1
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
2
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
3
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
4
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
6
|
Meijer OC, Buurstede JC, Viho EMG, Amaya JM, Koning ASCAM, van der Meulen M, van Weert LTCM, Paul SN, Kroon J, Koorneef LL. Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes. J Neuroendocrinol 2023; 35:e13213. [PMID: 36426812 DOI: 10.1111/jne.13213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation.
Collapse
Affiliation(s)
- Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Miguel Amaya
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Sophie C A M Koning
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Merel van der Meulen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Auricular Vagus Nerve Stimulation Ameliorates Functional Dyspepsia with Depressive-Like Behavior and Inhibits the Hypothalamus-Pituitary-Adrenal Axis in a Rat Model. Dig Dis Sci 2022; 67:4719-4731. [PMID: 35064375 DOI: 10.1007/s10620-021-07332-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The hypothalamus-pituitary-adrenal axis is the most important endocrine system to control irritability response. Functional dyspepsia (FD) is closely related to irritability. This study aimed to preliminarily explore the corticotropin-releasing factor (CRF) mechanism of auricular vagus nerve stimulation (aVNS) for FD model rats. METHODS Sprague-Dawley adult male rats were randomly divided into normal group, model group, aVNS group, and sham-aVNS group. Except for the normal rats, all other rats were induced into the FD model through tail-clamping stimulation for 3 weeks. Once the rat model was developed successfully, rats in the aVNS group and sham-aVNS group were intervened with aVNS or sham-aVNS for 2 weeks. No intervention was given to rats in the normal and model groups. The effect of aVNS was assessed. The expressions of hippocampal corticotropin-releasing hormone receptor 1 (CRHR1), hypothalamus CRF, adrenocorticotropic hormone (ACTH), and corticosterone in serum were assessed. RESULTS 1. Compared with normal rats, model-developing rats showed FD-like behavior. 2. Compared with model rats, rats in the aVNS group showed an improved general condition score and gastric motility, and increased horizontal and vertical motion scores. 3. The release of corticosterone, ACTH in serum, and CRF in the hypothalamus all increased in model rats but decreased with aVNS instead of sham-aVNS. 4. The expression of hippocampus CRHR1 was lower in model rats but higher in the aVNS group. CONCLUSION aVNS ameliorates gastric motility and improves the mental state in the FD-like rat, probably via inhibiting the CRF pathway.
Collapse
|
8
|
Viho EMG, Buurstede JC, Berkhout JB, Mahfouz A, Meijer OC. Cell type specificity of glucocorticoid signaling in the adult mouse hippocampus. J Neuroendocrinol 2022; 34:e13072. [PMID: 34939259 PMCID: PMC9286676 DOI: 10.1111/jne.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Glucocorticoid stress hormones are powerful modulators of brain function and can affect mood and cognitive processes. The hippocampus is a prominent glucocorticoid target and expresses both the glucocorticoid receptor (GR: Nr3c1) and the mineralocorticoid receptor (MR: Nr3c2). These nuclear steroid receptors act as ligand-dependent transcription factors. Transcriptional effects of glucocorticoids have often been deduced from bulk mRNA measurements or spatially informed individual gene expression. However, only sparse data exists allowing insights on glucocorticoid-driven gene transcription at the cell type level. Here, we used publicly available single-cell RNA sequencing data to assess the cell-type specificity of GR and MR signaling in the adult mouse hippocampus. The data confirmed that Nr3c1 and Nr3c2 expression differs across neuronal and non-neuronal cell populations. We analyzed co-expression with sex hormones receptors, transcriptional coregulators, and receptors for neurotransmitters and neuropeptides. Our results provide insights in the cellular basis of previous bulk mRNA results and allow the formulation of more defined hypotheses on the effects of glucocorticoids on hippocampal function.
Collapse
Affiliation(s)
- Eva M. G. Viho
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jacobus C. Buurstede
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jari B. Berkhout
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Ahmed Mahfouz
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Delft Bioinformatics LaboratoryDelft University of TechnologyDelftThe Netherlands
- Leiden Computational Biology CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Onno C. Meijer
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
9
|
Aruna A, Wang TP, Cao JC, Lan DS, Nagarajan G, Chang CF. Differential Expression of Hypothalamic and Gill- crh System With Osmotic Stress in the Euryhaline Black Porgy, Acanthopagrus schlegelii. Front Physiol 2021; 12:768122. [PMID: 34858213 PMCID: PMC8632050 DOI: 10.3389/fphys.2021.768122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
The local gill production of corticotropin releasing hormone (crh) and crh-receptor (crhr) is hypothesized to play important roles during seawater (SW) and freshwater (FW) acclimation in euryhaline black porgy (Acanthopagrus schlegelii). The mRNA expression of crh, crhr, and Na +/K + -ATPase (a-nka) was examined in SW and FW diencephalon (Dien) and in the gills at different exposure time by Q-PCR analysis. The in situ hybridization results indicate that crh mRNA hybridization signals were more abundant in FW fish in the gigantocellular (PMgc) and parvocellular (PMpc) part of the magnocellular preoptic nucleus versus SW fish. The crh and crhr-expressing cells were located in basal cells of gill filament. Furthermore, in vitro dexamethasone (DEX) treatment could increase the crh-system in the gill. Increased transcripts of the crh-system in the gill via in vitro and in vivo CRH treatments suggest that CRH may regulate the system in a local manner. The a-Nka cells were localized in the filament and secondary lamellae mitochondria rich cells (MRCs) of FW fish at 8 h and 1 day. a-Nka cells were seen in both filament and lamellae in the FW but much less in SW fish indicating that gills play key roles in black porgy osmoregulation. Gill crh and crhr play important roles in the response to salinity stress.
Collapse
Affiliation(s)
- Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsan-Ping Wang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jyun-Cing Cao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Dan-Suei Lan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ganesan Nagarajan
- Department of Basic Sciences, PYD, King Faisal University, Al Hofuf, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
10
|
Wu Q, Wang B, Ntim M, Zhang X, Na XY, Yuan YH, Wu XF, Yang JY, Li S. SRC-1 Deficiency Increases Susceptibility of Mice to Depressive-Like Behavior After Exposure to CUMS. Neurochem Res 2021; 46:1830-1843. [PMID: 33881662 DOI: 10.1007/s11064-021-03316-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022]
Abstract
Steroid receptor coactivator 1 (SRC-1) is one of the coactivators recruited by the nuclear receptors (NRs) when NRs are activated by steroid hormones, such as glucocorticoid. SRC-1 is abundant in hippocampus and hypothalamus and is also related to some major risk factors for depression, implicated by its reduced expression after stress and its effect on hypothalamus-pituitary-adrenal gland axis function. However, whether SRC-1 is involved in the formation of depression remains unclear. In this study, we firstly established chronic unpredictable stress (CUS) to induce depressive-like behaviors in mice and found that SRC-1 expression was reduced by CUS. A large number of studies have shown that neuroinflammation is associated with stress-induced depression and lipopolysaccharide (LPS) injection can lead to neuroinflammation and depressive-like behaviors in mice. Our result indicated that LPS treatment also decreased SRC-1 expression in mouse brain, implying the involvement of SRC-1 in the process of inflammation and depression. Next, we showed that the chronic unpredictable mild stress (CUMS) failed to elicit the depressive-like behaviors and dramatically promoted the expression of SRC-1 in brain of wild type mice. What's more, the SRC-1 knockout mice were more susceptible to CUMS to develop depressive-like behaviors and presented the changed expression of glucocorticoid receptor. However, SRC-1 deficiency did not affect the microglia activation induced by CUMS. Altogether, these results indicate a correlation between SRC-1 level and depressive-like behaviors, suggesting that SRC-1 might be involved in the development of depression induced by stress.
Collapse
Affiliation(s)
- Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Xue-Yan Na
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu-Hui Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
12
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
13
|
Herman JP, Nawreen N, Smail MA, Cotella EM. Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020; 23:617-632. [PMID: 33345670 PMCID: PMC8034599 DOI: 10.1080/10253890.2020.1859475] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulation of stress reactivity is a fundamental priority of all organisms. Stress responses are critical for survival, yet can also cause physical and psychological damage. This review provides a synopsis of brain mechanisms designed to control physiological responses to stress, focusing primarily on glucocorticoid secretion via the hypothalamo-pituitary-adrenocortical (HPA) axis. The literature provides strong support for multi-faceted control of HPA axis responses, involving both direct and indirect actions at paraventricular nucleus (PVN) corticotropin releasing hormone neurons driving the secretory cascade. The PVN is directly excited by afferents from brainstem and hypothalamic circuits, likely relaying information on homeostatic challenge. Amygdala subnuclei drive HPA axis responses indirectly via disinhibition, mediated by GABAergic relays onto PVN-projecting neurons in the hypothalamus and bed nucleus of the stria terminalis (BST). Inhibition of stressor-evoked HPA axis responses is mediated by an elaborate network of glucocorticoid receptor (GR)-containing circuits, providing a distributed negative feedback signal that inhibits PVN neurons. Prefrontal and hippocampal neurons play a major role in HPA axis inhibition, again mediated by hypothalamic and BST GABAergic relays to the PVN. The complexity of the regulatory process suggests that information on stressors is integrated across functional disparate brain circuits prior to accessing the PVN, with regions such as the BST in prime position to relay contextual information provided by these sources into appropriate HPA activation. Dysregulation of the HPA in disease is likely a product of inappropriate checks and balances between excitatory and inhibitory inputs ultimately impacting PVN output.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Evelin M Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Cucinello-Ragland JA, Edwards S. Neurobiological aspects of pain in the context of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:1-29. [PMID: 33648668 DOI: 10.1016/bs.irn.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alcohol is an effective and widely utilized analgesic. However, the chronic use of alcohol can actually facilitate nociceptive sensitivity over time, a condition known as hyperalgesia. Excessive and uncontrollable alcohol drinking is also a hallmark feature of alcohol use disorder (AUD). Both AUD and chronic pain are typically accompanied by negative affective states that may underlie reinforcement mechanisms contributing to AUD maintenance or progression. Frequent utilization of alcohol to relieve pain in individuals suffering from AUD or other chronic pain conditions may thus represent a powerful negative reinforcement construct. This chapter will describe ties between alcohol-mediated pain relief and potential exacerbation of AUD. We describe neurobiological systems engaged in alcohol analgesia as well as systems recruited in the development and maintenance of AUD and hyperalgesia. Although few effective therapies exist for either chronic pain or AUD, the common interaction of these conditions will likely lead the way for promising new discoveries of more effective and even simultaneous treatment of AUD and co-morbid hyperalgesia. An abundance of neurobiological findings from multiple laboratories has implicated a potentiation of central amygdala (CeA) signaling in both pain and AUD, and these data also suggest that attenuation of stress-related systems (including corticotropin-releasing factor, vasopressin, and glucocorticoid receptor activity) would be particularly effective and comprehensive therapeutic strategies targeting the critical intersection of somatic and motivational mechanisms driving AUD, including alcohol-induced hyperalgesia.
Collapse
Affiliation(s)
- Jessica A Cucinello-Ragland
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
15
|
Sun Z, Xu Y. Nuclear Receptor Coactivators (NCOAs) and Corepressors (NCORs) in the Brain. Endocrinology 2020; 161:5843759. [PMID: 32449767 PMCID: PMC7351129 DOI: 10.1210/endocr/bqaa083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023]
Abstract
Nuclear receptor coactivators (NCOAs) and corepressors (NCORs) bind to nuclear hormone receptors in a ligand-dependent manner and mediate the transcriptional activation or repression of the downstream target genes in response to hormones, metabolites, xenobiotics, and drugs. NCOAs and NCORs are widely expressed in the mammalian brain. Studies using genetic animal models started to reveal pivotal roles of NCOAs/NCORs in the brain in regulating hormonal signaling, sexual behaviors, consummatory behaviors, exploratory and locomotor behaviors, moods, learning, and memory. Genetic variants of NCOAs or NCORs have begun to emerge from human patients with obesity, hormonal disruption, intellectual disability, or autism spectrum disorders. Here we review recent studies that shed light on the function of NCOAs and NCORs in the central nervous system.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| | - Yong Xu
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| |
Collapse
|
16
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Chen X, Tian Y, Zhu H, Bian C, Li M. Inhibition of steroid receptor coactivator-1 in the hippocampus impairs the consolidation and reconsolidation of contextual fear memory in mice. Life Sci 2020; 245:117386. [PMID: 32006528 DOI: 10.1016/j.lfs.2020.117386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/28/2023]
Abstract
AIMS Steroid receptor coactivator-1 (SRC-1) is a key coactivator for the efficient transcriptional activity of steroids in the regulation of hippocampal functions. However, the effect of SRC-1 on hippocampal memory processes remains unknown. Our aim was to investigate the roles of hippocampal SRC-1 in the consolidation and reconsolidation of contextual fear memory in mice. MAIN METHODS Contextual fear conditioning paradigm was constructed in adult male C57BL/6 mice to examine the fear learning and memory processes. Adeno-associated virus (AAV) vector-mediated RNA interference (RNAi) was infused into hippocampus to block hippocampal SRC-1 level. Immunofluorescent staining was used to detect the efficiency of transfection. High plus maze and open field test were used to determine anxiety and locomotor activity. Western blot analyses were used to detect the expression of SRC-1 and synaptic proteins in the hippocampus. KEY FINDINGS We first showed that the expression of SRC-1 was regulated by fear conditioning training in a time-dependent manner, and knockdown of SRC-1 impaired contextual fear memory consolidation without affecting innate anxiety or locomotor activity. In addition, hippocampal SRC-1 was also regulated by the retrieval of contextual fear memory, and downregulation of SRC-1 disrupted fear memory reconsolidation. Moreover, knockdown of SRC-1 reversed the increased GluR1 and PSD-95 levels induced by contextual fear memory retrieval. SIGNIFICANCE Our data indicate that hippocampal SRC-1 is required for the consolidation and reconsolidation of contextual fear memory, and SRC-1 may be a potential therapeutic target for mental disorders that are involved in hippocampal memory dysfunction.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China
| | - Yiqin Tian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurology, Airborne Military Hospital, Chinese People's Liberation Army, Wuhan 430014, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China; Department of Developmental Psychology of Army man, College of Psychology, Army Medical University, Chongqing 400038, China.
| | - Min Li
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
18
|
Abstract
Individuals with post-traumatic stress disorder avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal axis response at the time of trauma. Our laboratory uses predator odor (i.e. bobcat urine) stress to divide adult Wistar rats into groups that exhibit high (avoiders) or low (nonavoiders) avoidance of a predator odor-paired context, modeling the fact that not all humans exposed to traumatic events develop psychiatric conditions. Male avoiders exhibit lower body weight gain after stress, as well as extinction-resistant avoidance that persists after a second stress exposure. These animals also show attenuated hypothalamic-pituitary-adrenal axis response to predator odor that predicts subsequent avoidance of the odor-paired context. Avoiders exhibit unique brain activation profiles relative to nonavoiders and controls (as measured by Fos immunoreactivity), and higher corticotropin-releasing factor levels in multiple brain regions. Furthermore, avoider rats exhibit escalated and compulsive-like alcohol self-administration after traumatic stress. Here, we review the predator odor avoidance model of post-traumatic stress disorder and its utility for tracking behavior and measuring biological outcomes predicted by avoidance. The major strengths of this model are (i) etiological validity with exposure to a single intense stressor, (ii) established approach distinguishing individual differences in stress reactivity, and (iii) robust behavioral and biological phenotypes during and after trauma.
Collapse
|
19
|
Woods-Burnham L, Stiel L, Martinez SR, Sanchez-Hernandez ES, Ruckle HC, Almaguel FG, Stern MC, Roberts LR, Williams DR, Montgomery S, Casiano CA. Psychosocial Stress, Glucocorticoid Signaling, and Prostate Cancer Health Disparities in African American Men. CANCER HEALTH DISPARITIES 2020; 4:https://companyofscientists.com/index.php/chd/article/view/169/188. [PMID: 35252767 PMCID: PMC8896511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in our understanding of racial disparities in prostate cancer (PCa) incidence and mortality that disproportionately affect African American (AA) men have provided important insights into the psychosocial, socioeconomic, environmental, and molecular contributors. There is, however, limited mechanistic knowledge of how the interplay between these determinants influences prostate tumor aggressiveness in AA men and other men of African ancestry. Growing evidence indicates that chronic psychosocial stress in AA populations leads to sustained glucocorticoid signaling through the glucocorticoid receptor (GR), with negative physiological and pathological consequences. Compelling evidence indicates that treatment of castration-resistant prostate cancer (CRPC) with anti-androgen therapy activates GR signaling. This enhanced GR signaling bypasses androgen receptor (AR) signaling and transcriptionally activates both AR-target genes and GR-target genes, resulting in increased prostate tumor resistance to anti-androgen therapy, chemotherapy, and radiotherapy. Given its enhanced signaling in AA men, GR-together with specific genetic drivers-may promote CRPC progression and exacerbate tumor aggressiveness in this population, potentially contributing to PCa mortality disparities. Ongoing and future CRPC clinical trials that combine standard of care therapies with GR modulators should assess racial differences in therapy response and clinical outcomes in order to improve PCa health disparities that continue to exist for AA men.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Laura Stiel
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Herbert C. Ruckle
- Department of Surgical Urology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Frankis G. Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Mariana C. Stern
- Departments of Preventive Medicine and Urology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Lisa R. Roberts
- Loma Linda University School of Nursing, Loma Linda, CA, USA
| | - David R. Williams
- Department of Social and Behavioral Sciences, Harvard University School of Public Health
| | - Susanne Montgomery
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
20
|
Heck AL, Thompson MK, Uht RM, Handa RJ. Sex-Dependent Mechanisms of Glucocorticoid Regulation of the Mouse Hypothalamic Corticotropin-Releasing Hormone Gene. Endocrinology 2020; 161:bqz012. [PMID: 31754709 PMCID: PMC7188085 DOI: 10.1210/endocr/bqz012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
To limit excessive glucocorticoid secretion following hypothalamic-pituitary-adrenal (HPA) axis stimulation, circulating glucocorticoids inhibit corticotropin-releasing hormone (CRH) expression in paraventricular nucleus (PVN) neurons. As HPA function differs between sexes and depends on circulating estradiol (E2) levels in females, we investigated sex/estrous stage-dependent glucocorticoid regulation of PVN Crh. Using NanoString nCounter technology, we first demonstrated that adrenalectomized (ADX'd) diestrous female (low E2), but not male or proestrous female (high E2), mice exhibited a robust decrease in PVN CRH mRNA following 2-day treatment with the glucocorticoid receptor (GR) agonist RU28362. Immunohistochemical analysis of PVN CRH neurons in Crh-IRES-Cre;Ai14 mice, where TdTomato fluorescence permanently tags CRH-expressing neurons, showed similarly abundant co-expression of GR-immunoreactivity in males, diestrous females, and proestrous females. However, we identified sex/estrous stage-related glucocorticoid regulation or expression of GR transcriptional coregulators. Out of 17 coregulator genes examined using nCounter multiplex analysis, mRNAs that were decreased by RU28362 in ADX'd mice in a sex/estrous stage-dependent fashion included: GR (males = diestrous females > proestrous females), signal transducer and activator of transcription 3 (STAT3) (males < diestrous = proestrous), and HDAC1 (males < diestrous > proestrous). Steroid receptor coactivator 3 (SRC-3), nuclear corepressor 1 (NCoR1), heterogeneous nuclear ribonucleoprotein U (hnrnpu), CREB binding protein (CBP) and CREB-regulated transcription coactivator 2 (CRTC2) mRNAs were lower in ADX'd diestrous and proestrous females versus males. Additionally, most PVN CRH neurons co-expressed methylated CpG binding protein 2 (MeCP2)-immunoreactivity in diestrous female and male Crh-IRES-Cre;Ai14 mice. Our findings collectively suggest that GR's sex-dependent regulation of PVN Crh may depend upon differences in the GR transcriptional machinery and an underlying influence of E2 levels in females.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, University of Arizona, Phoenix, Arizona
| | - Rosalie M Uht
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
21
|
Koning ASCAM, Buurstede JC, van Weert LTCM, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. J Endocr Soc 2019; 3:1917-1930. [PMID: 31598572 PMCID: PMC6777400 DOI: 10.1210/js.2019-00158] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Adrenal glucocorticoid hormones are crucial for maintenance of homeostasis and adaptation to stress. They act via the mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs)-members of the family of nuclear receptors. MRs and GRs can mediate distinct, sometimes opposite, effects of glucocorticoids. Both receptor types can mediate nongenomic steroid effects, but they are best understood as ligand-activated transcription factors. MR and GR protein structure is similar; the receptors can form heterodimers on the DNA at glucocorticoid response elements (GREs), and they share a number of target genes. The transcriptional basis for opposite effects on cellular physiology remains largely unknown, in particular with respect to MR-selective gene transcription. In this review, we discuss proven and potential mechanisms of transcriptional specificity for MRs and GRs. These include unique GR binding to "negative GREs," direct binding to other transcription factors, and binding to specific DNA sequences in conjunction with other transcription factors, as is the case for MRs and NeuroD proteins in the brain. MR- and GR-specific effects may also depend on specific interactions with transcriptional coregulators, downstream mediators of transcriptional receptor activity. Current data suggest that the relative importance of these mechanisms depends on the tissue and physiological context. Insight into these processes may not only allow a better understanding of homeostatic regulation but also the development of drugs that target specific aspects of disease.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Jacobus C Buurstede
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Lisa T C M van Weert
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Onno C Meijer
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
22
|
Disrupted compensatory response mediated by Wolfram syndrome 1 protein and corticotrophin-releasing hormone family peptides in early-onset intrahepatic cholestasis pregnancy. Placenta 2019; 83:63-71. [PMID: 31477210 DOI: 10.1016/j.placenta.2019.06.378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/20/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The most adverse perinatal outcome of intrahepatic cholestasis of pregnancy (ICP) is sudden fetal death related to acute fetoplacental hypoxia. Corticotrophin-releasing hormone (CRH), urocortin (UCN), and Wolfram syndrome 1 (WFS1) proteins may have a compensatory response to hypoxic stress. METHODS A total of 108 singleton pregnant women were divided into three groups: control, late-onset ICP, and early-onset ICP. Enzyme-linked immunosorbent assays were used to detected maternal serum CRH, UCN, and WFS1 levels. Western blotting and real-time polymerase chain reaction were conducted to quantify placental protein and mRNA levels of CRH, UCN, and WFS1. Pearson correlation scatterplots and Pearson correlation matrix were employed to testify the correlation. RESULTS Placental WFS1 had a positive relation with placental UCN (r = 0.69, P < 0.05) and serum UCN (r = 0.36, P < 0.05). Placental CRH was positively correlated with maternal serum CRH (r = 0.53, P < 0.05). Maternal serum and placental levels of CRH, UCN, and WFS1 significantly increased in the early-onset ICP group compared with the control group (P < 0.05). Placental levels of UCN and WFS1 in the early-onset ICP group were significantly elevated and higher in comparison with the late-onset ICP group (P < 0.05). However, the transcriptional levels of CRH, UCN, and WFS1 were impaired in the early-onset ICP group. DISCUSSION Our study revealed that transcription and translation of WFS1, CRH, and UCN were altered during pregnancies complicated by early-onset ICP. This disrupted compensatory response mediated by WFS1 and CRH family peptides in early-onset ICP may play a significant role in the pathogenesis of sudden fetal death in acute fetal hypoxia.
Collapse
|
23
|
Monczor F, Chatzopoulou A, Zappia CD, Houtman R, Meijer OC, Fitzsimons CP. A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Front Pharmacol 2019; 10:214. [PMID: 30930776 PMCID: PMC6425864 DOI: 10.3389/fphar.2019.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Federico Monczor
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonia Chatzopoulou
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Carlos Daniel Zappia
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - René Houtman
- PamGene International B.V., 's-Hertogenbosch, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlos P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Viho EMG, Buurstede JC, Mahfouz A, Koorneef LL, van Weert LTCM, Houtman R, Hunt HJ, Kroon J, Meijer OC. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology 2019; 109:266-276. [PMID: 30884490 PMCID: PMC6878852 DOI: 10.1159/000499659] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Eva M G Viho
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hazel J Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | - Jan Kroon
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands,
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
25
|
Cohen A, Colodner R, Masalha R, Haimov I. The Relationship Between Tobacco Smoking, Cortisol Secretion, and Sleep Continuity. Subst Use Misuse 2019; 54:1705-1714. [PMID: 31081433 DOI: 10.1080/10826084.2019.1608250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Existing theories hold that chronic tobacco smoking leads to the development of adverse psychological symptoms, thus producing a compulsive urge to smoke in order to alleviate these sensations. Sleep disturbances are often considered among the negative consequences of chronic smoking. Objectives: The current study aimed at examining whether dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis may be involved in this disruption of sleep quality among smokers. Methods: Smokers and non-smokers provided saliva samples following awakening for assessment of cortisol concentrations as a measure of HPA activity. Subsequently the participants completed the State-Trait Anxiety Inventory, Brief Questionnaire on Smoking Urges, the Fagerstrom Test for Nicotine Dependence, and the Pittsburgh Sleep Quality Index. Next, their sleep was monitored objectively for one week using an actigraph. Results: While smokers' self-reported sleep quality was similar to that of non-smokers, their sleep recording data pointed to diminished sleep continuity (increased wake time after sleep onset; WASO), while total sleep time and sleep onset latency were similar to that of non-smokers. Cortisol secretion was higher among smokers. However, among smokers only, cortisol was negatively correlated with WASO, suggesting that the direct enhancing effect of smoking on WASO is somewhat balanced by an indirect process related to higher cortisol levels. Possible interpretations for this inconsistent mediation are discussed. Conclusions/Importance: Smoking is associated with reduced sleep continuity and the relationship between smoking and sleep continuity may involve the HPA axis.
Collapse
Affiliation(s)
- Ami Cohen
- a Department of Psychology, The Center for Psychobiological Research , The Max Stern Academic College of Emek Yezreel , Yezreel Valley , Israel
| | - Raul Colodner
- b Endocrinology Laboratory , Emek Medical Center , Afula , Israel
| | - Rifat Masalha
- b Endocrinology Laboratory , Emek Medical Center , Afula , Israel
| | - Iris Haimov
- a Department of Psychology, The Center for Psychobiological Research , The Max Stern Academic College of Emek Yezreel , Yezreel Valley , Israel
| |
Collapse
|
26
|
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer's Disease and Depression. Front Neurosci 2018; 12:739. [PMID: 30459541 PMCID: PMC6232776 DOI: 10.3389/fnins.2018.00739] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the principal neurodegenerative pathology in the world displaying negative impacts on both the health and social ability of patients and inducing considerable economic costs. In the case of sporadic forms of AD (more than 95% of patients), even if mechanisms are unknown, some risk factors were identified. The principal risk is aging, but there is growing evidence that lifetime events like chronic stress or stress-related disorders may increase the probability to develop AD. This mini-review reinforces the rationale to consider major depressive disorder (MDD) as an important risk factor to develop AD and points the central role played by the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids (GC) and their receptors (GR) in the etiology of MDD and AD. Several strategies directly targeting GR were tested to neutralize the HPA axis dysregulation and GC overproduction. Given the ubiquitous expression of GR, antagonists have many undesired side effects, limiting their therapeutic potential. However, a new class of molecules was developed, highly selective and acting as modulators. They present the advantage to selectively abrogate pathogenic GR-dependent processes, while retaining beneficial aspects of GR signaling. In fact, these “selective GR modulators” induce a receptor conformation that allows activation of only a subset of downstream signaling pathways, explaining their capacity to combine agonistic and antagonistic properties. Thus, targeting GR with selective modulators, alone or in association with current strategies, becomes particularly attractive and relevant to develop novel preventive and/or therapeutic strategies to tackle disorders associated with a dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
27
|
Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol 2018; 39:539-549. [PMID: 30291573 PMCID: PMC6469829 DOI: 10.1007/s10571-018-0625-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
Collapse
Affiliation(s)
- Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - J C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Department of Animal Sciences and Health (M.J.M.S.), Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
28
|
Lu Q, Yang Y, Jia S, Zhao S, Gu B, Lu P, He Y, Liu RX, Wang J, Ning G, Ma QY. SRC1 Deficiency in Hypothalamic Arcuate Nucleus Increases Appetite and Body Weight. J Mol Endocrinol 2018; 62:JME-18-0075.R2. [PMID: 30400041 DOI: 10.1530/jme-18-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023]
Abstract
Appetite is tightly controlled by neural and hormonal signals in animals. In general, steroid receptor co-activator 1 (SRC1) enhances steroid hormone signalling in energy balance and serves as a common co-activator of several steroid receptors, such as estrogen and glucocorticoid receptors. However, the key roles of SRC1 in energy balance remain largely unknown. We first confirmed that SRC1 is abundantly expressed in the hypothalamic arcuate nucleus (ARC), which is a critical centre for regulating feeding and energy balance; it is further co-localised with agouti-related protein and proopiomelanocortin neurons in the arcuate nucleus. Interestingly, local SRC1 expression changes with the transition between sufficiency and deficiency of food supply. To identify its direct role in appetite regulation, we repressed SRC1 expression in the hypothalamic ARC using lentivirus shRNA and found that SRC1 deficiency significantly promoted food intake and body weight gain, particularly in mice fed with a high-fat diet. We also found the activation of the AMP-activated protein kinase (AMPK) signalling pathway due to SRC1 deficiency. Thus, our results suggest that SRC1 in the ARC regulates appetite and body weight and that AMPK signalling is involved in this process. We believe that our study results have important implications for recognising the overlapping and integrating effects of several steroid hormones/receptors on accurate appetite regulation in future studies.
Collapse
Affiliation(s)
- Qianqian Lu
- Q Lu, The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Yang
- Y Yang, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Jia
- S Jia, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoqian Zhao
- S Zhao, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Gu
- B Gu, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Lu
- P Lu, The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- Y He, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui-Xin Liu
- R Liu, Endocrinology, Rujin Hospital, Shanghai, China
| | - Jiqiu Wang
- J Wang, Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Guang Ning
- G Ning, Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, shanghai, China
| | - Qin-Yun Ma
- Q Ma, Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai , Shanghai, China
| |
Collapse
|
29
|
Dalm S, Karssen AM, Meijer OC, Belanoff JK, de Kloet ER. Resetting the Stress System with a Mifepristone Challenge. Cell Mol Neurobiol 2018; 39:503-522. [PMID: 30173378 PMCID: PMC6469632 DOI: 10.1007/s10571-018-0614-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022]
Abstract
Psychotic depression is characterized by elevated circulating cortisol, and high daily doses of the glucocorticoid/progesterone antagonist mifepristone for 1 week are required for significant improvement. Using a rodent model, we find that such high doses of mifepristone are needed because the antagonist is rapidly degraded and poorly penetrates the blood–brain barrier, but seems to facilitate the entry of cortisol. We also report that in male C57BL/6J mice, after a 7-day treatment with a high dose of mifepristone, basal blood corticosterone levels were similar to that of vehicle controls. This is surprising because after the first mifepristone challenge, corticosterone remained elevated for about 16 h, and then decreased towards vehicle control levels at 24 h. At that time, stress-induced corticosterone levels of the 1xMIF were sevenfold higher than the 7xMIF group, the latter response being twofold lower than controls. The 1xMIF mice showed behavioral hyperactivity during exploration of the circular hole board, while the 7xMIF mice rather engaged in serial search patterns. To explain this rapid reset of corticosterone secretion upon recurrent mifepristone administration, we suggest the following: (i) A rebound glucocorticoid feedback after cessation of mifepristone treatment. (ii) Glucocorticoid agonism in transrepression and recruitment of cell-specific coregulator cocktails. (iii) A more prominent role of brain MR function in control of stress circuit activity. An overview table of neuroendocrine MIF effects is provided. The data are of interest for understanding the mechanistic underpinning of stress system reset as treatment strategy for stress-related diseases.
Collapse
Affiliation(s)
- Sergiu Dalm
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan M Karssen
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.,Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C-7-44, Postal zone C7-Q, PO Box 9600, Leiden, The Netherlands
| | | | - E Ronald de Kloet
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands. .,Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Room C-7-44, Postal zone C7-Q, PO Box 9600, Leiden, The Netherlands.
| |
Collapse
|
30
|
Abstract
The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role.
Collapse
|
31
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
32
|
Differential effects of imipramine and CORT118335 (Glucocorticoid receptor modulator/mineralocorticoid receptor antagonist) on brain-endocrine stress responses and depression-like behavior in female rats. Behav Brain Res 2017; 336:99-110. [PMID: 28866130 DOI: 10.1016/j.bbr.2017.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Depression is commonly associated with hypothalamic-pituitary adrenal (HPA) axis dysfunction that primarily manifests as aberrant glucocorticoid secretion. Glucocorticoids act on Type I mineralocorticoid (MR) and Type II glucocorticoid receptors (GR) to modulate mood and endocrine responses. Successful antidepressant treatment normalizes HPA axis function, in part due to modulatory effects on MR and GR in cortico-limbic structures. Although women are twice as likely to suffer from depression, little is known about how antidepressants modulate brain, endocrine, and behavioral stress responses in females. Here, we assessed the impact of CORT118335 (GR modulator/MR antagonist) and imipramine (tricyclic antidepressant) on neuroendocrine and behavioral responses to restraint or forced swim stress (FST) in female rats (n=10-12/group). Increased immobility CORT118335 in the FST is purported to reflect passive coping or depression-like behavior. CORT118335 dampened adrenocorticotropic hormone (ACTH) and corticosterone responses to the FST, but did not affect immobility. Imipramine suppressed ACTH, but had minimal effects on corticosterone responses to FST. Despite these marginal effects, imipramine decreased immobility, suggesting antidepressant efficacy. In an effort to link brain-endocrine responses with behavior, c-Fos was assessed in HPA axis and mood modulatory regions in response to the FST. CORT118335 upregulated c-Fos expression in the paraventricular nucleus of the hypothalamus. Imipramine decreased c-Fos in the basolateral amygdala and hippocampus (CA1 and CA3), but increased c-Fos in the central amygdala. These data suggest the antidepressant-like (e.g., active coping) properties of imipramine may be due to widespread effects on cortico-limbic circuits that regulate emotional and cognitive processes.
Collapse
|
33
|
Nguyen ET, Streicher J, Berman S, Caldwell JL, Ghisays V, Estrada CM, Wulsin AC, Solomon MB. A mixed glucocorticoid/mineralocorticoid receptor modulator dampens endocrine and hippocampal stress responsivity in male rats. Physiol Behav 2017; 178:82-92. [PMID: 28093219 PMCID: PMC5511095 DOI: 10.1016/j.physbeh.2017.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Aberrant glucocorticoid secretion is implicated in the pathophysiology of stress-related disorders (i.e., depression, anxiety). Glucocorticoids exert biological effects via mineralocorticoid (MR) and glucocorticoid (GR) receptors. Previous data from our laboratory indicate that GR antagonism/modulation (i.e., mifepristone, CORT 108297) regulate endocrine, behavioral, and central stress responses. Because of the dynamic interplay between MR and GR on HPA axis regulation and emotionality, compounds targeting both receptors are of interest for stress-related pathology. We investigated the effects of CORT 118335 (a dual selective GR modulator/MR antagonist) on endocrine, behavioral, and central (c-Fos) stress responses in male rats. Rats were treated for five days with CORT 118335, imipramine (positive control), or vehicle and exposed to restraint or forced swim stress (FST). CORT 118335 dampened corticosterone responses to both stressors, without a concomitant antidepressant-like effect in the FST. Imipramine decreased corticosterone responses to restraint stress; however, the antidepressant-like effect of imipramine in the FST was independent of circulating glucocorticoids. These findings indicate dissociation between endocrine and behavioral stress responses in the FST. CORT 118335 decreased c-Fos expression only in the CA1 division of the hippocampus. Imipramine decreased c-Fos expression in the basolateral amygdala and CA1 and CA3 divisions of the hippocampus. Overall, the data indicate differential effects of CORT 118335 and imipramine on stress-induced neuronal activity in various brain regions. The data also highlight a complex relationship between neuronal activation in stress and mood regulatory brain regions and the ensuing impact on endocrine and behavioral stress responses.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States.
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Sarah Berman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Valentina Ghisays
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| |
Collapse
|
34
|
Sasaki S, Matsushita A, Kuroda G, Nakamura HM, Oki Y, Suda T. The Mechanism of Negative Transcriptional Regulation by Thyroid Hormone: Lessons From the Thyrotropin β Subunit Gene. VITAMINS AND HORMONES 2017; 106:97-127. [PMID: 29407449 DOI: 10.1016/bs.vh.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid hormone (T3) activates (positive regulation) or represses (negative regulation) target genes at the transcriptional level. The molecular mechanism of the former has been elucidated in detail; however, the mechanism for negative regulation has not been established. The best example of the gene that is negatively regulated by T3 is the thyrotropin (thyroid-stimulating hormone) β subunit (TSHβ) gene. Analogous to the T3-responsive element (TRE) in positive regulation, a negative TRE (nTRE) has been postulated in the TSHβ gene. However, TSHβ promoter analysis, performed in the presence of transcription factors Pit1 and GATA2, which are determinants of thyrotroph differentiation in the pituitary, revealed that the nTRE is dispensable for inhibition by T3. We propose a tethering model in which the T3 receptor is tethered to GATA2 via protein-protein interaction and inhibits GATA2-dependent transactivation of the TSHβ gene in a T3-dependent manner.
Collapse
Affiliation(s)
| | | | - Go Kuroda
- Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | - Yutaka Oki
- Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
35
|
van Weert LTCM, Buurstede JC, Mahfouz A, Braakhuis PSM, Polman JAE, Sips HCM, Roozendaal B, Balog J, de Kloet ER, Datson NA, Meijer OC. NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain. Endocrinology 2017; 158:1511-1522. [PMID: 28324065 DOI: 10.1210/en.2016-1422] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
In the limbic brain, mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) both function as receptors for the naturally occurring glucocorticoids (corticosterone/cortisol) but mediate distinct effects on cellular physiology via transcriptional mechanisms. The transcriptional basis for specificity of these MR- vs GR-mediated effects is unknown. To address this conundrum, we have identified the extent of MR/GR DNA-binding selectivity in the rat hippocampus using chromatin immunoprecipitation followed by sequencing. We found 918 and 1450 nonoverlapping binding sites for MR and GR, respectively. Furthermore, 475 loci were co-occupied by MR and GR. De novo motif analysis resulted in a similar binding motif for both receptors at 100% of the target loci, which matched the known glucocorticoid response element (GRE). In addition, the Atoh/NeuroD consensus sequence was found in co-occurrence with all MR-specific binding sites but was absent for GR-specific or MR-GR overlapping sites. Basic helix-loop-helix family members Neurod1, Neurod2, and Neurod6 showed hippocampal expression and were hypothesized to bind the Atoh motif. Neurod2 was detected at rat hippocampal MR binding sites but not at GR-exclusive sites. All three NeuroD transcription factors acted as DNA-binding-dependent coactivators for both MR and GR in reporter assays in heterologous HEK293 cells, likely via indirect interactions with the receptors. In conclusion, a NeuroD family member binding to an additional motif near the GRE seems to drive specificity for MR over GR binding at hippocampal binding sites.
Collapse
Affiliation(s)
- Lisa T C M van Weert
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, 2628 CD, Delft, The Netherlands
| | - Pamela S M Braakhuis
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - E Ronald de Kloet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Nicole A Datson
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
36
|
Zalachoras I, Verhoeve SL, Toonen LJ, van Weert LTCM, van Vlodrop AM, Mol IM, Meelis W, de Kloet ER, Meijer OC. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression. Mol Psychiatry 2016; 21:1733-1739. [PMID: 26976039 DOI: 10.1038/mp.2016.16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/01/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
Abstract
Maladaptive glucocorticoid effects contribute to stress-related psychopathology. The glucocorticoid receptor (GR) that mediates many of these effects uses multiple signaling pathways. We have tested the hypothesis that manipulation of downstream factors ('coregulators') can abrogate potentially maladaptive GR-mediated effects on fear-motivated behavior that are linked to corticotropin releasing hormone (CRH). For this purpose the expression ratio of two splice variants of steroid receptor coactivator-1 (SRC-1) was altered via antisense-mediated 'exon-skipping' in the central amygdala of the mouse brain. We observed that a change in splicing towards the repressive isoform SRC-1a strongly reduced glucocorticoid-induced responsiveness of Crh mRNA expression and increased methylation of the Crh promoter. The transcriptional GR target gene Fkbp5 remained responsive to glucocorticoids, indicating gene specificity of the effect. The shift of the SRC-1 splice variants altered glucocorticoid-dependent exploratory behavior and attenuated consolidation of contextual fear memory. In conclusion, our findings demonstrate that manipulation of GR signaling pathways related to the Crh gene can selectively diminish potentially maladaptive effects of glucocorticoids.
Collapse
Affiliation(s)
- I Zalachoras
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - S L Verhoeve
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - L J Toonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - L T C M van Weert
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A M van Vlodrop
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - I M Mol
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - W Meelis
- Department of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - E R de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - O C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
37
|
Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, Barchas JD, Jones EG, Bunney WE, Myers RM, Akil H, Watson SJ, Thompson RC. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res 2016; 82:58-67. [PMID: 27468165 PMCID: PMC5026930 DOI: 10.1016/j.jpsychires.2016.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs acting as post-transcriptional regulators of gene expression. Though implicated in multiple CNS disorders, miRNAs have not been examined in any psychiatric disease state in anterior cingulate cortex (AnCg), a brain region centrally involved in regulating mood. We performed qPCR analyses of 29 miRNAs previously implicated in psychiatric illness (major depressive disorder (MDD), bipolar disorder (BP) and/or schizophrenia (SZ)) in AnCg of patients with MDD and BP versus controls. miR-132, miR-133a and miR-212 were initially identified as differentially expressed in BP, miR-184 in MDD and miR-34a in both MDD and BP (although none survived multiple correction testing and must be considered preliminary). In silico target prediction algorithms identified putative targets of differentially expressed miRNAs. Nuclear Co-Activator 1 (NCOA1), Nuclear Co-Repressor 2 (NCOR2) and Phosphodiesterase 4B (PDE4B) were selected based upon predicted targeting by miR-34a (with NCOR2 and PDE4B both targeted by miR-184) and published relevance to psychiatric illness. Luciferase assays identified PDE4B as a target of miR-34a and miR-184, while NCOA1 and NCOR2 were targeted by miR-34a and 184, respectively. qPCR analyses were performed to determine whether changes in miRNA levels correlated with mRNA levels of validated targets. NCOA1 showed an inverse correlation with miR-34a in BP, while NCOR2 demonstrated a positive correlation. In sum, this is the first study to demonstrate miRNA changes in AnCg in psychiatric illness and validate miR-34a as differentially expressed in CNS in MDD. These findings support a mechanistic role for miRNAs in the regulation of stress-responsive genes disrupted in psychiatric illness.
Collapse
Affiliation(s)
- Joshua A Azevedo
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Bradley S Carter
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Neuroscience Program, Oberlin College, Science Center A261, 119 Woodland St., Oberlin, OH, 44074, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - David L Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, 5301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Manhong Dai
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Alan F Schatzberg
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Rd, Stanford, CA, 94305, USA
| | - Jack D Barchas
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, Weill Cornell Medical College, 525 East 68th Street, New York, NY, 10065, USA
| | - Edward G Jones
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Center for Neuroscience, University of California - Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - William E Bunney
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Psychiatry and Human Behavior, University of California - Irvine, 101 The City Dr S, Orange, CA, 92868, USA
| | - Richard M Myers
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Robert C Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
New selective glucocorticoid receptor modulators reverse amyloid-β peptide–induced hippocampus toxicity. Neurobiol Aging 2016; 45:109-122. [DOI: 10.1016/j.neurobiolaging.2016.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
39
|
Benlloch M, Obrador E, Valles SL, Rodriguez ML, Sirerol JA, Alcácer J, Pellicer JA, Salvador R, Cerdá C, Sáez GT, Estrela JM. Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism. Antioxid Redox Signal 2016; 24:974-90. [PMID: 26651028 PMCID: PMC4921902 DOI: 10.1089/ars.2015.6437] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies, lack of correlation with the bioavailable concentrations is a critical issue. Some reports had suggested that these molecules downregulate the stress response, which may affect growth and the antioxidant protection of malignant cells. Initially, we studied this potential underlying mechanism using different human melanomas (with genetic backgrounds correlating with most melanomas), growing in nude mice as xenografts, and pterostilbene (Pter, a natural dimethoxylated analog of resveratrol). RESULTS Intravenous administration of Pter decreased human melanoma growth in vivo. However, Pter, at levels measured within the tumors, did not affect melanoma growth in vitro. Pter inhibited pituitary production of the adrenocorticotropin hormone (ACTH), decreased plasma levels of corticosterone, and thereby downregulated the glucocorticoid receptor- and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent antioxidant defense system in growing melanomas. Exogenous corticosterone or genetically induced Nrf2 overexpression in melanoma cells prevented the inhibition of tumor growth and decreased antioxidant defenses in these malignant cells. These effects and mechanisms were also found in mice bearing different human pancreatic cancers. Glutathione depletion (selected as an antimelanoma strategy) facilitated the complete elimination by chemotherapy of melanoma cells isolated from mice treated with Pter. INNOVATION Although bioavailability-related limitations may preclude direct anticancer effects in vivo, natural polyphenols may also interfere with the growth and defense of cancer cells by downregulating the pituitary gland-dependent ACTH synthesis. CONCLUSIONS Pter downregulates glucocorticoid production, thus decreasing the glucocorticoid receptor and Nrf2-dependent signaling/transcription and the antioxidant protection of melanoma and pancreatic cancer cells. Antioxid. Redox Signal. 24, 974-990.
Collapse
Affiliation(s)
- María Benlloch
- 1 Department of Health and Functional Valorization, San Vicente Martir Catholic University , Valencia, Spain
| | - Elena Obrador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Soraya L Valles
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - María L Rodriguez
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - J Antoni Sirerol
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Javier Alcácer
- 3 Pathology Laboratory, Quirón Hospital , Valencia, Spain
| | - José A Pellicer
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Rosario Salvador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Concha Cerdá
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain
| | - Guillermo T Sáez
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain .,5 Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, Service of Clinical Analysis, Dr. Peset University Hospital, University of Valencia , Valencia, Spain
| | - José M Estrela
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
40
|
Pusalkar M, Ghosh S, Jaggar M, Husain BFA, Galande S, Vaidya VA. Acute and Chronic Electroconvulsive Seizures (ECS) Differentially Regulate the Expression of Epigenetic Machinery in the Adult Rat Hippocampus. Int J Neuropsychopharmacol 2016; 19:pyw040. [PMID: 27207907 PMCID: PMC5043647 DOI: 10.1093/ijnp/pyw040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. METHODS We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. RESULTS Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. CONCLUSIONS Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure.
Collapse
Affiliation(s)
- Madhavi Pusalkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Basma Fatima Anwar Husain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Sanjeev Galande
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande).
| |
Collapse
|
41
|
High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Sci Rep 2016; 6:24905. [PMID: 27125313 PMCID: PMC4850381 DOI: 10.1038/srep24905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/06/2016] [Indexed: 12/28/2022] Open
Abstract
Stress is increasingly present in everyday life in our fast-paced society and involved in the pathogenesis of many psychiatric diseases. Corticotrophin-releasing-hormone (CRH) plays a pivotal role in regulating the stress responses. The tree shrews are highly vulnerable to stress which makes them the promising animal models for studying stress responses. However, the mechanisms underlying their high stress-susceptibility remained unknown. Here we confirmed that cortisol was the dominate corticosteroid in tree shrew and was significantly increased after acute stress. Our study showed that the function of tree shrew CRH - hypothalamic-pituitary-adrenal (HPA) axis was nearly identical to human that contributed little to their hyper-responsiveness to stress. Using CRH transcriptional regulation analysis we discovered a peculiar active glucocorticoid receptor response element (aGRE) site within the tree shrew CRH promoter, which continued to recruit co-activators including SRC-1 (steroid receptor co-activator-1) to promote CRH transcription under basal or forskolin/dexamethasone treatment conditions. Basal CRH mRNA increased when the aGRE was knocked into the CRH promoter in human HeLa cells using CAS9/CRISPR. The aGRE functioned critically to form the "Stress promoter" that contributed to the higher CRH expression and susceptibility to stress. These findings implicated novel molecular bases of the stress-related diseases in specific populations.
Collapse
|
42
|
Abstract
The hypothalamo-pituitary-adrenal axis (HPA) is responsible for stimulation of adrenal corticosteroids in response to stress. Negative feedback control by corticosteroids limits pituitary secretion of corticotropin, ACTH, and hypothalamic secretion of corticotropin-releasing hormone, CRH, and vasopressin, AVP, resulting in regulation of both basal and stress-induced ACTH secretion. The negative feedback effect of corticosteroids occurs by action of corticosteroids at mineralocorticoid receptors (MR) and/or glucocorticoid receptors (GRs) located in multiple sites in the brain and in the pituitary. The mechanisms of negative feedback vary according to the receptor type and location within the brain-hypothalmo-pituitary axis. A very rapid nongenomic action has been demonstrated for GR action on CRH neurons in the hypothalamus, and somewhat slower nongenomic effects are observed in the pituitary or other brain sites mediated by GR and/or MR. Corticosteroids also have genomic actions, including repression of the pro-opiomelanocortin (POMC) gene in the pituitary and CRH and AVP genes in the hypothalamus. The rapid effect inhibits stimulated secretion, but requires a rapidly rising corticosteroid concentration. The more delayed inhibitory effect on stimulated secretion is dependent on the intensity of the stimulus and the magnitude of the corticosteroid feedback signal, but also the neuroanatomical pathways responsible for activating the HPA. The pathways for activation of some stressors may partially bypass hypothalamic feedback sites at the CRH neuron, whereas others may not involve forebrain sites; therefore, some physiological stressors may override or bypass negative feedback, and other psychological stressors may facilitate responses to subsequent stress.
Collapse
|
43
|
Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proc Natl Acad Sci U S A 2016; 113:2738-43. [PMID: 26811448 DOI: 10.1073/pnas.1520376113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones.
Collapse
|
44
|
Whitaker AM, Farooq MA, Edwards S, Gilpin NW. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats. Stress 2016; 19:69-77. [PMID: 26482332 PMCID: PMC4938251 DOI: 10.3109/10253890.2015.1094689] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.
Collapse
Affiliation(s)
- Annie M Whitaker
- a Department of Physiology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Muhammad A Farooq
- a Department of Physiology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Scott Edwards
- a Department of Physiology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Nicholas W Gilpin
- a Department of Physiology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
45
|
Divergent regulation of distinct glucocorticoid systems in alcohol dependence. Alcohol 2015; 49:811-6. [PMID: 26003866 DOI: 10.1016/j.alcohol.2015.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/11/2015] [Accepted: 04/12/2015] [Indexed: 11/23/2022]
Abstract
Chronic alcohol consumption disrupts glucocorticoid signaling at multiple physiological levels to interact with several disease-related processes associated with neuroendocrine and psychiatric disorders. Excessive alcohol use produces stress-related neuroadaptations at the level of the hypothalamic-pituitary-adrenal (HPA) axis as well as within central (extra-hypothalamic) neural circuitry, including the central amygdala (CeA) and prefrontal cortex (PFC). Altered glucocorticoid receptor (GR) signaling in these areas following excessive alcohol exposure is postulated to mediate the transition from recreational drinking to dependence, as well as the manifestation of a host of cognitive and neurological deficits. Specifically, a bidirectional regulation of stress systems by glucocorticoids leads to the development of an HPA axis tolerance and a concomitant sensitization of cortical and subcortical circuitries. A greater understanding of how hypothalamic and extra-hypothalamic glucocorticoid systems interact to mediate excessive drinking and related pathologies will lead to more effective therapeutic strategies for alcohol use disorder (AUD) and closely related comorbidities.
Collapse
|
46
|
Atucha E, Zalachoras I, van den Heuvel JK, van Weert LTCM, Melchers D, Mol IM, Belanoff JK, Houtman R, Hunt H, Roozendaal B, Meijer OC. A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain. Endocrinology 2015; 156:4105-14. [PMID: 26305887 DOI: 10.1210/en.2015-1390] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and modest affinity for MRs. In vitro profiling of receptor-coregulator interactions suggested that the compound is a "selective modulator" type compound for GRs that can have both agonistic and antagonistic effects. Its molecular profile for MRs was highly similar to those of the full antagonists spironolactone and eplerenone. C118335 showed predominantly antagonistic effects on hippocampal mRNA regulation of known glucocorticoid target genes. Likewise, systemic administration of C118335 blocked the GR-mediated posttraining corticosterone-induced enhancement of memory consolidation in an inhibitory avoidance task. Posttraining administration of C118335, however, gave a strong and dose-dependent impairment of memory consolidation that, surprisingly, reflected involvement of MRs and not GRs. Finally, C118335 treatment acutely suppressed the hypothalamus-pituitary-adrenal axis as measured by plasma corticosterone levels. Mixed GR/MR ligands, such as C118335, can be used to unravel the mechanisms of glucocorticoid signaling. The compound is also a prototype of mixed GR/MR ligands that might alleviate the harmful effects of chronic overexposure to endogenous glucocorticoids.
Collapse
Affiliation(s)
- Erika Atucha
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Ioannis Zalachoras
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - José K van den Heuvel
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Lisa T C M van Weert
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Diana Melchers
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Isabel M Mol
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Joseph K Belanoff
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - René Houtman
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Hazel Hunt
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Benno Roozendaal
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| | - Onno C Meijer
- Department of Cognitive Neuroscience (E.A., L.T.C.M.v.W., B.R.) Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Department of Internal Medicine (I.Z., J.K.v.d.H., L.T.C.M.v.W., I.M.M., O.C.M.), Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and Leiden Institute for Brain and Cognition, Leiden University Medical Center, 2300 RA Leiden, The Netherlands; PamGene International (D.M., R.H.), 2511 HH Den Bosch, The Netherlands; and Corcept Therapeutics (J.K.B., H.H.), Menlo Park, California 94025
| |
Collapse
|
47
|
Estradiol Preferentially Induces Progestin Receptor-A (PR-A) Over PR-B in Cells Expressing Nuclear Receptor Coactivators in the Female Mouse Hypothalamus. eNeuro 2015; 2:eN-NWR-0012-15. [PMID: 26465008 PMCID: PMC4596027 DOI: 10.1523/eneuro.0012-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022] Open
Abstract
Estrogens act in brain to profoundly influence neurogenesis, sexual differentiation, neuroprotection, cognition, energy homeostasis, and female reproductive behavior and physiology through a variety of mechanisms, including the induction of progestin receptors (PRs). PRs are expressed as two isoforms, PR-A and PR-B, that have distinct functions in physiology and behavior. Because these PR isoforms cannot be distinguished using cellular resolution techniques, the present study used isoform-specific null mutant mice that lack PR-A or PR-B for the first time to investigate whether 17β-estradiol benzoate (EB) regulates the differential expression of the PR isoforms in the ventromedial nucleus of the hypothalamus (VMN), arcuate nucleus, and medial preoptic area, brain regions that are rich in EB-induced PRs. Interestingly, EB induced more PR-A than PR-B in all three brain regions, suggesting that PR-A is the predominant isoform in these regions. Given that steroid receptor coactivator (SRC)-1 and SRC-2 are important in estrogen receptor (ER)-dependent transcription in brain, including PR induction, we tested whether the expression of these coactivators was correlated with PR isoform expression. The majority of EB-induced PR cells expressed both SRC-1 and SRC-2 in the three brain regions of all genotypes. Interestingly, the intensity of PR-A immunoreactivity correlated with SRC-2 expression in the VMN, providing a potential mechanism for selective ER-mediated transactivation of PR-A over PR-B in a brain region-specific manner. In summary, these novel findings indicate that estrogens differentially regulate PR-A and PR-B expression in the female hypothalamus, and provide a mechanism by which steroid action in brain can selectively modulate behavior and physiology.
Collapse
|
48
|
Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry 2015; 77:859-69. [PMID: 25433901 PMCID: PMC4398579 DOI: 10.1016/j.biopsych.2014.09.008] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
The central amygdala (CeA) plays a central role in physiologic and behavioral responses to fearful stimuli, stressful stimuli, and drug-related stimuli. The CeA receives dense inputs from cortical regions, is the major output region of the amygdala, is primarily GABAergic (inhibitory), and expresses high levels of prostress and antistress peptides. The CeA is also a constituent region of a conceptual macrostructure called the extended amygdala that is recruited during the transition to alcohol dependence. We discuss neurotransmission in the CeA as a potential integrative hub between anxiety disorders and alcohol use disorder, which are commonly co-occurring in humans. Imaging studies in humans and multidisciplinary work in animals collectively suggest that CeA structure and function are altered in individuals with anxiety disorders and alcohol use disorder, the end result of which may be disinhibition of downstream "effector" regions that regulate anxiety-related and alcohol-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders (MAH, MR), The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders (MAH, MR), The Scripps Research Institute, La Jolla, California
| |
Collapse
|
49
|
Cantley JL, Vatner DF, Galbo T, Madiraju A, Petersen M, Perry RJ, Kumashiro N, Guebre-Egziabher F, Gattu AK, Stacy MR, Dione DP, Sinusas AJ, Ragolia L, Hall CE, Manchem VP, Bhanot S, Bogan JS, Samuel VT. Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats. Am J Physiol Endocrinol Metab 2014; 307:E773-83. [PMID: 25159329 PMCID: PMC4216948 DOI: 10.1152/ajpendo.00148.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steroid receptor coactivator 1 (SRC1) regulates key metabolic pathways, including glucose homeostasis. SRC1(-/-) mice have decreased hepatic expression of gluconeogenic enzymes and a reduction in the rate of endogenous glucose production (EGP). We sought to determine whether decreasing hepatic and adipose SRC1 expression in normal adult rats would alter glucose homeostasis and insulin action. Regular chow-fed and high-fat-fed male Sprage-Dawley rats were treated with an antisense oligonucleotide (ASO) against SRC1 or a control ASO for 4 wk, followed by metabolic assessments. SRC1 ASO did not alter basal EGP or expression of gluconeogenic enzymes. Instead, SRC1 ASO increased insulin-stimulated whole body glucose disposal by ~30%, which was attributable largely to an increase in insulin-stimulated muscle glucose uptake. This was associated with an approximately sevenfold increase in adipose expression of lipocalin-type prostaglandin D2 synthase, a previously reported regulator of insulin sensitivity, and an approximately 70% increase in plasma PGD2 concentration. Muscle insulin signaling, AMPK activation, and tissue perfusion were unchanged. Although GLUT4 content was unchanged, SRC1 ASO increased the cleavage of tether-containing UBX domain for GLUT4, a regulator of GLUT4 translocation. These studies point to a novel role of adipose SRC1 as a regulator of insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Jennifer L Cantley
- Howard Hughes Medical Institute and Departments of Internal Medicine and
| | | | | | | | | | | | - Naoki Kumashiro
- Howard Hughes Medical Institute and Departments of Internal Medicine and
| | | | - Arijeet K Gattu
- Departments of Internal Medicine and West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | | | | | | | - Louis Ragolia
- Vascular Biology Institute, Winthrop-University Hospital, Mineola, New York
| | - Christopher E Hall
- Vascular Biology Institute, Winthrop-University Hospital, Mineola, New York
| | | | | | - Jonathan S Bogan
- Departments of Internal Medicine and Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Varman T Samuel
- Departments of Internal Medicine and West Haven Veterans Affairs Medical Center, West Haven, Connecticut;
| |
Collapse
|
50
|
Nicolaides NC, Charmandari E, Chrousos GP, Kino T. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor. BMC Endocr Disord 2014; 14:71. [PMID: 25155432 PMCID: PMC4155765 DOI: 10.1186/1472-6823-14-71] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- Saudi Diabetes Study Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 2089, USA
| |
Collapse
|