1
|
Miniero DV, Palmieri F, Quadrotta V, Polticelli F, Palmieri L, Monné M. Functional Roles of the Charged Residues of the C- and M-Gates in the Yeast Mitochondrial NAD + Transporter Ndt1p. Int J Mol Sci 2024; 25:13557. [PMID: 39769317 PMCID: PMC11677788 DOI: 10.3390/ijms252413557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively. We have investigated the effects on transport of mutating the C-gate charged residues of the yeast NAD+ transporter Ndt1p and performed molecular docking with NAD+ and other substrates into structural models of Ndt1p. Double-cysteine substitutions and swapping the positions of the C-gate charged-pair residues showed that all of them contribute to the high transport rate of wild-type Ndt1p, although no single salt bridge is essential for activity. The in silico docking results strongly suggest that both the C-gate motif mutations and our previously reported M-gate mutations affect gate closing, whereas those of the M-gate also affect substrate binding, which is further supported by molecular dynamics. In particular, NAD+ most likely interferes with the cation-π interaction between R303-W198, which has been proposed to exist in the Ndt1p M-gate in the place of one of the salt bridges. These findings contribute to understanding the roles of the charged C- and M-gate residues in the transport mechanism of Ndt1p.
Collapse
Affiliation(s)
- Daniela Valeria Miniero
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (F.P.); (L.P.)
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, 70010 Casamassima, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (F.P.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
| | - Virginia Quadrotta
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; (V.Q.); (F.P.)
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; (V.Q.); (F.P.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (F.P.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
| | - Magnus Monné
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (F.P.); (L.P.)
- Department of Health Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Tavoulari S, Lacabanne D, Pereira GC, Thangaratnarajah C, King MS, He J, Chowdhury SR, Tilokani L, Palmer SM, Prudent J, Walker JE, Kunji ERS. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Mol Metab 2024; 90:102047. [PMID: 39419476 PMCID: PMC11539162 DOI: 10.1016/j.molmet.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency. METHODS We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation. RESULTS Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect. CONCLUSIONS Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| |
Collapse
|
3
|
Yang Y, Wang Y, Wang Y, Ke T. Proteomic analysis by 4D label-free MS-PRM identified that Nptx1, Ptpmt1, Slc25a11, and Cpt1c are involved in diabetes-associated cognitive dysfunction. Int J Neurosci 2024; 134:1663-1673. [PMID: 38099467 DOI: 10.1080/00207454.2023.2292956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/11/2024]
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction (DACD) is a chronic ailment that exerts a substantial influence on the overall well-being of individuals. The hippocampus assumes a pivotal role in the progression and sustenance of cognitive impairment. The identification of differentially expressed proteins (DEPs) in the hippocampus is crucial for understanding the mechanisms of DACD. METHODS A rat model of DACD was established by a high-fat diet combined with streptozotocin intraperitoneal injection. The Morris water maze (MWM), hematoxylin and eosin (H&E) staining, Nissl staining, and transmission electron microscope (TEM) were performed on the rats. The proteins expressed in the hippocampus were detected using 4D label-free quantitative proteomics. Four DEPs, namely Nptx1, Ptpmt1, Slc25a11, and Cpt1c, were validated using parallel reaction monitoring (PRM). RESULT Our study found that hippocampal lesions were present in the DACD rat models. There were 59 up-regulated and 98 down-regulated DEPs in the Model group compared to the Control group. We found that the levels of Nptx1, Ptpmt1, Slc25a11, and Cpt1c were elevated in the Model group, which are important for cell mitochondrial function. It should be noted that in our study, we only used PRM to validate the expression of these proteins. However, more evidence is needed to establish the relationship between these protein changes and DACD. CONCLUSION Our research results may provide further insight into the molecular pathology of hippocampal injury in DACD. In addition, further studies and clinical trials are required to confirm our findings and establish a more conclusive molecular mechanism for DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Mavridou V, King MS, Bazzone A, Springett R, Kunji ERS. Membrane potential stimulates ADP import and ATP export by the mitochondrial ADP/ATP carrier due to its positively charged binding site. SCIENCE ADVANCES 2024; 10:eadp7725. [PMID: 39485853 PMCID: PMC11529707 DOI: 10.1126/sciadv.adp7725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The mitochondrial adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier imports ADP into the mitochondrion and exports ATP to the cell. Here, we demonstrate that 3.3 positive charges are translocated with the negatively charged substrate in each transport step. They can be assigned to three positively charged residues of the central substrate-binding site and two asparagine/arginine pairs. In this way, the membrane potential stimulates not only the ATP4- export step, as a net -0.7 charge is transported, but also the ADP3- import step, as a net +0.3 charge is transported with the electric field. These positive charge movements also inhibit the import of ATP and export of ADP in the presence of a membrane potential, allowing these nucleotides to be maintained at high concentrations in the cytosol and mitochondrial matrix to drive the hydrolysis and synthesis of ATP, respectively. Thus, this is the mechanism by which the membrane potential drives adenine nucleotide exchange with high directional fluxes to fuel the cellular processes.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstrasse 70A, D-80339 Munich, Germany
| | | | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
5
|
Cimadamore-Werthein C, King MS, Lacabanne D, Pyrihová E, Jaiquel Baron S, Kunji ER. Human mitochondrial carriers of the SLC25 family function as monomers exchanging substrates with a ping-pong kinetic mechanism. EMBO J 2024; 43:3450-3465. [PMID: 38937634 PMCID: PMC11329753 DOI: 10.1038/s44318-024-00150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.
Collapse
Affiliation(s)
- Camila Cimadamore-Werthein
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Stephany Jaiquel Baron
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
6
|
Keipert S, Gaudry MJ, Kutschke M, Keuper M, Dela Rosa MAS, Cheng Y, Monroy Kuhn JM, Laterveer R, Cotrim CA, Giere P, Perocchi F, Feederle R, Crichton PG, Lutter D, Jastroch M. Two-stage evolution of mammalian adipose tissue thermogenesis. Science 2024; 384:1111-1117. [PMID: 38843333 DOI: 10.1126/science.adg1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margeoux A S Dela Rosa
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yiming Cheng
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - José M Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter Giere
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Jones SA, Ruprecht JJ, Crichton PG, Kunji ERS. Structural mechanisms of mitochondrial uncoupling protein 1 regulation in thermogenesis. Trends Biochem Sci 2024; 49:506-519. [PMID: 38565497 DOI: 10.1016/j.tibs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
9
|
De Leonardis F, Ahmed A, Vozza A, Capobianco L, Riley CL, Barile SN, Di Molfetta D, Tiziani S, DiGiovanni J, Palmieri L, Dolce V, Fiermonte G. Human mitochondrial uncoupling protein 3 functions as a metabolite transporter. FEBS Lett 2024; 598:338-346. [PMID: 38058167 PMCID: PMC10922436 DOI: 10.1002/1873-3468.14784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Since its discovery, a major debate about mitochondrial uncoupling protein 3 (UCP3) has been whether its metabolic actions result primarily from mitochondrial inner membrane proton transport, a process that decreases respiratory efficiency and ATP synthesis. However, UCP3 expression and activity are induced by conditions that would seem at odds with inefficient 'uncoupled' respiration, including fasting and exercise. Here, we demonstrate that the bacterially expressed human UCP3, reconstituted into liposomes, catalyses a strict exchange of aspartate, malate, sulphate and phosphate. The R282Q mutation abolishes the transport activity of the protein. Although the substrate specificity and inhibitor sensitivity of UCP3 display similarity with that of its close homolog UCP2, the two proteins significantly differ in their transport mode and kinetic constants.
Collapse
Affiliation(s)
- Francesco De Leonardis
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Christopher L. Riley
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Simona Nicole Barile
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Daria Di Molfetta
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Luigi Palmieri
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
10
|
Zhu X, Oldfather LE, Cobine PA. Metal Uptake by Mitochondrial Carrier Family Proteins Using Lactococcus lactis. Methods Mol Biol 2024; 2839:99-110. [PMID: 39008250 DOI: 10.1007/978-1-0716-4043-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion homeostasis in mitochondria is essential to maintaining proper cellular physiology. However, the ability of metals to bind off target or form complexes with multiple metabolites presents major challenges to understanding the mechanisms that govern this homeostasis. Adding further to the complexity, some of the major mitochondrial transporters have shown substrate promiscuity. In many cases, mitochondrial metals are found in the matrix compartment that is surrounded by the impermeable inner membrane. Four major classes of transporters facilitate the movement of solute across the inner membrane. These are mitochondrial carrier family, ATP-binding cassette transporters, mitochondrial pyruvate carriers, and sideroflexins. For iron, the matrix is the site of iron-sulfur clusters and heme synthesis and therefore transport must occur in a coordinated fashion with the cellular needs for these critical cofactors. Iron could be transported in numerous forms as it has been shown to form complexes with abundant metabolites such as citrate, nucleotides, or glutathione. Here, we describe assays to study iron (or any metal) transport by mitochondrial carrier family proteins expressed in Lactococcus lactis using a nisin-controlled expression system.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
11
|
Goyal S, Cambronne XA. Layered mechanisms regulating the human mitochondrial NAD+ transporter SLC25A51. Biochem Soc Trans 2023; 51:1989-2004. [PMID: 38108469 PMCID: PMC10802112 DOI: 10.1042/bst20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
12
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is required for mitochondrial IPP transport in fungi. Nat Cell Biol 2023; 25:1616-1624. [PMID: 37813972 PMCID: PMC10759932 DOI: 10.1038/s41556-023-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sean W Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laura K Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
13
|
Goyal S, Paspureddi A, Lu M, Chan H, Lyons SN, Wilson CN, Niere M, Ziegler M, Cambronne XA. Dynamics of SLC25A51 reveal preference for oxidized NAD + and substrate led transport. EMBO Rep 2023; 24:e56596. [PMID: 37575034 PMCID: PMC10561365 DOI: 10.15252/embr.202256596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | | | - Mu‐Jie Lu
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Hsin‐Ru Chan
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Scott N Lyons
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Crystal N Wilson
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Marc Niere
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Xiaolu A Cambronne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
- Livestrong Cancer InstituteUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
14
|
Kreiter J, Škulj S, Brkljača Z, Bardakji S, Vazdar M, Pohl EE. FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers. Int J Mol Sci 2023; 24:13701. [PMID: 37762012 PMCID: PMC10531397 DOI: 10.3390/ijms241813701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein-lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Jürgen Kreiter
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (S.Š.); (S.B.)
| | - Sanja Škulj
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (S.Š.); (S.B.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, 10000 Zagreb, Croatia;
| | - Sarah Bardakji
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (S.Š.); (S.B.)
| | - Mario Vazdar
- Department of Mathematics, Informatics, and Cybernetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (S.Š.); (S.B.)
| |
Collapse
|
15
|
Byrne KL, Szeligowski RV, Shen H. Phylogenetic Analysis Guides Transporter Protein Deorphanization: A Case Study of the SLC25 Family of Mitochondrial Metabolite Transporters. Biomolecules 2023; 13:1314. [PMID: 37759714 PMCID: PMC10526428 DOI: 10.3390/biom13091314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Homology search and phylogenetic analysis have commonly been used to annotate gene function, although they are prone to error. We hypothesize that the power of homology search in functional annotation depends on the coupling of sequence variation to functional diversification, and we herein focus on the SoLute Carrier (SLC25) family of mitochondrial metabolite transporters to survey this coupling in a family-wide manner. The SLC25 family is the largest family of mitochondrial metabolite transporters in eukaryotes that translocate ligands of different chemical properties, ranging from nucleotides, amino acids, carboxylic acids and cofactors, presenting adequate experimentally validated functional diversification in ligand transport. Here, we combine phylogenetic analysis to profile SLC25 transporters across common eukaryotic model organisms, from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, to Homo sapiens, and assess their sequence adaptations to the transported ligands within individual subfamilies. Using several recently studied and poorly characterized SLC25 transporters, we discuss the potentials and limitations of phylogenetic analysis in guiding functional characterization.
Collapse
Affiliation(s)
- Katie L. Byrne
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT 06516, USA
- Yale College, New Haven, CT 06511, USA
| | - Richard V. Szeligowski
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT 06516, USA
| | - Hongying Shen
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT 06516, USA
| |
Collapse
|
16
|
Hoogstraten CA, Jacobs MME, de Boer G, van de Wal MAE, Koopman WJH, Smeitink JAM, Russel FGM, Schirris TJJ. Metabolic impact of genetic and chemical ADP/ATP carrier inhibition in renal proximal tubule epithelial cells. Arch Toxicol 2023; 97:1927-1941. [PMID: 37154957 PMCID: PMC10256673 DOI: 10.1007/s00204-023-03510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Maaike M E Jacobs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Guido de Boer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Melissa A E van de Wal
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Werner J H Koopman
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Khondrion BV, Nijmegen, 6525 EX, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
17
|
Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, Kunji ERS, Hampl V. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys 2023; 742:109638. [PMID: 37192692 PMCID: PMC10251735 DOI: 10.1016/j.abb.2023.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P. pyriformis has a mitochondrion-related organelle (MRO) which in this protist is primarily involved in one-carbon folate metabolism. The MRO contains four members of the solute carrier family 25 (SLC25) responsible for the exchange of metabolites across the mitochondrial inner membrane. Here, we characterise the function of the adenine nucleotide carrier PpMC1 by thermostability shift and transport assays. We show that it transports ATP, ADP and, to a lesser extent, AMP, but not phosphate. The carrier is distinct in function and origin from both ADP/ATP carriers and ATP-Mg/phosphate carriers, and it most likely represents a distinct class of adenine nucleotide carriers.
Collapse
Affiliation(s)
- Justyna Zítek
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Priscila Peña-Diaz
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic
| | - Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom; University of Stavanger, Department of Chemistry, Bioscience, And Environmental Engineering, Richard Johnsens Gate 4, N-4021, Stavanger, Norway
| | - Alannah C King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic.
| |
Collapse
|
18
|
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zögg T, Pardon E, Chand D, Steimle S, Copeman DM, Cotrim CA, Steyaert J, Crichton PG, Moiseenkova-Bell V, Kunji ER. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. SCIENCE ADVANCES 2023; 9:eadh4251. [PMID: 37256948 PMCID: PMC10413660 DOI: 10.1126/sciadv.adh4251] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.
Collapse
Affiliation(s)
- Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Prerana Gogoi
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Yang Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Deepak Chand
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danielle M. Copeman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Camila A. Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul G. Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
19
|
Gagelin A, Largeau C, Masscheleyn S, Piel MS, Calderón-Mora D, Bouillaud F, Hénin J, Miroux B. Molecular determinants of inhibition of UCP1-mediated respiratory uncoupling. Nat Commun 2023; 14:2594. [PMID: 37147287 PMCID: PMC10162991 DOI: 10.1038/s41467-023-38219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023] Open
Abstract
Brown adipose tissue expresses uncoupling protein 1 (UCP1), which dissipates energy as heat, making it a target for treating metabolic disorders. Here, we investigate how purine nucleotides inhibit respiration uncoupling by UCP1. Our molecular simulations predict that GDP and GTP bind UCP1 in the common substrate binding site in an upright orientation, where the base moiety interacts with conserved residues R92 and E191. We identify a triplet of uncharged residues, F88/I187/W281, forming hydrophobic contacts with nucleotides. In yeast spheroplast respiration assays, both I187A and W281A mutants increase the fatty acid-induced uncoupling activity of UCP1 and partially suppress the inhibition of UCP1 activity by nucleotides. The F88A/I187A/W281A triple mutant is overactivated by fatty acids even at high concentrations of purine nucleotides. In simulations, E191 and W281 interact with purine but not pyrimidine bases. These results provide a molecular understanding of the selective inhibition of UCP1 by purine nucleotides.
Collapse
Affiliation(s)
- Antoine Gagelin
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
| | - Corentin Largeau
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Sandrine Masscheleyn
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Mathilde S Piel
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Daniel Calderón-Mora
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Frédéric Bouillaud
- Université Paris Cité, Institut Cochin, Inserm U1016, CNRS UMR8104, Paris, 75014, France
| | - Jérôme Hénin
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France.
| | - Bruno Miroux
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France.
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France.
| |
Collapse
|
20
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is a mitochondrial IPP transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532620. [PMID: 36993473 PMCID: PMC10055127 DOI: 10.1101/2023.03.14.532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M. Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean W. Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Pasquadibisceglie A, Quadrotta V, Polticelli F. In Silico Analysis of the Structural Dynamics and Substrate Recognition Determinants of the Human Mitochondrial Carnitine/Acylcarnitine SLC25A20 Transporter. Int J Mol Sci 2023; 24:ijms24043946. [PMID: 36835358 PMCID: PMC9961348 DOI: 10.3390/ijms24043946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids β-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Function-Related Asymmetry of the Interactions between Matrix Loops and Conserved Sequence Motifs in the Mitochondrial ADP/ATP Carrier. Int J Mol Sci 2022; 23:ijms231810877. [PMID: 36142790 PMCID: PMC9502086 DOI: 10.3390/ijms231810877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ADP/ATP carrier (AAC) plays a central role in oxidative metabolism by exchanging ATP and ADP across the inner mitochondrial membrane. Previous experiments have shown the involvement of the matrix loops of AAC in its function, yet potential mechanisms remain largely elusive. One obstacle is the limited information on the structural dynamics of the matrix loops. In the current work, unbiased all-atom molecular dynamics (MD) simulations were carried out on c-state wild-type AAC and mutants. Our results reveal that: (1) two ends of a matrix loop are tethered through interactions between the residue of triplet 38 (Q38, D143 and Q240) located at the C-end of the odd-numbered helix and residues of the [YF]xG motif located before the N-end of the short matrix helix in the same domain; (2) the initial progression direction of a matrix loop is determined by interactions between the negatively charged residue of the [DE]G motif located at the C-end of the short matrix helix and the capping arginine (R30, R139 and R236) in the previous domain; (3) the two chemically similar residues D and E in the highly conserved [DE]G motif are actually quite different; (4) the N-end of the M3 loop is clamped by the [DE]G motif and the capping arginine of domain 2 from the two sides, which strengthens interactions between domain 2 and domain 3; and (5) a highly asymmetric stable core exists within domains 2 and 3 at the m-gate level. Moreover, our results help explain almost all extremely conserved residues within the matrix loops of the ADP/ATP carriers from a structural point of view. Taken together, the current work highlights asymmetry in the three matrix loops and implies a close relationship between asymmetry and ADP/ATP transport.
Collapse
|
23
|
Giangregorio N, Pierri CL, Tonazzi A, Incampo G, Tragni V, De Grassi A, Indiveri C. Proline/Glycine residues of the PG-levels guide conformational changes along the transport cycle in the mitochondrial carnitine/acylcarnitine carrier (SLC25A20). Int J Biol Macromol 2022; 221:1453-1465. [PMID: 36122779 DOI: 10.1016/j.ijbiomac.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy.
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Vincenzo Tragni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
24
|
Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 2022; 33:539-553. [PMID: 35725541 PMCID: PMC7614230 DOI: 10.1016/j.tem.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
Citrin deficiency is a pan-ethnic and highly prevalent mitochondrial disease with three different stages: neonatal intrahepatic cholestasis (NICCD), a relatively mild adaptation stage, and type II citrullinemia in adulthood (CTLN2). The cause is the absence or dysfunction of the calcium-regulated mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also called citrin, which imports glutamate into the mitochondrial matrix and exports aspartate to the cytosol. In citrin deficiency, these missing transport steps lead to impairment of the malate-aspartate shuttle, gluconeogenesis, amino acid homeostasis, and the urea cycle. In this review, we describe the geological spread and occurrence of citrin deficiency, the metabolic consequences and use our current knowledge of the structure to predict the impact of the known pathogenic mutations on the calcium-regulatory and transport mechanism of citrin.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
25
|
Mavridou V, King MS, Tavoulari S, Ruprecht JJ, Palmer SM, Kunji ERS. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat Commun 2022; 13:3585. [PMID: 35739110 PMCID: PMC9226169 DOI: 10.1038/s41467-022-31366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial ADP/ATP carriers import ADP into the mitochondrial matrix and export ATP to the cytosol to fuel cellular processes. Structures of the inhibited cytoplasmic- and matrix-open states have confirmed an alternating access transport mechanism, but the molecular details of substrate binding remain unresolved. Here, we evaluate the role of the solvent-exposed residues of the translocation pathway in the process of substrate binding. We identify the main binding site, comprising three positively charged and a set of aliphatic and aromatic residues, which bind ADP and ATP in both states. Additionally, there are two pairs of asparagine/arginine residues on opposite sides of this site that are involved in substrate binding in a state-dependent manner. Thus, the substrates are directed through a series of binding poses, inducing the conformational changes of the carrier that lead to their translocation. The properties of this site explain the electrogenic and reversible nature of adenine nucleotide transport.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Martin S. King
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Sotiria Tavoulari
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Jonathan J. Ruprecht
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Shane M. Palmer
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Edmund R. S. Kunji
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
26
|
Incampo G, Giangregorio N, Gambacorta N, Nicolotti O, Pacifico C, Palmieri L, Tonazzi A. Praseodymium trivalent ion is an effective inhibitor of mitochondrial basic amino acids and carnitine/acylcarnitine carriers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148557. [PMID: 35367451 DOI: 10.1016/j.bbabio.2022.148557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.
Collapse
Affiliation(s)
- Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicola Giangregorio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Concetta Pacifico
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
27
|
Oliveira NF, Machuqueiro M. Novel US-CpHMD Protocol to Study the Protonation-Dependent Mechanism of the ATP/ADP Carrier. J Chem Inf Model 2022; 62:2550-2560. [PMID: 35442654 PMCID: PMC9775199 DOI: 10.1021/acs.jcim.2c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have designed a protocol combining constant-pH molecular dynamics (CpHMD) simulations with an umbrella sampling (US) scheme (US-CpHMD) to study the mechanism of ADP/ATP transport (import and export) by their inner mitochondrial membrane carrier protein [ADP/ATP carrier (AAC)]. The US scheme helped overcome the limitations of sampling the slow kinetics involved in these substrates' transport, while CpHMD simulations provided an unprecedented realism by correctly capturing the associated protonation changes. The import of anionic substrates along the mitochondrial membrane has a strong energetic disadvantage due to a smaller substrate concentration and an unfavorable membrane potential. These limitations may have created an evolutionary pressure on AAC to develop specific features benefiting the import of ADP. In our work, the potential of mean force profiles showed a clear selectivity in the import of ADP compared to ATP, while in the export, no selectivity was observed. We also observed that AAC sequestered both substrates at longer distances in the import compared to the export process. Furthermore, only in the import process do we observe transient protonation of both substrates when going through the AAC cavity, which is an important advantage to counteract the unfavorable mitochondrial membrane potential. Finally, we observed a substrate-induced disruption of the matrix salt-bridge network, which can promote the conformational transition (from the C- to M-state) required to complete the import process. This work unraveled several important structural features where the complex electrostatic interactions were pivotal to interpreting the protein function and illustrated the potential of applying the US-CpHMD protocol to other transport processes involving membrane proteins.
Collapse
|
28
|
The effects of cardiolipin on the structural dynamics of the mitochondrial ADP/ATP carrier in its cytosol-open state. J Lipid Res 2022; 63:100227. [PMID: 35569528 PMCID: PMC9189224 DOI: 10.1016/j.jlr.2022.100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
|
29
|
Yao S, Yi Q, Ma B, Mao X, Chen Y, Guan MX, Cang X. Mechanistic insights into multiple-step transport of mitochondrial ADP/ATP carrier. Comput Struct Biotechnol J 2022; 20:1829-1840. [PMID: 35521544 PMCID: PMC9046947 DOI: 10.1016/j.csbj.2022.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The ADP/ATP carrier (AAC) is crucial for mitochondrial functions by importing ADP and exporting ATP across the inner mitochondrial membrane. However, the mechanism of highly specific ADP recognition and transport by AAC remains largely elusive. In this work, spontaneous ADP binding process to the ground c-state AAC was investigated through rigorous molecular dynamics simulations of over 31 microseconds in total. With improved simulation strategy, we have successfully identified a highly specific ADP binding site in the upper region of the cavity, and this site exhibits selectivity for ADP over ATP based on free-energy calculations. Sequence analyses on adenine nucleotide transporters also suggest that this subgroup uses the upper region of the cavity, rather than the previously proposed central binding site located at the bottom of the cavity to discriminate their substrates. Identification of the new site unveils the unusually high substrate specificity of AAC and explains the dependence of transport on the flexibility between anti and syn glycosidic conformers of ADP. Moreover, this new site together with the central site supports early biochemical findings. In light of these early findings, our simulations described a multi-step model in which the carrier uses different sites for substrate attraction, recognition and conformational transition. These results provide new insights into the transport mechanism of AAC and other adenine nucleotide transporters.
Collapse
Key Words
- AAC, ADP/ADP carrier
- ATP translocases
- CATR, carboxyatractyloside
- CoA, coenzyme A
- GDC, Graves disease carrier protein, or SLC25A16
- MCF, mitochondrial carrier family
- MD simulation, molecular dynamics simulation PCA, Principal component analysis
- Mitochondrial ADP
- OXPHOS, oxidative phosphorylation
- SCaMCs, short Ca2+-binding mitochondrial carrier, or Mg-ATP/Pi carrier
- Solute carrier family 25, molecular dynamics simulation
- Substrate recognition
- Transporter
- c-state, cytosol-open state
- m-state, matrix-open state
Collapse
Affiliation(s)
- Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Boyuan Ma
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
30
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
31
|
Abstract
Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California San Francisco, 600 16 Street, San Francisco, CA 94158, USA,Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA,Corresponding authors: ,
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
32
|
Investigating the Broad Matrix-Gate Network in the Mitochondrial ADP/ATP Carrier through Molecular Dynamics Simulations. Molecules 2022; 27:molecules27031071. [PMID: 35164338 PMCID: PMC8839422 DOI: 10.3390/molecules27031071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
The mitochondrial ADP/ATP carrier (AAC) exports ATP and imports ADP through alternating between cytosol-open (c-) and matrix-open (m-) states. The salt bridge networks near the matrix side (m-gate) and cytosol side (c-gate) are thought to be crucial for state transitions, yet our knowledge on these networks is still limited. In the current work, we focus on more conserved m-gate network in the c-state AAC. All-atom molecular dynamics (MD) simulations on a variety of mutants and the CATR-AAC complex have revealed that: (1) without involvement of other positive residues, the charged residues from the three Px[DE]xx[KR] motifs only are prone to form symmetrical inter-helical network; (2) R235 plays a determinant role for the asymmetry in m-gate network of AAC; (3) R235 significantly strengthens the interactions between H3 and H5; (4) R79 exhibits more significant impact on m-gate than R279; (5) CATR promotes symmetry in m-gate mainly through separating R234 from D231 and fixing R79; (6) vulnerability of the H2-H3 interface near matrix side could be functionally important. Our results provide new insights into the highly conserved yet variable m-gate network in the big mitochondrial carrier family.
Collapse
|
33
|
Uncoupling Proteins and Regulated Proton Leak in Mitochondria. Int J Mol Sci 2022; 23:ijms23031528. [PMID: 35163451 PMCID: PMC8835771 DOI: 10.3390/ijms23031528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Collapse
|
34
|
Pasquadibisceglie A, Polticelli F. Structural determinants of ligands recognition by the human mitochondrial basic amino acids transporter SLC25A29. Insights from molecular dynamics simulations of the c-state. Comput Struct Biotechnol J 2021; 19:5600-5612. [PMID: 34849194 PMCID: PMC8598871 DOI: 10.1016/j.csbj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
35
|
Montalvo-Acosta JJ, Kunji ERS, Ruprecht JJ, Dehez F, Chipot C. Structure, substrate binding, and symmetry of the mitochondrial ADP/ATP carrier in its matrix-open state. Biophys J 2021; 120:5187-5195. [PMID: 34748764 DOI: 10.1016/j.bpj.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial ADP/ATP carrier (AAC) performs the first and last step in oxidative phosphorylation by exchanging ADP and ATP across the mitochondrial inner membrane. Its optimal function has been shown to be dependent on cardiolipins (CLs), unique phospholipids located almost exclusively in the mitochondrial membrane. In addition, AAC exhibits an enthralling threefold pseudosymmetry, a unique feature of members of the SLC25 family. Recently, its conformation poised for binding of ATP was solved by x-ray crystallography referred to as the matrix state. Binding of the substrate leads to conformational changes that export of ATP to the mitochondrial intermembrane space. In this contribution, we investigate the influence of CLs on the structure, substrate-binding properties, and structural symmetry of the matrix state, employing microsecond-scale molecular dynamics simulations. Our findings demonstrate that CLs play a minor stabilizing role on the AAC structure. The interdomain salt bridges and hydrogen bonds forming the cytoplasmic network and tyrosine braces, which ensure the integrity of the global AAC scaffold, highly benefit from the presence of CLs. Under these conditions, the carrier is found to be organized in a more compact structure in its interior, as revealed by analyses of the electrostatic potential, measure of the AAC cavity aperture, and the substrate-binding assays. Introducing a convenient structure-based symmetry metric, we quantified the structural threefold pseudosymmetry of AAC, not only for the crystallographic structure, but also for conformational states of the carrier explored in the molecular dynamics simulations. Our results suggest that CLs moderately contribute to preserve the pseudosymmetric structure of AAC.
Collapse
Affiliation(s)
- Joel José Montalvo-Acosta
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jonathan J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - François Dehez
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France; Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, Urbana, Illinois; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
36
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
37
|
Ardalan A, Sowlati-Hashjin S, Oduwoye H, Uwumarenogie SO, Karttunen M, Smith MD, Jelokhani-Niaraki M. Biphasic Proton Transport Mechanism for Uncoupling Proteins. J Phys Chem B 2021; 125:9130-9144. [PMID: 34365794 DOI: 10.1021/acs.jpcb.1c04766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suggested that uncoupling proteins (UCPs) transport protons via interconversion between two conformational states: one in the "cytoplasmic state" and the other in the "matrix state". Matrix and cytoplasmic salt-bridge networks are key controllers of these states. This study proposes a mechanism for proton transport in tetrameric UCP2, with focus on the role of the matrix network. Eleven mutants were prepared to disrupt (K → Q or D → N mutations) or alter (K → D and D → K mutations) the salt-bridges in the matrix network. Proteins were recombinantly expressed in Escherichia coli membrane, reconstituted in model lipid membranes, and their structures and functions were analyzed by gel electrophoresis, circular dichroism spectroscopy, fluorescence assays, as well as molecular dynamics simulations. It is shown that the UCP2 matrix network contains five salt-bridges (rather than the previously reported three), and the matrix network can regulate the proton transport by holding the protein's transmembrane helices in close proximity, limiting the movement of the activator fatty acid(s). A biphasic two-state molecular model is proposed for proton transport in tetrameric (a dimer of stable dimers) UCP2, in which all the monomers are functional, and monomers in each dimer are in the same transport mode. Purine nucleotide (e.g., ATP) can occlude the internal pore of the monomeric units of UCP tetramers via interacting with positive residues at or in the proximity of the matrix network (K38, K141, K239, R88, R185, and R279) and prevent switching between cytoplasmic and matrix states, thus inhibiting the proton transport. This study provides new insights into the mechanism of proton transport and regulation in UCPs.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada.,The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6K 3K7, Canada
| | - Habib Oduwoye
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada.,The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6K 3K7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
38
|
Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology (Bethesda) 2021; 35:302-327. [PMID: 32783608 PMCID: PMC7611780 DOI: 10.1152/physiol.00009.2020] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the mitochondrial carrier family (SLC25) transport a variety of compounds across the inner membrane of mitochondria. These transport steps provide building blocks for the cell and link the pathways of the mitochondrial matrix and cytosol. An increasing number of diseases and pathologies has been associated with their dysfunction. In this review, the molecular basis of these diseases is explained based on our current understanding of their transport mechanism.
Collapse
Affiliation(s)
- Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Chancievan Thangaratnarajah
- Groningen Biomolecular Sciences and Biotechnology Institute, Membrane Enzymology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Abstract
Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.
Collapse
Affiliation(s)
- J J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| | - E R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
40
|
Pasquadibisceglie A, Polticelli F. Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The members of the mitochondrial carrier family, also known as solute carrier family 25 (SLC25), are transmembrane proteins involved in the translocation of a plethora of small molecules between the mitochondrial intermembrane space and the matrix. These transporters are characterized by three homologous domains structure and a transport mechanism that involves the transition between different conformations. Mutations in regions critical for these transporters’ function often cause several diseases, given the crucial role of these proteins in the mitochondrial homeostasis. Experimental studies can be problematic in the case of membrane proteins, in particular concerning the characterization of the structure–function relationships. For this reason, computational methods are often applied in order to develop new hypotheses or to support/explain experimental evidence. Here the computational analyses carried out on the SLC25 members are reviewed, describing the main techniques used and the outcome in terms of improved knowledge of the transport mechanism. Potential future applications on this protein family of more recent and advanced in silico methods are also suggested.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences , Roma Tre University , Rome , Italy
- National Institute of Nuclear Physics, Roma Tre Section , Rome , Italy
| |
Collapse
|
41
|
Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules 2021; 11:biom11040521. [PMID: 33807231 PMCID: PMC8066319 DOI: 10.3390/biom11040521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
| | - Ferdinando Palmieri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| | - Cesare Indiveri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| |
Collapse
|
42
|
Jaiquel Baron S, King MS, Kunji ER, Schirris TJ. Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics 2021; 11:5077-5091. [PMID: 33859735 PMCID: PMC8039944 DOI: 10.7150/thno.54936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, causing cellular toxicity, but the underlying mechanisms are largely unknown. Although often not considered, mitochondrial transport proteins form a significant class of potential mitochondrial off-targets. So far, most drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC), which exchanges cytosolic ADP for mitochondrial ATP. Here, we show inhibition of cellular respiratory capacity by only a subset of the 18 published AAC inhibitors, which questions whether all compound do indeed inhibit such a central metabolic process. This could be explained by the lack of a simple, direct model system to evaluate and compare drug-induced AAC inhibition. Methods: For its development, we have expressed and purified human AAC1 (hAAC1) and applied two approaches. In the first, thermostability shift assays were carried out to investigate the binding of these compounds to human AAC1. In the second, the effect of these compounds on transport was assessed in proteoliposomes with reconstituted human AAC1, enabling characterization of their inhibition kinetics. Results: Of the proposed inhibitors, chebulinic acid, CD-437 and suramin are the most potent with IC50-values in the low micromolar range, whereas another six are effective at a concentration of 100 μM. Remarkably, half of all previously published AAC inhibitors do not show significant inhibition in our assays, indicating that they are false positives. Finally, we show that inhibitor strength correlates with a negatively charged surface area of the inhibitor, matching the positively charged surface of the substrate binding site. Conclusion: Consequently, we have provided a straightforward model system to investigate AAC inhibition and have gained new insights into the chemical compound features important for inhibition. Better evaluation methods of drug-induced inhibition of mitochondrial transport proteins will contribute to the development of drugs with an enhanced safety profile.
Collapse
Affiliation(s)
- Stephany Jaiquel Baron
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Martin S. King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund R.S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Tom J.J. Schirris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Zhu X, Boulet A, Buckley KM, Phillips CB, Gammon MG, Oldfather LE, Moore SA, Leary SC, Cobine PA. Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. eLife 2021; 10:64690. [PMID: 33591272 PMCID: PMC7924939 DOI: 10.7554/elife.64690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | - Casey B Phillips
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Micah G Gammon
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, United States
| |
Collapse
|
44
|
Rosenberger FA, Moore D, Atanassov I, Moedas MF, Clemente P, Végvári Á, Fissi NE, Filograna R, Bucher AL, Hinze Y, The M, Hedman E, Chernogubova E, Begzati A, Wibom R, Jain M, Nilsson R, Käll L, Wedell A, Freyer C, Wredenberg A. The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. SCIENCE ADVANCES 2021; 7:eabf0717. [PMID: 33608280 PMCID: PMC7895438 DOI: 10.1126/sciadv.abf0717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/15/2023]
Abstract
Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - David Moore
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Najla El Fissi
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Roberta Filograna
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Anna-Lena Bucher
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Matthew The
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Erik Hedman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ekaterina Chernogubova
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arjana Begzati
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
45
|
Tragni V, Cotugno P, De Grassi A, Massari F, Di Ronzo F, Aresta AM, Zambonin C, Sanzani SM, Ippolito A, Pierri CL. Targeting mitochondrial metabolite transporters in Penicillium expansum for reducing patulin production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:158-181. [PMID: 33250320 DOI: 10.1016/j.plaphy.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
There is an increasing need of alternative treatments to control fungal infection and consequent mycotoxin accumulation in harvested fruits and vegetables. Indeed, only few biological targets of antifungal agents have been characterized and can be used for limiting fungal spread from decayed fruits/vegetables to surrounding healthy ones during storage. On this concern, a promising target of new antifungal treatments may be represented by mitochondrial proteins due to some species-specific functions played by mitochondria in fungal morphogenesis, drug resistance and virulence. One of the most studied mycotoxins is patulin produced by several species of Penicillium and Aspergillus genera. Patulin is toxic to many biological systems including bacteria, higher plants and animalia. Although precise biochemical mechanisms of patulin toxicity in humans are not completely clarified, its high presence in fresh and processed apple fruits and other apple-based products makes necessary developing a strategy for limiting its presence/accumulation. Patulin biosynthetic pathway consists of an enzymatic cascade, whose first step is represented by the synthesis of 6-methylsalicylic acid, obtained from the condensation of one acetyl-CoA molecule with three malonyl-CoA molecules. The most abundant acetyl-CoA precursor is represented by citrate produced by mitochondria. In the present investigation we report about the possibility to control patulin production through the inhibition of mitochondrial/peroxisome transporters involved in the export of acetyl-CoA precursors from mitochondria and/or peroxisomes, with specific reference to the predicted P. expansum mitochondrial Ctp1p, DTC, Sfc1p, Oac1p and peroxisomal PXN carriers.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy
| | - Federica Massari
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Di Ronzo
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonella Maria Aresta
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Zambonin
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | | | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
46
|
Ardalan A, Sowlati-Hashjin S, Uwumarenogie SO, Fish M, Mitchell J, Karttunen M, Smith MD, Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J Phys Chem B 2020; 125:169-183. [PMID: 33373220 DOI: 10.1021/acs.jpcb.0c09422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stoichiometry of uncoupling proteins (UCPs) and their coexistence as functional monomeric and associated forms in lipid membranes remain intriguing open questions. In this study, tertiary and quaternary structures of UCP2 were analyzed experimentally and through molecular dynamics (MD) simulations. UCP2 was overexpressed in the inner membrane of Escherichia coli, then purified and reconstituted in lipid vesicles. Structure and proton transport function of UCP2 were characterized by circular dichroism (CD) spectroscopy and fluorescence methods. Findings suggest a tetrameric functional form for UCP2. MD simulations conclude that tetrameric UCP2 is a dimer of dimers, is more stable than its monomeric and dimeric forms, is asymmetrical and induces asymmetry in the membrane's lipid structure, and a biphasic on-off switch between the dimeric units is its possible mode of transport. MD simulations also show that the water density inside the UCP2 monomer is asymmetric, with the cytoplasmic side having a higher water density and a wider radius. In contrast, the structurally comparable adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier (AAC1) did not form tetramers, implying that tetramerization cannot be generalized to all mitochondrial carriers.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Michael Fish
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5.,Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Joel Mitchell
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7.,Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
47
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
48
|
Piel MS, Masscheleyn S, Bouillaud F, Moncoq K, Miroux B. Structural models of mitochondrial uncoupling proteins obtained in DPC micelles are not functionally relevant. FEBS J 2020; 288:3024-3033. [DOI: 10.1111/febs.15629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mathilde S. Piel
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Sandrine Masscheleyn
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | | | - Karine Moncoq
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Bruno Miroux
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| |
Collapse
|
49
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|
50
|
King MS, Tavoulari S, Mavridou V, King AC, Mifsud J, Kunji ERS. A Single Cysteine Residue in the Translocation Pathway of the Mitosomal ADP/ATP Carrier from Cryptosporidium parvum Confers a Broad Nucleotide Specificity. Int J Mol Sci 2020; 21:E8971. [PMID: 33255957 PMCID: PMC7730227 DOI: 10.3390/ijms21238971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; (M.S.K.); (S.T.); (V.M.); (A.C.K.); (J.M.)
| |
Collapse
|