1
|
Tabara M, Uraguchi S, Kiyono M, Watanabe I, Takeda A, Takahashi H, Fukuhara T. A resilient mutualistic interaction between cucumber mosaic virus and its natural host to adapt to an excess zinc environment and drought stress. JOURNAL OF PLANT RESEARCH 2024; 137:1151-1164. [PMID: 39190237 DOI: 10.1007/s10265-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri. The CMV(Ho) strain isolated from A. halleri was inoculated into clonal virus-free A. halleri plants, and a unique plant-virus system consisting of CMV(Ho) and its natural wild plant host was established. In a control environment with ambient zinc supplementation, CMV(Ho) infection retarded growth in the above-ground part of host plants but conferred strong drought tolerance. On the other hand, in an excess zinc environment, simulating a natural edaphic environment of A halleri, host plants hyperaccumulated zinc and CMV(Ho) infection did not cause any symptoms to host plants while conferring mild drought tolerance. We also demonstrated in Nicotiana benthamiana as another host that similar effects were induced by the combination of excess zinc and CMV(Ho) infection. Transcriptomic analysis indicated that the host plant recognized CMV(Ho) as a mutualistic symbiont rather than a parasitic pathogen. These results suggest a resilient mutualistic interaction between CMV(Ho) and its natural host A. halleri in its natural habitat.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Izumi Watanabe
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba, 468-1, Sendai, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Ma X, Zhou Y, Wu L, Moffett P. Resistance gene Ty-1 restricts TYLCV infection in tomato by increasing RNA silencing. Virol J 2024; 21:256. [PMID: 39415211 PMCID: PMC11483987 DOI: 10.1186/s12985-024-02508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
A major antiviral mechanism in plants is mediated by RNA silencing through the action of DICER-like (DCL) proteins, which cleave dsRNA into discrete small RNA fragments, and ARGONAUTE (AGO) proteins, which use the small RNAs to target single-stranded RNA. RNA silencing can also be amplified through the action of RNA-dependent RNA polymerases (RDRs), which use single stranded RNA to generate dsRNA that in turn is targeted by DCL proteins. As a counter-defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different components in the RNA silencing pathway. The tomato Ty-1 gene confers resistance to the DNA virus tomato yellow leaf curl virus (TYLCV) and has been reported to encode an RDRγ protein. However, the molecular mechanisms by which Ty-1 controls TYLCV infection, including whether Ty-1 is involved in RNA silencing, are unknown. Here, by using a transient expression assay, we have confirmed that Ty-1 shows antiviral activity against TYLCV in Nicotiana benthamiana. Also, in transient expression-based silencing assays, Ty-1 augmented systemic transgene silencing in GFP transgenic N. benthamiana plants. Furthermore, co-expression of Ty-1 or other RDRγ proteins from N. benthamiana or Arabidopsis with various proteins resulted in lower protein expression. These results are consistent with a model wherein Ty-1-mediated resistance to TYLCV is due, at least in part, to an increase in RNA silencing activity.
Collapse
Affiliation(s)
- Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China.
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
3
|
Liu S, Ding SW. Antiviral RNA interference inhibits virus vertical transmission in plants. Cell Host Microbe 2024; 32:1691-1704.e4. [PMID: 39243759 DOI: 10.1016/j.chom.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Known for over a century, seed transmission of plant viruses promotes trans-continental virus dissemination and provides the source of infection to trigger devastating disease epidemics in crops. However, it remains unknown whether there is a genetically defined immune pathway to suppress virus vertical transmission in plants. Here, we demonstrate potent immunosuppression of cucumber mosaic virus (CMV) seed transmission in its natural host Arabidopsis thaliana by antiviral RNA interference (RNAi) pathway. Immunofluorescence microscopy reveals predominant embryo infection at four stages of embryo development. We show that antiviral RNAi confers resistance to seed infection with different genetic requirements and drastically enhanced potency compared with the inhibition of systemic infection of whole plants. Moreover, we detect efficient seed transmission of a mutant CMV lacking its RNAi suppressor gene in mutant plants defective in antiviral RNAi, providing further support for the immunosuppression of seed transmission by antiviral RNAi.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
5
|
Huang J, Zhao Y, Liu S, Chen Y, Du M, Wang Q, Zhang J, Yang X, Chen J, Zhang X. RH20, a phase-separated RNA helicase protein, facilitates plant resistance to viruses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112176. [PMID: 38971466 DOI: 10.1016/j.plantsci.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianguang Yang
- Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
6
|
Stakheev AA, Taliansky M, Kalinina NO, Zavriev SK. RNAi-Based Approaches to Control Mycotoxin Producers: Challenges and Perspectives. J Fungi (Basel) 2024; 10:682. [PMID: 39452634 PMCID: PMC11508363 DOI: 10.3390/jof10100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxin contamination of food and feed is a worldwide problem that needs to be addressed with highly efficient and biologically safe techniques. RNA interference (RNAi) is a natural mechanism playing an important role in different processes in eukaryotes, including the regulation of gene expression, maintenance of genome stability, protection against viruses and others. Recently, RNAi-based techniques have been widely applied for the purposes of food safety and management of plant diseases, including those caused by mycotoxin-producing fungi. In this review, we summarize the current state-of-the-art RNAi-based approaches for reducing the aggressiveness of key toxigenic fungal pathogens and mycotoxin contamination of grain and its products. The ways of improving RNAi efficiency for plant protection and future perspectives of this technique, including progress in methods of double-stranded RNA production and its delivery to the target cells, are also discussed.
Collapse
Affiliation(s)
- Alexander A. Stakheev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Michael Taliansky
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia O. Kalinina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey K. Zavriev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
7
|
Zhu Q, Ahmad A, Shi C, Tang Q, Liu C, Ouyang B, Deng Y, Li F, Cao X. Protein arginine methyltransferase 6 mediates antiviral immunity in plants. Cell Host Microbe 2024; 32:1566-1578.e5. [PMID: 39106871 DOI: 10.1016/j.chom.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
Viral suppressor RNA silencing (VSR) is essential for successful infection. Nucleotide-binding and leucine-rich repeat (NLR)-based and autophagy-mediated immune responses have been reported to target VSR as counter-defense strategies. Here, we report a protein arginine methyltransferase 6 (PRMT6)-mediated defense mechanism targeting VSR. The knockout and overexpression of PRMT6 in tomato plants lead to enhanced and reduced disease symptoms, respectively, during tomato bush stunt virus (TBSV) infection. PRMT6 interacts with and inhibits the VSR function of TBSV P19 by methylating its key arginine residues R43 and R115, thereby reducing its dimerization and small RNA-binding activities. Analysis of the natural tomato population reveals that two major alleles associated with high and low levels of PRMT6 expression are significantly associated with high and low levels of viral resistance, respectively. Our study establishes PRMT6-mediated arginine methylation of VSR as a mechanism of plant immunity against viruses.
Collapse
Affiliation(s)
- Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ayaz Ahmad
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, Henderson I, Kakutani T, Martienssen RA. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. NATURE PLANTS 2024; 10:1304-1316. [PMID: 39223305 PMCID: PMC11410651 DOI: 10.1038/s41477-024-01773-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis. Fertility and segregation defects are epigenetically inherited with centromere 5, and can be rescued by directing artificial small RNAs to ATHILA5 retrotransposons that interrupt tandem satellite repeats. Epigenetically activated short interfering RNAs promote pericentromeric condensation, chromosome cohesion and chromosome segregation in mitosis. We propose that insertion of ATHILA silences centromeric transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs in the absence of DDM1. Parallels are made with the fission yeast Schizosaccharomyces pombe, where chromosome cohesion depends on RNA interference, and with humans, where chromosome segregation depends on both RNA interference and HELLSDDM1.
Collapse
Affiliation(s)
- Atsushi Shimada
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Ian Henderson
- Department of Plant Sciences, Cambridge University, Cambridge, UK
| | | | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA.
| |
Collapse
|
9
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39166471 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Deshui Liu
- Beijing Life Science Academy, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2680-3. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Hayashi S, Souvan JM, Bally J, de Felippes FF, Waterhouse PM. Exploring the source of TYLCV resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1404160. [PMID: 38863537 PMCID: PMC11165019 DOI: 10.3389/fpls.2024.1404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Tomato Yellow Leaf Curl Virus (TYLCV) is one of the most devastating pathogens of tomato, worldwide. It is vectored by the globally prevalent whitefly, Bemisia tabaci, and is asymptomatic in a wide range of plant species that act as a virus reservoir. The most successful crop protection for tomato in the field has been from resistance genes, of which five loci have been introgressed fromwild relatives. Of these, the Ty-1/Ty-3 locus, which encodes an RNA-dependent RNA polymerase 3 (RDR3), has been the most effective. Nevertheless, several TYLCV strains that break this resistance are beginning to emerge, increasing the need for new sources of resistance. Here we use segregation analysis and CRISPR-mediated gene dysfunctionalisation to dissect the differential response of two isolates of Nicotiana benthamiana to TYLCV infection. Our study indicates the presence of a novel non-RDR3, but yet to be identified, TYLCV resistance gene in a wild accession of N. benthamiana. This gene has the potential to be incorporated into tomatoes.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqueline M. Souvan
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Felipe F. de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Zheng H, Zhao H, Xiong H, Awais MM, Zeng S, Sun J. Impact of the Transboundary Interference Inhibitor on RNAi and the Baculovirus Expression System in Insect Cells. INSECTS 2024; 15:375. [PMID: 38921090 PMCID: PMC11203448 DOI: 10.3390/insects15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
RNA interference inhibitors were initially discovered in plant viruses, representing a unique mechanism employed by these viruses to counteract host RNA interference. This mechanism has found extensive applications in plant disease resistance breeding and other fields; however, the impact of such interference inhibitors on insect cell RNA interference remains largely unknown. In this study, we screened three distinct interference inhibitors from plant and mammal viruses that act through different mechanisms and systematically investigated their effects on the insect cell cycle and baculovirus infection period at various time intervals. Our findings demonstrated that the viral suppressors of RNA silencing (VSRs) derived from plant and mammal viruses significantly attenuated the RNA interference effect in insect cells, as evidenced by reduced apoptosis rates, altered gene regulation patterns in cells, enhanced expression of exogenous proteins, and improved production efficiency of recombinant virus progeny. Further investigations revealed that the early expression of VSRs yielded superior results compared with late expression during RNA interference processes. Additionally, our results indicated that dsRNA-binding inhibition exhibited more pronounced effects than other modes of action employed by these interference inhibitors. The outcomes presented herein provide novel insights into enhancing defense mechanisms within insect cells using plant and mammal single-stranded RNA virus-derived interference inhibitors and have potential implications for expanding the scope of transformation within insect cell expression systems.
Collapse
Affiliation(s)
- Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Hengfeng Zhao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Haifan Xiong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Songrong Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| |
Collapse
|
13
|
Escalante C, Sanz-Saez A, Jacobson A, Otulak-Kozieł K, Kozieł E, Balkcom KS, Zhao C, Conner K. Plant virus transmission during seed development and implications to plant defense system. FRONTIERS IN PLANT SCIENCE 2024; 15:1385456. [PMID: 38779063 PMCID: PMC11109449 DOI: 10.3389/fpls.2024.1385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.
Collapse
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kipling S. Balkcom
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Chaoyang Zhao
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Kassie Conner
- Alabama Cooperative Extension, Auburn University, Auburn, AL, United States
| |
Collapse
|
14
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
16
|
Jammes M, Golyaev V, Fuentes A, Laboureau N, Urbino C, Plissonneau C, Peterschmitt M, Pooggin MM. Transcriptome and small RNAome profiling uncovers how a recombinant begomovirus evades RDRγ-mediated silencing of viral genes and outcompetes its parental virus in mixed infection. PLoS Pathog 2024; 20:e1011941. [PMID: 38215155 PMCID: PMC10810479 DOI: 10.1371/journal.ppat.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.
Collapse
Affiliation(s)
- Margaux Jammes
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Nathalie Laboureau
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Cica Urbino
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Michel Peterschmitt
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
17
|
Fujimoto Y, Iwakawa HO. Mechanisms that regulate the production of secondary siRNAs in plants. J Biochem 2023; 174:491-499. [PMID: 37757447 DOI: 10.1093/jb/mvad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Many organisms produce secondary small interfering RNAs (siRNAs) that are triggered by primary small RNAs to regulate various biological processes. Plants have evolved several types of secondary siRNA biogenesis pathways that play important roles in development, stress responses and defense against viruses and transposons. The critical step of these pathways is the production of double-stranded RNAs by RNA-dependent RNA polymerases. This step is normally tightly regulated, but when its control is released, secondary siRNA production is initiated. In this article, we will review the recent advances in secondary siRNA production triggered by microRNAs encoded in the genome and siRNAs derived from invasive nucleic acids. In particular, we will focus on the factors, events, and RNA/DNA elements that promote or inhibit the early steps of secondary siRNA biogenesis.
Collapse
Affiliation(s)
- Yuji Fujimoto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiro-Oki Iwakawa
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
18
|
Elhefnawi HT, Abdel Salam Rashed M, Atta A, Alshegaihi RM, Alwutayd KM, Abd El-Moneim D, Magdy M. Genomic assembly, characterization, and quantification of DICER-like gene family in Okra plants under dehydration conditions. PeerJ 2023; 11:e16232. [PMID: 38025717 PMCID: PMC10668803 DOI: 10.7717/peerj.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
Background Okra is a plant farmed for its pods, leaves, and stems all of which are edible. It is famous for its ability to tolerate long desiccation periods. It belongs to the Malvaceae family and is a sister species to hibiscus, cotton, and cacao plants. Methods In the current study, okra plants were used as a model to sequence, assemble, and analyze the evolutionary and functional characteristics of the Dicer-like protein gene family (DCL) based on DNAseq and qPCR techniques. Results Four Dicer-like (DCL) single-copy genes of the okra plant Abelmoschus esculentus (L.) Moench (AeDCL) were successfully assembled. The lengths of the AeDCL copies were 8,494, 5,214, 4,731, and 9,329 bp. The detected exons in these samples ranged from a single exon in AeDCL3 to 24 exons in AeDCL4. AeDCLs had five functional domains of two DEAD-like helicase superfamilies, N and C; one Dicer domain; one ribonuclease III domain (a and b); and one double-stranded RNA-binding domain. The PAZ domain was completely annotated only for AeDCL1 and AeDCL3. All AeDCLs were up-regulated under drought conditions, with leaves showing more extensive fold changes than roots. The study focused on a comprehensive genome-wide identification and analysis of the DCL gene family in naturally drought-tolerant okra plants, an orphan crop that can be used as a model for further genomic and transcriptomic studies on drought-tolerance mechanisms in plants.
Collapse
Affiliation(s)
| | | | - Ayman Atta
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Chen L, Liu Y, Li S, Ji Y, Sun F, Zou B. DICER-LIKE2 Plays a Crucial Role in Rice Stripe Virus Coat Protein-Mediated Virus Resistance in Arabidopsis. Viruses 2023; 15:2239. [PMID: 38005916 PMCID: PMC10675384 DOI: 10.3390/v15112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Virus coat protein (CP)-mediated resistance is considered an effective antiviral defense strategy that has been used to develop robust resistance to viral infection. Rice stripe virus (RSV) causes significant losses in rice production in eastern Asia. We previously showed that the overexpression of RSV CP in Arabidopsis plants results in immunity to RSV infection, using the RSV-Arabidopsis pathosystem, and this CP-mediated viral resistance depends on the function of DCLs and is mostly involved in RNA silencing. However, the special role of DCLs in producing t-siRNAs in CP transgenic Arabidopsis plants is not fully understood. In this study, we show that RSV CP transgenic Arabidopsis plants with the dcl2 mutant background exhibited similar virus susceptibility to non-transgenic plants and were accompanied by the absence of transgene-derived small interfering RNAs (t-siRNAs) from the CP region. The dcl2 mutation eliminated the accumulation of CP-derived t-siRNAs, including those generated by other DCL enzymes. In contrast, we also developed RSV CP transgenic Arabidopsis plants with the dcl4 mutant background, and these CP transgenic plants showed immunity to virus infection and accumulated comparable amounts of CP-derived t-siRNAs to CP transgenic Arabidopsis plants with the wild-type background except for a significant increase in the abundance of 22 nt t-siRNA reads. Overall, our data indicate that DCL2 plays an essential, as opposed to redundant, role in CP-derived t-siRNA production and induces virus resistance in RSV CP transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Li Chen
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Yanan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Shuo Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Yinghua Ji
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
20
|
Parperides E, El Mounadi K, Garcia‐Ruiz H. Induction and suppression of gene silencing in plants by nonviral microbes. MOLECULAR PLANT PATHOLOGY 2023; 24:1347-1356. [PMID: 37438989 PMCID: PMC10502822 DOI: 10.1111/mpp.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi. To overcome gene silencing, viruses encode effectors that suppress gene silencing. A growing body of evidence shows that gene silencing and suppression of silencing are also used by plants during their interaction with nonviral pathogens such as fungi, oomycetes, and bacteria. Plant-pathogen interactions involve trans-kingdom movement of small RNAs into the pathogens to alter the function of genes required for their development and virulence. In turn, plant-associated pathogenic and nonpathogenic microbes also produce small RNAs that move trans-kingdom into host plants to disrupt pathogen defence through silencing of plant genes. The mechanisms by which these small RNAs move from the microbe to the plant remain poorly understood. In this review, we examine the roles of trans-kingdom small RNAs and silencing suppressors produced by nonviral microbes in inducing and suppressing gene silencing in plants. The emerging model is that gene silencing and suppression of silencing play critical roles in the interactions between plants and their associated nonviral microbes.
Collapse
Affiliation(s)
- Eric Parperides
- Department of Plant Pathology and Nebraska Center for VirologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Kaoutar El Mounadi
- Department of BiologyKutztown University of PennsylvaniaKutztownPennsylvaniaUSA
| | - Hernan Garcia‐Ruiz
- Department of Plant Pathology and Nebraska Center for VirologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
21
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
22
|
Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, Henderson I, Kakutani T, Martienssen RA. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551486. [PMID: 37577592 PMCID: PMC10418216 DOI: 10.1101/2023.08.02.551486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons, if any, has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs (easiRNAs) in mutants in DECREASE IN DNA METHYLATION1 (DDM1), which promote histone H3 lysine-9 di-methylation (H3K9me2). Here, we show that mutants which lose both DDM1 and RNA dependent RNA polymerase (RdRP) have pleiotropic developmental defects and mis-segregation of chromosome 5 during mitosis. Fertility defects are epigenetically inherited with the centromeric region of chromosome 5, and can be rescued by directing artificial small RNAs to a single family of ATHILA5 retrotransposons specifically embedded within this centromeric region. easiRNAs and H3K9me2 promote pericentromeric condensation, chromosome cohesion and proper chromosome segregation in mitosis. Insertion of ATHILA silences transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs, promoting the selfish survival and spread of centromeric retrotransposons. Parallels are made with the fission yeast S. pombe, where chromosome segregation depends on RNAi, and with humans, where chromosome segregation depends on both RNAi and HELLSDDM1.
Collapse
Affiliation(s)
- Atsushi Shimada
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Daniel Grimanelli
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Ian Henderson
- Department of Plant Sciences, Cambridge University, Cambridge UK
| | - Tetsuji Kakutani
- Faculty of Science, The University of Tokyo, Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
23
|
Carvalho CP, Han J, Khemsom K, Ren R, Camargo LEA, Miyashita S, Qu F. Single-cell mutation rate of turnip crinkle virus (-)-strand replication intermediates. PLoS Pathog 2023; 19:e1011395. [PMID: 37578959 PMCID: PMC10449226 DOI: 10.1371/journal.ppat.1011395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Viruses with single-stranded, positive-sense (+) RNA genomes incur high numbers of errors during replication, thereby creating diversified genome populations from which new, better adapted viral variants can emerge. However, a definitive error rate is known for a relatively few (+) RNA plant viruses, due to challenges to account for perturbations caused by natural selection and/or experimental set-ups. To address these challenges, we developed a new approach that exclusively profiled errors in the (-)-strand replication intermediates of turnip crinkle virus (TCV), in singly infected cells. A series of controls and safeguards were devised to ensure errors inherent to the experimental process were accounted for. This approach permitted the estimation of a TCV error rate of 8.47 X 10-5 substitution per nucleotide site per cell infection. Importantly, the characteristic error distribution pattern among the 50 copies of 2,363-base-pair cDNA fragments predicted that nearly all TCV (-) strands were products of one replication cycle per cell. Furthermore, some of the errors probably elevated error frequencies by lowering the fidelity of TCV RNA-dependent RNA polymerase, and/or permitting occasional re-replication of progeny genomes. In summary, by profiling errors in TCV (-)-strand intermediates incurred during replication in single cells, this study provided strong support for a stamping machine mode of replication employed by a (+) RNA virus.
Collapse
Affiliation(s)
- Camila Perdoncini Carvalho
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of Sao Paolo, Piracicaba, Brazil
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Khwannarin Khemsom
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Ruifan Ren
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Luis Eduardo Aranha Camargo
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of Sao Paolo, Piracicaba, Brazil
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Tohoku, Japan
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
24
|
Tong X, Zhao JJ, Feng YL, Zou JZ, Ye J, Liu J, Han C, Li D, Wang XB. A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors. Nat Commun 2023; 14:3852. [PMID: 37385991 PMCID: PMC10310818 DOI: 10.1038/s41467-023-39426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.
Collapse
Affiliation(s)
- Xin Tong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Jia-Jia Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Ya-Lan Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jing-Ze Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Ye
- State Key laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
25
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
26
|
Bélanger S, Zhan J, Meyers BC. Phylogenetic analyses of seven protein families refine the evolution of small RNA pathways in green plants. PLANT PHYSIOLOGY 2023; 192:1183-1203. [PMID: 36869858 PMCID: PMC10231463 DOI: 10.1093/plphys/kiad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.
Collapse
Affiliation(s)
| | - Junpeng Zhan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Zhao L, Chen Y, Xiao X, Gao H, Cao J, Zhang Z, Guo Z. AGO2a but not AGO2b mediates antiviral defense against infection of wild-type cucumber mosaic virus in tomato. HORTICULTURE RESEARCH 2023; 10:uhad043. [PMID: 37188058 PMCID: PMC10177002 DOI: 10.1093/hr/uhad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Evolutionarily conserved antiviral RNA interference (RNAi) mediates a primary antiviral innate immunity preventing infection of broad-spectrum viruses in plants. However, the detailed mechanism in plants is still largely unknown, especially in important agricultural crops, including tomato. Varieties of pathogenic viruses evolve to possess viral suppressors of RNA silencing (VSRs) to suppress antiviral RNAi in the host. Due to the prevalence of VSRs, it is still unknown whether antiviral RNAi truly functions to prevent invasion by natural wild-type viruses in plants and animals. In this research, for the first time we applied CRISPR-Cas9 to generate ago2a, ago2b, or ago2ab mutants for two differentiated Solanum lycopersicum AGO2s, key effectors in antiviral RNAi. We found that AGO2a but not AGO2b was significantly induced to inhibit the propagation of not only VSR-deficient Cucumber mosaic virus (CMV) but also wild-type CMV-Fny in tomato; however, neither AGO2a nor AGO2b regulated disease induction after infection with either virus. Our findings firstly reveal a prominent role of AGO2a in antiviral RNAi innate immunity in tomato and demonstrate that antiviral RNAi evolves to defend against infection of natural wild-type CMV-Fny in tomato. However, AGO2a-mediated antiviral RNAi does not play major roles in promoting tolerance of tomato plants to CMV infection for maintaining health.
Collapse
Affiliation(s)
- Liling Zhao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Yingfang Chen
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Xingming Xiao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Haiying Gao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Jiamin Cao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Zhongkai Zhang
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| |
Collapse
|
28
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
29
|
Yun S, Zhang X. Genome-wide identification, characterization and expression analysis of AGO, DCL, and RDR families in Chenopodium quinoa. Sci Rep 2023; 13:3647. [PMID: 36871121 PMCID: PMC9985633 DOI: 10.1038/s41598-023-30827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
RNA interference is a highly conserved mechanism wherein several types of non-coding small RNAs regulate gene expression at the transcriptional or post-transcriptional level, modulating plant growth, development, antiviral defence, and stress responses. Argonaute (AGO), DCL (Dicer-like), and RNA-dependent RNA polymerase (RDR) are key proteins in this process. Here, these three protein families were identified in Chenopodium quinoa. Further, their phylogenetic relationships with Arabidopsis, their domains, three-dimensional structure modelling, subcellular localization, and functional annotation and expression were analysed. Whole-genome sequence analysis predicted 21 CqAGO, eight CqDCL, and 11 CqRDR genes in quinoa. All three protein families clustered into phylogenetic clades corresponding to those of Arabidopsis, including three AGO clades, four DCL clades, and four RDR clades, suggesting evolutionary conservation. Domain and protein structure analyses of the three gene families showed almost complete homogeneity among members of the same group. Gene ontology annotation revealed that the predicted gene families might be directly involved in RNAi and other important pathways. Largely, these gene families showed significant tissue-specific expression patterns, RNA-sequencing (RNA-seq) data revealed that 20 CqAGO, seven CqDCL, and ten CqRDR genes tended to have preferential expression in inflorescences. Most of them being downregulated in response to drought, cold, salt and low phosphate stress. To our knowledge, this is the first study to elucidate these key protein families involved in the RNAi pathway in quinoa, which are significant for understanding the mechanisms underlying stress responses in this plant.
Collapse
Affiliation(s)
- Shiyu Yun
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
30
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
31
|
Sehki H, Yu A, Elmayan T, Vaucheret H. TYMV and TRV infect Arabidopsis thaliana by expressing weak suppressors of RNA silencing and inducing host RNASE THREE LIKE1. PLoS Pathog 2023; 19:e1010482. [PMID: 36696453 PMCID: PMC9901757 DOI: 10.1371/journal.ppat.1010482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.
Collapse
Affiliation(s)
- Hayat Sehki
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
32
|
Beris D, Tzima A, Gousi F, Rampou A, Psarra V, Theologidis I, Vassilakos N. Multiple integrations of a sense transgene, including a tandem inverted repeat confer stable RNA-silencing mediated virus resistance under different abiotic and biotic conditions. Transgenic Res 2023; 32:53-66. [PMID: 36633706 DOI: 10.1007/s11248-023-00333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
In a previous study, tobacco plants, transformed with a sense construct of the 57K domain of the replicase gene of tobacco rattle virus (TRV), provided resistance against genetically distant isolates of the virus. In this work, 57K-specific siRNAs were detected with RT-qPCR solely in the resistant line verifying the RNA-silencing base of the resistance. The integration sites of the transgene into the plant genome were identified with inverse-PCR. Moreover, the resistance against TRV was practically unaffected by low temperature conditions and the presence of heterologous viruses. The mechanism of the resistance was further examined by a gene expression analysis that showed increased transcript levels of genes with a key-role in the RNA silencing pathway and the basal antiviral defence. This work provides a comprehensive characterization of the robust virus resistance obtained by a sense transgene and underlines the usefulness of transgenic plants obtained by such a strategy.
Collapse
Affiliation(s)
- Despoina Beris
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece.
| | - Aliki Tzima
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Fani Gousi
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Aggeliki Rampou
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Venetia Psarra
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Nikon Vassilakos
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| |
Collapse
|
33
|
Zhang Q, Wang J, Zhang X, Deng Y, Li F. A Conserved, Serine-Rich Protein Plays Opposite Roles in N-Mediated Immunity against TMV and N-Triggered Cell Death. Viruses 2022; 15:26. [PMID: 36680066 PMCID: PMC9865399 DOI: 10.3390/v15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library using DNA fragments from the N gene, an NLR that confers immunity to tobacco mosaic virus (TMV). This SR protein showed an interaction with a 3' genomic regulatory sequence (GRS) and has a potential role in regulating the alternative splicing of N. Thus, it was named SR regulator for N, abbreviated SR4N. Further study showed that SR4N plays a positive role in N-mediated cell death but a negative role in N protein accumulation. SR4N also promotes multiple virus replications in co-expression experiments, and this enhancement may not function through RNA silencing suppression, as it did not enhance 35S-GFP expression in co-infiltration experiments. Bioinformatic and molecular studies revealed that SR4N belongs to the SR2Z subtype of the SR protein family, which was conserved in both dicots and monocots, and its roles in repressing viral immunity and triggering cell death were also conserved. Our study revealed new roles for SR2Z family proteins in plant immunity against viruses.
Collapse
Affiliation(s)
| | | | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
35
|
Chen R, He J, Su Z, Chen J. A plant immune protein fights against cancer. Trends Biochem Sci 2022; 47:996-998. [PMID: 35985942 DOI: 10.1016/j.tibs.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
Altered global miRNA abundance is closely related to the occurrence of cancer. Recently, Qi et al. discovered that abnormal 1-nucleotide (nt)-shorter miRNA isoforms are widely accumulated in different human tumors. Ectopic expression of the plant immune protein RNA-dependent RNA polymerase (RDR)-1 can achieve a broad-spectrum antitumor effect by rescuing miRNA defects in cancer cells.
Collapse
Affiliation(s)
- Rong Chen
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 20130, China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Zhang H, Gao J, Chen J, Peng Y, Han Z. RNA-dependent RNA polymerase could extend the lasting validity period of exogenous dsRNA. PEST MANAGEMENT SCIENCE 2022; 78:4569-4578. [PMID: 35831266 DOI: 10.1002/ps.7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Zhang Y, Xia G, Sheng L, Chen M, Hu C, Ye Y, Yue X, Chen S, OuYang W, Xia Z. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. PLANT CELL REPORTS 2022; 41:2125-2138. [PMID: 35922498 DOI: 10.1007/s00299-022-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses. Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China.
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Li Sheng
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Mingjue Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Chenyang Hu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Yule Ye
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Xiaoyan Yue
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Shaocong Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Wenwu OuYang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhenkai Xia
- China Medical University -The Queen's University of Belfast Joint College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
The Characterization of the Tobacco-Derived Wild Tomato Mosaic Virus by Employing Its Infectious DNA Clone. BIOLOGY 2022; 11:biology11101467. [PMID: 36290371 PMCID: PMC9598653 DOI: 10.3390/biology11101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Wild tomato mosaic virus (WTMV, genus Potyvirus, family Potyviridae) is an emerging viral pathogen that endangers Nicotiana tabacum production. The field survey conducted in this study shows that WTMV is becoming an epidemic in China. An infectious DNA clone of the tobacco-derived WTMV is constructed. It can infect wild eggplant, black nightshade, and tobacco plants but can not infect various local pepper varieties. WTMV evolves into three groups that coincide with their original hosts, tobacco, pepper, or wild eggplant. Thus, the tobacco-derived WTMV might divergently evolves to adapt to tobacco other than peppers. We show that WTMV is compatible with the coinfection of cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) in tobacco but not other potyviruses. Specifically, WTMV can interfere with the infection of other potyvirus species in tobacco, a phenomenon known as superinfection exclusion previously observed within the same potyviral species. This study contributes essential knowledge on the evolution, infectivity, and recent epidemics of WTMV, and provides the key tool for further disease-resistance and field management studies. Abstract Viral diseases of cultivated crops are often caused by virus spillover from wild plants. Tobacco (N. tabacum) is an important economic crop grown globally. The viral pathogens of tobacco are traditional major subjects in virology studies and key considerations in tobacco breeding practices. A positive-strand RNA virus, wild tomato mosaic virus (WTMV), belonging to the genus potyvirus in the family potyviridae was recently found to infect tobacco in China. In this study, diseased tobacco leaf samples were collected in the Henan Province of China during 2020–2021. Several samples from different locations were identified as WTMV positive. An infectious DNA clone was constructed based on one of the WTMV isolates. By using this clone, we found that WTMV from tobacco could establish infections on natural reservoir hosts, demonstrating a possible route of WTMV spillover and overwintering in the tobacco field. Furthermore, the WTMV infection was found to be accompanied by other tobacco viruses in the field. The co-inoculation experiments indicate the superinfection exclusion (SIE) between WTMV and other potyvirus species that infect tobacco. Overall, our work reveals novel aspects of WTMV evolution and infection in tobacco and provides an important tool for further studies of WTMV.
Collapse
|
39
|
Ecotype-specific blockage of tasiARF production by two different RNA viruses in Arabidopsis. PLoS One 2022; 17:e0275588. [PMID: 36197942 PMCID: PMC9534422 DOI: 10.1371/journal.pone.0275588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana is one of the most studied model organisms of plant biology with hundreds of geographical variants called ecotypes. One might expect that this enormous genetic variety could result in differential response to pathogens. Indeed, we observed previously that the Bur ecotype develops much more severe symptoms (upward curling leaves and wavy leaf margins) upon infection with two positive-strand RNA viruses of different families (turnip vein-clearing virus, TVCV, and turnip mosaic virus, TuMV). To find the genes potentially responsible for the ecotype-specific response, we performed a differential expression analysis of the mRNA and sRNA pools of TVCV and TuMV-infected Bur and Col plants along with the corresponding mock controls. We focused on the genes and sRNAs that showed an induced or reduced expression selectively in the Bur virus samples in both virus series. We found that the two ecotypes respond to the viral infection differently, yet both viruses selectively block the production of the TAS3-derived small RNA specimen called tasiARF only in the virus-infected Bur plants. The tasiARF normally forms a gradient through the adaxial and abaxial parts of the leaf (being more abundant in the adaxial part) and post-transcriptionally regulates ARF4, a major leaf polarity determinant in plants. The lack of tasiARF-mediated silencing could lead to an ectopically expressed ARF4 in the adaxial part of the leaf where the misregulation of auxin-dependent signaling would result in an irregular growth of the leaf blade manifesting as upward curling leaf and wavy leaf margin. QTL mapping using Recombinant Inbred Lines (RILs) suggests that the observed symptoms are the result of a multigenic interaction that allows the symptoms to develop only in the Bur ecotype. The particular nature of genetic differences leading to the ecotype-specific symptoms remains obscure and needs further study.
Collapse
|
40
|
Kong X, Yang M, Le BH, He W, Hou Y. The master role of siRNAs in plant immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:1565-1574. [PMID: 35869407 PMCID: PMC9452763 DOI: 10.1111/mpp.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brandon H. Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wenrong He
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Yingnan Hou
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
41
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
42
|
Gong Q, Wang Y, Jin Z, Hong Y, Liu Y. Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. STRESS BIOLOGY 2022; 2:33. [PMID: 37676459 PMCID: PMC10441928 DOI: 10.1007/s44154-022-00057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Zhenhui Jin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
43
|
Xu Q, Shen L, Jin L, Wang M, Chang F, Guo Z. Comparative Transcriptome Analysis of CMV or 2b-Deficient CMV-Infected dcl2dcl4 Reveals the Effects of Viral Infection on Symptom Induction in Arabidopsis thaliana. Viruses 2022; 14:1582. [PMID: 35891562 PMCID: PMC9320214 DOI: 10.3390/v14071582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the impaired antiviral RNAi, the dcl2dcl4 (dcl2/4) mutant is highly susceptible to viruses deficient of the viral suppressor of the RNA silencing (VSR) contrast to wild-type Arabidopsis. It was found that more severe disease symptoms were induced in dcl2/4 infected with VSR-deficient CMV (CMV-Δ2b or CMV-2aTΔ2b) compared to wild-type Arabidopsis infected with intact CMV. In order to investigate the underlying mechanism, comparative transcriptome analysis was performed with Col-0 and dcl2/4 that were infected by CMV, CMV-Δ2b and CMV-2aTΔ2b, respectively. Our analysis showed that the systematic infection of CMV, CMV-Δ2b and CMV-2aTΔ2b could cause hypoxia response and reduce photosynthesis. Asymptomatic infections of CMV-Δ2b or CMV-2aTΔ2b in Columbia (Col-0) promoted the expression of cell division-related genes and suppressed the transcription of metabolism and acquired resistance genes. On the other hand, immunity and resistance genes were highly induced, but photosynthesis and polysaccharide metabolism-related genes were suppressed in diseased plants. More interestingly, cell wall reorganization was specifically caused in modestly diseased Col-0 infected by CMV and a strong activation of SA signaling were correspondingly induced in severely diseased dcl2/4 by CMV or CMV mutants. Thus, our research revealed the nature of the Arabidopsis-CMV interaction at the transcriptome level and could provide new clues in symptom development and antiviral defense in plants.
Collapse
Affiliation(s)
- Qian Xu
- Correspondence: (Q.X.); (Z.G.)
| | | | | | | | | | - Zhongxin Guo
- Vector-Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (L.J.); (M.W.); (F.C.)
| |
Collapse
|
44
|
Leibman D, Pashkovsky E, Shnaider Y, Shtarkman M, Gaba V, Gal-On A. Analysis of the RNA-Dependent RNA Polymerase 1 (RDR1) Gene Family in Melon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141795. [PMID: 35890429 PMCID: PMC9320487 DOI: 10.3390/plants11141795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial defense role against plant viruses by secondary amplification of viral double-stranded RNA in the gene-silencing pathway. In this study, it was found that melon (Cucumis melo) encodes four RDR1 genes (CmRDR1a, b, c1 and c2) similar to the CsRDR1 gene family of cucumber (C. sativus). However, in contrast to cucumber, melon harbors a truncated CmRDR1b gene. In healthy plants, CmRDR1a was expressed, whereas the expression of CmRDR1c1/c2 was not detected. CmRDR1a expression level increased 20-fold upon cucumber mosaic virus (CMV) infection and was not increased in melon plants infected with zucchini yellow mosaic virus (ZYMV), cucumber vein yellowing virus (CVYV) and cucumber green mottle mosaic virus (CGMMV). The expression of CmRDR1c1/c2 genes was induced differentially by infection with viruses from different families: high levels of ~340-, 172- and 115-fold increases were induced by CMV, CVYV and CGMMV, respectively, and relatively low-level increases by potyvirus infection (4- to 6-fold). CMV mutants lacking the viral silencing suppressor 2b protein did not cause increased CmRDR1c/c2 expression; knockout of CmRDR1c1/c2 by CRISPR/Cas9 increased susceptibility to CMV but not to ZYMV. Therefore, it is suggested that the sensitivity of melon to viruses from different families is a result of the loss of function of CmRDR1b.
Collapse
|
45
|
Yan Y, Ham BK. The Mobile Small RNAs: Important Messengers for Long-Distance Communication in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:928729. [PMID: 35783973 PMCID: PMC9247610 DOI: 10.3389/fpls.2022.928729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 06/06/2023]
Abstract
Various species of small RNAs (sRNAs), notably microRNAs and small interfering RNAs (siRNAs), have been characterized as the major effectors of RNA interference in plants. Growing evidence supports a model in which sRNAs move, intercellularly, systemically, and between cross-species. These non-coding sRNAs can traffic cell-to-cell through plasmodesmata (PD), in a symplasmic manner, as well as from source to sink tissues, via the phloem, to trigger gene silencing in their target cells. Such mobile sRNAs function in non-cell-autonomous communication pathways, to regulate various biological processes, such as plant development, reproduction, and plant defense. In this review, we summarize recent progress supporting the roles of mobile sRNA in plants, and discuss mechanisms of sRNA transport, signal amplification, and the plant's response, in terms of RNAi activity, within the recipient tissues. We also discuss potential research directions and their likely impact on engineering of crops with traits for achieving food security.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Byung-Kook Ham
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
46
|
Cuerda-Gil D, Hung YH, Panda K, Slotkin RK. A plant tethering system for the functional study of protein-RNA interactions in vivo. PLANT METHODS 2022; 18:75. [PMID: 35658900 PMCID: PMC9166424 DOI: 10.1186/s13007-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein's function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins.
Collapse
Affiliation(s)
- Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
47
|
Liu S, Chen M, Li R, Li WX, Gal-On A, Jia Z, Ding SW. Identification of positive and negative regulators of antiviral RNA interference in Arabidopsis thaliana. Nat Commun 2022; 13:2994. [PMID: 35637208 PMCID: PMC9151786 DOI: 10.1038/s41467-022-30771-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Virus-host coevolution often drives virus immune escape. However, it remains unknown whether natural variations of plant virus resistance are enriched in genes of RNA interference (RNAi) pathway known to confer essential antiviral defense in plants. Here, we report two genome-wide association study screens to interrogate natural variation among wild-collected Arabidopsis thaliana accessions in quantitative resistance to the endemic cucumber mosaic virus (CMV). We demonstrate that the highest-ranked gene significantly associated with resistance from both screens acts to regulate antiviral RNAi in ecotype Columbia-0. One gene, corresponding to Reduced Dormancy 5 (RDO5), enhances resistance by promoting amplification of the virus-derived small interfering RNAs (vsiRNAs). Interestingly, the second gene, designated Antiviral RNAi Regulator 1 (VIR1), dampens antiviral RNAi so its genetic inactivation by CRISPR/Cas9 editing enhances both vsiRNA production and CMV resistance. Our findings identify positive and negative regulators of the antiviral RNAi defense that may play important roles in virus-host coevolution.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Meijuan Chen
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Ruidong Li
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA.
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
48
|
Rabuma T, Gupta OP, Chhokar V. Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant's disease response. RNA Biol 2022; 19:519-532. [PMID: 35442163 PMCID: PMC9037536 DOI: 10.1080/15476286.2022.2062172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the recent past, cross-kingdom movement of miRNAs, small (20–25 bases), and endogenous regulatory RNA molecules has emerged as one of the major research areas to understand the potential implications in modulating the plant’s biotic stress response. The current review discussed the recent developments in the mechanism of cross-kingdom movement (long and short distance) and critical cross-talk between host’s miRNAs in regulating gene function in bacteria, fungi, viruses, insects, and nematodes, and vice-versa during host-pathogen interaction and their potential implications in crop protection. Moreover, cross-kingdom movement during symbiotic interaction, the emerging role of plant’s miRNAs in modulating animal’s gene function, and feasibility of spray-induced gene silencing (SIGS) in combating biotic stresses in plants are also critically evaluated. The current review article analysed the horizontal transfer of miRNAs among plants, animals, and microbes that regulates gene expression in the host or pathogenic organisms, contributing to crop protection. Further, it highlighted the challenges and opportunities to harness the full potential of this emerging approach to mitigate biotic stress efficiently.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA.,Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, INDIA
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
| |
Collapse
|
49
|
Wylie S, Li H. Historical and Scientific Evidence for the Origin and Cultural Importance to Australia's First-Nations Peoples of the Laboratory Accession of Nicotiana benthamiana, a Model for Plant Virology. Viruses 2022; 14:771. [PMID: 35458501 PMCID: PMC9027518 DOI: 10.3390/v14040771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Nicotiana benthamiana is an indigenous plant species distributed across northern Australia. The laboratory accession (LAB) of N. benthamiana has become widely adopted as a model host for plant viruses, and it is distinct from other accessions morphologically, physiologically, and by having an attenuation-of-function mutation in the RNA-dependent RNA polymerase 1 (NbRdr1) gene, referred to as NbRdr1m. Recent historical evidence suggested LAB was derived from a 1936 collection by John Cleland at The Granites of the Northern Territory, although no scientific evidence was provided. We provide scientific evidence and further historical evidence supporting the origin of LAB as The Granites. Analysis of a herbarium specimen of N. benthamiana collected by Cleland in 1936 revealed that The Granites population contains plants heterozygous for the NbRdr1 locus, having both the functional NbRdr1 and the mutant NbRdr1m alleles. N. benthamiana was an important cultural asset actively utilised as the narcotic Pituri (chewing tobacco) by the Warlpiri Aboriginal people at the site, who prevented women of child-bearing age from consuming it. We propose that Aboriginal people selected some of the unique traits of LAB that have subsequently facilitated its adoption as a model plant, such as lack of seed dormancy, fast maturity, low nornicotine content, and gracility.
Collapse
Affiliation(s)
- Steve Wylie
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch 6150, Australia;
| | | |
Collapse
|
50
|
Xu W, Guo Y, Li H, Sivasithamparam K, Jones MGK, Chen X, Wylie SJ. Differential Symptom Development and Viral RNA Loads in 10 Nicotiana benthamiana Accessions Infected with the Tobamovirus Yellow Tailflower Mild Mottle Virus. PLANT DISEASE 2022; 106:984-989. [PMID: 34735277 DOI: 10.1094/pdis-08-21-1697-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yellow tailflower mild mottle virus (YTMMV, genus Tobamovirus) was identified from wild plants of solanaceous species in Australia. Nicotiana benthamiana is a species indigenous to the arid north of Australia. N. benthamiana accession RA-4 (the lab type), which has a mutant, functionally defective, RNA-dependent RNA polymerase 1 (Rdr1) gene (Nb-Rdr1m), has played a significant role in plant virology, but little study has been done regarding responses to virus infection by other accessions of N. benthamiana. All wild-collected N. benthamiana accessions used in this study harbored wild-type Rdr1 genes (Nb-Rdr1). We compared symptoms of YTMMV infection and viral RNA load on RA-4 and nine wild-collected accessions of N. benthamiana from mainland Western Australia, an island, and the Northern Territory. After inoculation with YTMMV, RA-4 plants responded with systemic hypersensitivity and all individuals were dead 35 days postinoculation (dpi). Plants of wild-collected accessions exhibited a range of symptoms, from mild to severe, and some, but not all, died in the same period. Quantitative reverse transcription PCR revealed that the Rdr1 mutation was not a predictor of viral RNA load or symptom severity. For example, wild-collected A019412 plants carried more than twice the viral RNA load of RA-4 plants, but symptom expression was moderate. For plants of most accessions, viral RNA load did not increase after 10 dpi. The exception was plants of accession Barrow-1, in which viral RNA load was low until 15 dpi, after which it increased more than 29-fold. This study revealed differential responses by N. benthamiana accessions to infection by an isolate of YTMMV. The Rdr1 gene, whether mutant or wild-type, did not appear to influence viral RNA load or disease expression. Genetic diversity of the 10 N. benthamiana accessions in some cases reflected geographical location, but in other accessions this was not so.
Collapse
Affiliation(s)
- Weinan Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuxia Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Li
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Krishnapillai Sivasithamparam
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Michael G K Jones
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Stephen J Wylie
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|