1
|
Gloanec N, Guyard-Nicodème M, Chemaly M, Dory D. Reverse vaccinology: A strategy also used for identifying potential vaccine antigens in poultry. Vaccine 2025; 48:126756. [PMID: 39855107 DOI: 10.1016/j.vaccine.2025.126756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Vaccination of livestock plays a major role in improving animal health, welfare and productivity, but also in public health by preventing zoonotic diseases. Advances in bioinformatics and whole-genome sequencing techniques since the 2000s have led to the development of genome-based vaccinology, called reverse vaccinology. Reverse vaccinology is a rapid and competitive strategy that uses pathogen genome sequences to screen for and identify potential vaccine antigens and, unlike conventional methods, does not require culturing the pathogenic microorganism, at least initially. Based on in silico approaches and dedicated software, reverse vaccinology has led to the identification of a wide range of proteins as putative vaccine candidates against human pathogens and has been applied more recently to several animal diseases. After a brief overview of the principle of the approach and its applications in human medicine, this review focuses on the use of reverse vaccinology for the development of vaccines specifically for poultry, a representative example of livestock vaccination, and discusses the important points to consider when using this method.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France; HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France; UFR of Life Sciences Environment, University of Rennes 1, 35065 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France.
| | - Marianne Chemaly
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France.
| | - Daniel Dory
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France; VIPAC-Avian and Rabbit Virology, Immunology and Parasitology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France.
| |
Collapse
|
2
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
3
|
Sastalla I, Kwon K, Huntley C, Taylor K, Brown L, Samuel T, Zou L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13:87. [PMID: 39852866 PMCID: PMC11768834 DOI: 10.3390/vaccines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
On 14-15 November 2023, the National Institute of Allergy and Infectious Diseases (NIAID) organized a workshop entitled "Systematic Approaches for ESKAPE Bacteria Antigen Discovery". The goal of the workshop was to engage scientists from diverse relevant backgrounds to explore novel technologies that can be harnessed to identify and address current roadblocks impeding advances in antigen and vaccine discoveries for the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The workshop consisted of four sessions that addressed ESKAPE infections, antigen discovery and vaccine efforts, and new technologies including systems immunology and vaccinology approaches. Each session was followed by a panel discussion. In total, there were over 260 in-person and virtual attendees, with high levels of engagement. This report provides a summary of the event and highlights challenges and opportunities in the field of ESKAPE vaccine discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanling Zou
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (I.S.); (K.K.); (C.H.); (K.T.); (L.B.); (T.S.)
| |
Collapse
|
4
|
Khalid H, Shityakov S. Immunoinformatics-driven design and computational analysis of a multiepitope vaccine targeting uropathogenic Escherichia coli. In Silico Pharmacol 2024; 13:2. [PMID: 39717385 PMCID: PMC11663213 DOI: 10.1007/s40203-024-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024] Open
Abstract
Urinary tract infections (UTIs), largely caused by uropathogenic Escherichia coli (UPEC), are increasingly resistant to antibiotics and frequently recur. Using immunoinformatics, we designed a multiepitope peptide vaccine targeting UPEC virulence factors, including iron acquisition systems and adhesins. The construct features 12 cytotoxic T lymphocyte epitopes, six helper T lymphocyte epitopes, and six B-cell epitopes,and isoptimized for high antigenicity, immunogenicity, nontoxic, and low allergenic potential. Molecular docking and 0.4-µs molecular dynamics simulations revealed the molecular mechanism of theinteraction of the vaccine with Toll-like receptor 4 and a favorable binding energy of - 41.83 kcal/mol using an implicit solvation model. These promising in silico results suggest the potential efficacy of the vaccine in preventing UPEC infections and underscore immunoinformatics as a powerful tool for addressing antibiotic-resistant UTI pathogens. Graphical Abstract Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00288-z.
Collapse
Affiliation(s)
- Hina Khalid
- College Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049 China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation
| |
Collapse
|
5
|
Riaz S, Steinsland H, Andersen AZ, Boysen A, Hanevik K. Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA. Med Microbiol Immunol 2024; 214:2. [PMID: 39673573 DOI: 10.1007/s00430-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
Mucosal infections normally cause an immune response including activation of antigen-specific B cells in regional mucosa-associated lymphoid tissue. After recirculation of plasmablasts, and maturation at mucosal surfaces or bone marrow, plasma cells produce secretory or systemic IgA. It remains uncertain to what extent secretory and systemic IgA share the same target specificities. For vaccine candidate optimization, it is important to know whether IgA targeting of glycosylated epitopes of a protein antigen vary between mucosal and systemic sites. We evaluated glycosylated epitope specificity of systemic and mucosally secreted IgA against YghJ, a potential vaccine candidate antigen secreted by most pathogenic Escherichia coli. IgA from intestinal lavage, saliva, serum, and blood-derived antibody in lymphocyte supernatants (ALS) were collected from 21 volunteers following experimental infection with enterotoxigenic E. coli. Methods for preparing IgA from saliva and ALS were developed, and multiplex bead flow cytometric immunoassays were used to determine levels of IgA targeting natively glycosylated YghJ and estimating what proportion of these antibodies specifically targeted glycosylated epitopes. Following infection, anti-YghJ IgA levels increased substantially for most volunteers across all four specimen types. Target specificity of ALS IgA correlated well with serum IgA, but not with mucosally secreted IgA. Furthermore, glycosylation-specific proportion of salivary IgA was higher than, and did not correlate with, intestinally secreted IgA. These results indicate a new degree of complexity to our understanding of epitope-targeting and tissue specificity of mucosal antibody responses. Our findings also suggest that all features of an intestinal IgA response may not be well reflected in serum, saliva, or ALS, which are commonly used proxy specimens for evaluating intestinal immune responses.
Collapse
Affiliation(s)
- Saman Riaz
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
6
|
Contreras M, Sobrino I, de la Fuente J. Paratransgenic quantum vaccinology. Trends Parasitol 2024; 40:1107-1114. [PMID: 39462754 DOI: 10.1016/j.pt.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Tick vaccines are an environmentally friendly intervention for the prevention and control of tick-borne diseases affecting humans and animals worldwide. From our perspective, the challenges in tick vaccinology have encouraged the implementation of new interventions. In this opinion article we propose paratransgenic quantum vaccinology as a new approach that integrates platform trends in biotechnology, such as omics datasets combined with big data analytics, machine learning, and paratransgenesis with a systems biology perspective. This innovative approach allows the identification of protective epitopes in tick- and/or pathogen-derived proteins for the design of chimeric vaccine candidate antigens which can be produced by commensal/symbiotic microorganisms eliciting a protective response in the host.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Isidro Sobrino
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Prieto A, Miró L, Margolles Y, Bernabeu M, Salguero D, Merino S, Tomas J, Corbera JA, Perez-Bosque A, Huttener M, Fernández LÁ, Juarez A. Targeting plasmid-encoded proteins that contain immunoglobulin-like domains to combat antimicrobial resistance. eLife 2024; 13:RP95328. [PMID: 39046772 PMCID: PMC11268884 DOI: 10.7554/elife.95328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luïsa Miró
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - David Salguero
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Joan Tomas
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de ArucasLas PalmasSpain
| | - Anna Perez-Bosque
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Mario Huttener
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Antonio Juarez
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
8
|
Xing Y, Clark JR, Chang JD, Zulk JJ, Chirman DM, Piedra FA, Vaughan EE, Hernandez Santos HJ, Patras KA, Maresso AW. Progress toward a vaccine for extraintestinal pathogenic E. coli (ExPEC) II: efficacy of a toxin-autotransporter dual antigen approach. Infect Immun 2024; 92:e0044023. [PMID: 38591882 PMCID: PMC11075464 DOI: 10.1128/iai.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Haroldo J. Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Westcott MM, Morse AE, Troy G, Blevins M, Wierzba T, Sanders JW. Photochemical inactivation as an alternative method to produce a whole-cell vaccine for uropathogenic Escherichia coli (UPEC). Microbiol Spectr 2024; 12:e0366123. [PMID: 38315025 PMCID: PMC10913755 DOI: 10.1128/spectrum.03661-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of lower urinary tract infection (UTI). UTI presents a serious health risk and has considerable secondary implications including economic burden, recurring episodes, and overuse of antibiotics. A safe and effective vaccine would address this widespread health problem and emerging antibiotic resistance. Killed, whole-cell vaccines have shown limited efficacy to prevent recurrent UTI in human trials. We explored photochemical inactivation with psoralen drugs and UVA light (PUVA), which crosslinks nucleic acid, as an alternative to protein-damaging methods of inactivation to improve whole-cell UTI vaccines. Exposure of UPEC to the psoralen drug AMT and UVA light resulted in a killed but metabolically active (KBMA) state, as reported previously for other PUVA-inactivated bacteria. The immunogenicity of PUVA-UPEC as compared to formalin-inactivated UPEC was compared in mice. Both generated high UPEC-specific serum IgG titers after intramuscular delivery. However, using functional adherence as a measure of surface protein integrity, we found differences in the properties of PUVA- and formalin-inactivated UPEC. Adhesion mediated by Type-1 and P-fimbriae was severely compromised by formalin but was unaffected by PUVA, indicating that PUVA preserved the functional conformation of fimbrial proteins, which are targets of protective immune responses. In vitro assays indicated that although they retained metabolic activity, PUVA-UPEC lost virulence properties that could negatively impact vaccine safety. Our results imply the potential for PUVA to improve killed, whole-cell UTI vaccines by generating bacteria that more closely resemble their live, infectious counterparts relative to vaccines generated with protein-damaging methods. IMPORTANCE Lower urinary tract infection (UTI), caused primarily by uropathogenic Escherichia coli, represents a significant health burden, accounting for 7 million primary care and 1 million emergency room visits annually in the United States. Women and the elderly are especially susceptible and recurrent infection (rUTI) is common in those populations. Lower UTI can lead to life-threatening systemic infection. UTI burden is manifested by healthcare dollars spent (1.5 billion annually), quality of life impact, and resistant strains emerging from antibiotic overuse. A safe and effective vaccine to prevent rUTI would address a substantial healthcare issue. Vaccines comprised of inactivated uropathogenic bacteria have yielded encouraging results in clinical trials but improvements that enhance vaccine performance are needed. To that end, we focused on inactivation methodology and provided data to support photochemical inactivation, which targets nucleic acid, as a promising alternative to conventional protein-damaging inactivation methods to improve whole-cell UTI vaccines.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Gavin Troy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Maria Blevins
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Thomas Wierzba
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - John W. Sanders
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
10
|
Penner TV, Lorente Cobo N, Patel DT, Patel DH, Savchenko A, Brassinga AKC, Prehna G. Structural characterization of the Sel1-like repeat protein LceB from Legionella pneumophila. Protein Sci 2024; 33:e4889. [PMID: 38160319 PMCID: PMC10868440 DOI: 10.1002/pro.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Legionella are freshwater Gram-negative bacteria that in their normal environment infect protozoa. However, this adaptation also allows Legionella to infect human alveolar macrophages and cause pneumonia. Central to Legionella pathogenesis are more than 330 secreted effectors, of which there are nine core effectors that are conserved in all pathogenic species. Despite their importance, the biochemical function of several core effectors remains unclear. To address this, we have taken a structural approach to characterize the core effector of unknown function LceB, or Lpg1356, from Legionella pneumophila. Here, we solve an X-ray crystal structure of LceB using an AlphaFold model for molecular replacement. The experimental structure shows that LceB adopts a Sel1-like repeat (SLR) fold as predicted. However, the crystal structure captured multiple conformations of LceB, all of which differed from the AlphaFold model. A comparison of the predicted model and the experimental models suggests that LceB is highly flexible in solution. Additionally, the molecular analysis of LceB using its close structural homologs reveals sequence and structural motifs of known biochemical function. Specifically, LceB harbors a repeated KAAEQG motif that both stabilizes the SLR fold and is known to participate in protein-protein interactions with eukaryotic host proteins. We also observe that LceB forms several higher-order oligomers in solution. Overall, our results have revealed that LceB has conformational flexibility, self-associates, and contains a molecular surface for binding a target host-cell protein. Additionally, our data provides structural insights into the SLR family of proteins that remain poorly studied.
Collapse
Affiliation(s)
- Tiffany V Penner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Gunathilaka GADKK, Dewasmika WAPM, Sandaruwan UM, Neelawala NGDAK, Madhumali GED, Dissanayake BN, Priyantha MAR, Prasada DVP, Dissanayake DRA. Biofilm-forming ability, antibiotic resistance and phylogeny of Escherichia coli isolated from extra intestinal infections of humans, dogs, and chickens. Comp Immunol Microbiol Infect Dis 2024; 105:102123. [PMID: 38217950 DOI: 10.1016/j.cimid.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Escherichia coli (E. coli) causes various infections in humans and animals. The biofilm-forming ability of E. coli has increased antimicrobial resistance and capacity to cause recurrent and chronic infections. This study determined the biofilm-forming ability of E. coli isolated from extraintestinal infections of humans, chickens, and dogs in relation to the phylogroup, type of infection, and antibiotic resistance. Isolates from chickens showed significantly higher biofilm-forming ability compared to those causing urinary tract infections in humans (p = 0.0001). Further, isolates belonging to phylogroup B1 displayed a higher likelihood to form biofilms. Resistance to ciprofloxacin and trimethoprim-sulfamethoxazole was positively correlated with biofilm-forming ability. Harbouring plasmid-mediated quinolone resistance gene, qnrS was also positively correlated with biofilm formation. This study provides insight into factors such as phylogroup and the type of infections that could enhance biofilm formation, as well as genotypic and phenotypic antibiotic resistance that could correlate with the ability to form biofilms.
Collapse
Affiliation(s)
- G A D K K Gunathilaka
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - W A P M Dewasmika
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - U M Sandaruwan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - N G D A K Neelawala
- Department of Basic Sciences, Faculty of Allied Health Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - G E D Madhumali
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - B N Dissanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - D V P Prasada
- Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - D R A Dissanayake
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
12
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Kern K, Delaroque N, Boysen A, Puder M, Wendt R, Kölsch A, Ehrentreich-Förster E, Stærk K, Andersen TE, Andersen K, Lund L, Szardenings M. Glycosylation of bacterial antigens changes epitope patterns. Front Immunol 2023; 14:1258136. [PMID: 37954588 PMCID: PMC10637626 DOI: 10.3389/fimmu.2023.1258136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Unlike glycosylation of proteins expressed in mammalian systems, bacterial glycosylation is often neglected in the development of recombinant vaccines. Methods Here, we compared the effects of glycosylation of YghJ, an Escherichia coli protein important for mucus attachment of bacteria causing in urinary tract infections (UTIs). A novel method based on statistical evaluation of phage display for the identification and comparison of epitopes and mimotopes of anti-YghJ antibodies in the sera was used. This is the first time that the effect of glycosylation of a recombinant bacterial antigen has been studied at the peptide epitope level. Results The study identifies differences in the immune response for (non)-glycosylated antigens in rabbits and pigs and compares them to a large group of patients with UTI, which have been diagnosed as positive for various bacterial pathogens. We identified glycosylation-specific peptide epitopes, a large immunological similarity between different UTI pathogens, and a broad peptide epitope pattern in patients and animals, which could result in a variable response in patients upon vaccination. Discussion This epitope analysis indicates that the vaccination of rabbits and pigs raises antibodies that translate well into the human immune system. This study underlines the importance of glycosylation in bacterial vaccines and provides detailed immune diagnostic methods to understand individual immune responses to vaccines.
Collapse
Affiliation(s)
- Karolin Kern
- Ligand Development Unit, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Epitopic, Leipzig, Germany
| | - Nicolas Delaroque
- Ligand Development Unit, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | | | - Ralph Wendt
- Department of Nephrology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Andreas Kölsch
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Eva Ehrentreich-Förster
- Molekulare und Zelluläre Bioanalytik Unit, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Golm, Germany
| | - Kristian Stærk
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Karin Andersen
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Szardenings
- Ligand Development Unit, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Epitopic, Leipzig, Germany
| |
Collapse
|
14
|
Brazzoli M, Piccioli D, Marchetti F. Challenges in development of vaccines directed toward antimicrobial resistant bacterial species. Hum Vaccin Immunother 2023; 19:2228669. [PMID: 37449650 DOI: 10.1080/21645515.2023.2228669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Antimicrobial resistance (AMR) is considered by WHO one of the top ten public health threats. New control strategies involving concerted actions of both public and private sectors need to be developed. Vaccines play a major role in controlling the spread of AMR pathogens by decreasing transmission and limiting the use of antibiotics, reducing at the end the selective pressure for the emergence of new resistant strains. In this review, by using as example some of the most serious AMR pathogens, we highlighted the major hurdles from a research and development point of view. New approaches to better understand the immunological mechanisms of response to both natural infections and vaccines that aimed to identify correlates of protection, together with the application of new technologies for vaccine design and delivery are discussed as potential solutions.
Collapse
|
15
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Beriotto I, Icke C, Sevastsyanovich YR, Rossiter AE, Romagnoli G, Savino S, Hodges FJ, Cole JA, Saul A, MacLennan CA, Cunningham AF, Micoli F, Henderson IR. Efficient Autotransporter-Mediated Extracellular Secretion of a Heterologous Recombinant Protein by Escherichia coli. Microbiol Spectr 2023; 11:e0359422. [PMID: 37036352 PMCID: PMC10269718 DOI: 10.1128/spectrum.03594-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
The autotransporter protein secretion system has been used previously to target the secretion of heterologous proteins to the bacterial cell surface and the extracellular milieu at the laboratory scale. The platform is of particular interest for the production of "difficult" recombinant proteins that might cause toxic effects when produced intracellularly. One such protein is IrmA. IrmA is a vaccine candidate that is produced in inclusion bodies requiring refolding. Here, we describe the use and scale-up of the autotransporter system for the secretion of an industrially relevant protein (IrmA). A plasmid expressing IrmA was constructed such that the autotransporter platform could secrete IrmA into the culture supernatant fraction. The autotransporter platform was suitable for the production and purification of IrmA with comparable physical properties to the protein produced in the cytoplasm. The production of IrmA was translated to scale-up protein production conditions resulting in a yield of 29.3 mg/L of IrmA from the culture supernatant, which is consistent with yields of current industrial processes. IMPORTANCE Recombinant protein production is an essential component of the biotechnology sector. Here, we show that the autotransporter platform is a viable method for the recombinant production, secretion, and purification of a "difficult" to produce protein on an industrially relevant scale. Use of the autotransporter platform could reduce the number of downstream processing operations required, thus accelerating the development time and reducing costs for recombinant protein production.
Collapse
Affiliation(s)
- Irene Beriotto
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- GSK Vaccines Institute for Global Health Srl, Siena, Italy
| | - Christopher Icke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | - Amanda E. Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Silvana Savino
- GSK Vaccines Institute for Global Health Srl, Siena, Italy
| | - Freya J. Hodges
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jeffrey A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Allan Saul
- GSK Vaccines Institute for Global Health Srl, Siena, Italy
| | - Calman A. MacLennan
- GSK Vaccines Institute for Global Health Srl, Siena, Italy
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Ian R. Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Costanzo V, Roviello GN. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines (Basel) 2023; 11:vaccines11020333. [PMID: 36851210 PMCID: PMC9962013 DOI: 10.3390/vaccines11020333] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern era, the consumption of antibiotics represents a revolutionary weapon against several infectious diseases, contributing to the saving of millions of lives worldwide. However, the misuse of antibiotics for human and animal purposes has fueled the process of antimicrobial resistance (AMR), considered now a global emergency by the World Health Organization (WHO), which significantly increases the mortality risk and related medical costs linked to the management of bacterial diseases. The current research aiming at developing novel efficient antibiotics is very challenging, and just a few candidates have been identified so far due to the difficulties connected with AMR. Therefore, novel therapeutic or prophylactic strategies to fight AMR are urgently needed. In this scenario, vaccines constitute a promising approach that proves to be crucial in preventing pathogen spreading in primary infections and in minimizing the usage of antibiotics following secondary bacterial infections. Unfortunately, most of the vaccines developed against the main resistant pathogens are still under preclinical and clinical evaluation due to the complexity of pathogens and technical difficulties. In this review, we describe not only the main causes of AMR and the role of vaccines in reducing the burden of infectious diseases, but we also report on specific prophylactic advancements against some of the main pathogens, focusing on new strategies that aim at improving vaccine efficiency.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater Studiorum, 40126 Bologna, Italy
- Correspondence: (V.C.); (G.N.R.)
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquartes, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (V.C.); (G.N.R.)
| |
Collapse
|
18
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
19
|
Comparative Genomic Analysis of Statistically Significant Genomic Islands of Helicobacter pylori strains for better understanding the disease prognosis. Biosci Rep 2022; 42:230988. [PMID: 35258077 PMCID: PMC8935386 DOI: 10.1042/bsr20212084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer, peptic ulcer, duodenal ulcer etc. A novel similarity score-based comparative analysis with GIs of fifty H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin-antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like CagA, and VacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and VacA virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori induced disease prognosis.
Collapse
|
20
|
Corsini PM, Wang S, Rehman S, Fenn K, Sagar A, Sirovica S, Cleaver L, Edwards-Gayle CJC, Mastroianni G, Dorgan B, Sewell LM, Lynham S, Iuga D, Franks WT, Jarvis J, Carpenter GH, Curtis MA, Bernadó P, Darbari VC, Garnett JA. Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022; 8:9. [PMID: 35217675 PMCID: PMC8881592 DOI: 10.1038/s41522-022-00272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.
Collapse
Affiliation(s)
- Paula M Corsini
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Katherine Fenn
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Slobodan Sirovica
- Centre for Oral Bioengineering, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lee M Sewell
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, UK
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Vidya C Darbari
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
21
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
22
|
Jiang X, Bai J, Zhang H, Yuan J, Lu G, Wang Y, Jiang L, Liu B, Huang D, Feng L. Development of an O-polysaccharide based recombinant glycoconjugate vaccine in engineered E. coli against ExPEC O1. Carbohydr Polym 2022; 277:118796. [PMID: 34893224 DOI: 10.1016/j.carbpol.2021.118796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Extraintestinal pathogenic Escherichia coli O1 is a frequently identified serotype that causes serious infections and is often refractory to antimicrobial therapy. Glycoconjugate vaccine represents a promising measure to reduce ExPEC infections. Herein, we designed an O1-specific glyco-optimized chassis strain for manufacture of O-polysaccharide (OPS) antigen and OPS-based bioconjugate. Specifically, OPS and OPS-based glycoprotein were synthesized in glyco-optimized chassis strain, when compared to the unmeasurable level of the parent strain. The optimal expression of oligosaccharyltransferase and carrier protein further improved the titer. MS analysis elucidated the correct structure of resulting bioconjugate at routine and unreported glycosylation sequons of carrier protein, with a higher glycosylation efficiency. Finally, purified bioconjugate stimulated mouse to generate specific IgG antibodies and protected them against virulent ExPEC O1 challenge. The plug-and-play glyco-optimized platform is suitable for bioconjugate synthesis, thus providing a potential platform for future medical applications.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
23
|
Riaz S, Steinsland H, Thorsing M, Andersen AZ, Boysen A, Hanevik K. Characterization of Glycosylation-Specific Systemic and Mucosal IgA Antibody Responses to Escherichia coli Mucinase YghJ (SslE). Front Immunol 2021; 12:760135. [PMID: 34975849 PMCID: PMC8718676 DOI: 10.3389/fimmu.2021.760135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
Efforts to develop broadly protective vaccines against pathogenic Escherichia coli are ongoing. A potential antigen candidate for vaccine development is the metalloprotease YghJ, or SslE. YghJ is a conserved mucinase that is immunogenic, heavily glycosylated, and produced by most pathogenic E. coli. To develop efficacious YghJ-based vaccines, there is a need to investigate to what extent potentially protective antibody responses target glycosylated epitopes in YghJ and to describe variations in the quality of YghJ glycosylation in the E. coli population. In this study we estimated the proportion of anti-YghJ IgA antibodies that targeted glycosylated epitopes in serum and intestinal lavage samples from 21 volunteers experimentally infected with wild-type enterotoxigenic E. coli (ETEC) strain TW10722. Glycosylated and non-glycosylated YghJ was expressed, purified, and then gycosylation pattern was verified by BEMAP analysis. Then we used a multiplex bead flow cytometric assay to analyse samples from before and 10 days after TW10722 was ingested. We found that 20 (95%) of the 21 volunteers had IgA antibody responses to homologous, glycosylated YghJ, with a median fold increase in IgA levels of 7.9 (interquartile range [IQR]: 7.1, 11.1) in serum and 3.7 (IQR: 2.1, 10.7) in lavage. The median proportion of anti-YghJ IgA response that specifically targeted glycosylated epitopes was 0.45 (IQR: 0.30, 0.59) in serum and 0.07 (IQR: 0.01, 0.22) in lavage. Our findings suggest that a substantial, but variable, proportion of the IgA antibody response to YghJ in serum during ETEC infection is targeted against glycosylated epitopes, but that gut IgA responses largely target non-glycosylated epitopes. Further research into IgA targeting glycosylated YghJ epitopes is of interest to the vaccine development efforts.
Collapse
Affiliation(s)
- Saman Riaz
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
25
|
Thorsing M, Krogh TJ, Vitved L, Nawrocki A, Jakobsen R, Larsen MR, Chakraborty S, Bourgeois AL, Andersen AZ, Boysen A. Linking inherent O-Linked Protein Glycosylation of YghJ to Increased Antigen Potential. Front Cell Infect Microbiol 2021; 11:705468. [PMID: 34490144 PMCID: PMC8417355 DOI: 10.3389/fcimb.2021.705468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a WHO priority pathogen and vaccine target which causes infections in low-income and middle-income countries, travelers visiting endemic regions. The global urgent demand for an effective preventive intervention has become more pressing as ETEC strains have become increasingly multiple antibiotic resistant. However, the vaccine development pipeline has been slow to address this urgent need. To date, vaccine development has focused mainly on canonical antigens such as colonization factors and expressed toxins but due to genomic plasticity of this enteric pathogen, it has proven difficult to develop effective vaccines. In this study, we investigated the highly conserved non-canonical vaccine candidate YghJ/SsLE. Using the mass spectrometry-based method BEMAP, we demonstrate that YghJ is hyperglycosylated in ETEC and identify 54 O-linked Set/Thr residues within the 1519 amino acid primary sequence. The glycosylation sites are evenly distributed throughout the sequence and do not appear to affect the folding of the overall protein structure. Although the glycosylation sites only constitute a minor subpopulation of the available epitopes, we observed a notable difference in the immunogenicity of the glycosylated YghJ and the non-glycosylated protein variant. We can demonstrate by ELISA that serum from patients enrolled in an ETEC H10407 controlled infection study are significantly more reactive with glycosylated YghJ compared to the non-glycosylated variant. This study provides an important link between O-linked glycosylation and the relative immunogenicity of bacterial proteins and further highlights the importance of this observation in considering ETEC proteins for inclusion in future broad coverage subunit vaccine candidates.
Collapse
Affiliation(s)
| | | | - Lars Vitved
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Subhra Chakraborty
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - A. Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | | | | |
Collapse
|
26
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
27
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
28
|
Habibi M, Azimi S, Khoobbakht D, Roghanian P, Asadi Karam MR. Immunization with recombinant protein Ag43::UpaH with alum and 1,25(OH)2D3 adjuvants significantly protects Balb/C mice against urinary tract infection caused by uropathogenic Escherichia coli. Int Immunopharmacol 2021; 96:107638. [PMID: 33848909 DOI: 10.1016/j.intimp.2021.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The majority of urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC). Designing a vaccine will certainly reduce the occurrence of infection and antibiotic resistance of the isolates. Antigen 43 (Ag43) and autotransporter H (UpaH) have been associated with the virulence of UPEC. In the present study, the efficacy of different formulations of a hybrid protein composed of Ag43 and UpaH with and without alum and 1,25(OH)2D3 (Vitamin D3) adjuvants were evaluated in mice model. A significant increase in IgG and cellular responses was developed against Ag43::UpaH as compared to the control mice. The addition of alum or a mixture of alum and Vitamin D3 to the protein significantly enhanced the serum IgG responses and tended to remain in a steady state until 6 months. In addition, the mentioned formulations produced significant amounts of IgG1, IL-4, and IL-17 as compared to the fusion protein alone. In addition to the mentioned formulations, the combination of protein with Vitamin D3 also resulted in significantly higher serum IgA and IFN-γ levels as compared to the fusion protein alone. Mice immunized with fusion plus alum and formulation protein admixed with both alum and Vitamin D3 significantly reduced the bacterial load in the bladders and kidneys of mice as compared to the control. In this study, for the first time, the ability of a novel hybrid protein in combination with adjuvants alum and Vitamin D3 was evaluated against UPEC. Our results indicated that fusion Ag43::UpaH admixed with alum and Vitamin D3 could be a promising candidate against UTIs.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave, Tehran 13164, Iran
| | - Saba Azimi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave, Tehran 13164, Iran
| | - Dorna Khoobbakht
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave, Tehran 13164, Iran
| | - Pooneh Roghanian
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave, Tehran 13164, Iran
| | | |
Collapse
|
29
|
Assaf R, Xia F, Stevens R. Identifying genomic islands with deep neural networks. BMC Genomics 2021; 22:281. [PMID: 34078279 PMCID: PMC8170982 DOI: 10.1186/s12864-021-07575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/05/2022] Open
Abstract
Background Horizontal gene transfer is the main source of adaptability for bacteria, through which genes are obtained from different sources including bacteria, archaea, viruses, and eukaryotes. This process promotes the rapid spread of genetic information across lineages, typically in the form of clusters of genes referred to as genomic islands (GIs). Different types of GIs exist, and are often classified by the content of their cargo genes or their means of integration and mobility. While various computational methods have been devised to detect different types of GIs, no single method is capable of detecting all types. Results We propose a method, which we call Shutter Island, that uses a deep learning model (Inception V3, widely used in computer vision) to detect genomic islands. The intrinsic value of deep learning methods lies in their ability to generalize. Via a technique called transfer learning, the model is pre-trained on a large generic dataset and then re-trained on images that we generate to represent genomic fragments. We demonstrate that this image-based approach generalizes better than the existing tools. Conclusions We used a deep neural network and an image-based approach to detect the most out of the correct GI predictions made by other tools, in addition to making novel GI predictions. The fact that the deep neural network was re-trained on only a limited number of GI datasets and then successfully generalized indicates that this approach could be applied to other problems in the field where data is still lacking or hard to curate.
Collapse
Affiliation(s)
- Rida Assaf
- Department of Computer Science, University of Chicago, S. Ellis Ave., Chicago, 60637, USA.
| | - Fangfang Xia
- Computing Environment and Life Sciences Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA.,Data Science and Learning Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA
| | - Rick Stevens
- Computing Environment and Life Sciences Division, Argonne National Laboratory, S. Cass Ave., Lemont, 60439, USA.,The University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, S. Ellis Ave., Chicago, 60637, USA
| |
Collapse
|
30
|
Alonso CA, de Toro M, de la Cruz F, Torres C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms 2021; 9:999. [PMID: 34063152 PMCID: PMC8148099 DOI: 10.3390/microorganisms9050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Commensal bacteria act as important reservoirs of virulence and resistance genes. However, existing data are generally only focused on the analysis of human or human-related bacterial populations. There is a lack of genomic studies regarding commensal bacteria from hosts less exposed to antibiotics and other selective forces due to human activities, such as wildlife. In the present study, the genomes of thirty-eight E. coli strains from the gut of various wild animals were sequenced. The analysis of their accessory genome yielded a better understanding of the role of the mobilome on inter-bacterial dissemination of mosaic virulence and resistance plasmids. The study of the presence and composition of the CRISPR/Cas systems in E. coli from wild animals showed some viral and plasmid sequences among the spacers, as well as the relationship between CRISPR/Cas and E. coli phylogeny. Further, we constructed a single nucleotide polymorphisms-based core tree with E. coli strains from different sources (humans, livestock, food and extraintestinal environments). Bacteria from humans or highly human-influenced settings exhibit similar genetic patterns in CRISPR-Cas systems, plasmids or virulence/resistance genes-carrying modules. These observations, together with the absence of significant genetic changes in their core genome, suggest an ongoing flow of both mobile elements and E. coli lineages between human and natural ecosystems.
Collapse
Affiliation(s)
- Carla Andrea Alonso
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
- Servicio de Microbiología, Hospital San Pedro, 26006 Logroño, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria-CSIC), 39011 Santander, Spain;
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
| |
Collapse
|
31
|
Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem 2021; 35:1545-1554. [PMID: 32746656 PMCID: PMC7470111 DOI: 10.1080/14756366.2020.1800670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes involved in biosynthetic processes, transport, supply, and balance of CO2/HCO3- into the cell. In Bacteria, CAs avoid the depletion of the dissolved CO2/HCO3- from the cell, providing them to the central metabolism that is compromised without the CA activity. The involvement of CAs in the survival, pathogenicity, and virulence of several bacterial pathogenic species is recent. Here, we report the kinetic properties of the recombinant γ-CA (EcoCAγ) encoded in the genome of Escherichia coli. EcoCAγ is an excellent catalyst for the physiological CO2 hydration reaction to bicarbonate and protons, with a kcat of 5.7 × 105 s−1 and kcat/KM of 6.9 × 106 M−1 s−1. The EcoCAγ inhibition profile with a broad series of known CA inhibitors, the substituted benzene-sulphonamides, and clinically licenced drugs was explored. Benzolamide showed a KI lower than 100 nM. Our study reinforces the hypothesis that the synthesis of new drugs capable of interfering selectively with the bacterial CA activity, avoiding the inhibition of the human α -CAs, is achievable and may lead to novel antibacterials.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
32
|
Jiang X, Bai J, Yuan J, Zhang H, Lu G, Wang Y, Jiang L, Liu B, Wang L, Huang D, Feng L. High efficiency biosynthesis of O-polysaccharide-based vaccines against extraintestinal pathogenic Escherichia coli. Carbohydr Polym 2021; 255:117475. [PMID: 33436239 DOI: 10.1016/j.carbpol.2020.117475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/01/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) has presented a major clinical infection emerged in the past decades. O-polysaccharide (OPS)-based glycoconjugate vaccines produced using the bacterial glycosylation machinery can be utilized to confer protection against such infection. However, constructing a low-cost microbial cell factory for high-efficient production of OPS-based glycoconjugate vaccines remains challenging. Here, we engineered a glyco-optimized chassis strain by reprogramming metabolic network. The yield was enhanced to 38.6 mg L-1, the highest level reported so far. MS analysis showed that designed glycosylation sequon was modified by target polysaccharide with high glycosylation efficiency of 90.7 % and 76.7 % for CTB-O5 and CTB-O7, respectively. The glycoconjugate vaccines purified from this biosystem elicited a marked increase in protection against ExPEC infection in mouse model, compared to a non-optimized system. The glyco-optimized platform established here is broadly suitable for polysaccharide-based conjugate production against ExPEC and other surface-polysaccharide-producing pathogens.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
33
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
34
|
Jati S, Sengupta S, Sen M. Wnt5A-Mediated Actin Organization Regulates Host Response to Bacterial Pathogens and Non-Pathogens. Front Immunol 2021; 11:628191. [PMID: 33664738 PMCID: PMC7921742 DOI: 10.3389/fimmu.2020.628191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Wnt5A signaling facilitates the killing of several bacterial pathogens, but not the non-pathogen E. coli DH5α. The basis of such pathogen vs. non-pathogen distinction is unclear. Accordingly, we analyzed the influence of Wnt5A signaling on pathogenic E. coli K1 in relation to non-pathogenic E. coli K12-MG1655 and E. coli DH5α eliminating interspecies variability from our study. Whereas cell internalized E. coli K1 disrupted cytoskeletal actin organization and multiplied during Wnt5A depletion, rWnt5A mediated activation revived cytoskeletal actin assembly facilitating K1 eradication. Cell internalized E. coli K12-MG1655 and E. coli DH5α, which did not perturb actin assembly appreciably, remained unaffected by rWnt5A treatment. Phagosomes prepared separately from Wnt5A conditioned medium treated K1 and K12-MG1655 infected macrophages revealed differences in the relative levels of actin and actin network promoting proteins, upholding that the Wnt5A-Actin axis operates differently for internalized pathogen and non-pathogen. Interestingly, exposure of rWnt5A treated K1 and K12-MG1655/DH5α infected macrophages to actin assembly inhibitors reversed the scenario, blocking killing of K1, yet promoting killing of both K12-MG1655 and DH5α. Taken together, our study illustrates that the state of activation of the Wnt5A/Actin axis in the context of the incumbent bacteria is crucial for directing host response to infection.
Collapse
Affiliation(s)
- Suborno Jati
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Soham Sengupta
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
35
|
Characterization of a Four-Component Regulatory System Controlling Bacteriocin Production in Streptococcus gallolyticus. mBio 2021; 12:mBio.03187-20. [PMID: 33402539 PMCID: PMC8545106 DOI: 10.1128/mbio.03187-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.
Collapse
|
36
|
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287-302. [PMID: 33542518 PMCID: PMC7861009 DOI: 10.1038/s41579-020-00506-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.
Collapse
Affiliation(s)
- Francesca Micoli
- grid.425088.3GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | |
Collapse
|
37
|
Oloomi M, Javadi M, Asadi Karam MR, Khezerloo JK, Haghri Z, Bouzari S. Protective multi-epitope candidate vaccine for urinary tract infection. ACTA ACUST UNITED AC 2020; 28:e00564. [PMID: 33304840 PMCID: PMC7711219 DOI: 10.1016/j.btre.2020.e00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 10/28/2022]
Abstract
Urinary tract infections (UTIs) are induced by exogenous organisms including extraintestinal pathogenic such as Escherichia coli (ExPEC), Proteus mirabilis and Klebsiella pneumonia, which are closely related. These organisms can colonize in the urinary tract and cause UTIs. In this study, a cross-reactive multi-epitope vaccine was designed by two constructs to stimulate the immune system (CD8+ and CD4 + T cells) against ExPEC, Proteus mirabilis and Klebsiella pneumonia strains. Uropathogenic Escherichia coli (UPEC), Proteus mirabilis and Klebsiella pneumoniae are the main bacterial cause of UTI. They were used for designing experimental candidate vaccine, and their immunogenicity and protectivity were assessed. In this study, conserved antigens from their bacterial genomes were considered, and informatics-based immunological vaccine with cross-protective T and B-cells epitopes was designed and evaluated. The vaccine candidate was used as a broad immune system inducer, and its cross-protective immunity and protectivity were confirmed in in vivo experiments.
Collapse
Affiliation(s)
- Mana Oloomi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Javadi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Zohreh Haghri
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
In Silico Design of a Poly-epitope Vaccine for Urinary Tract Infection Based on Conserved Antigens by Modern Vaccinology. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10137-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Pettersen VK, Steinsland H, Wiker HG. Distinct Metabolic Features of Pathogenic Escherichia coli and Shigella spp. Determined by Label-Free Quantitative Proteomics. Proteomics 2020; 21:e2000072. [PMID: 33025732 DOI: 10.1002/pmic.202000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Escherichia coli and Shigella spp. causing illnesses in humans represent a genotypically and phenotypically diverse group of pathogens. Although E. coli diversity has been studied by comparative genomics, the intra-species variation at the proteome level is currently unknown. The proteomes of 16 pathogenic E. coli, 2 non-pathogenic E. coli, and 5 Shigella strains originating from 18 phylogenetic lineages are investigated. By applying label-free quantitative proteomics on trypsin-digested cell extracts from bacteria grown on blood agar, 4018 proteins are detected, 3285 of which arequantified, and 261 represented virulence factors. Of 753 proteins quantified in all strains, the levels of 153 vary substantially between strains and are functionally associated mostly with stress response and peripheral metabolism. The levels of proteins associated with the central metabolism vary considerably less than the levels of proteins from other metabolic pathways. Hierarchical clustering analysis based on the protein levels results in strains grouping that differ from that obtained by gene-based phylogenetic analysis. Finally, strains of some E. coli pathotypes have more similar protein profiles even when the strains are not genetically closely related. The results suggest that the degree of genetic relatedness may not necessarily be a good predictor of E. coli phenotypic characteristics.
Collapse
Affiliation(s)
- Veronika Kuchařová Pettersen
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Haukeland universitetssykehus, Laboratoriebygget, Bergen, 5020, Norway
| | - Hans Steinsland
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Alrek helseklynge, blokk D, Årstadveien 17, Bergen, 5020, Norway.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5020, Norway
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Haukeland universitetssykehus, Laboratoriebygget, Bergen, 5020, Norway
| |
Collapse
|
40
|
Hasanzadeh S, Habibi M, Shokrgozar MA, Ahangari Cohan R, Ahmadi K, Asadi Karam MR, Bouzari S. In silico analysis and in vivo assessment of a novel epitope-based vaccine candidate against uropathogenic Escherichia coli. Sci Rep 2020; 10:16258. [PMID: 33004862 PMCID: PMC7530722 DOI: 10.1038/s41598-020-73179-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are common pathogens in urinary tract infections (UTIs), which show resistance to antibiotics. Therefore, there is a need for a vaccine to reduce susceptibility to the infection. In the present study, bioinformatics approaches were employed to predict the best B and T-cell epitopes of UPEC virulence proteins to develop a multiepitope vaccine candidate against UPEC. Then, the efficacy of the candidate was studied with and without Freund adjuvant. Using bioinformatics methods, 3 epitope-rich domains of IutA and FimH antigens were selected to construct the fusion. Molecular docking and Molecular dynamics (MD) simulation were employed to investigate in silico interaction between designed vaccine and Toll-like receptor 4 (TLR4). Our results showed that the levels of IgG and IgA antibodies were improved in the serum and mucosal samples of the vaccinated mice, and the IgG responses were maintained for at least 6 months. The fusion protein was also able to enhance the level of cytokines IFN.γ (Th1), IL.4 (Th2), and IL.17. In challenge experiments, all vaccine combinations showed high potency in the protection of the urinary tract even after 6 months post first injection. The present study indicates that the designed candidate is able to evoke strong protective responses which warrant further studies.
Collapse
Affiliation(s)
- Sara Hasanzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
41
|
Mehmood A, Naseer S, Ali A, Fatimah H, Rehman S, Kiani AK. Identification of novel vaccine candidates against carbapenem resistant Klebsiella pneumoniae: A systematic reverse proteomic approach. Comput Biol Chem 2020; 89:107380. [PMID: 32992120 DOI: 10.1016/j.compbiolchem.2020.107380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/09/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is declared as antibiotic resistant by WHO, with the critical urgency of developing novel antimicrobial therapeutics as drug resistance is the second most dangerous threat after terrorism. Besides many attempts still, there is no effective vaccine available against K. pneumoniae. By utilizing all the available proteomic data we prioritized the novel proteins ideal for vaccine development using bioinformatics tools and techniques. Among the huge data, eight proteins passed all the barriers and were considered ideal candidates for vaccine development. These include: copper silver efflux system outer membrane protein (CusC), outer membrane porin protein (OmpN), Fe++ enterobactin transporter substrate binding protein (fepB), zinc transporter substrate binding protein (ZnuA), ribonuclease HI, tellurite resistant methyltransferase (the B), and two uncharacterized hypothetical proteins (WP_002918223 and WP_002892366). These proteins were also subjected to epitope analysis and were found best for developing subunit vaccine against K. pneumoniae. The study shows that the potential vaccine targets are sufficiently efficient being virulent, of outer membranous origin and can be proposed for the DNA third-generation vaccines development that would help to cope up infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Asim Mehmood
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Samar Naseer
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Hina Fatimah
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Shazia Rehman
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Aysha Karim Kiani
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| |
Collapse
|
42
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
43
|
Abstract
The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization. Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR. We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production. IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization.
Collapse
|
44
|
Del Prete S, De Luca V, Bua S, Nocentini A, Carginale V, Supuran CT, Capasso C. The Effect of Substituted Benzene-Sulfonamides and Clinically Licensed Drugs on the Catalytic Activity of CynT2, a Carbonic Anhydrase Crucial for Escherichia coli Life Cycle. Int J Mol Sci 2020; 21:ijms21114175. [PMID: 32545297 PMCID: PMC7312386 DOI: 10.3390/ijms21114175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Proteins are relevant antimicrobial drug targets, and among them, enzymes represent a significant group, since most of them catalyze reactions essential for supporting the central metabolism, or are necessary for the pathogen vitality. Genomic exploration of pathogenic and non-pathogenic microorganisms has revealed genes encoding for a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the physiologically crucial reversible reaction of the carbon dioxide hydration to bicarbonate and protons. Herein, we investigated the sulfonamide inhibition profile of the recombinant β-CA (CynT2) identified in the genome of the Gram-negative bacterium Escherichia coli. This biocatalyst is indispensable for the growth of the microbe at atmospheric pCO2. Surprisingly, this enzyme has not been investigated for its inhibition with any class of CA inhibitors. Here, we show that CynT2 was strongly inhibited by some substituted benzene-sulfonamides and the clinically used inhibitor sulpiride (KIs in the range of 82–97 nM). This study may be relevant for identifying novel CA inhibitors, as well as for another essential part of the drug discovery pipeline, such as the structure–activity relationship for this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
| | - Vincenzo Carginale
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
45
|
Del Prete S, De Luca V, Nocentini A, Scaloni A, Mastrolorenzo MD, Supuran CT, Capasso C. Anion Inhibition Studies of the Beta-Carbonic Anhydrase from Escherichia coli. Molecules 2020; 25:E2564. [PMID: 32486444 PMCID: PMC7321114 DOI: 10.3390/molecules25112564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The interconversion of CO2 and HCO3- is catalyzed by a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1), which maintain the equilibrium between dissolved inorganic CO2 and HCO3-. In the genome of Escherichia coli, a Gram-negative bacterium typically colonizing the lower intestine of warm-blooded organisms, the cyn operon gene includes the CynT gene, encoding for a β-CA, and CynS gene, encoding for the cyanase. CynT (β-CA) prevents the depletion of the cellular bicarbonate, which is further used in the reaction catalyzed by cyanase. A second β-CA (CynT2 or Can or yadF), as well as a γ and ι-CAs were also identified in the E. coli genome. CynT2 is essential for bacterial growth at atmospheric CO2 concentration. Here, we characterized the kinetic properties and the anion inhibition profiles of recombinant CynT2. The enzyme showed a good activity for the physiological CO2 hydratase reaction with the following parameters: kcat = 5.3 × 105 s-1 and kcat/KM = of 4.1 × 107 M-1 s-1. Sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethyldithiocarbamate were the most effective CynT2 inhibitors (KI = 2.5 to 84 µM). The anions allowed for a detailed understanding of the interaction of inhibitors with the amino acid residues surrounding the catalytic pocket of the enzyme and may be used as leads for the design of more efficient and specific inhibitors.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Margaret D. Mastrolorenzo
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
- University of California, San Diego (UCSD), 3425 Lebon Drive, Unit 918, San Diego, CA 92122, USA
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| |
Collapse
|
46
|
Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS One 2020; 15:e0226378. [PMID: 31940357 PMCID: PMC6961823 DOI: 10.1371/journal.pone.0226378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.
Collapse
|
47
|
Abstract
With advancements in sequencing technologies, vast amount of experimental data has accumulated. Due to rapid progress in the development of bioinformatics tools and the accumulation of data, immunoinformatics or computational immunology emerged as a special branch of bioinformatics which utilizes bioinformatics approaches for understanding and interpreting immunological data. One extensively studied aspect of applied immunology involves using available databases and tools for prediction of B- and T-cell epitopes. B and T cells comprise two arms of adaptive immunity.This chapter first reviews the methodology we used for computational identification of B- and T-cell epitopes against enterotoxigenic Escherichia coli (ETEC). Then we discuss other databases of epitopes and analysis tools for T-cell and B-cell epitope prediction and vaccine design. The predicted peptides were analyzed for conservation and population coverage. HLA distribution analysis for predicted epitopes identified efficient MHC binders. Epitopes were further tested using computational docking studies to bind in MHC-I molecule cleft. The predicted epitopes were conserved and covered more than 80% of the world population.
Collapse
MESH Headings
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Computational Biology
- Databases, Protein
- Enterotoxigenic Escherichia coli/genetics
- Enterotoxigenic Escherichia coli/immunology
- Epitope Mapping/methods
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Humans
- Models, Molecular
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, HP, India.
| | - Kusum Mehla
- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
48
|
Identification of lipid A deacylase as a novel, highly conserved and protective antigen against enterohemorrhagic Escherichia coli. Sci Rep 2019; 9:17014. [PMID: 31745113 PMCID: PMC6863877 DOI: 10.1038/s41598-019-53197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.
Collapse
|
49
|
Bhatti S, Satyanarayana GNV, Patel DK, Satish A. Bioaccumulation, biotransformation and toxic effect of fipronil in Escherichia coli. CHEMOSPHERE 2019; 231:207-215. [PMID: 31129401 DOI: 10.1016/j.chemosphere.2019.05.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Fipronil is a highly effective, broad-spectrum insecticide used to control pests, globally. The increased usage has led to contamination of soil, water, fruits, and vegetables. The wide and frequent usage of fipronil across the globe calls for attention regarding risk assessment of undesirable effects on non-target microorganisms. In this context, the present study was carried to understand the impact of fipronil on non-pathogenic Escherichia coli. The non-pathogenic E. coli are important commensal of the intestinal tract of humans and animals and are also indicator organisms in the environment. Our study indicates that exposure of E. coli to fipronil (100 μM concentration) leads to significant reactive oxygen species production, loss of membrane potential and viability. Further, we have witnessed the bioaccumulation and biotransformation of fipronil by E. coli at non-lethal concentrations. The bio-transformed products (fipronil sulfone and fipronil sulfide) are also the major metabolites (along with amide) reported in the feces of the mammals when exposed to fipronil. Thus, there is a possibility that the gut E. coli might play a role in the degradation and thereby removal of fipronil. In addition, the bioaccumulation of fipronil in bacteria is of concern and need to be further explored because it can lead to biomagnification in the higher trophic level and can disturb the ecological balance. In our knowledge, this is the first report on the determination of fipronil and its metabolites in bacteria through GC-MS/MS.
Collapse
Affiliation(s)
- Saurabh Bhatti
- Ecotoxicology Laboratory, Environment Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Lucknow, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Lucknow, Uttar Pradesh, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Environment Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
50
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|