1
|
Machulin AV, Abramov VM, Kosarev IV, Deryusheva EI, Priputnevich TV, Panin AN, Manoyan AM, Chikileva IO, Abashina TN, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow's Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli. Antibiotics (Basel) 2024; 13:924. [PMID: 39452191 PMCID: PMC11505560 DOI: 10.3390/antibiotics13100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
2
|
Chaverra M, Cheney AM, Scheel A, Miller A, George L, Schultz A, Henningsen K, Kominsky D, Walk H, Kennedy WR, Kaufmann H, Walk S, Copié V, Lefcort F. ELP1, the Gene Mutated in Familial Dysautonomia, Is Required for Normal Enteric Nervous System Development and Maintenance and for Gut Epithelium Homeostasis. J Neurosci 2024; 44:e2253232024. [PMID: 39138000 PMCID: PMC11391678 DOI: 10.1523/jneurosci.2253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.
Collapse
Affiliation(s)
- Marta Chaverra
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alexandra M Cheney
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Alpha Scheel
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alessa Miller
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - Anastasia Schultz
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Katelyn Henningsen
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Douglas Kominsky
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Heather Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - William R Kennedy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, New York 10016
| | - Seth Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Valérie Copié
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Frances Lefcort
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
3
|
Song HJ, Kim JE, Roh YJ, Seol A, Kim TR, Park KH, Park ES, Hong JT, Choi SI, Hwang DY. Novel Role of the ALPI Gene Associated with Constipation Caused by Complement Component 3 Deficiency. Int J Mol Sci 2024; 25:9530. [PMID: 39273477 PMCID: PMC11395586 DOI: 10.3390/ijms25179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/15/2024] Open
Abstract
Complement component 3 (C3) deficiency has recently been reported as one of the novel causes of constipation. To identify a unique gene specific to constipation caused by C3 deficiency, the total RNA extracted from the mid colon of C3 knockout (C3 KO) mice was hybridized to oligonucleotide microarrays, and the function of the candidate gene was verified in in vitro and in vivo models. C3 KO mice used for microarrays showed definite phenotypes of constipation. Overall, compared to the wild type (WT), 1237 genes were upregulated, and 1292 genes were downregulated in the C3 KO mice. Of these, the major genes included were lysine (K)-specific demethylase 5D (KDM5D), olfactory receptor 870 (Olfr870), pancreatic lipase (PNLIP), and alkaline phosphatase intestinal (ALPI). Specifically, the ALPI gene was selected as a novel gene candidate based on alterations during loperamide (Lop)-induced constipation and intestinal bowel disease (IBD). The upregulation of ALPI expression treated with acetate recovered the expression level of mucin-related genes in primary epithelial cells of C3 KO mice as well as most phenotypes of constipation in C3 KO mice. These results indicate that ALPI plays an important role as the novel gene associated with C3 deficiency-induced constipation.
Collapse
Affiliation(s)
- Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea;
| | - Sun Il Choi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| |
Collapse
|
4
|
Shaikh NA, Liu C, Yin Y, Baylink DJ, Tang X. 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5 + Intestinal Stem Cells In Vitro and In Vivo. Cells 2024; 13:1465. [PMID: 39273035 PMCID: PMC11394149 DOI: 10.3390/cells13171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.
Collapse
Affiliation(s)
- Nisar Ali Shaikh
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Chenfan Liu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Yue Yin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
5
|
Zhu L, Yuan X, Ji H, Liu R, Xie Y, Li H, Sun J, Yu H, Zhou J, Dong W. A comparative study of dietary amino acid patterns: unveiling growth, composition, and molecular signatures in juvenile Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1831-1847. [PMID: 38954179 DOI: 10.1007/s10695-024-01372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
The wild Onychostoma macrolepis, a species under national class II protection in China, lacks a specific compound feed for captive rearing. Understanding the dietary amino acid pattern is crucial for optimal feed formulation. This study aimed to investigate the effects of the four different dietary amino acid patterns, i.e., anchovy fishmeal protein (FMP, control group) and muscle protein (MP), whole-body protein (WBP), fish egg protein (FEP) of juvenile Onychostoma macrolepis, on the growth performance, body composition, intestinal morphology, enzyme activities, and the expression levels of gh, igf, mtor genes in juveniles. In a 12-week feeding trial with 240 juveniles (3.46±0.04g), the MP group demonstrated superior outcomes in growth performance (FBW, WGR, SGR), feed utilization efficiency (PER, PRE, FCR). Notably, it exhibited higher crude protein content in whole-body fish, enhanced amino acid composition in the liver, and favorable fatty acid health indices (AI, TI, h/H) in muscle compared to other groups (P < 0.05). Morphologically, the MP and FMP groups exhibited healthy features. Additionally, the MP group displayed significantly higher activities of TPS, ALP, and SOD, along with elevated expression levels of gh, igf, mtor genes, distinguishing it from the other groups (P < 0.05). This study illustrated that the amino acid pattern of MP emerged as a suitable dietary amino acid pattern for juvenile Onychostoma macrolepis. Furthermore, the findings provide valuable insights for formulating effective feeds in conserving and sustainably farming protected species, enhancing the research's broader ecological and aquacultural significance.
Collapse
Affiliation(s)
- Lingwei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Ruofan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ying Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jishu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
7
|
Ekici YE, Ok M. Investigation of the relationship between atopic dermatitis of dogs and intestinal epithelial damage. Vet Med Sci 2024; 10:e1453. [PMID: 38648253 PMCID: PMC11034634 DOI: 10.1002/vms3.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A significant association between atopic dermatitis and leaky gut syndrome has been demonstrated in humans. No studies have been conducted to determine whether there is an association between atopic dermatitis and intestinal damage in dogs. OBJECTIVES This study aimed to determine whether there is an association between canine atopic dermatitis and intestinal damage using selected intestinal-related biomarkers. METHODS Twenty-six dogs with atopic dermatitis and 10 healthy dogs were included. Moderate-to-severe pruritus, erythema, erosion and alopecia on different parts of the body were sought in dogs to suspect atopic dermatitis. The presence of atopic dermatitis was confirmed by an allergic skin test. Serum biomarkers including intestinal fatty acid binding protein (I-FABP), intestinal alkaline phosphatase (IAP), trefoil factor-3 (TFF-3), immunoglobulin E (IgE), interleukin-4 (IL-4) and interleukin-13 (IL-13) concentrations were measured from venous blood samples. RESULTS Of the 26 dogs tested for allergens, 16 were found to be sensitive to mould mites, 10 to vernal grass, eight to house dust mites, five to wheat dust and five to grass pollen mix allergens. Significant increases in serum IAP, TFF-3, IgE, IL-4 and IL-13 concentrations were determined. CONCLUSION It was thought that the increase in TFF-3 and IAP concentrations may be due to the presence of intestinal epithelial damage and the repair of this damage. In addition, the development of atopic dermatitis may be predisposed to the entry of allergens into the body through sites of intestinal damage.
Collapse
Affiliation(s)
- Yusuf Emre Ekici
- Department of Internal MedicineFaculty of Veterinary MedicineSelcuk UniversityKonyaTurkey
| | - Mahmut Ok
- Department of Internal MedicineFaculty of Veterinary MedicineSelcuk UniversityKonyaTurkey
| |
Collapse
|
8
|
Hiney K, Sypniewski L, DeSilva U, Pezeshki A, Rudra P, Goodarzi P, Willis E, McFarlane D. Fecal microbiota composition, serum metabolomics, and markers of inflammation in dogs fed a raw meat-based diet compared to those on a kibble diet. Front Vet Sci 2024; 11:1328513. [PMID: 38694479 PMCID: PMC11061498 DOI: 10.3389/fvets.2024.1328513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Despite the potential health risks associated with feeding raw and non-traditional diets, the use of these diets in dogs is increasing, yet the health outcomes associated with these diets is not well understood. This study investigates the effect of feeding dogs a kibble or raw meat-based diets on fecal microbiota composition, serum metabolomics and inflammatory markers. Methods Clinically healthy dogs with a history of consuming either kibble (KD, n = 27) or raw meat-based diets (RMBD, n = 28) for more than 1 year were enrolled. Dogs were fed a standardized diet of either a single brand of KD or RMBD for 28 days. Serum and fecal samples were collected for analysis of microbiota, metabolomics, and inflammatory markers. Multiple regression analysis was performed for each of the metabolites and inflammatory markers, with feed group, age and BCS included as independent variables. Results The fecal microbiota composition differed between the KD and RMBD groups. Beta-diversity and some indices of alpha-diversity (i.e., Shannon and Simpson) were different between the two diet groups. Sixty- three serum metabolites differed between KD and RMBD-fed dogs with the majority reflecting the differences in macronutrient composition of the two diets.Fecal IAP, IgG and IgA were significantly higher in RMBD dogs compared to KD dogs, while systemic markers of inflammation, including serum c-reactive protein (CRP), galectin, secretory receptor of advanced glycation end-products (sRAGE), haptoglobin, and serum IgG were similar in dogs fed either diet. Discussion Diet composition significantly affected fecal microbiota composition and metabolome. Although it had a potentially beneficial effect on local inflammatory markers, feeding RMBD had no impact on systemic inflammation. The influence of these changes on long term health outcomes provides an area for future study.
Collapse
Affiliation(s)
- Kris Hiney
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Lara Sypniewski
- Department of Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Udaya DeSilva
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Pratyaydipta Rudra
- Department of Statistics, College of Arts and Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Erin Willis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Dianne McFarlane
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Zemtsovski JD, Tumpara S, Schmidt S, Vijayan V, Klos A, Laudeley R, Held J, Immenschuh S, Wurm FM, Welte T, Haller H, Janciauskiene S, Shushakova N. Alpha1-antitrypsin improves survival in murine abdominal sepsis model by decreasing inflammation and sequestration of free heme. Front Immunol 2024; 15:1368040. [PMID: 38562925 PMCID: PMC10982482 DOI: 10.3389/fimmu.2024.1368040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.
Collapse
Affiliation(s)
- Jan D. Zemtsovski
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | | | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Julia Held
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Florian M. Wurm
- Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
11
|
Duan R, von Ehrlich-Treuenstätt VH, Kakoschke SC, Schardey J, Wirth U, Albertsmeier M, Renz BW, Andrassy J, Bazhin AV, Hodin RA, Werner J, Ilmer M, Kühn F. Effect of Surgery on Postoperative Levels of the Gut Homeostasis-Regulating Enzyme Intestinal Alkaline Phosphatase. J Am Coll Surg 2024; 238:70-80. [PMID: 37870235 DOI: 10.1097/xcs.0000000000000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Intestinal homeostasis is a crucial factor for complication-free short- and long-term postoperative recovery. The brush border enzyme intestinal alkaline phosphatase (IAP) is an important regulator of gut barrier function and intestinal homeostasis and prevents endotoxemia by detoxifying lipopolysaccharides (LPSs). As IAP is predominantly secreted by enterocytes in the duodenum, we hypothesized that pancreaticoduodenectomy (PD) leads to a significantly stronger decrease in IAP than other major abdominal surgery. STUDY DESIGN Pre- and postoperative blood, stool, and intestinal samples were collected from patients undergoing PD, as well as other major surgical procedures without duodenectomy. The samples were analyzed using enzyme histochemistry, the para -nitrophenyl phosphate method for IAP, and the limulus amebocyte lysate assay for LPS. RESULTS Overall, 88 patients were prospectively enrolled in the study. Fecal IAP activity negatively correlated with serum LPS (r = -0.3603, p = 0.0006). PD led to a significant decline in IAP compared to preoperative baseline levels (p < 0.0001). The decline in IAP correlated with the length of proximal small intestinal resection (r = 0.4271, p = 0.0034). Compared to controls, PD was associated with a much more pronounced reduction in IAP-also after adjusting for surgical trauma (operative time, blood loss; r = 0.4598, p = 0.0086). Simultaneously, PD triggered a clearly more prominent increase in serum LPS compared to controls (p = 0.0001). Increased postoperative LPS was associated with an elongated hospitalization (r = 0.7534, p = 0.0062) and more prominent in pancreatic cancer (p = 0.0009). CONCLUSIONS Based upon the functional roles for IAP, supplementation with exogenous IAP might be a new treatment option to improve short- and long-term outcome after PD.
Collapse
Affiliation(s)
- Ruifeng Duan
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Viktor H von Ehrlich-Treuenstätt
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Sara C Kakoschke
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Josefine Schardey
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Ulrich Wirth
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Markus Albertsmeier
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Bernhard W Renz
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Joachim Andrassy
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Alexandr V Bazhin
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Hodin)
| | - Jens Werner
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Matthias Ilmer
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Florian Kühn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| |
Collapse
|
12
|
Gotoh S, Kitaguchi K, Yabe T. Pectin Modulates Calcium Absorption in Polarized Caco-2 Cells via a Pathway Distinct from Vitamin D Stimulation. J Appl Glycosci (1999) 2023; 70:59-66. [PMID: 38143569 PMCID: PMC10738857 DOI: 10.5458/jag.jag.jag-2022_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Pectin, a type of soluble fiber, promotes morphological changes in the small intestinal villi. Although its physiological significance is unknown, we hypothesized that changes in villus morphology enhance the efficiency of nutrient absorption in the small intestine and investigated the effect of pectin derived from persimmon on calcium absorption using polarized Caco-2 cells. In polarized Caco-2 cells, pectin altered the mRNA expression levels of substances involved in calcium absorption and the regulation of intracellular calcium concentration and significantly reduced calcium absorption. Although this was comparable to the results of absorption and permeability associated with the addition of active vitamin D, the simultaneous action of pectin and active vitamin D did not show any additive effects. Furthermore, as active vitamin D significantly increases the activity of intestinal alkaline phosphatase (ALP), which is known to be involved in the regulation of intestinal absorption of calcium and lipids, we also investigated the effect of pectin on intestinal ALP activity. As a result, it was found that, unlike the effect of active vitamin D, pectin significantly reduced intestinal ALP activity. These results suggest that pectin stimulates polarized Caco-2 cells through a mechanism distinct from the regulation of calcium absorption by vitamin D, modulating total calcium absorption from the elongated villi through morphological changes in the small intestine by suppressing it at the cellular level.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
- Institute for Glyco-core Research (iGCORE), Gifu University
| |
Collapse
|
13
|
Szabó A, Pasquariello R, Costa PF, Pavlovic R, Geurs I, Dewettinck K, Vervaet C, Brevini TAL, Gandolfi F, Van Vlierberghe S. Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model. Macromol Biosci 2023; 23:e2300016. [PMID: 37243584 DOI: 10.1002/mabi.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Indexed: 05/29/2023]
Abstract
To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Pedro F Costa
- Biofabics Lda, Rua do Campo Lindo 168, Porto, 4200-143, Portugal
| | - Radmila Pavlovic
- Protemoics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Indi Geurs
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Dell'Università 6, Lodi, 26900, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| |
Collapse
|
14
|
Wang YM, Abdullah S, Luebbering N, Langenberg L, Duell A, Lake K, Lane A, Hils B, Vazquez Silva O, Trapp M, Nalapareddy K, Koo J, Denson LA, Jodele S, Haslam DB, Faubion WA, Davies SM, Khandelwal P. Intestinal permeability in patients undergoing stem cell transplantation correlates with systemic acute phase responses and dysbiosis. Blood Adv 2023; 7:5137-5151. [PMID: 37083597 PMCID: PMC10480541 DOI: 10.1182/bloodadvances.2023009960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.
Collapse
Affiliation(s)
- YunZu Michele Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sheyar Abdullah
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian Hils
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ormarie Vazquez Silva
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica Trapp
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lee A. Denson
- University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - David B. Haslam
- University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Araújo JR, Serafim T, Ismael S, Calhau C, Faria A, Teixeira D. Intestinal Alkaline Phosphatase Activity and Efficiency Are Altered in Severe COVID-19 Patients. GASTRO HEP ADVANCES 2023; 2:911-917. [PMID: 39130768 PMCID: PMC11307804 DOI: 10.1016/j.gastha.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Although gut inflammation and dysbiosis have been implicated in the pathophysiology of severe cases of coronavirus disease 2019 (COVID-19), the role of intestinal anti-inflammatory enzymes, such as alkaline phosphatase, is still underexplored. Therefore, the aim of this study was to compare intestinal alkaline phosphatase (iALP) activity and its proinflammatory substrate - bacterial lipopolysaccharide (LPS) - concentration between mild-to-moderate and severe COVID-19 patients. Methods Stool samples collected from 53 mild-to-moderate and 57 severe adult COVID-19 patients, previously enrolled in a national multicentre cross-sectional study (NCT04355741), were analysed for iALP activity and LPS concentration. Results iALP activity decreased by 40% in severe compared to mild-to-moderate COVID-19 patients (median [interquartile range] of 120.6 [25.2-593.1] nmol pNP/min/g of protein vs 202.8 [102.1-676.1] nmol pNP/min/g of protein; P = .04) after adjustment for clinical and gut microbiota parameters. Regarding fecal LPS, its concentration was found to be decreased in severe patients (mean ± standard error of mean of 18,118 ± 1225 EU/g of feces vs 22,508 ± 1203 EU/g of feces; P = .01), although this parameter did not correlate with plasma levels of C-reactive protein (P = .08), a sensitive biomarker of systemic inflammation. In contrast, fecal ALP activity / LPS concentration ratio, an indicator of iALP efficiency, was found to be increased in severe compared to mild-to-moderate COVID-19 patients (P = .04). Conclusion Changes in iALP kinetic parameters found in severe COVID-19 patients may represent a potential mechanism to counterbalance alterations in gut homeostasis (eg inflammation and dysbiosis) associated with COVID-19 severity.
Collapse
Affiliation(s)
- João R. Araújo
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Thainá Serafim
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Shámila Ismael
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Faria
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diana Teixeira
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Talebi S, Zeraattalab-Motlagh S, Vajdi M, Nielsen SM, Talebi A, Ghavami A, Moradi S, Sadeghi E, Ranjbar M, Habibi S, Sadeghi S, Mohammadi H. Early vs delayed enteral nutrition or parenteral nutrition in hospitalized patients: An umbrella review of systematic reviews and meta-analyses of randomized trials. Nutr Clin Pract 2023; 38:564-579. [PMID: 36906848 DOI: 10.1002/ncp.10976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/02/2023] [Accepted: 02/05/2023] [Indexed: 03/13/2023] Open
Abstract
We conducted an umbrella review to summarize the existing evidence on the effect of early enteral nutrition (EEN) compared with other approaches, including delayed enteral nutrition (DEN), parenteral nutrition (PN), and oral feeding (OF) on clinical outcomes in hospitalized patients. We performed a systematic search up to December 2021, in MEDLINE (via PubMed), Scopus, and Institute for Scientific Information Web of Science. We included systematic reviews with meta-analyses (SRMAs) of randomized trials investigating EEN compared with DEN, PN, or OF for any clinical outcomes in hospitalized patients. We used "A Measurement Tool to Assess Systematic Reviews" (AMSTAR2) and the Cochrane risk-of-bias tool for assessing the methodological quality of the systematic reviews and their included trial, respectively. The certainty of the evidence was rated using the "Grading of Recommendations Assessment, Development, and Evaluation" (GRADE) approach. We included 45 eligible SRMAs contributing with a total of 103 randomized controlled trials. The overall meta-analyses showed that patients who received EEN had statistically significant beneficial effects on most outcomes compared with any control (ie, DEN, PN, or OF), including mortality, sepsis, overall complications, infection complications, multiorgan failure, anastomotic leakage, length of hospital stay, time to flatus, and serum albumin levels. No statistically significant beneficial effects were found for risk of pneumonia, noninfectious complications, vomiting, wound infection, as well as number of days of ventilation, intensive care unit days, serum protein, and pre-serum albumin levels. Our results indicate that EEN may be preferred over DEN, PN, and OF because of the beneficial effects on many clinical outcomes.
Collapse
Affiliation(s)
- Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan, Iran
| | - Sabrina Mai Nielsen
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Ali Talebi
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abed Ghavami
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Sadeghi
- Research Consultation Center (RCC), Shiraz University Of Medical Sciences, Shiraz, Iran
| | - Mahsa Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Habibi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sadeghi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Chattopadhyay A, Mukherjee P, Sulaiman D, Wang H, Girjalva V, Dorreh N, Jacobs JP, Delk S, Moolenaar WH, Navab M, Reddy ST, Fogelman AM. Role of enterocyte Enpp2 and autotaxin in regulating lipopolysaccharide levels, systemic inflammation, and atherosclerosis. J Lipid Res 2023; 64:100370. [PMID: 37059333 PMCID: PMC10200992 DOI: 10.1016/j.jlr.2023.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Huan Wang
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Victor Girjalva
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Fielding School of Public Health, University of California, Los Angeles, CA, USA; UCLA Microbiome Center, Fielding School of Public Health, University of California, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA and the Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Samuel Delk
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Nguyen M, Gautier T, Masson D, Bouhemad B, Guinot PG. Endotoxemia in Acute Heart Failure and Cardiogenic Shock: Evidence, Mechanisms and Therapeutic Options. J Clin Med 2023; 12:jcm12072579. [PMID: 37048662 PMCID: PMC10094881 DOI: 10.3390/jcm12072579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Acute heart failure and cardiogenic shock are frequently occurring and deadly conditions. In patients with those conditions, endotoxemia related to gut injury and gut barrier dysfunction is usually described as a driver of organ dysfunction. Because endotoxemia might reciprocally alter cardiac function, this phenomenon has been suggested as a potent vicious cycle that worsens organ perfusion and leading to adverse outcomes. Yet, evidence beyond this phenomenon might be overlooked, and mechanisms are not fully understood. Subsequently, even though therapeutics available to reduce endotoxin load, there are no indications to treat endotoxemia during acute heart failure and cardiogenic shock. In this review, we first explore the evidence regarding endotoxemia in acute heart failure and cardiogenic shock. Then, we describe the main treatments for endotoxemia in the acute setting, and we present the challenges that remain before personalized treatments against endotoxemia can be used in patients with acute heart failure and cardiogenic shock.
Collapse
|
19
|
Yin X, Wang W, Seah SYK, Mine Y, Fan MZ. Deglycosylation Differentially Regulates Weaned Porcine Gut Alkaline Phosphatase Isoform Functionality along the Longitudinal Axis. Pathogens 2023; 12:pathogens12030407. [PMID: 36986329 PMCID: PMC10053101 DOI: 10.3390/pathogens12030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Gut alkaline phosphatases (AP) dephosphorylate the lipid moiety of endotoxin and other pathogen-associated-molecular patterns members, thus maintaining gut eubiosis and preventing metabolic endotoxemia. Early weaned pigs experience gut dysbiosis, enteric diseases and growth retardation in association with decreased intestinal AP functionality. However, the role of glycosylation in modulation of the weaned porcine gut AP functionality is unclear. Herein three different research approaches were taken to investigate how deglycosylation affected weaned porcine gut AP activity kinetics. In the first approach, weaned porcine jejunal AP isoform (IAP) was fractionated by the fast protein-liquid chromatography and purified IAP fractions were kinetically characterized to be the higher-affinity and lower-capacity glycosylated mature IAP (p < 0.05) in comparison with the lower-affinity and higher-capacity non-glycosylated pre-mature IAP. The second approach enzyme activity kinetic analyses showed that N-deglycosylation of AP by the peptide N-glycosidase-F enzyme reduced (p < 0.05) the IAP maximal activity in the jejunum and ileum and decreased AP affinity (p < 0.05) in the large intestine. In the third approach, the porcine IAP isoform-X1 (IAPX1) gene was overexpressed in the prokaryotic ClearColiBL21 (DE3) cell and the recombinant porcine IAPX1 was associated with reduced (p < 0.05) enzyme affinity and maximal enzyme activity. Therefore, levels of glycosylation can modulate plasticity of weaned porcine gut AP functionality towards maintaining gut microbiome and the whole-body physiological status.
Collapse
Affiliation(s)
- Xindi Yin
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Food Inspection Agency (CFIA)-Ontario Operation, Guelph, ON N1G 4S9, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ming Z. Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- One Health Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
20
|
Oku Y, Noda S, Yamada A, Nakaoka K, Goseki-Sone M. Vitamin D restriction and/or a high-fat diet influence intestinal alkaline phosphatase activity and serum endotoxin concentration, increasing the risk of metabolic endotoxemia in rats. Nutr Res 2023; 112:20-29. [PMID: 36934524 DOI: 10.1016/j.nutres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Vitamin D insufficiency induces calcification disorder of bone or a decrease in bone mineral density, increasing the risk of fracture. Alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. It has also been suggested that ALP may prevent metabolic endotoxemia by dephosphorylating lipopolysaccharide. We hypothesized that vitamin D restriction and/or a high-fat diet influences ALP activity in each tissue and serum lipopolysaccharide concentrations and increases the risk of metabolic endotoxemia. Eleven-week-old female rats were divided into 4 groups: basic control diet (Cont.), basic control diet with vitamin D restriction (DR), high-fat diet (HF), and high-fat diet with vitamin D restriction (DRHF) groups. They were acclimated for 28 days. The results of 2-way analysis of variance showed that intestinal ALP activity, which may contribute to an improvement in phosphate/lipid metabolism and longevity, in the high-fat diet groups (HF and DRHF) was higher than in the low-fat diet groups (Cont. and DR). ALP activity in the vitamin D-restricted groups (DR and DRHF) was lower than in the vitamin D-sufficient groups (Cont. and HF). Furthermore, serum endotoxin concentrations were significantly higher in the high-fat diet groups (HF and DRHF) than in the low-fat diet groups (Cont. and DR). In the vitamin D-restricted groups (DR and DRHF), serum endotoxin concentrations were also significantly higher than in the vitamin D-sufficient groups (Cont. and HF). These results suggest that vitamin D restriction and/or a high-fat diet increases the risk of metabolic endotoxemia.
Collapse
Affiliation(s)
- Yuno Oku
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Seiko Noda
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Asako Yamada
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Kanae Nakaoka
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Saitama, Japan
| | - Masae Goseki-Sone
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan.
| |
Collapse
|
21
|
Okazaki Y, Katayama T. High-fat diet promotes the effect of fructo-oligosaccharides on the colonic luminal environment, including alkaline phosphatase activity in rats. Nutr Res 2023; 110:44-56. [PMID: 36646013 DOI: 10.1016/j.nutres.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
We recently reported that fermentable nondigestible carbohydrates such as oligosaccharides, commonly increase colonic alkaline phosphatase (ALP) activity and the gene expression of Alpi-1, coding for rat intestinal alkaline phosphatase-I isozyme in rats and that the effect of oligosaccharides on colonic ALP activity is affected by the quality of dietary fats. We hypothesized that the amount of dietary fat would modulate the effect of oligosaccharides on colonic ALP and luminal environment in rats. In experiment 1, male Sprague-Dawley rats were fed a low-fat (LF, 5% lard) or high-fat (HF, 30% lard) diet with or without 4% fructo-oligosaccharides (FOS). In experiment 2, they were fed a 2.5%, 7%, 20%, or 40% fat (lard) diet with 4% FOS for 2 weeks. Dietary FOS in the HF diet (HF-FOS) significantly increased ALP activity in the colon and cecal digesta and colonic expression of Alpi-1, but not in the LF diet with FOS groups (LF-FOS). In comparison to the LF-FOS group, the increases in fecal mucins, Lactobacillus ratio, as well as cecal n-butyrate, and the decrease in fecal Clostridium coccoides, were more pronounced in the HF-FOS group. Compared with the 2.5% or 7% fat + FOS diet, the 20% fat + FOS diet significantly increased colonic ALP activity, Alpi-1 expression, and fecal mucins. These factors did not differ significantly between 20% and 40% fat + FOS diets. To exert the maximum effect of FOS on the colonic luminal environment, including ALP activity in rats, significantly more fat may be required than that contained present a LF diet.
Collapse
Affiliation(s)
- Yukako Okazaki
- Faculty of Human Life Sciences, Fuji Women's University, Ishikari 061-3204, Japan.
| | | |
Collapse
|
22
|
Liang L, Yin Y, Guo Z, Liu T, Ouyang Z, Zhou J, Xiao J, Zhao L, Wu H. Sequentially activating macrophages M1 and M2 phenotypes by lipopolysaccharide-containing Mg-Fe layered double hydroxides coating on the Ti substrate. Colloids Surf B Biointerfaces 2023; 222:113066. [PMID: 36525754 DOI: 10.1016/j.colsurfb.2022.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
As cells of innate immunity, macrophages are a class of innate immune cells existing in almost all tissues and play a crucial role in bone repair. However, it remains a challenge to modulate the sequential activation of the deferent phenotypes in macrophage when designing the titanium (Ti) implants. In this study, the Mg-Fe layered double hydroxides (LDHs) was coated on Ti substrate through hydrothermal treatment. Further on lipopolysaccharide (LPS) was introduced onto the LDHs through adsorption and ions exchange. The adsorption efficiency of the coating on LPS reached 72.8% in 24 h due to the anion exchange and electrostatic interactions between the LPS and the LDH layers in deionized water. The LDHs-LPS coating released a large amount of LPS in the early stage, which induced macrophages into M1 phenotype via activating TLR-4 → MyD88 and TLR-4 → Ticam-1/2 signal pathways. Subsequently, the M1 macrophages were transformed into M2 phenotype by regulating the integrin α5β1 of cells by the nanostructures, wetting angle and Mg2+ of the coating. The LDHs-LPS coating endows Ti with the ability of stage immunomodulation, indicating the positive osteoimmunomodulatory property.
Collapse
Affiliation(s)
- Luxin Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yong Yin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Zhenhu Guo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Jixiang Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
23
|
Evaluation of the Anticancer and Probiotic Potential of Autochthonous (Wild) Lacticaseibacillus paracasei Strains from New Ecological Niches as a Possible Additive for Functional Dairy Foods. Foods 2023; 12:foods12010185. [PMID: 36613399 PMCID: PMC9818674 DOI: 10.3390/foods12010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Probiotics such as Lactobacillus spp. could modulate the intestinal microbiota composition, supporting gastrointestinal tract barrier function and benefiting human health. To evaluate the anticancer and probiotic properties of potentially active autochthonous Lacticaseibacillus paracasei strains on proliferating and differentiated enterocytes, human colon adenocarcinoma cell line HT29 was used as a model. The lactic acid bacteria (LAB) were isolated from new ecological niches—mountain anthills populated by redwood ants (Formica rufa L.). Human colorectal adenocarcinoma cells (HT29, ATCC, HTB-38™) were treated for twenty-four hours with supernatants (SNs) derived from four strains of Lacticaseibacillus paracasei: P4, C8, C15 and M2.1. An MTT assay, alkaline phosphatase activity, IAP, Bax and Bcl-2 gene expression analysis (RT-qPCR) and the Bax/Bcl-2 ratio were evaluated. The MTT assay revealed that the observed effects varied among groups. However, 10% neutralized supernatants from P4, C8, C15 and M2.1 strains did not show cytotoxic effects. In contrast to non-differentiated cells, a significant (p < 0.001) rise in ALP activity in all treatments, with an average of 18%, was established in differentiated cells. The IAP expression was remarkably downregulated in the differentiated M2.1 group (p < 0.05) and upregulated in the non-differentiated P4 (p < 0.05) and M2.1 (p < 0.05) groups. The Bax/Bcl-2 quantity expression ratio in P4 was significantly (p < 0.05) upregulated in proliferating cancer cells, but in P4- and M2.1-differentiated cells these values were downregulated (p < 0.05). The obtained results indicate that the isolated L. paracasei strains possess anticancer and probiotic properties and could be used as additives for functional dairy foods and thus benefit human health.
Collapse
|
24
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
25
|
Peng B, Cui Q, Ma C, Yi H, Gong P, Lin K, Liu T, Zhang L. Lactiplantibacillus plantarum YZX28 alleviated intestinal barrier dysfunction induced by enterotoxigenic Escherichia coli via inhibiting its virulence factor production. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Huang L, He F, Wu B. Mechanism of effects of nickel or nickel compounds on intestinal mucosal barrier. CHEMOSPHERE 2022; 305:135429. [PMID: 35760131 DOI: 10.1016/j.chemosphere.2022.135429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As an important metal in industry, national defense, and production, nickel widely exists in nature and is also a necessary trace element for human beings and animals. Nickel deficiency will affect the growth and development of animals, the contents of related active substances, enzymes and other essential elements in vivo. However, excessive nickel or longer nickel exposure can induce excessive free radicals (reactive oxygen species and reactive nitrogen) in the body, which can lead to a variety of cell damage, apoptosis and canceration, and ultimately pose negative effects on the health of the body. Among them, the intestinal tract, as the largest interface between the body and the external environment, greatly increases the contact probability between nickel or nickel compounds and the intestinal mucosal barrier, thus, the intestinal structure and function are also more vulnerable to nickel damage, leading to a series of related diseases such as enteritis. Therefore, this paper briefly analyzed the damage mechanism of nickel or its compounds to the intestinal tract from the perspective of four intestinal mucosal barriers: mechanical barrier, immune barrier, microbial barrier and chemical barrier, we hope to make a certain theoretical contribution to the further research and the prevention and treatment of nickel related diseases.
Collapse
Affiliation(s)
- Lijing Huang
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Fang He
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education PR China, Nanchong, PR China; College of Life Sciences, China West Normal University, Nanchong, PR China.
| |
Collapse
|
27
|
Noda S, Yamada A, Asawa Y, Nakamura H, Matsumura T, Orimo H, Goseki-Sone M. Characterization and Structure of Alternatively Spliced Transcript Variant of Human Intestinal Alkaline Phosphatase (ALPI) Gene. J Nutr Sci Vitaminol (Tokyo) 2022; 68:284-293. [PMID: 36047100 DOI: 10.3177/jnsv.68.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intestinal-type alkaline phosphatase (IAP) is expressed at a high concentration in the brush border membrane of intestinal epithelial cells and is known to be a gut mucosal defense factor. In humans, a single gene (ALPI) for IAP has been isolated, and its transcription produces two kinds of alternatively spliced mRNAs (aAug10 and bAug10). Recently, we discovered that vitamin D up-regulated the expression of both types of human IAP alternative splicing variants in Caco-2 cells. However, the functional difference of protein encoded by the mRNA variants has remained elusive. In the present study, we aimed to provide further insight into the characterization and structure of IAP isoforms. To analyze the protein translated from the ALPI gene, we constructed two kinds of cDNA expression plasmids (aAug10 and bAug10), and the transfected cells were homogenized and assayed for alkaline phosphatase (ALP) activity. We also designed the homology-modeled 3D structures of the protein encoded by the mRNA variants (ALPI-aAug10 and ALPI-bAug10). The levels of ALP activity of COS-1 cells transfected with the aAug10 plasmid were increased significantly, while cells transfected with the bAug10 plasmid had undetectable ALP activity. The homology-modeled 3D structures revealed that the variant bAug10 lacks the central N-terminal α-helix and residue corresponding to Asp-42 of ALPI-aAug10 near the active site. This is the first report on the characterization and structure of alternatively spliced transcript variants of the human ALPI gene. Further studies on the regulation of aAug10 and/or bAug10 mRNA expression may identify novel physiological functions of IAP.
Collapse
Affiliation(s)
- Seiko Noda
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University
| | - Asako Yamada
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| | | | - Hideo Orimo
- Department of Biochemistry and Molecular Biology, Nippon Medical School
| | - Masae Goseki-Sone
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University
| |
Collapse
|
28
|
Weider M, Schlagenhauf U, Seefried L. Oral health status of adult hypophosphatasia patients– a cross‐sectional study. J Clin Periodontol 2022; 49:1253-1261. [DOI: 10.1111/jcpe.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Margareta Weider
- Division of Periodontology University Hospital Wuerzburg Germany
| | | | - Lothar Seefried
- Clinical Trial Unit, Orthopedic Department University of Wuerzburg Germany
| |
Collapse
|
29
|
Liu Z, Li N, Zheng Z, Zhang C, Liu Z, Song C, Yan J, Mu S. Influence of Lonicera japonica and Radix Puerariae Crude Extracts on the Fecal Microbiome and Nutrient Apparent Digestibility of Finishing Pigs. Animals (Basel) 2022; 12:ani12162109. [PMID: 36009699 PMCID: PMC9404931 DOI: 10.3390/ani12162109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate the influence of adding Lonicera japonica (L. japonica) and Radix Puerariae crude extracts and their mixture to the diet of finishing pigs on their fecal microbes and nutrient apparent digestibility. A total of 72 healthy Duroc × Landrace × Yorkshire crossbred barrows without significant differences in body weight (93 ± 2 kg) were selected and randomly divided into four groups (18 in each group). Three replicate pens per group (six pigs per pen) were used, and two pigs were evaluated for each pen. The groups were fed the following diets: control group (CON), basic diet; chlorogenic acid group (CGA group), basic diet + 1 kg/ton L. japonica crude extract; Pueraria flavonoid group (PF group), basic diet + 1 kg/ton Radix Puerariae crude extract; and mix group (Mix group), basic diet + 0.5 kg/ton L. japonica crude extract + 0.5 kg/ton Radix Puerariae crude extract. The following results were obtained: (1) At the phylum level, Bacteroidetes, Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, and Kiritimatiellaeota were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from phyla Firmicutes significantly increased in the Mix group than in the CON group (p < 0.05). At the genus level, Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_Prevotellaceae, and Prevotellaceae_NK3B31_group were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from genus Lactobacillus significantly increased in the Mix group than in the CON group (p < 0.05). Chao1 and Ace counts were significantly higher in group CGA than in the CON group and group Mix (p < 0.05). The alpha and beta diversities and the relative abundance of fecal microbes were higher in all test groups than in the CON group. (2) The protein digestibility was significantly higher in the CGA and PF groups than in the CON group, and the TP digestibility was significantly higher in the CGA than in the CON and Mix groups (p < 0.05). In conclusion, Lonicera japonica and Radix Puerariae crude extract supplementation in the diet significantly changed fecal microbiota and improved the protein and TP digestibility of finishing pigs.
Collapse
Affiliation(s)
- Zhonghao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ning Li
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zi Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunhua Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengqun Liu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunling Song
- Beijing Tianfulai Biological Technology Co., Ltd., Beijing 102206, China
| | - Jun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (J.Y.); (S.M.)
| | - Shuqin Mu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (J.Y.); (S.M.)
| |
Collapse
|
30
|
Escobar J, Dobbs M, Ellenberger C, Parker A, Latorre JD, Gabor L. Oral supplementation of alkaline phosphatase in poultry and swine. Transl Anim Sci 2022; 6:txac079. [PMID: 35795069 PMCID: PMC9249143 DOI: 10.1093/tas/txac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal homeostasis is well established. The objective of this study was to investigate the tolerance of poultry and swine to dietary supplementation of a novel microbial-derived alkaline phosphatase (AP; E.C. 3.1.3.1 produced by Paenibacillus lentus strain CMG3709). Studies were conducted on day-old Ross 308 chicken (n = 1,000; Study 1) and weaned piglets (n = 180; Study 2) for a duration of 42 d; and consisted of four treatment groups (TG) based on the concentration of microbial-derived AP supplemented in their diet at 0; 12,000; 20,000; and 200,000 U/kg of feed. Parameters such as animal survival, hematology, coagulation, and biochemical indices were assessed at the end of the study. The effect of microbial AP on nutrient absorption through skin pigmentation and intestinal permeability were also investigated in broilers (n = 600; Study 3). In poultry (Study 1), there were no statistically significant differences between control and TG for any of the hematological and biochemical parameters, except for a marginal increase (P < 0.05) in serum phosphorus at the highest dose. This variation was not dose-dependent, was well within the reference range, and was not associated with any clinical correlates. In swine (Study 2), hematological parameters such as leukocyte, basophil, and lymphocyte counts were lower (P < 0.05) for the two highest doses but were traced back to individual variations within the group. The biochemical indices in piglets showed no significant differences between control and supplemental groups except for glucose (P = 0.0005), which showed a high effect (P = 0.008) of the random blood collection order. Nonetheless, glucose was within the normal reference range, and were not related to in-feed supplementation of AP as they had no biological significance. The survival rate in all three studies was over 98%. Dietary supplementation of microbial-derived AP up to 16.7 times the intended use (12,000 U/kg feed) level had no negative effects in both poultry and swine. In-feed supplementation of microbial-derived AP for 28 d improved intestinal pigment absorption (P < 0.0001) and reduced intestinal paracellular permeability (P = 0.0001) in broilers (Study 3). Based on these results, it can be concluded that oral supplementation of microbial-derived AP is safe for poultry and swine and effective at improving gut health in poultry.
Collapse
Affiliation(s)
| | - Merilyn Dobbs
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| | | | - Alysia Parker
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| | | | - Leslie Gabor
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| |
Collapse
|
31
|
Growth and Welfare of Rainbow Trout ( Oncorhynchus mykiss) in Response to Graded Levels of Insect and Poultry By-Product Meals in Fishmeal-Free Diets. Animals (Basel) 2022; 12:ani12131698. [PMID: 35804596 PMCID: PMC9264821 DOI: 10.3390/ani12131698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 12/19/2022] Open
Abstract
This study compared the nutrient-energy retention, digestive function, growth performance, and welfare of rainbow trout (ibw 54 g) fed isoproteic (42%), isolipidic (24%), fishmeal-free diets (CV) over 13 weeks. The diets consisted of plant-protein replacement with graded levels (10, 30, 60%) of protein from poultry by-product (PBM) and black soldier fly H. illucens pupae (BSFM) meals, either singly or in combination. A fishmeal-based diet was also tested (CF). Nitrogen retention improved with moderate or high levels of dietary PBM and BSFM relative to CV (p < 0.05). Gut brush border enzyme activity was poorly affected by the diets. Gastric chitinase was up-regulated after high BSFM feeding (p < 0.05). The gut peptide and amino acid transport genes were differently regulated by protein source and level. Serum cortisol was unaffected, and the changes in metabolites stayed within the physiological range. High PBM and high BSFM lowered the leukocyte respiratory burst activity and increased the lysozyme activity compared to CV (p < 0.05). The BSFM and PBM both significantly changed the relative percentage of lymphocytes and monocytes (p < 0.05). In conclusion, moderate to high PBM and BSFM inclusions in fishmeal-free diets, either singly or in combination, improved gut function and nutrient retention, resulting in better growth performance and the good welfare of the rainbow trout.
Collapse
|
32
|
Wu Z, Liu D, Deng F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J Inflamm Res 2022; 15:3167-3185. [PMID: 35662873 PMCID: PMC9160606 DOI: 10.2147/jir.s363840] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease that includes ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not fully understood but is most reported associated with immune dysregulation, dysbacteriosis, genetic susceptibility, and environmental risk factors. Vitamin D is an essential nutrient for the human body, and it not only regulates bone metabolism but also the immune system, the intestinal microbiota and barrier. Vitamin D insufficiency is common in IBD patients, and the abnormal low levels of vitamin D are highly correlated with disease activity, treatment response, and risk of relapse of IBD. Accumulating evidence supports the protective role of vitamin D in IBD through regulating the adaptive and innate immunity, maintaining the intestinal barrier and balancing the gut microbiota. This report aims to provide a broad overview of the role vitamin D in the immune system, especially in the pathogenesis and treatment of IBD, and its possible role in predicting relapse.
Collapse
Affiliation(s)
- Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Research Center of Digestive Disease, Central South University, Changsha, Hunan410011, People’s Republic of China, Email
| |
Collapse
|
33
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Protective Effect of Alkaline Phosphatase Supplementation on Infant Health. Foods 2022; 11:foods11091212. [PMID: 35563935 PMCID: PMC9101100 DOI: 10.3390/foods11091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alkaline phosphatase (ALP) is abundant in raw milk. Because of its high heat resistance, ALP negative is used as an indicator of successful sterilization. However, pasteurized milk loses its immune protection against allergy. Clinically, ALP is also used as an indicator of organ diseases. When the activity of ALP in blood increases, it is considered that diseases occur in viscera and organs. Oral administration or injecting ALP will not cause harm to the body and has a variety of probiotic effects. For infants with low immunity, ALP intake is a good prebiotic for protecting the infant’s intestine from potential pathogenic bacteria. In addition, ALP has a variety of probiotic effects for any age group, including prevention and treatment intestinal diseases, allergies, hepatitis, acute kidney injury (AKI), diabetes, and even the prevention of aging. The prebiotic effects of alkaline phosphatase on the health of infants and consumers and the content of ALP in different mammalian raw milk are summarized. The review calls on consumers and manufacturers to pay more attention to ALP, especially for infants with incomplete immune development. ALP supplementation is conducive to the healthy growth of infants.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Gokulakrishnan K, Nikhil J, VS S, Holla B, Thirumoorthy C, Sandhya N, Nichenametla S, Pathak H, Shivakumar V, Debnath M, Venkatasubramanian G, Varambally S. Altered Intestinal Permeability Biomarkers in Schizophrenia: A Possible Link with Subclinical Inflammation. Ann Neurosci 2022; 29:151-158. [PMID: 36419512 PMCID: PMC9676334 DOI: 10.1177/09727531221108849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 09/12/2023] Open
Abstract
Background and Purpose Emerging studies have shown that gut-derived endotoxins might play a role in intestinal and systemic inflammation. Although the significance of intestinal permeability in modulating the pathogenesis of Schizophrenia (SCZ) is recognized, not much data on the specific role of intestinal permeability biomarkers, viz., zonulin, lipopolysaccharide-binding protein (LBP), and intestinal alkaline phosphatase (IAP) in SCZ is available. Therefore, we measured the plasma levels of zonulin, LBP, and IAP and its correlation with neutrophil-to-lymphocyte ratio (NLR); a marker of systemic inflammation in patients with SCZ. Methods We recruited 60 individuals, patients with SCZ (n = 40) and healthy controls (n = 20), from a large tertiary neuropsychiatry center. Plasma levels of zonulin, IAP, and LBP were quantified by enzyme-linked immunosorbent assay. Results Plasma levels of both LBP and zonulin were significantly increased (P <0.05), whereas the IAP levels (P <0.05) were significantly decreased in patients with SCZ compared to healthy controls. Pearson correlation analysis revealed that zonulin and LBP had a significant positive correlation with NLR, and IAP negatively correlated with NLR. Individuals with SCZ had higher independent odds of zonulin [odds ratio (OR): 10.32, 95% CI: 1.85-57.12], LBP [OR: 1.039, 95% CI: 1.02-1.07], and IAP [OR: 0.643, 95% CI: 0.471-0.879], even after adjusting for potential confounders. Conclusion Our study demonstrates an association of zonulin, LBP, and IAP in Asian Indian SCZ patients and correlates with NLR. Our results indicate that low-grade inflammation induced by metabolic endotoxemia might be implicated in the pathoetiology of SCZ.
Collapse
Affiliation(s)
- Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sreeraj VS
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Narasimhan Sandhya
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sonika Nichenametla
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Harsh Pathak
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Dong Y, Xia Y, Yin J, Zhou D, Sang Y, Yan S, Liu Q, Li Y, Wang L, Zhao Y, Chen C, Huang Q, Wang Y, Abbasi MN, Yang H, Wang C, Li J, Tu Q, Yin J. Optimization, Characteristics, and Functions of Alkaline Phosphatase From Escherichia coli. Front Microbiol 2022; 12:761189. [PMID: 35265047 PMCID: PMC8899610 DOI: 10.3389/fmicb.2021.761189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Weaning of piglets could increase the risk of infecting with Gram-negative pathogens, which can further bring about a wide array of virulence factors including the endotoxin lipopolysaccharide (LPS). It is in common practice that the use of antibiotics has been restricted in animal husbandry. Alkaline phosphatase (AKP) plays an important role in the detoxification and anti-inflammatory effects of LPS. This study investigated the protective effects of AKP on intestinal epithelial cells during inflammation. Site-directed mutagenesis was performed to modulate the AKP activity. The enzyme activity tests showed that the activity of the DelSigD153G-D330N mutants in B. subtilis was nearly 1,600 times higher than that of the wild-type AKP. In this study, an in vitro LPS-induced inflammation model using IPEC-J2 cells was established. The mRNA expression of interleukin-(IL-) 6, IL-8, and tumor necrosis factor-α (TNF-α) were extremely significantly downregulated, and that of ASC amino acid transporter 2 (ASCT-2), zonula occludens protein-1 (ZO-1), and occludin-3 (CLDN-3) were significantly upregulated by the DelSigD153G-D330N mutant compared with LPS treatment. This concludes the anti-inflammatory role of AKP on epithelial membrane, and we are hopeful that this research could achieve a sustainable development for the pig industry.
Collapse
Affiliation(s)
- Yachao Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yandong Xia
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yidan Sang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sufeng Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingshu Liu
- Hunan Institute of Microbiology, Changsha, China
| | - Yaqi Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cang Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Nazeer Abbasi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chuni Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
36
|
Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol 2022; 12:791565. [PMID: 35069573 PMCID: PMC8769504 DOI: 10.3389/fimmu.2021.791565] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep 2022; 38:110311. [PMID: 35108531 DOI: 10.1016/j.celrep.2022.110311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Gut microbial products direct growth, differentiation, and development in animal hosts. However, we lack system-wide understanding of cell-specific responses to the microbiome. We profiled cell transcriptomes from the intestine, and associated tissue, of zebrafish larvae raised in the presence or absence of a microbiome. We uncovered extensive cellular heterogeneity in the conventional zebrafish intestinal epithelium, including previously undescribed cell types with known mammalian homologs. By comparing conventional to germ-free profiles, we mapped microbial impacts on transcriptional activity in each cell population. We revealed intricate degrees of cellular specificity in host responses to the microbiome that included regulatory effects on patterning and on metabolic and immune activity. For example, we showed that the absence of microbes hindered pro-angiogenic signals in the developing vasculature, causing impaired intestinal vascularization. Our work provides a high-resolution atlas of intestinal cellular composition in the developing fish gut and details the effects of the microbiome on each cell type.
Collapse
|
38
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
39
|
Mukherjee P, Chattopadhyay A, Grijalva V, Dorreh N, Lagishetty V, Jacobs JP, Clifford BL, Vallim T, Mack JJ, Navab M, Reddy ST, Fogelman AM. Oxidized phospholipids cause changes in jejunum mucus that induce dysbiosis and systemic inflammation. J Lipid Res 2022; 63:100153. [PMID: 34808192 PMCID: PMC8953663 DOI: 10.1016/j.jlr.2021.100153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | | | - Victor Grijalva
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; The Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Vallim
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Biological Chemistry, Los Angeles, CA, USA
| | - Julia J Mack
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| |
Collapse
|
40
|
Wester RA, van Voorthuijsen L, Neikes HK, Dijkstra JJ, Lamers LA, Frölich S, van der Sande M, Logie C, Lindeboom RG, Vermeulen M. Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. iScience 2021; 24:103444. [PMID: 34877501 PMCID: PMC8633980 DOI: 10.1016/j.isci.2021.103444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 01/15/2023] Open
Abstract
Retinoic acid (RA) signaling is an important and conserved pathway that regulates cellular proliferation and differentiation. Furthermore, perturbed RA signaling is implicated in cancer initiation and progression. However, the mechanisms by which RA signaling contributes to homeostasis, malignant transformation, and disease progression in the intestine remain incompletely understood. Here, we report, in agreement with previous findings, that activation of the Retinoic Acid Receptor and the Retinoid X Receptor results in enhanced transcription of enterocyte-specific genes in mouse small intestinal organoids. Conversely, inhibition of this pathway results in reduced expression of genes associated with the absorptive lineage. Strikingly, this latter effect is conserved in a human organoid model for colorectal cancer (CRC) progression. We further show that RXR motif accessibility depends on progression state of CRC organoids. Finally, we show that reduced RXR target gene expression correlates with worse CRC prognosis, implying RA signaling as a putative therapeutic target in CRC. RA signaling contributes to enterocyte differentiation in murine intestinal organoids Inhibition of RXR decreases enterocyte gene expression in colon cancer organoids Accessibility of RXR motifs correlates with RXRi susceptibility High expression of RA signaling targets correlates with higher CRC patient survival
Collapse
Affiliation(s)
- Roelof A. Wester
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Hannah K. Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Jelmer J. Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Lieke A. Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Siebren Frölich
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Maarten van der Sande
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Rik G.H. Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Corresponding author
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
- Corresponding author
| |
Collapse
|
41
|
Singh SB, Lin HC. Role of Intestinal Alkaline Phosphatase in Innate Immunity. Biomolecules 2021; 11:biom11121784. [PMID: 34944428 PMCID: PMC8698947 DOI: 10.3390/biom11121784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal alkaline phosphatase (IAP) is a multi-functional protein that has been demonstrated to primarily protect the gut. The role of IAP in maintaining intestinal homeostasis is underscored by the observation that IAP expression is defective in many gastrointestinal-related disorders such as inflammatory bowel disease IBD, necrotizing enterocolitis, and metabolic syndrome and that exogenous IAP supplementation improves the outcomes associated with these disorders. Additionally, studies using transgenic IAP-knock out (IAP-KO) mouse models further support the importance of the defensive role of IAP in the intestine. Supplementation of exogenous IAP and cellular overexpression of IAP have also been used in vitro to dissect out the downstream mechanisms of this protein in mammalian cell lines. Some of the innate immune functions of IAP include lipopolysaccharide (LPS) detoxification, protection of gut barrier integrity, regulation of gut microbial communities and its anti-inflammatory roles. A novel function of IAP recently identified is the induction of autophagy. Due to its critical role in the gut physiology and its excellent safety profile, IAP has been used in phase 2a clinical trials for treating conditions such as sepsis-associated acute kidney injury. Many excellent reviews discuss the role of IAP in physiology and pathophysiology and here we extend these to include recent updates on this important host defense protein and discuss its role in innate immunity via its effects on bacteria as well as on host cells. We will also discuss the relationship between IAP and autophagy and how these two pathways may act in concert to protect the gut.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA;
| | - Henry C. Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
42
|
Wang C, Wang R, Yang H, Wang Y, Zhang Z. Gene cloning and transcriptional regulation of the alkaline and acid phosphatase genes in Scylla paramamosain. Gene 2021; 810:146057. [PMID: 34732367 DOI: 10.1016/j.gene.2021.146057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
In crustaceans, innate immunity serves as the frontline of defense against microbes. Alkaline phosphatases (ALPs) and acid phosphatases (ACPs) are essential enzymes that play a significant role in crustaceans' immune defenses. However, the function and transcriptional regulation of the alp and acp genes in the Scylla paramamosain, an important aquaculture species in China, have not been elucidated. In this study, the full-length cDNAs of Spalp and Spacp were identified, which consist of 2,718 bp and 3,768 bp, encoding 579 and 452 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that these two genes were conserved among different species and shared high homology with crustaceans. The mRNA expression of Spalp and Spacp were examined in eight tested tissues, with the highest levels in the hepatopancreas. The 5'-flanking regions of Spalp and Spacp were cloned and sequenced. The core promoter region of the Spalp and Spacp was -39 bp∼+8 bp and -39 bp∼+10 bp, respectively. Potential binding sequences for SOX-2, c-fos, SP1, NF-κB, GATA-1, YY1, and AP-1 transcription factors were found in the 5'-flanking regions of Spalp and Spacp. The NF-κB binding site located between -1,223 bp and -972 bp in Spalp while SP1 and AP-1 binding sites located between -1,249 bp and -514 bp in Spacp. Mutation analysis confirmed that NF-κB negatively regulated the expression of Spalp gene, and SP1 and AP-1 positively regulated Spacp gene expression. These results provide us with essential information to elucidate the function of the Spalp and Spacp in S. paramamosain. This study is the first one to analyze the activity of Spalp and Spacp promoters.
Collapse
Affiliation(s)
- Caixia Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruoxuan Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32653, USA
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, Fujian 361021, China
| | - Ziping Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou. Fujian 350002, China.
| |
Collapse
|
43
|
Abramov VM, Kosarev IV, Priputnevich TV, Machulin AV, Abashina TN, Chikileva IO, Donetskova AD, Takada K, Melnikov VG, Vasilenko RN, Khlebnikov VS, Samoilenko VA, Nikonov IN, Sukhikh GT, Uversky VN, Karlyshev AV. S-layer protein 2 of vaginal Lactobacillus crispatus 2029 enhances growth, differentiation, VEGF production and barrier functions in intestinal epithelial cell line Caco-2. Int J Biol Macromol 2021; 189:410-419. [PMID: 34437917 DOI: 10.1016/j.ijbiomac.2021.08.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
We have previously demonstrated the ability of the human vaginal strain Lactobacillus crispatus 2029 (LC2029) for strong adhesion to cervicovaginal epithelial cells, expression of the surface layer protein 2 (Slp2), and antagonistic activity against urogenital pathogens. Slp2 forms regular two-dimensional structure around the LC2029 cells,which is secreted into the medium and inhibits intestinal pathogen-induced activation of caspase-9 and caspase-3 in the human intestinal Caco-2 cells. Here, we elucidated the effects of soluble Slp2 on adhesion of proteobacteria pathogens inducing necrotizing enterocolitis (NEC), such as Escherichia coli ATCC E 2348/69, E. coli ATCC 31705, Salmonella Enteritidis ATCC 13076, Campylobacter jejuni ATCC 29428, and Pseudomonas aeruginosa ATCC 27853 to Caco-2 cells, as well as on growth promotion, differentiation, vascular endothelial growth factor (VEGF) production, and intestinal barrier function of Caco-2 cell monolayers. Slp2 acts as anti-adhesion agent for NEC-inducing proteobacteria, promotes growth of immature Caco-2 cells and their differentiation, and enhances expression and functional activity of sucrase, lactase, and alkaline phosphatase. Slp2 stimulates VEGF production, decreases paracellular permeability, and increases transepithelial electrical resistance, strengthening barrier function of Caco-2 cell monolayers. These data support the important role of Slp2 in the early postnatal development of the human small intestine enterocytes.
Collapse
Affiliation(s)
- Vyacheslav M Abramov
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Igor V Kosarev
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Tatiana V Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Tatiana N Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Irina O Chikileva
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Laboratory of Cell Immunity, Blokhin National Research, Center of Oncology Ministry of Health RF, Moscow 115478, Russia
| | | | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Vyacheslav G Melnikov
- Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow 152212, Russia
| | - Raisa N Vasilenko
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia
| | | | - Vladimir A Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Ilya N Nikonov
- Federal State Education Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow 109472, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Andrey V Karlyshev
- Department of Science, Engineering and Computing, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
44
|
Fan L, Lee JH. Enteral feeding and the microbiome in critically ill children: a narrative review. Transl Pediatr 2021; 10:2778-2791. [PMID: 34765500 PMCID: PMC8578772 DOI: 10.21037/tp-20-349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This narrative review summarizes our current knowledge on the interplay between enteral nutrition (EN) and gut microbiota in critically ill children, using examples from two commonly encountered diagnoses in the pediatric intensive care unit (PICU): severe sepsis and acute respiratory distress syndrome (ARDS). This review will also highlight potential areas of therapeutic interventions that should be explored in future studies. BACKGROUND Critically ill children display extreme dysbiosis in their gut microbiome. Factors within the PICU that are often associated with dysbiosis include the use of broad-spectrum antibiotics, proton-pump inhibitors (PPIs), intravenous morphine, and fasting. Dysbiosis can potentially lead to adverse clinical outcomes (e.g., nosocomial infection, and prolonged hospitalization). EN may modulate dysbiosis. The gut microbiota is involved in the breaking down of macronutrients, mainly carbohydrates and proteins. Fermentation of undigestible carbohydrate (e.g., inulin and oligosaccharides), and amino acids by large intestine microbiota produces short chain fatty acids (SCFAs). SCFAs serve as the main fuel source for enterocytes and help to maintain healthy gut lining. Changes to selected components of macronutrients can result in alterations in gut microbiome and have potentially beneficial effects in patients in the PICU. METHODS A comprehensive search of the MEDLINE, Cochrane Library and Google Scholar databases was conducted using appropriate MESH terms and keywords. In this narrative review, we provide a summary of current knowledge on effect of EN on gut microbiota in pediatric studies, but also describes animal- and lab-based, as well as adult studies where relevant. CONCLUSIONS The gut microbiome can be altered by dietary modifications and common PICU practices and treatment. Although there are strong associations in restoring eubiosis and improvement in clinical outcomes, proving causality remains challenging. Further microbiome research is needed to provide mechanistic insights into the impact of the ever changing gut microbiome. In the future, new microbiota targeted therapies could potentially be the treatment of challenging PICU conditions and restore homeostasis in these children.
Collapse
Affiliation(s)
- Lijia Fan
- Division of Paediatric Critical Care, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
45
|
Anhê FF, Barra NG, Cavallari JF, Henriksbo BD, Schertzer JD. Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep 2021; 36:109691. [PMID: 34525353 DOI: 10.1016/j.celrep.2021.109691] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/13/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
Lipopolysaccharides (LPSs) can promote metabolic endotoxemia, which is considered inflammatory and metabolically detrimental based on Toll-like receptor (TLR)4 agonists, such as Escherichia coli-derived LPS. LPSs from certain bacteria antagonize TLR4 yet contribute to endotoxemia measured by endotoxin units (EUs). We found that E. coli LPS impairs gut barrier function and worsens glycemic control in mice, but equal doses of LPSs from other bacteria do not. Matching the LPS dose from R. sphaeroides and E. coli by EUs reveals that only E. coli LPS promotes dysglycemia and adipose inflammation, delays intestinal glucose absorption, and augments insulin and glucagon-like peptide (GLP)-1 secretion. Metabolically beneficial endotoxemia promoted by R. sphaeroides LPS counteracts dysglycemia caused by an equal dose of E. coli LPS and improves glucose control in obese mice. The concept of metabolic endotoxemia should be expanded beyond LPS load to include LPS characteristics, such as lipid A acylation, which dictates the effect of metabolic endotoxemia.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada
| | - Joseph F Cavallari
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada
| | - Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
46
|
Hinman SS, Huling J, Wang Y, Wang H, Bretherton RC, DeForest CA, Allbritton NL. Magnetically-propelled fecal surrogates for modeling the impact of solid-induced shear forces on primary colonic epithelial cells. Biomaterials 2021; 276:121059. [PMID: 34412014 PMCID: PMC8405591 DOI: 10.1016/j.biomaterials.2021.121059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022]
Abstract
The colonic epithelium is continuously exposed to an array of biological and mechanical stimuli as its luminal contents are guided over the epithelial surface through regulated smooth muscle contraction. In this report, the propulsion of solid fecal contents over the colonic epithelium is recapitulated through noninvasive actuation of magnetic agarose hydrogels over primary intestinal epithelial cultures, in contrast to the vast majority of platforms that apply shear forces through liquid microflow. Software-controlled magnetic stepper motors enable experimental control over the frequency and velocity of these events to match in vivo propulsive contractions, while the integration of standardized well plate spacing facilitates rapid integration into existing assay pipelines. The application of these solid-induced shear forces did not deleteriously affect cell monolayer surface coverage, viability, or transepithelial electrical resistance unless the device parameters were raised to a 50× greater contraction frequency and 4× greater fecal velocity than those observed in healthy humans. At a frequency and velocity that is consistent with average human colonic motility, differentiation of the epithelial cells into absorptive and goblet cell phenotypes was not affected. Protein secretion was modulated with a two-fold increase in luminal mucin-2 secretion and a significant reduction in basal interleukin-8 secretion. F-actin, zonula occludens-1, and E-cadherin were each present in their proper basolateral locations, similar to those of static control cultures. While cellular height was unaffected by magnetic agarose propulsion, several alterations in lateral morphology were observed including decreased circularity and compactness, and an increase in major axis length, which align with surface epithelial cell morphologies observed in vivo and may represent early markers of luminal exfoliation. This platform will be of widespread utility for the investigation of fecal propulsive forces on intestinal physiology, shedding light on how the colonic epithelium responds to mechanical cues.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Huling
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina State University, Raleigh, NC, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
47
|
Huang Z, Guo X, Tan P, Wang M, Chen H, Peng Y, Xia X, Tang X, Li Q, Fu W. Luzhou-Feier powder reduces inflammatory response and improves intestinal immune barrier in rats with severe acute pancreatitis. J Food Biochem 2021; 45:e13905. [PMID: 34418113 DOI: 10.1111/jfbc.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
As we know, nutritional support plays a key role in the treatment of severe acute pancreatitis (SAP). Since total parenteral nutrition (TPN) was discovered, the mortality of SAP had been greatly reduced. But researchers recently demonstrated that the prognosis of SAP could be improved by early enteral nutrition (EEN), which has been a priority for nutritional support in patients with SAP. However, implementation of total enteral nutrition is often challenging in the early stage of SAP. If the enteral nutrition is overused, the burden on the gastrointestinal tract will be aggravated. Under such circumstances, the combination of enteral and parenteral nutrition for nutritional support of SAP patients would be a better choice. Therefore, in this study, we compared the efficacy of two enteral nutrition agents: traditional nutritional supplement named Luzhou-Feier powder (LZ-FP) and enteral nutritional suspension (TPF) combined with parenteral nutrition to total parenteral nutrition (TPN) in the treatment of SAP rats. Our analysis revealed that the combination of enteral nutrition and parenteral nutrition was more effective than TPN in SAP. And LZ-FP met the requirements for enteral nutrition of SAP supporting its clinical application in SAP. PRACTICAL APPLICATIONS: Luzhou-Feier powder (LZ-FP) is a traditional Chinese nutritional supplement that was originally developed as a nutritional supplement for infants and is currently used for nutritional support in patients with chronic and consumptive diseases. Our research investigated the effect and its possible mechanisms of LZ-FP as early trophic enteral nutrition in SAP rats and compared it with TPF and TPN which have been used clinically. We found that LZ-FP helped to reduce inflammatory response and improve the intestinal immune barrier of SAP. The curative effect of LZ-FP was comparable to that of TPF. And this effect may be achieved by inducing the secretion of gut hormones. Our research indicates that LZ-FP should be considered as an enteral nutrition preparation for SAP.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaodong Guo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of General Surgery, Pidu District People's Hospital, Chengdu, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wang
- Department of Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Xia
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiu Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Lindner M, Laporte A, Block S, Elomaa L, Weinhart M. Physiological Shear Stress Enhances Differentiation, Mucus-Formation and Structural 3D Organization of Intestinal Epithelial Cells In Vitro. Cells 2021; 10:2062. [PMID: 34440830 PMCID: PMC8391940 DOI: 10.3390/cells10082062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) mucus plays a pivotal role in the tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro GI models with a physiologically relevant mucus layer, studies with deeper insights into structural and compositional changes upon chemical or physical manipulation of the system are rare. To obtain an improved mucus-containing cell model, we developed easy-to-use, reusable culture chambers that facilitated the application of GI shear stresses (0.002-0.08 dyn∙cm-2) to cells on solid surfaces or membranes of cell culture inserts in bioreactor systems, thus making them readily accessible for subsequent analyses, e.g., by confocal microscopy or transepithelial electrical resistance (TEER) measurement. The human mucus-producing epithelial HT29-MTX cell-line exhibited superior reorganization into 3-dimensional villi-like structures with highly proliferative tips under dynamic culture conditions when compared to static culture (up to 180 vs. 80 µm in height). Additionally, the median mucus layer thickness was significantly increased under flow (50 ± 24 vs. 29 ± 14 µm (static)), with a simultaneous accelerated maturation of the cells into a goblet-like phenotype. We demonstrated the strong impact of culture conditions on the differentiation and reorganization of HT29-MTX cells. The results comprise valuable advances towards the improvement of existing GI and mucus models or the development of novel systems using our newly designed culture chambers.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| |
Collapse
|
49
|
Neu3 neuraminidase induction triggers intestinal inflammation and colitis in a model of recurrent human food-poisoning. Proc Natl Acad Sci U S A 2021; 118:2100937118. [PMID: 34266954 DOI: 10.1073/pnas.2100937118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Salmonella enterica Typhimurium (ST), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis. In this colitis model, disease onset has been linked to Toll-like receptor-4-dependent induction of intestinal neuraminidase activity, leading to the desialylation, reduced half-life, and acquired deficiency of anti-inflammatory intestinal alkaline phosphatase (IAP). Neuraminidase (Neu) inhibition protected against disease onset; however, the source and identity of the Neu enzyme(s) responsible remained unknown. Herein, we report that the mammalian Neu3 neuraminidase is responsible for intestinal IAP desialylation and deficiency. Absence of Neu3 thereby prevented the accumulation of lipopolysaccharide-phosphate and inflammatory cytokine expression in providing protection against the development of severe colitis.
Collapse
|
50
|
New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout ( Oncorhynchus mykiss) Retain Several Properties Observed In Vivo. Cells 2021; 10:cells10061555. [PMID: 34205481 PMCID: PMC8235179 DOI: 10.3390/cells10061555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
We derived two novel cell lines from rainbow trout (RT) proximal (RTpi-MI) and distal intestine (RTdi-MI) and compared them with the previously established continuous cell line RTgutGC. Intestinal stem cells, differentiating and differentiated epithelial cells, and connective cells were found in all cell lines. The cell lines formed a polarized barrier, which was not permeable to large molecules and absorbed proline and glucose. High seeding density induced their differentiation into more mature phenotypes, as indicated by the downregulation of intestinal stem cell-related genes (i.e., sox9, hopx and lgr5), whereas alkaline phosphatase activity was upregulated. Other enterocyte markers (i.e., sglt1 and pept1), however, were not regulated as expected. In all cell lines, the presence of a mixed population of epithelial and stromal cells was characterized for the first time. The expression by the stromal component of lgr5, a stem cell niche regulatory molecule, may explain why these lines proliferate stably in vitro. Although most parameters were conserved among the three cell lines, some significant differences were observed, suggesting that characteristics typical of each tract are partly conserved in vitro as well.
Collapse
|