1
|
Mast N, Butts M, Pikuleva IA. Unbiased insights into the multiplicity of the CYP46A1 brain effects in 5XFAD mice treated with low dose-efavirenz. J Lipid Res 2024; 65:100555. [PMID: 38719151 PMCID: PMC11176809 DOI: 10.1016/j.jlr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Makaya Butts
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Nunes MJ, Carvalho AN, Reis J, Costa D, Moutinho M, Mateus J, Mendes de Almeida R, Brito S, Risso D, Nunes S, Castro-Caldas M, Gama MJ, Rodrigues CMP, Xapelli S, Diógenes MJ, Cartier N, Chali F, Piguet F, Rodrigues E. Cholesterol redistribution triggered by CYP46A1 gene therapy improves major hallmarks of Niemann-Pick type C disease but is not sufficient to halt neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166993. [PMID: 38142760 DOI: 10.1016/j.bbadis.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mendes de Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela Risso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nathalie Cartier
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Farah Chali
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
4
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Gao Y, Ye S, Tang Y, Tong W, Sun S. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem Int 2023; 171:105635. [PMID: 37949118 DOI: 10.1016/j.neuint.2023.105635] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
The brain is the most cholesterol-rich organ in mammals. However, cholesterol metabolism in the brain is completely independent of other tissues due to the presence of the blood-brain barrier (BBB). Neurons, astrocytes and oligodendrocytes are the main cells responsible for cholesterol synthesis in the brain. The cholesterol content in the brain is maintained at a relatively constant level under strict regulation of synthesis, transport, and turnover, that is, brain cholesterol homeostasis. Once this balance is disrupted, neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) ensue. This review summarizes the processes controlling cholesterol homeostasis with respect to the synthesis, transport and turnover of cholesterol in the brain. We further focus on how cholesterol imbalance contributes to neurodegenerative diseases to explore the possibilities to modulate the key steps involved, which will provide clues for the development of therapies for the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yi Gao
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shiying Ye
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Verdaguer IB, Crispim M, Hernández A, Katzin AM. The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage. Molecules 2022; 27:molecules27248691. [PMID: 36557825 PMCID: PMC9782597 DOI: 10.3390/molecules27248691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Agustín Hernández
- Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +55-11-3091-7417
| |
Collapse
|
7
|
The Cholesteryl Ester Transfer Protein (CETP) raises Cholesterol Levels in the Brain. J Lipid Res 2022; 63:100260. [PMID: 35921880 PMCID: PMC9464954 DOI: 10.1016/j.jlr.2022.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
The cholesteryl ester transfer protein (CETP) is a lipid transfer protein responsible for the exchange of cholesteryl esters and triglycerides between lipoproteins. Decreased CETP activity is associated with longevity, cardiovascular health, and maintenance of good cognitive performance. Interestingly, mice lack the CETP-encoding gene and have very low levels of LDL particles compared with humans. Currently, the molecular mechanisms induced because of CETP activity are not clear. To understand how CETP activity affects the brain, we utilized CETP transgenic (CETPtg) mice that show elevated LDL levels upon induction of CETP expression through a high-cholesterol diet. CETPtg mice on a high-cholesterol diet showed up to 22% higher cholesterol levels in the brain. Using a microarray on mostly astrocyte-derived mRNA, we found that this cholesterol increase is likely not because of elevated de novo synthesis of cholesterol. However, cholesterol efflux is decreased in CETPtg mice along with an upregulation of the complement factor C1Q, which plays a role in neuronal cholesterol clearance. Our data suggest that CETP activity affects brain health through modulating cholesterol distribution and clearance. Therefore, we propose that CETPtg mice constitute a valuable research tool to investigate the impact of cholesterol metabolism on brain function.
Collapse
|
8
|
Dias IH, Shokr H, Shephard F, Chakrabarti L. Oxysterols and Oxysterol Sulfates in Alzheimer’s Disease Brain and Cerebrospinal Fluid. J Alzheimers Dis 2022; 87:1527-1536. [PMID: 35491790 PMCID: PMC9277668 DOI: 10.3233/jad-220083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Brain cholesterol levels are tightly regulated but increasing evidence indicates that cholesterol metabolism may drive Alzheimer’s disease (AD)-associated pathological changes. Recent advances in understanding of mitochondrial dysfunction in AD brain have presented a vital role played by mitochondria in oxysterol biosynthesis and their involvement in pathophysiology. Oxysterol accumulation in brain is controlled by various enzymatic pathways including sulfation. While research into oxysterol is under the areas of active investigation, there is less evidence for oxysterol sulfate levels in human brain. Objective: This study investigates the hypothesis that AD brain oxysterol detoxification via sulfation is impaired in later stages of disease resulting in oxysterol accumulation. Methods: Lipids were extracted from postmortem frozen brain tissue and cerebrospinal (CSF) from late- (Braak stage III-IV) and early- (Braak stage I-II) stage AD patients. Samples were spiked with internal standards prior to lipid extraction. Oxysterols were enriched with a two-step solid phase extraction using a polymeric SPE column and further separation was achieved by LC-MS/MS. Results: Oxysterols, 26-hydroxycholesterol (26-OHC), 25-hydroxycholesterol (25-OHC), and 7-oxycholesterol levels were higher in brain tissue and mitochondria extracted from late-stage AD brain tissue except for 24S-hydroxycholesterol, which was decreased in late AD. However, oxysterol sulfates are significantly lower in the AD frontal cortex. Oxysterols, 25-OHC, and 7-oxocholesterol was higher is CSF but 26-OHC and oxysterol sulfate levels were not changed. Conclusion: Our results show oxysterol metabolism is altered in AD brain mitochondria, favoring synthesis of 26-OHC, 25-OHC, and 7-oxocholesterol, and this may influence brain mitochondrial function and acceleration of the disease.
Collapse
Affiliation(s)
- Irundika H.K. Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Freya Shephard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Chakrabarti
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
10
|
Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:159-172. [PMID: 35156102 DOI: 10.37349/ent.2021.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by CYP46A1 (cytochrome P450 46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in case neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 2021; 600:233-259. [PMID: 34339523 DOI: 10.1113/jp280875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| |
Collapse
|
12
|
Pikuleva IA, Cartier N. Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Front Aging Neurosci 2021; 13:696778. [PMID: 34305573 PMCID: PMC8297829 DOI: 10.3389/fnagi.2021.696778] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance between in situ biosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models, CYP46A1 activity is altered in Alzheimer’s and Huntington’s diseases, spinocerebellar ataxias, glioblastoma, and autism spectrum disorders. In mouse models, modulations of CYP46A1 activity mitigate the manifestations of Alzheimer’s, Huntington’s, Nieman-Pick type C, and Machao-Joseph (spinocerebellar ataxia type 3) diseases as well as amyotrophic lateral sclerosis, epilepsy, glioblastoma, and prion infection. Animal studies revealed that the CYP46A1 activity effects are not limited to cholesterol maintenance but also involve critical cellular pathways, like gene transcription, endocytosis, misfolded protein clearance, vesicular transport, and synaptic transmission. How CYP46A1 can exert central control of such essential brain functions is a pressing question under investigation. The potential therapeutic role of CYP46A1, demonstrated in numerous models of brain disorders, is currently being evaluated in early clinical trials. This review summarizes the past 70 years of research that has led to the identification of CYP46A1 and brain cholesterol homeostasis as powerful therapeutic targets for severe pathologies of the CNS.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
13
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
15
|
Wang Y, Yutuc E, Griffiths WJ. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev Proteomics 2020; 17:699-717. [PMID: 33191815 DOI: 10.1080/14789450.2020.1847086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: We present our views on the current application of mass spectrometry (MS) based lipidomics and how lipidomics can develop in the next decade to be most practical use to society. That is not to say that lipidomics has not already been of value. In-fact, in its earlier guise as metabolite profiling most of the pathways of steroid biosynthesis were uncovered and via focused lipidomics many inborn errors of metabolism are routinely clinically identified. However, can lipidomics be extended to improve biochemical understanding of, and to diagnose, the most prevalent diseases of the 21st century? Areas covered: We will highlight the concept of 'level of identification' and the equally crucial topic of 'quantification'. Only by using a standardized language for these terms can lipidomics be translated to fields beyond academia. We will remind the lipid scientist of the value of chemical derivatization, a concept exploited since the dawn of lipid biochemistry. Expert opinion: Only by agreement of the concepts of identification and quantification and their incorporation in lipidomics reporting can lipidomics maximize its value.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School , Swansea, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School , Swansea, Wales, UK
| | | |
Collapse
|
16
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
18
|
Petrov AM, Mast N, Li Y, Denker J, Pikuleva IA. Brain sterol flux mediated by cytochrome P450 46A1 affects membrane properties and membrane-dependent processes. Brain Commun 2020; 2. [PMID: 32661514 PMCID: PMC7357967 DOI: 10.1093/braincomms/fcaa043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 46A1 encoded by CYP46A1 catalyzes cholesterol 24-hydroxylation and is a CNS-specific enzyme that controls cholesterol removal and turnover in the brain. Accumulating data suggest that increases in cytochrome P450 46A1 activity in mouse models of common neurodegenerative diseases affect various, apparently unlinked biological processes and pathways. Yet, the underlying reason for these multiple enzyme activity effects is currently unknown. Herein, we tested the hypothesis that cytochrome P450 46A1-mediated sterol flux alters physico-chemical properties of the plasma membranes and thereby membrane-dependent events. We used 9-month old 5XFAD mice (an Alzheimer's disease model) treated for 6 months with the anti-HIV drug efavirenz. These animals have previously been shown to have improved behavioral performance, increased cytochrome P450 46A1 activity in the brain, and increased sterol flux through the plasma membranes. We further examined 9-month old Cyp46a1 -/- mice, which have previously been observed to have cognitive deficits and decreased sterol flux through brain membranes. Synaptosomal fractions from the brain of efavirenz-treated 5XFAD mice had essentially unchanged cholesterol levels as compared to control 5XFAD mice. However with efavirenz treatment in these mice, there were changes in the membrane properties (increased cholesterol accessibility, ordering, osmotic resistance, and thickness) as well as total glutamate content and ability to release glutamate in response to mild stimulation. Similarly, the cholesterol content in synaptosomal fractions from the brain of Cyp46a1 -/- mice was essentially the same as in wild type mice but knockout of Cyp46a1 was associated with changes in membrane properties and glutamate content and its exocytotic release. Changes in Cyp46a1 -/- mice were in the opposite direction to those observed in efavirenz-treated vs control 5XFAD mice. Incubation of synaptosomal fractions with the inhibitors of glycogen synthase kinase 3, cyclin-dependent kinase 5, protein phosphatase 1/2A or calcineurin, and protein phosphatase 2B revealed that increased sterol flux in efavirenz-treated vs control 5XFAD mice affected the ability of all four enzymes to modulate glutamate release. In contrast, in Cyp46a1 -/- vs wild type mice, decreased sterol flux altered the ability of only cyclin-dependent kinase 5 and protein phosphatase 2B to regulate the glutamate release. Collectively, our results support cytochrome P450 46A1-mediated sterol flux as an important contributor to the fundamental properties of the membranes, protein phosphorylation, and synaptic transmission Also, our data provide an explanation of how one enzyme, cytochrome P450 46A1, can affect multiple pathways and processes and serve as a common potential target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - John Denker
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
19
|
Potashkin J, Huang X, Becker C, Chen H, Foltynie T, Marras C. Understanding the links between cardiovascular disease and Parkinson's disease. Mov Disord 2020; 35:55-74. [PMID: 31483535 PMCID: PMC6981000 DOI: 10.1002/mds.27836] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Studies investigating the associations between genetic or environmental factors and Parkinson's disease (PD) have uncovered a number of factors shared with cardiovascular disease, either as risk factors or manifestations of cardiovascular disease itself. Older age, male sex, and possibly type 2 diabetes are examples. On the other hand, coffee consumption and physical activity are each associated with a lower risk of both PD and cardiovascular disease. This observation raises questions about the underlying pathophysiological links between cardiovascular disease and PD. There is evidence for common mechanisms in the areas of glucose metabolism, cellular stress, lipid metabolism, and inflammation. On the other hand, smoking and total/low-density lipoprotein cholesterol appear to have opposite associations with cardiovascular disease and PD. Thus, it is uncertain whether the treatment of cardiovascular risk factors will impact on the onset or progression of PD. The available data suggest that a nuanced approach is necessary to manage risk factors such as cholesterol levels once the associations are better understood. Ultimately, the choice of therapy may be tailored to a patient's comorbidity profile. This review presents the epidemiological evidence for both concordant and discordant associations between cardiovascular disease and PD, discusses the cellular and metabolic processes that may underlie these links, and explores the implications this has for patient care and future research. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Judy Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Xuemei Huang
- Translational Brain Research Center and Department of Neurology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Claudia Becker
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Thomas Foltynie
- Department of Clinical & Movement Neurosciences, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's Research, Toronto Western Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Petrov AM, Pikuleva IA. Cholesterol 24-Hydroxylation by CYP46A1: Benefits of Modulation for Brain Diseases. Neurotherapeutics 2019; 16:635-648. [PMID: 31001737 PMCID: PMC6694357 DOI: 10.1007/s13311-019-00731-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cholesterol 24-hydroxylation is the major mechanism for cholesterol removal from the brain and the reaction catalyzed by cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. This review describes CYP46A1 in the context of cholesterol homeostasis in the brain and summarizes available experimental data on CYP46A1 association with different neurologic diseases, including the mechanisms by which changes in the CYP46A1 activity in the brain could be beneficial for these diseases. The modulation of CYP46A1 activity by genetic and pharmacologic means is also presented along with a brief synopsis of the two clinical trials that evaluate CYP46A1 as a therapeutic target for Alzheimer's disease as well as Dravet and Lennox-Gastaut syndromes.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Petrov AM, Lam M, Mast N, Moon J, Li Y, Maxfield E, Pikuleva IA. CYP46A1 Activation by Efavirenz Leads to Behavioral Improvement without Significant Changes in Amyloid Plaque Load in the Brain of 5XFAD Mice. Neurotherapeutics 2019; 16:710-724. [PMID: 31062296 PMCID: PMC6694340 DOI: 10.1007/s13311-019-00737-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efavirenz, the FDA-approved anti-retroviral medication, is evaluated in the clinical trial in patients with mild cognitive impairment or early dementia due to Alzheimer's disease. Efavirenz is assessed for activation of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme that converts cholesterol to 24-hydroxycholesterol. Cholesterol 24-hydroxylation is the major pathway for brain cholesterol removal, and a mechanism that controls brain cholesterol turnover. The present study tested efavirenz on 5XFAD mice (an Alzheimer's model) at a very low daily dose of 0.1 mg/kg body weight. Efavirenz treatment started from three months of age, after amyloid plague appearance, and continued for 6 months. This treatment led to CYP46A1 activation in the brain, enhancement of brain cholesterol turnover, behavioral improvements, reduction in microglia activation but increased astrocyte reactivity. The levels of the soluble and insoluble amyloid 40 and 42 peptides were unchanged while the number and area of the dense core amyloid plaques were slightly decreased. The measurements of the brain levels of several pre- and post-synaptic proteins (Munc13-1, PSD-95, gephyrin, synaptophysin, synapsin-1, and calbindin-D28k) suggested efavirenz effect at the synaptic level. Efavirenz treatment in the present work seems to represent a model of behavioral and other improvements independent of the levels of the amyloid peptides and provides insight into potential outcomes of the future clinical trial.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Jean Moon
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Erin Maxfield
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol 2019; 190:104-114. [PMID: 30878503 DOI: 10.1016/j.jsbmb.2019.03.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs. Years of research have shown a strong correlation between blood hypercholesterolemia and AD, however cholesterol is not able to cross the Blood Brain Barrier (BBB) into the brain. Cholesterol lowering therapies have shown mixed results in cognitive performance in AD patients, raising questions of whether brain cholesterol metabolism in the brain should be studied separately from peripheral cholesterol metabolism and what their relationship is. Unlike cholesterol, oxidized cholesterol metabolites known as oxysterols are able to cross the BBB from the circulation into the brain and vice-versa. The main oxysterols present in the circulation are 24S-hydroxycholesterol and 27-hydroxycholesterol. These oxysterols and their catalysing enzymes have been found to be altered in AD brains and there is evidence indicating their influence in the progression of the disease. This review gives a broad perspective on the relationship between hypercholesterolemia and AD, cholesterol lowering therapies for AD patients and the role of oxysterols in pathological and non-pathological conditions. Also, we propose cholesterol metabolites as valuable targets for prevention and alternative AD treatments.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| | - Julen Goikolea
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Institute of Molecular Biology and Genetics-IBGM, (University of Valladolid-CSIC), Valladolid, Spain
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Instituto Cajal (CSIC), Laboratorio Cajal de Circuitos Corticales, Madrid, Spain
| | - Silvia Maioli
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| |
Collapse
|
23
|
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33:8782-8798. [PMID: 31063705 DOI: 10.1096/fj.201900092r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Abstract
On January 21, 2017, I received an E-mail from Herb Tabor that I had been simultaneously hoping for and dreading for several years: an invitation to write a "Reflections" article for the Journal of Biological Chemistry On the one hand, I was honored to receive an invitation from Herb, a man I have admired for over 40 years, known for 24 years, and worked with as a member of the Editorial Board and Associate Editor of the Journal of Biological Chemistry for 17 years. On the other hand, the invitation marked the waning of my career as an academic scientist. With these conflicting emotions, I wrote this article with the goals of recording my career history and recognizing the many mentors, trainees, and colleagues who have contributed to it and, perhaps with pretension, with the desire that students who are beginning a career in research will find inspiration in the path I have taken and appreciate the importance of luck.
Collapse
Affiliation(s)
- David W Russell
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
25
|
Huang X, Sterling NW, Du G, Sun D, Stetter C, Kong L, Zhu Y, Neighbors J, Lewis MM, Chen H, Hohl RJ, Mailman RB. Brain cholesterol metabolism and Parkinson's disease. Mov Disord 2019; 34:386-395. [PMID: 30681742 PMCID: PMC6420391 DOI: 10.1002/mds.27609] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circulating cholesterol levels have been linked to PD, but not directly to brain physiology. OBJECTIVE To assess whether brain cholesterol metabolism is related to PD. METHODS Sixty PD patients and 64 controls were recruited from an academic movement disorder clinic (2009-2012). Thirty-five PD patients and 33 controls returned approximately 36 months later. Fasting plasma (S)24-OH-cholesterol (brain-derived cholesterol metabolite) and 27-OH-cholesterol (peripheral cholesterol metabolite) were quantified. Odds ratios for PD were derived from logistic regression models, adjusting for potential confounders. Relationships between the oxysterols and clinical measurements were explored using Spearman correlation coefficients. RESULTS Mean age of PD subjects was 63.8 ± 8.3 years and disease duration was 5.0 ± 5.4 years. Plasma (S)24-OH-cholesterol levels were inversely associated with the odds of having PD, with an odds ratio of 0.92 (95% confidence interval: 0.87-0.97) for each 1-ng/mL increase (P = 0.004). Compared to the lowest tertile, the odds ratio was 0.34 (0.12-0.98) for the second tertile (P = 0.045) and 0.08 (0.02-0.31) for the highest tertile (P < 0.001). Higher (S)24-OH-cholesterol levels also were correlated with better sense of smell (r = 0.35; P = 0.01). No significant associations were found between clinical measures and 27-OH-cholesterol, a peripheral cholesterol metabolite. Furthermore, (S)24-OH-cholesterol levels were stable over time, whereas 27-OH-cholesterol decreased with time in both cases and controls. CONCLUSIONS Results indicate that plasma (S)24-OH-cholesterol (possibly reflecting brain cholesterol metabolism) is inversely linked to PD, is relatively stable over time, and may serve as a new biomarker for PD. Further investigation is necessary to determine the mechanistic and clinical implications. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xuemei Huang
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Neurosurgery, Pennsylvania State University, Hershey PA 17033 USA
- Radiology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Kinesiology, Pennsylvania State University, Hershey PA 17033 USA
| | | | - Guangwei Du
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
| | - Dongxiao Sun
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Mass Spectrometry Core Facility, Pennsylvania State University, Hershey PA 17033 USA
| | - Christina Stetter
- Public Health Sciences, Pennsylvania State University, Hershey PA 17033 USA
| | - Lan Kong
- Public Health Sciences, Pennsylvania State University, Hershey PA 17033 USA
| | - Yusheng Zhu
- Pathology and Laboratory Medicine, Pennsylvania State University, Hershey PA 17033 USA
| | - Jeffery Neighbors
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey PA 17033 USA
| | - Mechelle M. Lewis
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
| | - Honglei Chen
- Department of Epidemiology, Michigan State University, East Lansing MI 48824
| | - Raymond J. Hohl
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey PA 17033 USA
- Medicine, Pennsylvania State University, Hershey PA 17033 USA
| | - Richard B. Mailman
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
| |
Collapse
|
26
|
Shidoji Y, Tabata Y. Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells. J Lipid Res 2019; 60:579-593. [PMID: 30622150 DOI: 10.1194/jlr.m090548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/25/2018] [Indexed: 01/10/2023] Open
Abstract
Geranylgeranoic acid (GGA) has been reported to induce autophagic cell death via upregulation of lipid-induced unfolded protein response in several human hepatoma-derived cell lines, and its 4,5-didehydro derivative has been developed as a preventive agent against second primary hepatoma in clinical trials. We have previously reported that GGA is a natural diterpenoid synthesized in several medicinal herbs. Here, we provide unequivocal evidence for de novo GGA biosynthesis in mammals. First, with normal male Wistar rats, the levels of GGA in liver were found to be far greater than those in other organs analyzed. Second, we demonstrated the metabolic GGA labeling from the 13C-labeled mevalonolactone in the human hepatoma-derived cell line, HuH-7. Isotopomer spectral analysis revealed that approximately 80% of the cellular GGA was newly synthesized from mevalonate (MVA) in 12 h and the acid picked up preexisting farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP), suggesting that GGA is derived from FPP and GGPP through the MVA pathway. Third, zaragozic acid A, a squalene synthase inhibitor, induced dose-dependent upregulation of endogenous GGA content in HuH-7 cells and their concomitant cell death. These results strongly suggest that a cancer-preventive GGA is biosynthesized via the MVA pathway in mammals.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki, Japan
| | - Yuki Tabata
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki, Japan
| |
Collapse
|
27
|
Petek B, Villa-Lopez M, Loera-Valencia R, Gerenu G, Winblad B, Kramberger MG, Ismail MAM, Eriksdotter M, Garcia-Ptacek S. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia. J Intern Med 2018; 284:620-642. [PMID: 30264910 DOI: 10.1111/joim.12838] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of people worldwide receive agents targeting the renin-angiotensin system (RAS) to treat hypertension or statins to lower cholesterol. The RAS and cholesterol metabolic pathways in the brain are autonomous from their systemic counterparts and are interrelated through the cholesterol metabolite 27-hydroxycholesterol (27-OHC). These systems contribute to memory and dementia pathogenesis through interference in the amyloid-beta cascade, vascular mechanisms, glucose metabolism, apoptosis, neuroinflammation and oxidative stress. Previous studies examining the relationship between these treatments and cognition and dementia risk have produced inconsistent results. Defining the blood-brain barrier penetration of these medications has been challenging, and the mechanisms of action on cognition are not clearly established. Potential biases are apparent in epidemiological and clinical studies, such as reverse epidemiology, indication bias, problems defining medication exposure, uncertain and changing doses, and inappropriate grouping of outcomes and medications. This review summarizes current knowledge of the brain cholesterol and RAS metabolism and the mechanisms by which these pathways affect neurodegeneration. The putative mechanisms of action of statins and medications inhibiting the RAS will be examined, together with prior clinical and animal studies on their effects on cognition. We review prior epidemiological studies, analysing their strengths and biases, and identify areas for future research. Understanding the pathophysiology of the brain cholesterol system and RAS and their links to neurodegeneration has enormous potential. In future, well-designed epidemiological studies could identify potential treatments for Alzheimer's disease (AD) amongst medications that are already in use for other indications.
Collapse
Affiliation(s)
- B Petek
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M Villa-Lopez
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - R Loera-Valencia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G Gerenu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastian, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, CIBERNED, Health Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - M G Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M-A-M Ismail
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Diseases of the Nervous System patient flow, Karolinska University Hospital, Huddinge, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine, Neurology Section, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
28
|
Hottman D, Cheng S, Gram A, LeBlanc K, Yuan LL, Li L. Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density. Neuroscience 2018; 373:207-217. [PMID: 29406266 DOI: 10.1016/j.neuroscience.2018.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/23/2023]
Abstract
Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer's disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD. Haplodeficiency of either FT or GGT attenuates amyloid-β deposition and neuroinflammation but only reduction in FT rescues cognitive function. The current study aimed to elucidate the potential mechanisms that may account for the lack of cognitive benefit in GGT-haplodeficient mice, despite attenuated neuropathology. The results showed that the magnitude of long-term potentiation (LTP) was markedly suppressed in hippocampal slices from GGT-haplodeficient mice. Consistent with the synaptic dysfunction, there was a significant decrease in cortical spine density and cognitive function in GGT-haplodeficient mice. To further study the neuron-specific effects of GGT deficiency, we generated conditional forebrain neuron-specific GGT-knockout (GGTf/fCre+) mice using a Cre/LoxP system under the CAMKIIα promoter. We found that both the magnitude of hippocampal LTP and the dendritic spine density of cortical neurons were decreased in GGTf/fCre+ mice compared with GGTf/fCre- mice. Immunoblot analyses of cerebral lysate showed a significant reduction in cell membrane-associated (geranylgeranylated) Rac1 and RhoA but not (farnesylated) H-Ras, in GGTf/fCre+ mice, suggesting that insufficient geranylgeranylation of the Rho family of small GTPases may underlie the detrimental effects of GGT deficiency. These findings reinforce the critical role of GGT in maintaining spine structure and synaptic/cognitive function in development and in the mature brain.
Collapse
Affiliation(s)
- David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410208, China
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kyle LeBlanc
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Li-Lian Yuan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Pharmacology and Graduate Programs in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
29
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, Li Y, Landreth G, Pikuleva IA. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology 2017; 123:465-476. [PMID: 28655608 PMCID: PMC5546235 DOI: 10.1016/j.neuropharm.2017.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Cytochrome P450 46A1 (CYP46A1 or cholesterol 24-hydroxylase) controls cholesterol elimination from the brain and plays a role in higher order brain functions. Genetically enhanced CYP46A1 expression in mouse models of Alzheimer's disease mitigates the manifestations of this disease. We enhanced CYP46A1 activity pharmacologically by treating 5XFAD mice, a model of rapid amyloidogenesis, with a low dose of the anti-HIV medication efavirenz. Efavirenz was administered from 1 to 9 months of age, and mice were evaluated at specific time points. At one month of age, cholesterol homeostasis was already disturbed in the brain of 5XFAD mice. Nevertheless, efavirenz activated CYP46A1 and mouse cerebral cholesterol turnover during the first four months of administration. This treatment time also reduced amyloid burden and microglia activation in the cortex and subiculum of 5XFAD mice as well as protein levels of amyloid precursor protein and the expression of several genes involved in inflammatory response. However, mouse short-term memory and long-term spatial memory were impaired, whereas learning in the context-dependent fear test was improved. Additional four months of drug administration (a total of eight months of treatment) improved long-term spatial memory in the treated as compared to the untreated mice, further decreased amyloid-β content in 5XFAD brain, and also decreased the mortality rate among male mice. We propose a mechanistic model unifying the observed efavirenz effects. We suggest that CYP46A1 activation by efavirenz could be a new anti-Alzheimer's disease treatment and a tool to study and identify normal and pathological brain processes affected by cholesterol maintenance.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ana Valencia-Olvera
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Constans
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Erin Maxfield
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiroyuki Arakawa
- Behavioral Core, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
31
|
Mast N, Anderson KW, Johnson KM, Phan TTN, Guengerich FP, Pikuleva IA. In vitro cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds. J Biol Chem 2017. [PMID: 28642370 DOI: 10.1074/jbc.m117.794909] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 46A1 (CYP46A1, cholesterol 24-hydroxylase) is the enzyme responsible for the majority of cholesterol elimination from the brain. Previously, we found that the anti-HIV drug efavirenz (EFV) can pharmacologically activate CYP46A1 in mice. Herein, we investigated whether CYP46A1 could also be activated by endogenous compounds, including major neurotransmitters. In vitro experiments with purified recombinant CYP46A1 indicated that CYP46A1 is activated by l-glutamate (l-Glu), l-aspartate, γ-aminobutyric acid, and acetylcholine, with l-Glu eliciting the highest increase (3-fold) in CYP46A1-mediated cholesterol 24-hydroxylation. We also found that l-Glu and other activating neurotransmitters bind to the same site on the CYP46A1 surface, which differs from the EFV-binding site. The other principal differences between EFV and l-Glu in CYP46A1 activation include an apparent lack of l-Glu binding to the P450 active site and different pathways of signal transduction from the allosteric site to the active site. EFV and l-Glu similarly increased the CYP46A1 kcat, the rate of the "fast" phase of the enzyme reduction by the redox partner NADPH-cytochrome P450 oxidoreductase, and the amount of P450 reduced. Spectral titrations with cholesterol, in the presence of EFV or l-Glu, suggest that water displacement from the heme iron can be affected in activator-bound CYP46A1. Moreover, EFV and l-Glu synergistically activated CYP46A1. Collectively, our in vitro data, along with those from previous cell culture and in vivo studies by others, suggest that l-Glu-induced CYP46A1 activation is of physiological relevance.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kyle W Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
32
|
van Deijk ALF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB, Verheijen MHG. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 2017; 65:670-682. [PMID: 28168742 DOI: 10.1002/glia.23120] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682.
Collapse
Affiliation(s)
- Anne-Lieke F van Deijk
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Nutabi Camargo
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jaap Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Yalelaan 1, 3584 CL Utrecht University, Utrecht, The Netherlands
| | - Floriana Mogavero
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
33
|
Moutinho M, Nunes MJ, Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1911-1920. [PMID: 27663182 DOI: 10.1016/j.bbalip.2016.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The major elimination pathway of brain cholesterol is its hydroxylation into 24 (S)-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1). Interestingly, there seems to be an association between CYP46A1 and high-order brain functions, in a sense that increased expression of this hydroxylase improves cognition, while a reduction leads to a poor cognitive performance. Moreover, increasing amount of epidemiological, biochemical and molecular evidence, suggests that CYP46A1 has a role in the pathogenesis or progression of neurodegenerative disorders, in which up-regulation of this enzyme is clearly beneficial. However, the mechanisms underlying these effects are poorly understood, which highlights the importance of studies that further explore the role of CYP46A1 in the central nervous system. In this review we summarize the major findings regarding CYP46A1, and highlight the several recently described pathways modulated by this enzyme from a physiological and pathological perspective, which might account for novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
34
|
Moutinho M, Nunes MJ, Correia JC, Gama MJ, Castro-Caldas M, Cedazo-Minguez A, Rodrigues CMP, Björkhem I, Ruas JL, Rodrigues E. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci Rep 2016; 6:30928. [PMID: 27491694 PMCID: PMC4974659 DOI: 10.1038/srep30928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 01/19/2023] Open
Abstract
Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge C Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Novum, Stockholm, Sweden
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
35
|
Sun MY, Linsenbardt AJ, Emnett CM, Eisenman LN, Izumi Y, Zorumski CF, Mennerick S. 24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist 2016; 22:132-44. [PMID: 25628343 PMCID: PMC4821654 DOI: 10.1177/1073858414568122] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The major cholesterol metabolite in brain, 24(S)-hydroxycholesterol (24S-HC), serves as a vehicle for cholesterol removal. Its effects on neuronal function, however, have only recently begun to be investigated. Here, we review that nascent work. Our own studies have demonstrated that 24S-HC has potent positive modulatory effects on N-methyl-d-aspartate (NMDA) receptor (NMDAR) function. This could have implications not only for brain plasticity but also for pathological NMDAR overuse. Other work has demonstrated effects of 24S-HC on neuronal survival and as a possible biomarker of neurodegenerative disease. Depending on circumstances, both upregulation/mimicry of 24S-HC signaling and down-regulation/antagonism may have therapeutic potential. We are interested in the possibility that synthetic analogues of 24S-HC with positive effects at NMDARs may hold neurotherapeutic promise, given the role of NMDA receptor hypofunction in certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Gao S, Yu R, Zhou X. The Role of Geranylgeranyltransferase I-Mediated Protein Prenylation in the Brain. Mol Neurobiol 2015; 53:6925-6937. [DOI: 10.1007/s12035-015-9594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
38
|
Burlot MA, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin J, Gautier B, Djelti F, Audrain M, Dauphinot L, Fernandez-Gomez FJ, Caillierez R, Laprévote O, Bièche I, Auzeil N, Potier MC, Dutar P, Korte M, Buée L, Blum D, Cartier N. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 2015; 24:5965-76. [PMID: 26358780 DOI: 10.1093/hmg/ddv268] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by both amyloid and Tau pathologies. The amyloid component and altered cholesterol metabolism are closely linked, but the relationship between Tau pathology and cholesterol is currently unclear. Brain cholesterol is synthesized in situ and cannot cross the blood-brain barrier: to be exported from the central nervous system into the blood circuit, excess cholesterol must be converted to 24S-hydroxycholesterol by the cholesterol 24-hydroxylase encoded by the CYP46A1 gene. In AD patients, the concentration of 24S-hydroxycholesterol in the plasma and the cerebrospinal fluid are lower than in healthy controls. The THY-Tau22 mouse is a model of AD-like Tau pathology without amyloid pathology. We used this model to investigate the potential association between Tau pathology and CYP46A1 modulation. The amounts of CYP46A1 and 24S-hydroxycholesterol in the hippocampus were lower in THY-Tau22 than control mice. We used an adeno-associated virus (AAV) gene transfer strategy to increase CYP46A1 expression in order to investigate the consequences on THY-Tau22 mouse phenotype. Injection of the AAV-CYP46A1 vector into the hippocampus of THY-Tau22 mice led to CYP46A1 and 24S-hydroxycholesterol content normalization. The cognitive deficits, impaired long-term depression and spine defects that characterize the THY-Tau22 model were completely rescued, whereas Tau hyperphosphorylation and associated gliosis were unaffected. These results argue for a causal link between CYP46A1 protein content and memory impairments that result from Tau pathology. Therefore, CYP46A1 may be a relevant therapeutic target for Tauopathies and especially for AD.
Collapse
Affiliation(s)
- Marie-Anne Burlot
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Jérôme Braudeau
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, University of Braunschweig, Braunschweig 38106, Germany, AG NIND, HZI, Inhoffenstraße 7, Braunschweig D-38124, Germany
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS894, Paris 75014, France
| | | | - Jennifer Varin
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris 75006, France
| | - Benoit Gautier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Fathia Djelti
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Mickael Audrain
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Luce Dauphinot
- ICM, Hopital Pitie-Salpetriere, CNRS UMR7225, INSERM UMRS975, UPMC, Paris 75013, France
| | - Francisco-Jose Fernandez-Gomez
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and
| | - Raphaëlle Caillierez
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and
| | | | - Ivan Bièche
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris 75006, France
| | - Nicolas Auzeil
- Chimie-Toxicologie Analytique et Cellulaire, EA 4463 and
| | - Marie-Claude Potier
- ICM, Hopital Pitie-Salpetriere, CNRS UMR7225, INSERM UMRS975, UPMC, Paris 75013, France
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS894, Paris 75014, France
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, University of Braunschweig, Braunschweig 38106, Germany, AG NIND, HZI, Inhoffenstraße 7, Braunschweig D-38124, Germany
| | - Luc Buée
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and CHRU-Lille, Faculté de Médecine, Lille 59037, France
| | - David Blum
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and CHRU-Lille, Faculté de Médecine, Lille 59037, France
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France,
| |
Collapse
|
39
|
Bandaru VVR, Haughey NJ. Quantitative detection of free 24S-hydroxycholesterol, and 27-hydroxycholesterol from human serum. BMC Neurosci 2014; 15:137. [PMID: 25539717 PMCID: PMC4304132 DOI: 10.1186/s12868-014-0137-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/17/2014] [Indexed: 03/25/2023] Open
Abstract
Background Cholesterol metabolism is important for the maintenance of myelin and neuronal membranes in the central nervous system. Blood concentrations of the brain specific cholesterol metabolite 24S-hydroxysterol to the peripheral metabolite 27-hydroxycholesterol may be useful surrogate markers for neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, HIV-Associated Neurocognitive Disorders, and Multiple Sclerosis. However, current methods to isolate hydroxycholesterols are labor intensive, prone to produce variable extraction efficiencies and do not discriminate between free and esterfied forms of hydroxycholesterols. Since free hydroxycholesterols are the biologically active form of these sterols, separating free from esterfied forms may provide a sensitive measure to identify disease-associated differences in brain sterol metabolism. Results We found that average human serum concentrations were 12.3 ± 4.79 ng/ml for free 24(s)-hydroxycholesterol and 17.7 ± 8.5 ng/ml for 27-hydroxycholesterol. Conclusion Serum measurements of these biologically active oxysterols may be useful surrogate measures for brain health in a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Veera Venkata Ratnam Bandaru
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Carnegie 616A, 600 North Wolfe Street, Baltimore, 21287, MD, USA.
| | - Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Carnegie 616A, 600 North Wolfe Street, Baltimore, 21287, MD, USA. .,Department of Psychiatry, Division of Geriatric Psychiatry and Neuropsychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Cholesterol 24S-Hydroxylase Overexpression Inhibits the Liver X Receptor (LXR) Pathway by Activating Small Guanosine Triphosphate-Binding Proteins (sGTPases) in Neuronal Cells. Mol Neurobiol 2014; 51:1489-503. [DOI: 10.1007/s12035-014-8828-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
41
|
Wood WG, Li L, Müller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J Neurochem 2014; 129:559-72. [PMID: 24329875 PMCID: PMC3999290 DOI: 10.1111/jnc.12637] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer's disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Ab) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD.Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only amyloid precursor protein and Ab. The purpose of this review, therefore, was to examine the above-mentioned issues, discuss the pros and cons of the cholesterol-AD hypothesis, involvement of other lipids in the mevalonate pathway, and consider that AD may impact cholesterol homeostasis.
Collapse
Affiliation(s)
- W. Gibson Wood
- Geriatric Research, Education and Clinical Center, VAMC, Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Walter E. Müller
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
42
|
Meljon A, Wang Y, Griffiths WJ. Oxysterols in the brain of the cholesterol 24-hydroxylase knockout mouse. Biochem Biophys Res Commun 2014; 446:768-74. [PMID: 24491562 PMCID: PMC4000437 DOI: 10.1016/j.bbrc.2014.01.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/03/2022]
Abstract
24S-Hydroxycholesterol is almost absent from brain of the Cyp46a1−/− mouse. It is not quantitatively replaced by another oxysterol. Minor amounts of 22R-, 24R-, 25- and (25R),26-hydroxycholesterols are present. Cholesterol biosynthesis is reduced in brain of the Cyp46a1−/− mouse. 24S,25-Epoxycholesterol synthesis is reduced in brain of the Cyp46a1−/− mouse.
Oxysterols are oxidised forms of cholesterol or its precursors. In this study we utilised the cholesterol 24-hydroxylase knockout mouse (Cyp46a1−/−) to study the sterol and oxysterol content of brain. Despite a great reduction in the abundance of 24S-hydroxycholesterol, the dominant metabolite of cholesterol in wild type brain, no other cholesterol metabolite was found to quantitatively replace this oxysterol in the Cyp46a1−/− mouse. Only minor amounts of other side-chain oxysterols including 22R-, 24R-, 25- and (25R),26-hydroxycholesterols were detected. In line with earlier studies, levels of cholesterol were similar in Cyp46a1−/− and wild type animals. However, the level of the cholesterol precursor, desomsterol, and its parallel metabolite formed via a shut of the mevalonate pathway, 24S,25-epoxycholesterol, were reduced in the Cyp46a1−/− mouse. The reduction in abundance of 24S,25-epoxycholesterol is interesting in light of a recent report indicating that this oxysterol promotes dopaminergic neurogenesis.
Collapse
Affiliation(s)
- Anna Meljon
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Yuqin Wang
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
43
|
The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 2013; 33:17290-300. [PMID: 24174662 DOI: 10.1523/jneurosci.2619-13.2013] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μM. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.
Collapse
|
44
|
Pierrot N, Tyteca D, D'auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, Haylani LE, Muls N, N'Kuli F, Laquerrière A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med 2013; 5:608-25. [PMID: 23554170 PMCID: PMC3628100 DOI: 10.1002/emmm.201202215] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 01/06/2023] Open
Abstract
Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity.
Collapse
Affiliation(s)
- Nathalie Pierrot
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Donatienne Tyteca
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ludovic D'auria
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ilse Dewachter
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Philippe Gailly
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Aurélie Hendrickx
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Bernadette Tasiaux
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Laetitia El Haylani
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Nathalie Muls
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Francisca N'Kuli
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Annie Laquerrière
- Department of Pathology, Rouen University Hospital and ERI 28, Institute for Biomedical Research, University of RouenRouen, France
| | | | - Dominique Campion
- Faculty of Medicine, Inserm U614-IFRMPRouen, France
- Department of Research, CHSRSotteville-lès-Rouen, France
| | - Jean-Pierre Brion
- Laboratory of Histology and Neuropathology, Université libre de BruxellesBrussels, Belgium
| | - Pierre J Courtoy
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Pascal Kienlen-Campard
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
- *Corresponding author: Tel: +32 2 764 93 41; Fax: +32 2 764 54 60; E-mail:
| |
Collapse
|
45
|
Acute and chronic oral toxicity of a partially purified plaunotol extract from Croton stellatopilosus Ohba. BIOMED RESEARCH INTERNATIONAL 2013; 2013:303162. [PMID: 24286075 PMCID: PMC3806312 DOI: 10.1155/2013/303162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/22/2013] [Indexed: 12/03/2022]
Abstract
Plaunotol, an acyclic diterpenoid with highly effective antigastric ulcer properties, has been commercially isolated from leaves of Croton stellatopilosus Ohba. This Thai medicinal plant was traditionally used in the form of crude extracts, suggesting that it is possible to administer these plaunotol-containing extracts without toxicity. To confirm its safety, the oral toxicity of a partially purified plaunotol extract (PPE) was evaluated in vivo. The PPE was simply prepared by 95% ethanol reflux extraction followed by hexane partition. The obtained extract was analyzed and found to contain 43% w/w of plaunotol and another compound, likely a fatty acid-plaunotol conjugate that is considered a major impurity. Oral administration of PPE to ICR mice and Wistar rats was conducted to evaluate acute and chronic toxicity of the plaunotol extract, respectively. The acute toxicity study demonstrated that PPE was practically nontoxic based on its high median lethal dose value (LD50 = 10.25 g/kg). The chronic toxicity studies also showed the absence of mortality and clinical symptoms in all rats treated with 11–1,100 mg/kg/day of PPE during a 6-month period. Histopathological and hematological analyses revealed that altered liver and kidney function and increased blood platelet number, but only at the high doses (550–1,100 mg/kg/day). These results suggest that PPE is potentially safe for further development as a therapeutic agent in humans.
Collapse
|
46
|
Chen KC, Blalock EM, Curran-Rauhut MA, Kadish I, Blalock SJ, Brewer L, Porter NM, Landfield PW. Glucocorticoid-dependent hippocampal transcriptome in male rats: pathway-specific alterations with aging. Endocrinology 2013; 154:2807-20. [PMID: 23736296 PMCID: PMC3713214 DOI: 10.1210/en.2013-1139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor-activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT-up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT-down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the brain aging phenotype.
Collapse
Affiliation(s)
- Kuey-Chu Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A. Retracted: Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 2013; 88:825-43. [DOI: 10.1111/brv.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Victor A. Cortes
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Dolores Busso
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Pablo Mardones
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Alberto Maiz
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Antonio Arteaga
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Flavio Nervi
- Department of Gastroenterology; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - Attilio Rigotti
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| |
Collapse
|
48
|
Mast N, Linger M, Clark M, Wiseman J, Stout CD, Pikuleva IA. In silico and intuitive predictions of CYP46A1 inhibition by marketed drugs with subsequent enzyme crystallization in complex with fluvoxamine. Mol Pharmacol 2012; 82:824-34. [PMID: 22859721 DOI: 10.1124/mol.112.080424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 46A1 (cholesterol 24-hydroxylase) is an important brain enzyme that may be inhibited by structurally distinct pharmaceutical agents both in vitro and in vivo. To identify additional inhibitors of CYP46A1 among U.S. Food and Drug Administration-approved therapeutic agents, we used in silico and intuitive predictions and evaluated some of the predicted binders in the enzyme and spectral binding assays. We tested a total of 298 marketed drugs for the inhibition of CYP46A1-mediated cholesterol hydroxylation in vitro and found that 13 of them reduce CYP46A1 activity by >50%. Of these 13 inhibitors, 7 elicited a spectral response in CYP46A1 with apparent spectral K(d) values in a low micromolar range. One of the identified tight binders, the widely used antidepressant fluvoxamine, was cocrystallized with CYP46A1. The structure of this complex was determined at a 2.5 Å resolution and revealed the details of drug binding to the CYP46A1 active site. The NH(2)-containing arm of the Y-shaped fluvoxamine coordinates the CYP46A1 heme iron, whereas the methoxy-containing arm points away from the heme group and has multiple hydrophobic interactions with aliphatic amino acid residues. The CF(3)-phenyl ring faces the entrance to the substrate access channel and has contacts with the aromatic side chains. The crystal structure suggests that only certain drug conformers can enter the P450 substrate access channel and reach the active site. Once inside the active site, the conformer probably further adjusts its configuration and elicits the movement of the protein side chains.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
49
|
β-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 2012; 32:6490-500. [PMID: 22573671 DOI: 10.1523/jneurosci.0630-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) inside brain neurons is an early and crucial event in Alzheimer's disease (AD). Studies in brains of AD patients and mice models of AD suggested that cholesterol homeostasis is altered in neurons that accumulate Aβ. Here we directly investigated the role of intracellular oligomeric Aβ(42) (oAβ(42)) in neuronal cholesterol homeostasis. We report that oAβ(42) induces cholesterol sequestration without increasing cellular cholesterol mass. Several features of AD, such as endosomal abnormalities, brain accumulation of Aβ and neurofibrillary tangles, and influence of apolipoprotein E genotype, are also present in Niemann-Pick type C, a disease characterized by impairment of intracellular cholesterol trafficking. These common features and data presented here suggest that a pathological mechanism involving abnormal cholesterol trafficking could take place in AD. Cholesterol sequestration in Aβ-treated neurons results from impairment of intracellular cholesterol trafficking secondary to inhibition of protein prenylation. oAβ(42) reduces sterol regulatory element-binding protein-2 (SREBP-2) cleavage, causing decrease of protein prenylation. Inhibition of protein prenylation represents a mechanism of oAβ(42)-induced neuronal death. Supply of the isoprenoid geranylgeranyl pyrophosphate to oAβ(42)-treated neurons recovers normal protein prenylation, reduces cholesterol sequestration, and prevents Aβ-induced neurotoxicity. Significant to AD, reduced levels of protein prenylation are present in the cerebral cortex of the TgCRND8 mouse model. In conclusion, we demonstrate a significant inhibitory effect of Aβ on protein prenylation and identify SREBP-2 as a target of oAβ(42), directly linking Aβ to cholesterol homeostasis impairment.
Collapse
|
50
|
Nunes MJ, Moutinho M, Milagre I, Gama MJ, Rodrigues E. Okadaic acid inhibits the trichostatin A-mediated increase of human CYP46A1 neuronal expression in a ERK1/2-Sp3-dependent pathway. J Lipid Res 2012; 53:1910-9. [PMID: 22693257 DOI: 10.1194/jlr.m027680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CYP46A1 gene codes for the cholesterol 24-hydroxylase, a cytochrome P450 specifically expressed in neurons and responsible for the majority of cholesterol turnover in the central nervous system. Previously, we have demonstrated the critical participation of Sp transcription factors in the CYP46A1 response to histone deacetylase (HDAC) inhibitors, and in this study we investigated the involvement of intracellular signaling pathways in the trichostatin A (TSA) effect. Our results show that pretreatment of neuroblastoma cells with chemical inhibitors of mitogen-activated kinase kinase (MEK)1 significantly potentiates the TSA-dependent induction of cholesterol 24-hydroxylase, whereas inhibition of protein phosphatases by okadaic acid (OA) or overexpression of MEK1 partially impairs the TSA effect without affecting histone hyperacetylation at the promoter. Immunoblotting revealed that TSA treatment decreases ERK1/2 phosphorylation concomitantly with a decrease in Sp3 binding activity, which are both reversed by pretreatment with OA. Chromatin immunoprecipitation analysis demonstrated that TSA induces the release of p-ERK1/2 from the CYP46A1 proximal promoter, whereas pretreatment with OA restores the co-occupancy of Sp3-ERK1/2 in the same promoter fragments. We demonstrate for the first time the participation of MEK-ERK1/2 signaling pathway in HDAC inhibitor-dependent induction of cytochrome P450 gene expression, underlying the importance of this regulatory signaling mechanism in the control of brain cholesterol elimination.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon, 1649-019 Lisbon, Portugal
| | | | | | | | | |
Collapse
|