and executive functioning. INTERPRETATION Our study suggests that modulation of LFO dynamics is an important mechanism by which PFC accommodates neurological injuries, supporting the reports of Gage´s recovery, and represents an attractive target for therapeutic interventions. FUNDING Fundação de Amparo Pesquisa Rio de Janeiro (FAPERJ), Universidade Federal do Rio de Janeiro (intramural), and Fiocruz/Ministery of Health (INOVA Fiocruz).
Collapse
Affiliation(s)
- Pedro H.M. de Freitas
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ruy C. Monteiro
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Raphael Bertani
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Caio M. Perret
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Pedro C. Rodrigues
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Joana Vicentini
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | | | - Gustavo F. Galvão
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fabricio de Mattos
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernando A. Vasconcelos
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
- Dept Neurocirurgia, HUGG, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), RJ, 20270-004, Brazil
| | - Ivan S. Dorio
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Cintya Y. Hayashi
- Dept Neurologia, Universidade do Estado de São Paulo, SP, 05402-000, Brazil
| | | | - Guilherme L. Werneck
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | | | | | - Jaan Tulviste
- University of Tartu, Institute of Psychology, Tartu, Estonia
| | - Mario Fiorani
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcos M. da Silva
- Dept Neurologia, HUCFF, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Kenneth Podell
- Neurological Institute, Houston Methodist, TX, 77030, USA
| | | | | | - Fred Lado
- Northwell Health, Manhasset, NY, 11030, USA
| | - Elkhonon Goldberg
- Dept Neurology, New York University, School of Medicine, NY, 10016, USA
| | - Rodolfo Llinás
- Dept. Physiology and Neuroscience, New York University, School of Medicine, NY, 10016, USA
| | | | - Renato Rozental
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Dept Neuroscience, Albert Einstein Coll Medicine, Bronx, NY, 10461, USA
- Centro Desenvolvimento Tecnológico (CDTS), FIOCRUZ, Rio de Janeiro, 21040-361, Brazil
| |
Collapse
|
36
|
Ngo HVV, Antony JW, Rasch B. Real-time stimulation during sleep: prior findings, novel developments, and future perspectives. J Sleep Res 2022; 31:e13735. [PMID: 36180062 DOI: 10.1111/jsr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Real-time brain stimulation is a powerful technique that continues to gain importance in the field of sleep and cognition. In this special issue, we collected 14 articles about real-time stimulation during sleep, including one review, 12 research articles and one letter covering both human and rodent research from various fields. We hope this special issue sparks greater interest and inspires fellow sleep researchers and clinicians to develop new ideas in the exciting topic of real-time stimulation.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022; 1791:147996. [PMID: 35779582 PMCID: PMC10038235 DOI: 10.1016/j.brainres.2022.147996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
Respiratory rhythm plays an important role in cognitive functions in rodents, as well as in humans. Respiratory related oscillation (RRO), generated in the olfactory bulb (OB), is an extrinsic rhythm imposed on brain networks. In rats, RRO can couple with intrinsic brain oscillations at theta frequency during sniffing and in the delta range outside of such episodes. Disruption of gamma synchronization in cortical networks by ketamine is well established whereas its effects on slow rhythms are poorly understood. We found in this study, that RRO in prefrontal cortex (PFC) and hippocampus (HC) remains present after ketamine injection, even on the background of highly unstable respiratory rate, co-incident with "psychotic-like" behavior and abnormal cortical gamma activity. Guided by the timing of ketamine-induced gamma reaction, pairwise coherences between structures exhibiting RRO and their correlation structure was statistically tested in 5-min segments post-injection (0-25 min) and during recovery (1, 5, 10 h). As in control, RRO in the OB was firmly followed by cortical-bound OB exits directed toward PFC but not to HC. RRO between these structures, however, significantly correlated with OB-HC but not with OB-PFC. The only exception to this general observation was observed during a short transitional period, immediately after injection. Ketamine has a remarkable history in psychiatric research. Modeling chronic NMDA-hypofunction using acute NMDA-receptor blockade shifted the primary focus of schizophrenia research to dysfunctional cortical microcircuitry and the recent discovery of ketamine's antidepressant actions extended investigations to neurophysiology of anxiety and depression. Cortical oscillations are relevant for understanding their pathomechanism.
Collapse
Affiliation(s)
| | - Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School, USA
| | - Bernat Kocsis
- Dept Psychiatry at BIDMC, Harvard Medical School, USA.
| |
Collapse
|
38
|
Cortico-cortical and thalamo-cortical connectivity during non-REM and REM sleep: Insights from intracranial recordings in humans. Clin Neurophysiol 2022; 143:84-94. [PMID: 36166901 DOI: 10.1016/j.clinph.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.
Collapse
|
39
|
Dynamic alpha-gamma phase-amplitude coupling signatures during sevoflurane-induced loss and recovery of consciousness. Neurosci Res 2022; 185:20-28. [PMID: 36084701 DOI: 10.1016/j.neures.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022]
Abstract
Phase-amplitude coupling (PAC) plays an important role in anesthetic-induced unconsciousness. The delta-alpha PAC signature during anesthetic-induced unconsciousness is gradually becoming known; however, the frequency dependence and spatial characteristics of PAC are still unclear. Multi-channel electroencephalography (EEG) was performed during the loss and recovery phases of consciousness in patients undergoing general anesthesia using sevoflurane. First, a spectral analysis was used to investigate the power change of the different frequency bands in the EEG signals. Second, PAC comodulogram analysis was performed to confirm the frequencies of the PAC phase drivers. Finally, to investigate the spatial characteristics of PAC, a novel PAC network was constructed using within- and cross-lead PAC, and a K-means clustering algorithm was used to identify PAC network patterns. Our results show that, in addition to the delta-alpha PAC, unconsciousness induced by sevoflurane was accompanied by spatial non-uniform alpha-gamma PAC in the cortical network, and dynamic PAC patterns between the anterior and posterior brain were observed during the unconscious phase. The dynamic transition of PAC network patterns indicates that brain states under sevoflurane-induced unconsciousness emerge from the regulation of functional integration and segregation instantiated by delta-alpha and alpha-gamma PAC.
Collapse
|
40
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: current applications and future perspectives. J Neurosci Methods 2022; 380:109677. [PMID: 35872153 DOI: 10.1016/j.jneumeth.2022.109677] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) allows measuring non-invasively the electrical response of the human cerebral cortex to a direct perturbation. Complementing TMS-EEG with a structural neuronavigation tool (nTMS-EEG) is key for accurately selecting cortical areas, targeting them, and adjusting the stimulation parameters based on some relevant anatomical priors. This step, together with the employment of visualization tools designed to perform a quality check of TMS-evoked potentials (TEPs) in real-time during acquisition, is key for maximizing the impact of the TMS pulse on the cortex and in ensuring highly reproducible measurements within sessions and across subjects. Moreover, storing stimulation parameters in the neuronavigation system can help in reproducing the stimulation parameters within and across experimental sessions and sharing them across research centers. Finally, the systematic employment of neuronavigation in TMS-EEG studies is also key to standardize measurements in clinical populations in search for reliable diagnostic and prognostic TMS-EEG-based biomarkers for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
43
|
Vohryzek J, Cabral J, Vuust P, Deco G, Kringelbach ML. Understanding brain states across spacetime informed by whole-brain modelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210247. [PMID: 35599554 PMCID: PMC9125224 DOI: 10.1098/rsta.2021.0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Farzan F, Bortoletto M. Identification and verification of a 'true' TMS evoked potential in TMS-EEG. J Neurosci Methods 2022; 378:109651. [PMID: 35714721 DOI: 10.1016/j.jneumeth.2022.109651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The concurrent combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) can unveil functional neural mechanisms with applications in basic and clinical research. In particular, TMS-evoked potentials (TEPs) potentially allow studying excitability and connectivity of the cortex in a causal manner that is not easily or non-invasively attainable with other neuroimaging techniques. The TEP waveform is obtained by isolating the EEG responses phase-locked to the time of TMS application. The intended component in a TEP waveform is the cortical activation by the TMS-induced electric current, free of instrumental and physiological artifact sources. This artifact-free cortical activation can be referred to as 'true' TEP. However, due to many unwanted auxiliary effects of TMS, the interpretation of 'true' TEPs has not been free of controversy. This paper reviews the most recent understandings of 'true' TEPs and their application. In the first part of the paper, TEP components are defined according to recommended methodologies. In the second part, the verification of 'true' TEP is discussed along with its sensitivity to brain-state, age, and disease. The various proposed origins of TEP components are then presented in the context of existing literature. Throughout the paper, lessons learned from the past TMS-EEG studies are highlighted to guide the identification and interpretation of 'true' TEPs in future studies.
Collapse
Affiliation(s)
- Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada; University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Marta Bortoletto
- Neurophysiology lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
45
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
46
|
Hauer BE, Pagliardini S, Dickson CT. Tonic excitation of nucleus reuniens decreases prefrontal-hippocampal coordination during slow-wave states. Hippocampus 2022; 32:466-477. [PMID: 35522233 DOI: 10.1002/hipo.23420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is an important node between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Previously, we have shown that its mode of activity and its influence in mPFC-HPC communication is dependent upon brain state. During slow-wave states, RE units are closely and rhythmically coupled to the ongoing mPFC-slow oscillation (SO), while during activated (theta) states, RE neurons fire in an arrhythmic and tonically active manner. Inactivating the RE selectively impoverishes coordination of the SO between mPFC and HPC and interestingly, both mPFC and RE stimulation during the SO cause larger responses in the HPC than during theta. It is unclear if the activity patterns within the RE across states may play a role in both phenomena. Here, we optogenetically excited RE neurons in a tonic fashion to assess the impact on mPFC-HPC coupling. This stimulation decreased the influence of mPFC stimulation in the HPC during SO states, in a manner similar to what is observed across state changes into theta. Importantly, this type of stimulation had no effect on evoked responses during theta. Perhaps more interestingly, tonic optogenetic excitation of the RE also decreased mPFC-HPC SO coherence. Thus, it may not be the integrity of the RE per se that is responsible for efficient communication between mPFC and HPC, but rather the particular state in which RE neurons find themselves. Our results have direct implications for how distant brain regions can communicate most effectively, an issue that is ultimately important for activity-dependent processes occurring during slow-wave sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Brandon E Hauer
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Clayton T Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Navarrete M, Arthur S, Treder MS, Lewis PA. Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. Neuroimage 2022; 253:119055. [PMID: 35276365 DOI: 10.1016/j.neuroimage.2022.119055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022] Open
Abstract
Large slow oscillations (SO, 0.5-2 Hz) characterise slow-wave sleep and are crucial to memory consolidation and other physiological functions. Manipulating slow oscillations may enhance sleep and memory, as well as benefitting the immune system. Closed-loop auditory stimulation (CLAS) has been demonstrated to increase the SO amplitude and to boost fast sleep spindle activity (11-16 Hz). Nevertheless, not all such stimuli are effective in evoking SOs, even when they are precisely phase locked. Here, we studied what factors of the ongoing activity patterns may help to determine what oscillations to stimulate to effectively enhance SOs or SO-locked spindle activity. Hence, we trained classifiers using the morphological characteristics of the ongoing SO, as measured by electroencephalography (EEG), to predict whether stimulation would lead to a benefit in terms of the resulting SO and spindle amplitude. Separate classifiers were trained using trials from spontaneous control and stimulated datasets, and we evaluated their performance by applying them to held-out data both within and across conditions. We were able to predict both when large SOs occurred spontaneously, and whether a phase-locked auditory click effectively enlarged them with good accuracy for predicting the SO trough (∼70%) and SO peak values (∼80%). Also, we were able to predict when stimulation would elicit spindle activity with an accuracy of ∼60%. Finally, we evaluate the importance of the various SO features used to make these predictions. Our results offer new insight into SO and spindle dynamics and may suggest techniques for developing future methods for online optimization of stimulation.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK.
| | - Steven Arthur
- School of Computer Science and Informatics, Cardiff University, Queen's Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, UK
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Queen's Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK.
| |
Collapse
|
48
|
Lee M, Sanz LRD, Barra A, Wolff A, Nieminen JO, Boly M, Rosanova M, Casarotto S, Bodart O, Annen J, Thibaut A, Panda R, Bonhomme V, Massimini M, Tononi G, Laureys S, Gosseries O, Lee SW. Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning. Nat Commun 2022; 13:1064. [PMID: 35217645 PMCID: PMC8881479 DOI: 10.1038/s41467-022-28451-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Consciousness can be defined by two components: arousal (wakefulness) and awareness (subjective experience). However, neurophysiological consciousness metrics able to disentangle between these components have not been reported. Here, we propose an explainable consciousness indicator (ECI) using deep learning to disentangle the components of consciousness. We employ electroencephalographic (EEG) responses to transcranial magnetic stimulation under various conditions, including sleep (n = 6), general anesthesia (n = 16), and severe brain injury (n = 34). We also test our framework using resting-state EEG under general anesthesia (n = 15) and severe brain injury (n = 34). ECI simultaneously quantifies arousal and awareness under physiological, pharmacological, and pathological conditions. Particularly, ketamine-induced anesthesia and rapid eye movement sleep with low arousal and high awareness are clearly distinguished from other states. In addition, parietal regions appear most relevant for quantifying arousal and awareness. This indicator provides insights into the neural correlates of altered states of consciousness.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Leandro R D Sanz
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Alice Barra
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Audrey Wolff
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Jaakko O Nieminen
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Melanie Boly
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Olivier Bodart
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liège, Liège, Belgium
- University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle, Liège, Belgium
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giulio Tononi
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium.
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium.
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA.
- Department of Psychology, University of Wisconsin, Madison, WI, USA.
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
50
|
Ding Q, Chen S, Chen J, Zhang S, Peng Y, Chen Y, Chen J, Li X, Chen K, Cai G, Xu G, Lan Y. Intermittent Theta Burst Stimulation Increases Natural Oscillatory Frequency in Ipsilesional Motor Cortex Post-Stroke: A Transcranial Magnetic Stimulation and Electroencephalography Study. Front Aging Neurosci 2022; 14:818340. [PMID: 35197845 PMCID: PMC8859443 DOI: 10.3389/fnagi.2022.818340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Intermittent theta burst stimulation (iTBS) has been widely used as a neural modulation approach in stroke rehabilitation. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers a chance to directly measure cortical reactivity and oscillatory dynamics and allows for investigating neural effects induced by iTBS in all stroke survivors including individuals without recordable MEPs. Here, we used TMS-EEG to investigate aftereffects of iTBS following stroke. Methods We studied 22 stroke survivors (age: 65.2 ± 11.4 years; chronicity: 4.1 ± 3.5 months) with upper limb motor deficits. Upper-extremity component of Fugl-Meyer motor function assessment and action research arm test were used to measure motor function of stroke survivors. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS applied over the ipsilesional primary motor cortex. TMS-EEG recordings were performed at baseline and immediately after Active or Sham iTBS. Time and time-frequency domain analyses were performed for quantifying TMS-evoked EEG responses. Results At baseline, natural frequency was slower in the ipsilesional compared with the contralesional hemisphere (P = 0.006). Baseline natural frequency in the ipsilesional hemisphere was positively correlated with upper limb motor function following stroke (P = 0.007). After iTBS, natural frequency in the ipsilesional hemisphere was significantly increased (P < 0.001). Conclusions This is the first study to investigate the acute neural adaptations after iTBS in stroke survivors using TMS-EEG. Our results revealed that natural frequency is altered following stroke which is related to motor impairments. iTBS increases natural frequency in the ipsilesional motor cortex in stroke survivors. Our findings implicate that iTBS holds the potential to normalize natural frequency in stroke survivors, which can be utilized in stroke rehabilitation.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Songbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jixiang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yujie Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Junhui Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaotong Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Kang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Guangqing Xu,
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Yue Lan,
| |
Collapse
|