1
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
2
|
Liu M, Cao Y, Li Z, Wang E, Ram RJ, Marelli B. Precise and High-Throughput Delivery of Micronutrients in Plants Enabled by Pollen-Inspired Spiny and Biodegradable Microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401192. [PMID: 38848578 DOI: 10.1002/adma.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Decarbonizing food production and mitigating agriculture's environmental impact require new technologies for precise delivery of fertilizers and pesticides to plants. The cuticle, a waxy barrier that protects the surface of leaves, causes 60%-90% runoff of fertilizers and pesticides, leading to the wastage of intensive resources, soil depletion, and water bodies pollution. Solutions to mitigate runoff include adding chemicals (e.g., surfactants) to decrease surface tension and enhance cuticles' permeability but have low efficacy. In this study, vapor-induced synergistic differentiation (VISDi) is used to nanomanufacture echinate pollen-like, high payload content (≈50 wt%) microcapsules decorated with robust spines that mechanically disrupt the cuticle and adhere to the leaf. VISDi induces a core-shell structure in the spines, enabling the release of agrochemicals from the microparticles' body into the leaf. As proof of concept, precise and highthroughput delivery of iron fertilizer in Fe-deficient spinach plants is demonstrated. Spray of spiny microparticles improves leaf adhesion by mechanical interlocking, reduces wash-off by an ≈12.5 fold, and enhances chlorophyll content by ≈7.3 times compared to the application of spherical counterparts. Together, these results show that spiny microparticles can mitigate agricultural runoff and provide a high-throughput tool for precise plant drug delivery.
Collapse
Affiliation(s)
- Muchun Liu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zheng Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Wang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rajeev J Ram
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Tang J, He X, Chen J, Cao W, Han T, Xu Q, Sun C. Occurrence and distribution of phycotoxins in the Antarctic Ocean. MARINE POLLUTION BULLETIN 2024; 201:116250. [PMID: 38479322 DOI: 10.1016/j.marpolbul.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.
Collapse
Affiliation(s)
- Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China.
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinzeng Xu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
4
|
Yao Y, Luo N, Zong Y, Jia M, Rao Y, Huang H, Jiang H. Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries. Int J Mol Sci 2024; 25:1350. [PMID: 38279350 PMCID: PMC10816074 DOI: 10.3390/ijms25021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health.
Collapse
Affiliation(s)
- Yuqing Yao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yujie Zong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Meng Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yichen Rao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
5
|
von Dassow P, Mikhno M, Percopo I, Orellana VR, Aguilera V, Álvarez G, Araya M, Cornejo-Guzmán S, Llona T, Mardones JI, Norambuena L, Salas-Rojas V, Kooistra WHCF, Montresor M, Sarno D. Diversity and toxicity of the planktonic diatom genus Pseudo-nitzschia from coastal and offshore waters of the Southeast Pacific, including Pseudo-nitzschia dampieri sp. nov. HARMFUL ALGAE 2023; 130:102520. [PMID: 38061816 DOI: 10.1016/j.hal.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.
Collapse
Affiliation(s)
- Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Marta Mikhno
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Valentina Rubio Orellana
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Víctor Aguilera
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Laboratorio de Oceanografía Desértico Costera (LODEC), Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Sebastián Cornejo-Guzmán
- Departamento de Geofísica, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112 Chile
| | - Tomás Llona
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Jorge I Mardones
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago 8370993, Chile
| | - Luis Norambuena
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile
| | - Victoria Salas-Rojas
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | | | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
6
|
Hernández-León S. The biological carbon pump, diel vertical migration, and carbon dioxide removal. iScience 2023; 26:107835. [PMID: 38026165 PMCID: PMC10651677 DOI: 10.1016/j.isci.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Carbon dioxide is increasing in the atmosphere promoting the faster environmental change of the Earth's recent history. Several marine carbon dioxide removal (mCDR) technologies were proposed to slow down CO2 in the atmosphere. Technologies now under experimentation are related to the increase in gravitational flux. Other mechanisms such as active flux, the transport performed by diel vertical migrants (DVMs) were not considered. We review the effect of DVMs in the epipelagic realm and the top-down promoted by these organisms upon zooplankton and microzooplankton, and their variability due to lunar cycles. A night source of weak light will increase epipelagic zooplankton biomass due to DVMs avoidance from the upper layers to escape predation, promoting DVMs to export this biomass by active flux once the illumination ceases. This mCDR method should be tested in the field as it will increase the efficiency of the biological carbon pump in the ocean.
Collapse
Affiliation(s)
- Santiago Hernández-León
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, Telde, 35214 Gran Canaria, Canary Islands, Spain
| |
Collapse
|
7
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
8
|
Li Z, Wang J, Fan J, Yue H, Zhang X. Marine toxin domoic acid alters protistan community structure and assembly process in sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106131. [PMID: 37579703 DOI: 10.1016/j.marenvres.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Domoic acid (DA)-producing algal blooms have been the issue of worldwide concerns in recent decades, but there has never been any attempt to investigate the effects of DA on microbial ecology in marine environments. Protists are considered to be key regulators of microbial activity, community structure and evolution, we therefore explore the effect of DA on the ecology of protists via metagenome in this work. The results indicate that trace amounts of DA can act as a stressor to alter alpha and beta diversity of protistan community. Among trophic functional groups, consumers and phototrophs are negative responders of DA, implying DA is potentially capable of functional-level effects in the ocean. Moreover, microecological theory reveals that induction of DA increases the role of deterministic processes in microbial community assembly, thus altering the biotic relationships and successional processes in symbiotic patterns. Finally, we demonstrate that the mechanism by which DA shapes protistan ecological network is by acting on phototrophs, which triggers cascading effects in networks and eventually leading to shifts in ecological succession of protists. Overall, our results present the first perspective regarding the effects of DA on marine microbial ecology, which will supplement timely information on the ecological impacts of DA in the ocean.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xiuhong Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
9
|
Oller-Ruiz A, Alcaraz-Oliver N, Férez G, Gilabert J. Measuring Marine Biotoxins in a Hypersaline Coastal Lagoon. Toxins (Basel) 2023; 15:526. [PMID: 37755952 PMCID: PMC10534363 DOI: 10.3390/toxins15090526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Abstract
Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.
Collapse
Affiliation(s)
| | | | | | - Javier Gilabert
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), E-30203 Cartagena, Spain
| |
Collapse
|
10
|
Huapaya K, Echeveste P. Physiological responses of Humboldt current system diatoms to Fe and Cu co-limitation. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105937. [PMID: 36958199 DOI: 10.1016/j.marenvres.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Diatoms account for ∼20% of global primary production, often limited by the availability of Fe and other trace nutrients such as Cu. The present study examined the role of both metals in the physiology of two diatoms isolated from the Humboldt Currents System, the centric Chaetoceros c.f. dicipiens and the pennate Nitzschia c.f. draveillensis. Under Fe limitation, a decrease in specific growth rates and sizes of both species was observed, especially in Chaetoceros. However, regarding different photosynthetic parameters, Nitzschia was more impacted. The increase in Cu concentrations improved the physiology of both diatoms, mostly of Chaetoceros. When grown in mixed cultures and under co-limiting conditions, both species remained competive due to morphological advantages (i.e., lower cell size). These results may suggest that the increase of Cu under Fe limitation benefited C. c.f. dicipiens over N. c.f. draveillensis.
Collapse
Affiliation(s)
- Katiuska Huapaya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Instituto Milenio de Oceanografía, Chile
| |
Collapse
|
11
|
Xu D, Zheng G, Brennan G, Wang Z, Jiang T, Sun K, Fan X, Bowler C, Zhang X, Zhang Y, Wang W, Wang Y, Li Y, Wu H, Li Y, Fu FX, Hutchins DA, Tan Z, Ye N. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. THE ISME JOURNAL 2023; 17:525-536. [PMID: 36658395 PMCID: PMC10030627 DOI: 10.1038/s41396-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.
Collapse
Affiliation(s)
- Dong Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guanchao Zheng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Zhuonan Wang
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Tao Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ke Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Xiaowen Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haiyan Wu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Youxun Li
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, China
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhijun Tan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Hubbard KA, Villac MC, Chadwick C, DeSmidt AA, Flewelling L, Granholm A, Joseph M, Wood T, Fachon E, Brosnahan ML, Richlen M, Pathare M, Stockwell D, Lin P, Bouchard JN, Pickart R, Anderson DM. Spatiotemporal transitions in Pseudo-nitzschia species assemblages and domoic acid along the Alaska coast. PLoS One 2023; 18:e0282794. [PMID: 36947524 PMCID: PMC10032537 DOI: 10.1371/journal.pone.0282794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.
Collapse
Affiliation(s)
- Katherine A. Hubbard
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Maria Célia Villac
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Christina Chadwick
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Alexandra A. DeSmidt
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Leanne Flewelling
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - April Granholm
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Molly Joseph
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Taylor Wood
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Evangeline Fachon
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael L. Brosnahan
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mindy Richlen
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mrunmayee Pathare
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Dean Stockwell
- College of Fisheries and Ocean Sciences, Institute of Marine Science, Fairbanks, Alaska, United States of America
| | - Peigen Lin
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Josée N. Bouchard
- Centre de recherche sur les biotechnologies marines, Rimouski, Québec, Canada
| | - Robert Pickart
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Donald M. Anderson
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
13
|
Moreno AR, Anderson C, Kudela RM, Sutula M, Edwards C, Bianchi D. Development, calibration, and evaluation of a model of Pseudo-nitzschia and domoic acid production for regional ocean modeling studies. HARMFUL ALGAE 2022; 118:102296. [PMID: 36195423 DOI: 10.1016/j.hal.2022.102296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Pseudo-nitzschia species are one of the leading causes of harmful algal blooms (HABs) along the western coast of the United States. Approximately half of known Pseudo-nitzschia strains can produce domoic acid (DA), a neurotoxin that can negatively impact wildlife and fisheries and put human life at risk through amnesic shellfish poisoning. Production and accumulation of DA, a secondary metabolite synthesized during periods of low primary metabolism, is triggered by environmental stressors such as nutrient limitation. To quantify and estimate the feedbacks between DA production and environmental conditions, we designed a simple mechanistic model of Pseudo-nitzschia and domoic acid dynamics, which we validate against batch and chemostat experiments. Our results suggest that, as nutrients other than nitrogen (i.e., silicon, phosphorus, and potentially iron) become limiting, DA production increases. Under Si limitation, we found an approximate doubling in DA production relative to N limitation. Additionally, our model indicates a positive relationship between light and DA production. These results support the idea that the relationship with nutrient limitation and light is based on direct impacts on Pseudo-nitzschia biosynthesis and biomass accumulation. Because it can easily be embedded within existing coupled physical-ecosystem models, our model represents a step forward toward modeling the occurrence of Pseudo-nitzschia HABs and DA across the U.S. West Coast.
Collapse
Affiliation(s)
- Allison R Moreno
- Atmospheric and Oceanic Sciences Department, University of California Los Angeles, Box 951565, Los Angeles 90095-1565, CA, USA.
| | - Clarissa Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Raphael M Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Martha Sutula
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Christopher Edwards
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniele Bianchi
- Atmospheric and Oceanic Sciences Department, University of California Los Angeles, Box 951565, Los Angeles 90095-1565, CA, USA
| |
Collapse
|
14
|
Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci U S A 2021; 118:2107238118. [PMID: 34301906 PMCID: PMC8325266 DOI: 10.1073/pnas.2107238118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton contribute to the Southern Ocean’s (SO) ability to absorb atmospheric CO2 and shape the stoichiometry of northward macronutrient delivery. Climate change is altering the SO environment, yet we know little about how resident phytoplankton will react to these changes. Here, we studied a natural SO community and compared responses of two prevalent, bloom-forming diatom groups to changes in temperature and iron that are projected to occur by 2100 to 2300. We found that one group, Pseudo-nitzschia, grows better under warmer low-iron conditions by managing cellular iron demand and efficiently increasing photosynthetic capacity. This ability to grow and draw down nutrients in the face of warming, regardless of iron availability, has major implications for ocean ecosystems and global nutrient cycles. The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia. We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.
Collapse
|
15
|
First Evidence of the Toxin Domoic Acid in Antarctic Diatom Species. Toxins (Basel) 2021; 13:toxins13020093. [PMID: 33530611 PMCID: PMC7912347 DOI: 10.3390/toxins13020093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The Southern Ocean is one of the most productive ecosystems in the world. It is an area heavily dependent on marine primary production and serving as a feeding ground for numerous seabirds and marine mammals. Therefore, the phytoplankton composition and presence of toxic species are of crucial importance. Fifteen monoclonal strains of Pseudo-nitzschia subcurvata, a diatom species endemic to the Southern Ocean, were established, which were characterized by morphological and molecular data and then analysed for toxin content. The neurotoxins domoic acid and iso-domoic acid C were present in three of the strains, which is a finding that represents the first evidence of these toxins in strains from Antarctic waters. Toxic phytoplankton in Antarctic waters are still largely unexplored, and their effects on the ecosystem are not well understood. Considering P. subcurvata's prevalence throughout the Southern Ocean, these results highlight the need for further investigations of the harmful properties on the Antarctic phytoplankton community as well as the presence of the toxins in the Antarctic food web, especially in the light of a changing climate.
Collapse
|
16
|
Pseudo-nitzschia Blooms in a Coastal Upwelling System: Remote Sensing Detection, Toxicity and Environmental Variables. WATER 2019. [DOI: 10.3390/w11091954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The NW coast of the Iberian Peninsula is dominated by extensive shellfish farming, which places this region as a world leader in mussel production. Harmful algal blooms in the area frequent lead to lengthy harvesting closures threatening food security. This study developed a framework for the detection of Pseudo-nitzschia blooms in the Galician rias from satellite data (MERIS full-resolution images) and identified key variables that affect their abundance and toxicity. Two events of toxin-containing Pseudo-nitzschia were detected (up to 2.5 μg L−1 pDA) in the area. This study suggests that even moderate densities of Pseudo-nitzschia in this area might indicate high toxin content. Empirical models for particulate domoic acid (pDA) were developed based on MERIS FR data. The resulting remote-sensing model, including MERIS bands centered around 510, 560, and 620 nm explain 73% of the pDA variance (R2 = 0.73, p < 0.001). The results show that higher salinity values and lower Si(OH)4/N ratios favour higher Pseudo-nitzschia spp. abundances. High pDA values seem to be associated with relatively high PO43, low NO3− concentrations, and low Si(OH)4/N. While MERIS FR data and regionally specific algorithms can be useful for detecting Pseudo-nitzschia blooms, nutrient relationships are crucial for predicting the toxicity of these blooms.
Collapse
|
17
|
Simeone C, Fauquier D, Skidmore J, Cook P, Colegrove K, Gulland F, Dennison S, Rowles TK. Clinical signs and mortality of non-released stranded California sea lions housed in display facilities: the suspected role of prior exposure to algal toxins. Vet Rec 2019; 185:304. [PMID: 31427410 PMCID: PMC6817987 DOI: 10.1136/vr.105371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023]
Abstract
Stranded California sea lions considered unable to survive in the wild are often placed in public display facilities. Exposure to the biotoxin domoic acid (DA) is a common cause of stranding, and chronic effects are observed long after initial exposure. Medical records for 171 sea lions placed in US institutions between 2000 and 2016 were reviewed, including results from clinical examinations, histopathology, behavioural testing and advanced imaging. There was a statistically significant increase in neurological disease detected in neonates (24%) compared with other age classes (11%). Sixty per cent of all neurological cases died during the study period. In the 11 neurological neonate cases, six died (55%) and five are still alive with three of five developing epilepsy during placement. Of the six neurological neonate cases that died, one was attributed to DA toxicosis, one to seizures and four to acute unexplained neurological disease. This survey suggests delayed neurological disease can develop in sea lions after stranding as neonates. These data coupled with stranding records and epidemiological data on DA-producing algal blooms suggest further research into effects of neonatal exposure to DA on risk of neurological disease in later life is warranted. California sea lions offer a natural model of DA exposure to study such effects.
Collapse
Affiliation(s)
- Claire Simeone
- The Marine Mammal Center, Sausalito, California, USA .,Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Deborah Fauquier
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Jennifer Skidmore
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Peter Cook
- New College of Florida, Sarasota, Florida, USA
| | - Kathleen Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana, Illinois, USA
| | - Frances Gulland
- The Marine Mammal Center, Sausalito, California, USA.,Wildlife Health Center, University of California-Davis, Davis, California, USA
| | | | - Teresa K Rowles
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| |
Collapse
|
18
|
|
19
|
|
20
|
Baustian MM, Bargu S, Morrison W, Sexton C, Rabalais NN. The polychaete, Paraprionospio pinnata, is a likely vector of domoic acid to the benthic food web in the northern Gulf of Mexico. HARMFUL ALGAE 2018; 79:44-49. [PMID: 30420014 DOI: 10.1016/j.hal.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/09/2023]
Abstract
A somewhat disparate, yet temporally cohesive, set of phytoplankton abundance, microphytobenthos, including the diatom Pseudo-nitzschia, benthic infauna, and sediment toxin data were used to develop a theory for the transfer of domoic acid (DA) from the toxic diatom to the benthos in the highly productive waters of the northern Gulf of Mexico near the Mississippi River plume. Archived samples and new data were used to test the theory that DA is likely to be incorporated into benthic consumers. High spring abundances of potentially toxic Pseudo-nitzschia diatoms were simultaneously present in the surface waters, bottom waters and on the seafloor. Examination of the gut contents of a typical deposit-feeding and suspension-feeding polychaete, Paraprionospio pinnata, during similar periods of high Pseudo-nitzschia abundance in surface water indicated consumption of the diatoms. Demersal fishes, particularly Atlantic croaker, are known to consume these polychaetes, with a potential for transfer of DA to even higher trophic levels. These findings warrant a theory to be tested with further studies about the trophic linkage of a phytoplankton toxin into the benthic food web.
Collapse
Affiliation(s)
- Melissa M Baustian
- The Water Institute of the Gulf, 1110 River Road South, Suite 200, Baton Rouge, LA, 70802, USA.
| | - Sibel Bargu
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Wendy Morrison
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana, 70344, USA
| | - Chelsea Sexton
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - Nancy N Rabalais
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA; Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana, 70344, USA
| |
Collapse
|
21
|
Louw DC, Doucette GJ, Lundholm N. Morphology and toxicity of Pseudo-nitzschia species in the northern Benguela Upwelling System. HARMFUL ALGAE 2018; 75:118-128. [PMID: 29778221 DOI: 10.1016/j.hal.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The Benguela upwelling system, considered the world's most productive marine ecosystem, has a long record of potentially toxic diatoms belonging to the genus Pseudo-nitzschia. Species of Pseudo-nitzschia were reported as early as 1936 from the northern Benguela upwelling system (nBUS). For the current study, long-term phytoplankton monitoring data (2004-2011) for the Namibian coast were analysed to examine inshore and offshore temporal distribution of Pseudo-nitzschia species, their diversity and ultrastructure. The potentially toxigenic P. pungens and P. australis were the dominant inshore species, whereas offshore Pseudo-nitzschia showed a higher diversity that also included potentially toxic species. During a warming event, a community shift from P. pungens and P. australis dominance to P. fraudulenta and P. multiseries was documented in the central nBUS. A case study of a toxic event (August 2004) revealed that P. australis and P. pungens were present at multiple inshore and offshore stations, coincident with fish (pilchard) and bird mortalities reported from the central part of Namibia. Toxin analyses (LC-MS/MS) of samples collected from June to August 2004 revealed the presence of particulate domoic acid (DA) in seawater at multiple stations (maximum ∼180 ng DA/L) in the >0.45 μm size-fraction, as well as detectable DA (0.12 μg DA/g) in the gut of one of two pilchard samples tested. These findings indicate that DA may have been associated with the fish and bird mortalities reported from this event in the nBUS. However, the co-occurrence of very high biomass phytoplankton blooms suggests that other explanations may be possible.
Collapse
Affiliation(s)
- Deon C Louw
- National Marine Information and Research Centre, PO Box 912, Swakopmund, Namibia.
| | - Gregory J Doucette
- National Centers for Coastal Ocean Science, NOAA/National Ocean Service, Charleston, SC, 29412, USA.
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark.
| |
Collapse
|
22
|
Rahav E, Raveh O, Hazan O, Gordon N, Kress N, Silverman J, Herut B. Impact of nutrient enrichment on productivity of coastal water along the SE Mediterranean shore of Israel - A bioassay approach. MARINE POLLUTION BULLETIN 2018; 127:559-567. [PMID: 29475698 DOI: 10.1016/j.marpolbul.2017.12.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
The coastal waters of the southeastern Mediterranean-Sea (SEMS) are routinely enriched with naturally-occurring and anthropogenic land-based nutrient loads. These external inputs may affect autotrophic and heterotrophic microbial biomass and activity. Here, we conducted 13 microcosm bioassays with different additions of inorganic NO3-(N), PO4-(P) and Si(OH)4-(Si) in different seasons along the Mediterranean coast of Israel. Our results indicate that cyanobacteria are mainly N-limited, whereas N or Si (or both) limit pico-eukaryotes. Furthermore, the degree to which N affects phytoplankton depends on the ambient seawater's inorganic N and N:P characteristics. Heterotrophic bacteria displayed no response in all treatments, except when all nutrients were added simultaneously, suggesting a possible co-limitation by nutrients. These results contrast the N+P co-limitation of phytoplankton and the P-limitation of bacteria in the open waters of the SEMS. These observations enable the application for a better science-based environmental monitoring and policy implementation along the SEMS coast of Israel.
Collapse
Affiliation(s)
- Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Or Hazan
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Nurit Gordon
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Nurit Kress
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Jacob Silverman
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| |
Collapse
|
23
|
Postmortem DTI reveals altered hippocampal connectivity in wild sea lions diagnosed with chronic toxicosis from algal exposure. J Comp Neurol 2017; 526:216-228. [DOI: 10.1002/cne.24317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 02/03/2023]
|
24
|
|
25
|
Boyd PW, Bressac M. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150299. [PMID: 29035263 PMCID: PMC5069533 DOI: 10.1098/rsta.2015.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 05/13/2023]
Abstract
Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Collapse
Affiliation(s)
- Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Antarctic Climate and Ecosystems Collaborative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Matthieu Bressac
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Cook PF, Reichmuth C, Rouse A, Dennison S, Van Bonn B, Gulland F. Natural exposure to domoic acid causes behavioral perseveration in Wild Sea lions: Neural underpinnings and diagnostic application. Neurotoxicol Teratol 2016; 57:95-105. [DOI: 10.1016/j.ntt.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
|
27
|
Zabaglo K, Chrapusta E, Bober B, Kaminski A, Adamski M, Bialczyk J. Environmental roles and biological activity of domoic acid: A review. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Cook PF, Reichmuth C, Rouse AA, Libby LA, Dennison SE, Carmichael OT, Kruse-Elliott KT, Bloom J, Singh B, Fravel VA, Barbosa L, Stuppino JJ, Van Bonn WG, Gulland FMD, Ranganath C. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science 2015; 350:1545-7. [PMID: 26668068 DOI: 10.1126/science.aac5675] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
Domoic acid (DA) is a naturally occurring neurotoxin known to harm marine animals. DA-producing algal blooms are increasing in size and frequency. Although chronic exposure is known to produce brain lesions, the influence of DA toxicosis on behavior in wild animals is unknown. We showed, in a large sample of wild sea lions, that spatial memory deficits are predicted by the extent of right dorsal hippocampal lesions related to natural exposure to DA and that exposure also disrupts hippocampal-thalamic brain networks. Because sea lions are dynamic foragers that rely on flexible navigation, impaired spatial memory may affect survival in the wild.
Collapse
Affiliation(s)
- Peter F Cook
- Center for Neuropolicy, Emory University, Atlanta, GA 30322, USA. Pinniped Cognition and Sensory Systems Laboratory, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Colleen Reichmuth
- Pinniped Cognition and Sensory Systems Laboratory, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA 95060, USA
| | - Andrew A Rouse
- Pinniped Cognition and Sensory Systems Laboratory, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA 95060, USA
| | - Laura A Libby
- Dynamic Memory Lab, Center for Neuroscience, University of California-Davis, Davis, CA 95618, USA
| | | | | | | | - Josh Bloom
- AnimalScan Advanced Veterinary Imaging, Redwood City, CA 94063, USA
| | - Baljeet Singh
- Dynamic Memory Lab, Center for Neuroscience, University of California-Davis, Davis, CA 95618, USA
| | | | | | - Jim J Stuppino
- AnimalScan Advanced Veterinary Imaging, Redwood City, CA 94063, USA
| | | | | | - Charan Ranganath
- Dynamic Memory Lab, Center for Neuroscience, University of California-Davis, Davis, CA 95618, USA
| |
Collapse
|
29
|
Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc Natl Acad Sci U S A 2015; 112:E5972-9. [PMID: 26460011 DOI: 10.1073/pnas.1518165112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.
Collapse
|
30
|
Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis. Mar Drugs 2015; 13:3672-709. [PMID: 26065408 PMCID: PMC4483651 DOI: 10.3390/md13063672] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel), valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.
Collapse
|
31
|
Mackey KRM, Chien CT, Paytan A. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system. Front Microbiol 2014; 5:632. [PMID: 25477873 PMCID: PMC4238378 DOI: 10.3389/fmicb.2014.00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/04/2014] [Indexed: 12/03/2022] Open
Abstract
Coastal California is a dynamic upwelling region where nitrogen (N) and iron (Fe) can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13–30 μ M) in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 μ M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.
Collapse
Affiliation(s)
| | - Chia-Te Chien
- Earth and Planetary Sciences, University of California Santa Cruz Santa Cruz, CA, USA
| | - Adina Paytan
- Earth and Planetary Sciences, University of California Santa Cruz Santa Cruz, CA, USA ; Institute for Marine Science, University of California Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|
32
|
Funk JA, Janech MG, Dillon JC, Bissler JJ, Siroky BJ, Bell PD. Characterization of renal toxicity in mice administered the marine biotoxin domoic Acid. J Am Soc Nephrol 2014; 25:1187-97. [PMID: 24511141 PMCID: PMC4033377 DOI: 10.1681/asn.2013080836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/24/2013] [Indexed: 11/03/2022] Open
Abstract
Domoic acid (DA), an excitatory amino acid produced by diatoms belonging to the genus Pseudo-nitzschia, is a glutamate analog responsible for the neurologic condition referred to as amnesic shellfish poisoning. To date, the renal effects of DA have been underappreciated, although renal filtration is the primary route of systemic elimination and the kidney expresses ionotropic glutamate receptors. To characterize the renal effects of DA, we administered either a neurotoxic dose of DA or doses below the recognized limit of toxicity to adult Sv128/Black Swiss mice. DA preferentially accumulated in the kidney and elicited marked renal vascular and tubular damage consistent with acute tubular necrosis, apoptosis, and renal tubular cell desquamation, with toxic vacuolization and mitochondrial swelling as hallmarks of the cellular damage. Doses≥0.1 mg/kg DA elevated the renal injury biomarkers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and doses≥0.005 mg/kg induced the early response genes c-fos and junb. Coadministration of DA with the broad spectrum excitatory amino acid antagonist kynurenic acid inhibited induction of c-fos, junb, and neutrophil gelatinase-associated lipocalin. These findings suggest that the kidney may be susceptible to excitotoxic agonists, and renal effects should be considered when examining glutamate receptor activation. Additionally, these results indicate that DA is a potent nephrotoxicant, and potential renal toxicity may require consideration when determining safe levels for human exposure.
Collapse
Affiliation(s)
- Jason A Funk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Michael G Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua C Dillon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - John J Bissler
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Brian J Siroky
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
33
|
Pyenson ND, Gutstein CS, Parham JF, Le Roux JP, Chavarría CC, Little H, Metallo A, Rossi V, Valenzuela-Toro AM, Velez-Juarbe J, Santelli CM, Rogers DR, Cozzuol MA, Suárez ME. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proc Biol Sci 2014; 281:20133316. [PMID: 24573855 PMCID: PMC3953850 DOI: 10.1098/rspb.2013.3316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.
Collapse
Affiliation(s)
- Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, , PO Box 37012, Washington, DC 20013, USA, Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, , PO Box 37012, Washington, DC 20013, USA, Department of Mammalogy, Burke Museum of Natural History and Culture, , Seattle, WA 98195, USA, Department of Paleontology, Burke Museum of Natural History and Culture, , Seattle, WA 98195, USA, Red Paleontológica, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile, John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, , Fullerton, CA 92834, USA, Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas and Andean Geothermal Center of Excellence, Universidad de Chile, , Plaza Ercilla 803, Santiago, Chile, Digitization Program Office 3D Lab, Office of the Chief Information Officer, Smithsonian Institution, , Landover, MD 20785, USA, Laboratorio de Ecofisiología, Departamento de Ecología, Facultad de Ciencias, Universidad de Chile, , Las Palmeras, Santiago 3425, Chile, Florida Museum of Natural History, University of Florida, , Gainesville, FL 32611, USA, Área Paleontología, Museo Nacional de Historia Natural, , Casilla 787, Santiago, Chile, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, , Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Botebol H, Sutak R, Scheiber IF, Blaiseau PL, Bouget FY, Camadro JM, Lesuisse E. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals 2013; 27:75-88. [PMID: 24281777 PMCID: PMC3905174 DOI: 10.1007/s10534-013-9688-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 11/26/2022]
Abstract
We compared ferric EDTA, ferric citrate and ferrous ascorbate as iron sources to study iron metabolism in Ostreococcus tauri, Phaeodactlylum tricornutum and Emiliania huxleyi. Ferric EDTA was a better iron source than ferric citrate for growth and chlorophyll levels. Direct and indirect experiments showed that iron was much more available to the cells when provided as ferric citrate as compared to ferric EDTA. As a consequence, growth media with iron concentration in the range 1–100 nM were rapidly iron-depleted when ferric citrate—but not ferric EDTA was the iron source. When cultured together, P. tricornutum cells overgrew the two other species in iron-sufficient conditions, but E. huxleyi was able to compete other species in iron-deficient conditions, and when iron was provided as ferric citrate instead of ferric EDTA, which points out the critical influence of the chemical form of iron on the blooms of some phytoplankton species. The use of ferric citrate and ferrous ascorbate allowed us to unravel a kind of regulation of iron uptake that was dependent on the day/night cycles and to evidence independent uptake systems for ferrous and ferric iron, which can be regulated independently and be copper-dependent or independent. The same iron sources also allowed one to identify molecular components involved in iron uptake and storage in marine micro-algae. Characterizing the mechanisms of iron metabolism in the phytoplankton constitutes a big challenge; we show here that the use of iron sources more readily available to the cells than ferric EDTA is critical for this task.
Collapse
Affiliation(s)
- Hugo Botebol
- LOMIC, UMR7621, Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie (Paris 06), 66651 Banyuls/Mer, France
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ivo F. Scheiber
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pierre-Louis Blaiseau
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Universite Paris Diderot (Paris 07), 75013 Paris, France
| | - François-Yves Bouget
- LOMIC, UMR7621, Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie (Paris 06), 66651 Banyuls/Mer, France
| | - Jean-Michel Camadro
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Universite Paris Diderot (Paris 07), 75013 Paris, France
| | - Emmanuel Lesuisse
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Universite Paris Diderot (Paris 07), 75013 Paris, France
- Institut Jacques Monod, CNRS, Université Paris Diderot, Bât. Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
35
|
Fuentes MS, Wikfors GH. Control of domoic acid toxin expression in Pseudo-nitzschia multiseries by copper and silica: relevance to mussel aquaculture in New England (USA). MARINE ENVIRONMENTAL RESEARCH 2013; 83:23-28. [PMID: 23218554 DOI: 10.1016/j.marenvres.2012.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
The production of the toxin Domoic Acid (DA) by the diatoms Pseudo-nitzschia spp. is affected by several environmental factors, among them copper and silica. The effects of these nutrients upon DA production have been studied individually, but not in combination. There is evidence, however, that in diatoms copper can enter the cell via the silicic-acid transport site. The goal of this study was to analyze the effect of the interaction between copper and silicic-acid supply upon DA production in Pseudo-nitzschia multiseries. The study was motivated by concerns about the risk of toxigenic Pseudo-nitzschia spp. impacting mussel aquaculture in New England (USA). The results of the present study do not indicate that copper uses the silicic acid transport site to enter the cell; nevertheless, there is an interaction between these two nutrients that produces a synergistic affect upon toxin production. A small increase in copper, without a simultaneous increase in silicate, as well as an increase in both copper and silicate, leads to DA up-regulation. Furthermore, the field component of this study reports the presence of species of Pseudo-nitzschia on the New England coast that are capable of producing DA. Together these findings indicate that risk of DA impacting mussel aquaculture along the coast of New England would be increased by an unusual enrichment of copper in the vicinity of mussel farms.
Collapse
Affiliation(s)
- M Soledad Fuentes
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Milford, CT 06460, USA
| | | |
Collapse
|
36
|
Russell LM, Rasch PJ, Mace GM, Jackson RB, Shepherd J, Liss P, Leinen M, Schimel D, Vaughan NE, Janetos AC, Boyd PW, Norby RJ, Caldeira K, Merikanto J, Artaxo P, Melillo J, Morgan MG. Ecosystem impacts of geoengineering: a review for developing a science plan. AMBIO 2012; 41:350-69. [PMID: 22430307 PMCID: PMC3393062 DOI: 10.1007/s13280-012-0258-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/27/2011] [Accepted: 01/31/2012] [Indexed: 05/22/2023]
Abstract
Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO(2)) removal (CDR), which removes CO(2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.
Collapse
Affiliation(s)
- Lynn M. Russell
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221 USA
| | - Philip J. Rasch
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352 USA
| | - Georgina M. Mace
- Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY UK
| | - Robert B. Jackson
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - John Shepherd
- Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK
| | - Peter Liss
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Margaret Leinen
- Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946 USA
| | | | - Naomi E. Vaughan
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Anthony C. Janetos
- Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740 USA
| | - Philip W. Boyd
- NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Richard J. Norby
- Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301 USA
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 USA
| | - Joonas Merikanto
- Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland
| | - Paulo Artaxo
- Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090 Brazil
| | - Jerry Melillo
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - M. Granger Morgan
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
37
|
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 2012; 3:43. [PMID: 22408637 PMCID: PMC3296057 DOI: 10.3389/fmicb.2012.00043] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments.
Collapse
Affiliation(s)
- Joe Morrissey
- Ecole Normale Supérieur, Institut de Biologie de l'ENS Paris, France Inserm U1024, Paris, France CNRS UMR 8197, Paris, France
| | | |
Collapse
|
38
|
Gledhill M, Buck KN. The organic complexation of iron in the marine environment: a review. Front Microbiol 2012; 3:69. [PMID: 22403574 PMCID: PMC3289268 DOI: 10.3389/fmicb.2012.00069] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/09/2012] [Indexed: 11/13/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Martha Gledhill
- Ocean and Earth Science, National Oceanography Centre - Southampton, University of Southampton Southampton, UK
| | | |
Collapse
|