1
|
Xue L, Spahn CMT, Schacherl M, Mahamid J. Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells. Nat Struct Mol Biol 2024:10.1038/s41594-024-01441-0. [PMID: 39668257 DOI: 10.1038/s41594-024-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Ribosome-targeting antibiotics represent an important class of antimicrobial drugs. Chloramphenicol (Cm) is a well-studied ribosomal peptidyl transferase center (PTC) binder and growing evidence suggests that its inhibitory action depends on the sequence of the nascent peptide. How such selective inhibition on the molecular scale manifests on the cellular level remains unclear. Here, we use cryo-electron tomography to analyze the impact of Cm inside the bacterium Mycoplasma pneumoniae. By resolving the Cm-bound ribosomes to 3.0 Å, we elucidate Cm's coordination with natural nascent peptides and transfer RNAs in the PTC. We find that Cm leads to the accumulation of a number of translation elongation states, indicating ongoing futile accommodation cycles, and to extensive ribosome collisions. We, thus, suggest that, beyond its direct inhibition of protein synthesis, the action of Cm may involve the activation of cellular stress responses. This work exemplifies how in-cell structural biology can expand the understanding of mechanisms of action for extensively studied antibiotics.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magdalena Schacherl
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
2
|
Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 2024; 20:1680-1690. [PMID: 39039256 PMCID: PMC11686707 DOI: 10.1038/s41589-024-01685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Faezeh Alizadeh
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Kim J, Lee S, Darlington APS, Kim J. Impact of fleQ Deficiency on Resource Allocation and Heterologous Gene Expression in Pseudomonas putida Across Various Growth Media. Microb Biotechnol 2024; 17:e70054. [PMID: 39570920 PMCID: PMC11580810 DOI: 10.1111/1751-7915.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Pseudomonas putida is widely used in industrial applications, including the recombinant proteins production, because of its natural advantageous properties. In this study, the gene encoding FleQ, the primary regulator of flagellar synthesis, was deleted to construct a new non-motile P. putida KT2440-derived strain (ΔfleQ). The non-motile cells showed reduced biofilm formation and enhanced expression of a heterologous gene in nutrient-rich media compared with the wild-type (WT) strain, attributed to the reallocation of cellular resources from flagellar synthesis and cellular motility. Additionally, the ΔfleQ strain exhibited enhanced tolerance to chloramphenicol, indicating higher ribosome production, confirmed by a higher RNA/protein ratio relative to the WT. While the WT strain showed decreased growth and a three-fold increase in reporter gene activity in minimal media, the ΔfleQ strain maintained consistent reporter gene expression and exhibited a relatively higher growth rate. This suggests that the FleQ is involved in modulating proteome allocation based on nutrient quality. The removal of FleQ allows for more flexible resource allocation, creating a chassis strain with nutrient quality-independent gene expression capacity, which could be valuable in industrial applications where consistent output is essential.
Collapse
Affiliation(s)
- Junyoung Kim
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| | - Sooyeon Lee
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| | | | - Juhyun Kim
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
4
|
Lomakin IB, Devarkar SC, Grada A, Bunick CG. Mechanistic Basis for the Translation Inhibition of Cutibacterium acnes by Clindamycin. J Invest Dermatol 2024; 144:2553-2561.e3. [PMID: 39122144 DOI: 10.1016/j.jid.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
Inflammation and the Gram-positive anaerobic bacterium Cutibacterium acnes, which is implicated in acne pathogenesis and pilosebaceous-unit inflammation, are the main targets of antibiotic-based therapy against acne vulgaris (acne). The most widely used antibiotics in acne therapy are tetracyclines, macrolides, and lincosamides. Unfortunately, C. acnes bacteria over the past several decades have demonstrated increased resistance to these antibiotics, particularly to clindamycin. The precise knowledge of how antibiotics interact with their clinical target is needed to overcome this problem. Toward this goal, we determined the structure of clindamycin in complex with the ribosome of C. acnes at 2.53 Å resolution using cryogenic electron microscopy. The galactose sugar moiety of clindamycin interacts with nucleotides of the 23S ribosomal RNA directly or through a conserved network of water-mediated interactions. Its propyl pyrrolidinyl group interacts with the 23S ribosomal RNA through van der Waals forces. Clindamycin binding to the C. acnes ribosome interferes with both: proper orientation of the aminoacyl group of the A-site bound transfer RNA that is needed for peptide bond formation and with the extension of the nascent peptide. Our data are important for advancing the understanding of antibiotic resistance and development of narrow-spectrum antibacterial drugs, which is an urgent need for contemporary antibiotic stewardship.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University, New Haven, Connecticut, USA.
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Krawczyk SJ, Leśniczak-Staszak M, Gowin E, Szaflarski W. Mechanistic Insights into Clinically Relevant Ribosome-Targeting Antibiotics. Biomolecules 2024; 14:1263. [PMID: 39456196 PMCID: PMC11505993 DOI: 10.3390/biom14101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Antibiotics targeting the bacterial ribosome are essential to combating bacterial infections. These antibiotics bind to various sites on the ribosome, inhibiting different stages of protein synthesis. This review provides a comprehensive overview of the mechanisms of action of clinically relevant antibiotics that target the bacterial ribosome, including macrolides, lincosamides, oxazolidinones, aminoglycosides, tetracyclines, and chloramphenicol. The structural and functional details of antibiotic interactions with ribosomal RNA, including specific binding sites, interactions with rRNA nucleotides, and their effects on translation processes, are discussed. Focus is placed on the diversity of these mechanisms and their clinical implications in treating bacterial infections, particularly in the context of emerging resistance. Understanding these mechanisms is crucial for developing novel therapeutic agents capable of overcoming bacterial resistance.
Collapse
Affiliation(s)
- Szymon J. Krawczyk
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Ewelina Gowin
- Department of Health Promotion, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| |
Collapse
|
6
|
Ma CX, Liu WT, Li XM, Ding J, Liu SM, Xue F, Li Y, Liang JH. Design, synthesis and structure-activity relationships of novel non-ketolides: 9-Oxime clarithromycin featured with seven-to thirteen-atom-length diamine linkers at 3-OH. Eur J Med Chem 2024; 276:116630. [PMID: 38972081 DOI: 10.1016/j.ejmech.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
We report here on the structure-activity relationships of hybrids combining 3-descladinosyl clarithromycin with quinolones linked by extended diamine connectors. Several hybrids, exemplified by 23Bc, 23Be, 23Bf, 26Be, and 30Bc, not only restored potency against inducibly resistant pathogens but also exhibited significantly enhanced activities against constitutively resistant strains of Staphylococcus pneumoniae and Staphylococcus pyogenes, which express high-level resistance independent of clarithromycin or erythromycin induction. Additionally, the novel hybrids showed susceptibility against Gram-negative Haemophilus influenzae. Notably, hybrid 23Be demonstrated dual modes of action by inhibiting both protein synthesis and DNA replication in vitro and in vivo. Given these promising characteristics, 23Be emerges as a potential candidate for the treatment of community-acquired bacterial pneumonia.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xue-Meng Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100034, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
7
|
Zhang N, Liu WT, Cui XY, Liu SM, Ma CX, Liang JH. Design and structure-activity relationships of ether-linked alkylides: Hybrids of 3-O-descladinosyl macrolides and quinolone motifs. Bioorg Chem 2024; 151:107712. [PMID: 39146761 DOI: 10.1016/j.bioorg.2024.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Ketolides (3-keto) such as TE-802 and acylides (3-O-acyl) like TEA0929 are ineffective against constitutively resistant pathogens harboring erythromycin ribosomal methylation (erm) genes. Following our previous work on alkylides (3-O-alkyl), we explored the structure-activity relationships of hybrids combining (R/S) 3-descladinosyl erythromycin with 6/7-quinolone motifs, featuring extended ether-linked spacers, with a focus on their efficacy against pathogens bearing constitutive erm gene resistance. Optimized compounds 17a and 31f not only reinstated efficacy against inducibly resistant pathogens but also demonstrated significantly augmented activities against constitutively resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes, which are typically refractory to existing C-3 modified macrolides. Notably, hybrid 31f (coded ZN-51) represented a pioneering class of agents distinguished by its dual modes of action, with ribosomes as the primary target and topoisomerases as the secondary target. As a novel chemotype of macrolide-quinolone hybrids, alkylide 31f is a valuable addition to our armamentarium against macrolide-resistant bacteria.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Yi Cui
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
8
|
Batool Z, Pavlova JA, Paranjpe MN, Tereshchenkov AG, Lukianov DA, Osterman IA, Bogdanov AA, Sumbatyan NV, Polikanov YS. Berberine analog of chloramphenicol exhibits a distinct mode of action and unveils ribosome plasticity. Structure 2024; 32:1429-1442.e6. [PMID: 39019034 PMCID: PMC11380584 DOI: 10.1016/j.str.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Chloramphenicol (CHL) is an antibiotic targeting the peptidyl transferase center in bacterial ribosomes. We synthesized a new analog, CAM-BER, by substituting the dichloroacetyl moiety of CHL with a positively charged aromatic berberine group. CAM-BER suppresses bacterial cell growth, inhibits protein synthesis in vitro, and binds tightly to the 70S ribosome. Crystal structure analysis reveals that the bulky berberine group folds into the P site of the peptidyl transferase center (PTC), where it competes with the formyl-methionine residue of the initiator tRNA. Our toe-printing data confirm that CAM-BER acts as a translation initiation inhibitor in stark contrast to CHL, a translation elongation inhibitor. Moreover, CAM-BER induces a distinct rearrangement of conformationally restrained nucleotide A2059, suggesting that the 23S rRNA plasticity is significantly higher than previously thought. CAM-BER shows potential in avoiding CHL resistance and presents opportunities for developing novel berberine derivatives of CHL through medicinal chemistry exploration.
Collapse
Affiliation(s)
- Zahra Batool
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Julia A Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Madhura N Paranjpe
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrey G Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitrii A Lukianov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexey A Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia V Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
9
|
Srinivasan K, Banerjee A, Sengupta J. Cryo-EM structures reveal the molecular mechanism of HflX-mediated erythromycin resistance in mycobacteria. Structure 2024; 32:1443-1453.e4. [PMID: 39029461 DOI: 10.1016/j.str.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
Mycobacterial HflX confers resistance against macrolide antibiotics. However, the exact molecular mechanism is poorly understood. To gain further insights, we determined the cryo-EM structures of M. smegmatis (Msm) HflX-50S subunit and 50S subunit-erythromycin (ERY) complexes at a global resolution of approximately 3 Å. A conserved nucleotide A2286 at the gate of nascent peptide exit tunnel (NPET) adopts a swayed conformation in HflX-50S complex and interacts with a loop within the linker helical (LH) domain of MsmHflX that contains an additional 9 residues insertion. Interestingly, the swaying of this nucleotide, which is usually found in the non-swayed conformation, is induced by erythromycin binding. Furthermore, we observed that erythromycin decreases HflX's ribosome-dependent GTP hydrolysis, resulting in its enhanced binding and anti-association activity on the 50S subunit. Our findings reveal how mycobacterial HflX senses the presence of macrolides at the peptide tunnel entrance and confers antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneek Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Kaur H, Carrillo O, Garcia I, Ramos I, St Vallier S, De La Torre P, Lopez A, Keniry M, Bazan D, Elizondo J, Grishma KC, Ann MacMillan-Crow L, Gilkerson R. Differentiation activates mitochondrial OPA1 processing in myoblast cell lines. Mitochondrion 2024; 78:101933. [PMID: 38986925 PMCID: PMC11390305 DOI: 10.1016/j.mito.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial optic atrophy-1 (OPA1) plays key roles in adapting mitochondrial structure to bioenergetic function. When transmembrane potential across the inner membrane (Δψm) is intact, long (L-OPA1) isoforms shape the inner membrane through membrane fusion and the formation of cristal junctions. When Δψm is lost, however, OPA1 is cleaved to short, inactive S-OPA1 isoforms by the OMA1 metalloprotease, disrupting mitochondrial structure and priming cellular stress responses such as apoptosis. Previously, we demonstrated that L-OPA1 of H9c2 cardiomyoblasts is insensitive to loss of Δψm via challenge with the protonophore carbonyl cyanide chlorophenyl hydrazone (CCCP), but that CCCP-induced OPA1 processing is activated upon differentiation in media with low serum supplemented with all-trans retinoic acid (ATRA). Here, we show that this developmental induction of OPA1 processing in H9c2 cells is independent of ATRA; moreover, pretreatment of undifferentiated H9c2s with chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, recapitulates the Δψm-sensitive OPA1 processing observed in differentiated H9c2s. L6.C11 and C2C12 myoblast lines display the same developmental and CAP-sensitive induction of OPA1 processing, demonstrating a general mechanism of OPA1 regulation in mammalian myoblast cell settings. Restoration of CCCP-induced OPA1 processing correlates with increased apoptotic sensitivity. Moreover, OPA1 knockdown indicates that intact OPA1 is necessary for effective myoblast differentiation. Taken together, our results indicate that a novel developmental mechanism acts to regulate OMA1-mediated OPA1 processing in myoblast cell lines, in which differentiation engages mitochondrial stress sensing.
Collapse
Affiliation(s)
- Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Iraselia Garcia
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Department of Biology, South Texas College, United States
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Shaynah St Vallier
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Patrick De La Torre
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Alma Lopez
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Megan Keniry
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Daniel Bazan
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Jorge Elizondo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - K C Grishma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Medical Laboratory Sciences/Health & Biomedical Sciences, The University of Texas Rio Grande Valley, United States.
| |
Collapse
|
11
|
Nor Amdan NA, Shahrulzamri NA, Hashim R, Mohamad Jamil N. Understanding the evolution of macrolides resistance: A mini review. J Glob Antimicrob Resist 2024; 38:368-375. [PMID: 39117142 DOI: 10.1016/j.jgar.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel. OBJECTIVE Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues. RESULTS Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence-due to this obscurity, research into macrolide modes of action continues to this day. CONCLUSION In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.
Collapse
Affiliation(s)
- Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Nur Atikah Shahrulzamri
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Norashirene Mohamad Jamil
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
12
|
Zhou Y, Jiang Y, Chen SJ. SPRank─A Knowledge-Based Scoring Function for RNA-Ligand Pose Prediction and Virtual Screening. J Chem Theory Comput 2024. [PMID: 39150889 DOI: 10.1021/acs.jctc.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
The growing interest in RNA-targeted drugs underscores the need for computational modeling of interactions between RNA molecules and small compounds. Having a reliable scoring function for RNA-ligand interactions is essential for effective computational drug screening. An ideal scoring function should not only predict the native pose for ligand binding but also rank the affinity of the binding for different ligands. However, existing scoring functions are primarily designed to predict the native binding modes for a given RNA-ligand pair and have not been thoroughly assessed for virtual screening purposes. In this paper, we introduce SPRank, a combination of machine-learning and knowledge-based scoring functions developed through a weighted iterative approach, specifically designed to tackle both binding mode prediction and virtual screening challenges. Our approach incorporates third-party docking software, such as rDock and AutoDock Vina, to sample flexible ligands against an ensemble of RNA structures, capturing the conformational flexibility of both the RNA and the ligand. Through rigorous testing, SPRank demonstrates improved performance compared to the tested scoring functions across four test sets comprising 122, 42, 55, and 71 nucleic acid-ligand complexes. Furthermore, SPRank exhibits improved performance in virtual screening tests targeting the HIV-1 TAR ensemble, which highlights its advantage in drug discovery. These results underscore the advantages of SPRank as a potentially promising tool for the RNA-targeted drug design. The source code of SPRank and the data sets are freely accessible at https://github.com/Vfold-RNA/SPRank.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211-7010, United States
| | - Yangwei Jiang
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211-7010, United States
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri-Columbia, Columbia, Missouri 65211-7010, United States
| |
Collapse
|
13
|
Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Synthetic macrolides overcoming MLS BK-resistant pathogens. Cell Discov 2024; 10:75. [PMID: 38992047 PMCID: PMC11239830 DOI: 10.1038/s41421-024-00702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiao-Tian Lian
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xie-Peng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bing-Zhi Fan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jue-Ru Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhao Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Xiao-Tong Pei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jin-Zhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
14
|
Zhou Y, Chen SJ. Advances in machine-learning approaches to RNA-targeted drug design. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100053. [PMID: 38434217 PMCID: PMC10904028 DOI: 10.1016/j.aichem.2024.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
RNA molecules play multifaceted functional and regulatory roles within cells and have garnered significant attention in recent years as promising therapeutic targets. With remarkable successes achieved by artificial intelligence (AI) in different fields such as computer vision and natural language processing, there is a growing imperative to harness AI's potential in computer-aided drug design (CADD) to discover novel drug compounds that target RNA. Although machine-learning (ML) approaches have been widely adopted in the discovery of small molecules targeting proteins, the application of ML approaches to model interactions between RNA and small molecule is still in its infancy. Compared to protein-targeted drug discovery, the major challenges in ML-based RNA-targeted drug discovery stem from the scarcity of available data resources. With the growing interest and the development of curated databases focusing on interactions between RNA and small molecule, the field anticipates a rapid growth and the opening of a new avenue for disease treatment. In this review, we aim to provide an overview of recent advancements in computationally modeling RNA-small molecule interactions within the context of RNA-targeted drug discovery, with a particular emphasis on methodologies employing ML techniques.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
15
|
Armillei MK, Lomakin IB, Del Rosso JQ, Grada A, Bunick CG. Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics (Basel) 2024; 13:270. [PMID: 38534705 PMCID: PMC10967556 DOI: 10.3390/antibiotics13030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Clindamycin is a highly effective antibiotic of the lincosamide class. It has been widely used for decades to treat a range of skin and soft tissue infections in dermatology and medicine. Clindamycin is commonly prescribed for acne vulgaris, with current practice standards utilizing fixed-combination topicals containing clindamycin that prevent Cutibacterium acnes growth and reduce inflammation associated with acne lesion formation. Certain clinical presentations of folliculitis, rosacea, staphylococcal infections, and hidradenitis suppurativa are also responsive to clindamycin, demonstrating its suitability and versatility as a treatment option. This review describes the use of clindamycin in dermatological practice, the mechanism of protein synthesis inhibition by clindamycin at the level of the bacterial ribosome, and clindamycin's anti-inflammatory properties with a focus on its ability to ameliorate inflammation in acne. A comparison of the dermatologic indications for similarly utilized antibiotics, like the tetracycline class antibiotics, is also presented. Finally, this review addresses both the trends and mechanisms for clindamycin and antibiotic resistance, as well as the current clinical evidence in support of the continued, targeted use of clindamycin in dermatology.
Collapse
Affiliation(s)
- Maria K. Armillei
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA;
| | - Ivan B. Lomakin
- Department of Dermatology, Yale University, New Haven, CT 06520, USA;
| | - James Q. Del Rosso
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA;
- JDR Dermatology Research, Las Vegas, NV 89148, USA
- Clinical Research and Strategic Development, Advanced Dermatology and Cosmetic Surgery, Maitland, FL 32751, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Christopher G. Bunick
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA;
- Department of Dermatology, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
16
|
Bian C, Zhang J, Zheng X, Qiao M, Li Y, Chen X, Si S. Synthesis and structure-activity relationships of novel 14-membered 2-fluoro ketolides with structural modification at the C11 position. Eur J Med Chem 2024; 267:116181. [PMID: 38354519 DOI: 10.1016/j.ejmech.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
A series of novel C11 substituted 14-membered 2-fluoro ketolides were synthesized and evaluated for their antibacterial activity against erythromycin-resistant and erythromycin-susceptible clinical isolates and strains from ATCC. The overall antibacterial spectra of the semi-synthetic antibiotics are similar to that of telithromycin (TEL) and most of them exhibited excellent activity against Gram-positive bacteria (S. epidermidis, S. pneumoniae, S. aureus) and several Gram-negative bacteria (M. catarrhalis, H. influenza). Compounds 11c, 11g, 11h, 11q, 12a, 12b, 12d and 12e displayed 4-16 fold more potency than TEL against all the tested erythromycin-resistant S. epidermidis strains and S. pneumonia SPN19-8 and SPN19-8. Compounds 11b, 11c, 11e, 11g, 11h, 11q, 12a, 12b and 12c showed at least 8 fold potency than TEL against erythromycin-resistant M. catarrhalis BCA19-5 and BCA19-6. Molecular docking suggested compound 12d oriented the macrolide ring and side chain similarly to solithromycin (SOL). Noticeably an additional hydrogen bond was observed between the Lys90 residue of ribosome protein L22 and the carbamate group at the C11 position, which might provide a rational explanation for the enhanced antibacterial activity of target compounds. Therefore this research would offer a new perspective for further structural optimization of the C11 side chain. Based on the results of antibacterial activity, cytotoxicity and structural diversity, 5 compounds (11a, 11b, 11h, 12d and 12i) were selected for the stability testing of human liver microsomes and compound 11a exhibited preferable metabolic stability.
Collapse
Affiliation(s)
- Cong Bian
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China
| | - Xiao Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China
| | - Mengqian Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China
| | - Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China.
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China.
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 TiantanXili, Beijing 100050, China.
| |
Collapse
|
17
|
Volynkina IA, Bychkova EN, Karakchieva AO, Tikhomirov AS, Zatonsky GV, Solovieva SE, Martynov MM, Grammatikova NE, Tereshchenkov AG, Paleskava A, Konevega AL, Sergiev PV, Dontsova OA, Osterman IA, Shchekotikhin AE, Tevyashova AN. Hybrid Molecules of Azithromycin with Chloramphenicol and Metronidazole: Synthesis and Study of Antibacterial Properties. Pharmaceuticals (Basel) 2024; 17:187. [PMID: 38399402 PMCID: PMC10892836 DOI: 10.3390/ph17020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The sustained rise of antimicrobial resistance (AMR) causes a strong need to develop new antibacterial agents. One of the methods for addressing the problem of antibiotic resistance is through the design of hybrid antibiotics. In this work, we proposed a synthetic route for the conjugation of an azithromycin derivative with chloramphenicol and metronidazole hemisuccinates and synthesized two series of new hybrid molecules 4a-g and 5a-g. While a conjugation did not result in tangible synergy for wild-type bacterial strains, new compounds were able to overcome AMR associated with the inducible expression of the ermC gene on a model E. coli strain resistant to macrolide antibiotics. The newly developed hybrids demonstrated a tendency to induce premature ribosome stalling, which might be crucial since they will not induce a macrolide-resistant phenotype in a number of pathogenic bacterial strains. In summary, the designed structures are considered as a promising direction for the further development of hybrid molecules that can effectively circumvent AMR mechanisms to macrolide antibiotics.
Collapse
Affiliation(s)
- Inna A. Volynkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Anastasiia O. Karakchieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Alexander S. Tikhomirov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - George V. Zatonsky
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Svetlana E. Solovieva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Maksim M. Martynov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Andrey G. Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
| | - Alena Paleskava
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantiniv of NRC “Kurchatov Institute”, Mkr. Orlova Roshcha 1, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Khlopina 11, 195251 Saint Petersburg, Russia
| | - Andrey L. Konevega
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantiniv of NRC “Kurchatov Institute”, Mkr. Orlova Roshcha 1, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Khlopina 11, 195251 Saint Petersburg, Russia
- NBICS Center, NRC “Kurchatov Institute”, Kurchatov Square 1, 123182 Moscow, Russia
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
18
|
Lin CY, Murayama T, Futada K, Tanaka S, Masuda Y, Honjoh KI, Miyamoto T. Screening of genes involved in phage-resistance of Escherichia coli and effects of substances interacting with primosomal protein A on the resistant bacteria. J Appl Microbiol 2024; 135:lxad318. [PMID: 38142224 DOI: 10.1093/jambio/lxad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
AIMS The study was to identify the genes involved in phage resistance and to develop an effective biocontrol method to improve the lytic activity of phages against foodborne pathogens. METHODS AND RESULTS A total of 3,909 single gene-deletion mutants of Escherichia coli BW25113 from the Keio collection were individually screened for genes involved in phage resistance. Phage S127BCL3 isolated from chicken liver, infecting both E. coli BW25113 and O157: H7, was characterized and used for screening. The 10 gene-deletion mutants showed increased susceptibility to phage S127BCL3. Among them, priA gene-deletion mutant strain showed significant susceptibility to the phages S127BCL3 and T7. Furthermore, we investigated the substances that have been reported to inhibit the function of primosomal protein A (PriA) and were used to confirm increased phage susceptibility in E. coli BW25113 (Parent strain) and O157: H7. CONCLUSION PriA inhibitors at a low concentration showed combined effects with phage against E. coli O157: H7 and delayed the regrowth rate of phage-resistant cells.
Collapse
Affiliation(s)
- Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoka Murayama
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Futada
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shota Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Alves da Silva A, Silva IJ, Arraiano CM. A paradox of bacterial persistence and antibiotic resistance: chloramphenicol acetyl transferase as a double barrel shot gun. MICROLIFE 2023; 4:uqad034. [PMID: 37781689 PMCID: PMC10540939 DOI: 10.1093/femsml/uqad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The problematic microbial resistance to antibiotics has led to an increasing interest in bacterial persistence and its impact on infection. Nonetheless, these two mechanisms are often assessed in independent studies, and there is a lack of knowledge about their relation or possible interactions, both at cellular and population levels. This work shows evidence that the insertion of the resistance gene Chloramphenicol Acetyl Transferase (cat) together with its cognate antibiotic chloramphenicol (CAM), is capable to modulate Salmonella Typhimurium persistence to several antibiotics and decrease its survival. This effect is independent of the antibiotics' mechanisms of action or the locus of cat. RelA [p(ppGpp) syntetase] has been shown to be involved in persistence. It was recently proposed that RelA [(p)ppGpp synthetase], binds to uncharged tRNAs, forming RelA.tRNA complexes. These complexes bind to vacant A-sites in the ribosome, and this mechanism is essential for the activation of RelA. In this study, we propose that the antibiotic chloramphenicol blocks the A-site of the ribosome, hindering the binding of RelA.tRNA complexes to the ribosome thus preventing the activation of RelA and (p)ppGpp synthesis, with a consequent decrease in the level of persistence of the population. Our discovery that the concomitant use of chloramphenicol and other antibiotics in chloramphenicol resistant bacteria can decrease the persister levels can be the basis of novel therapeutics aiming to decrease the persisters and recalcitrant infections.
Collapse
Affiliation(s)
- Ana Alves da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
20
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation. Mol Psychiatry 2023; 28:3769-3781. [PMID: 37794116 PMCID: PMC10730408 DOI: 10.1038/s41380-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Microdeletion of a 3Mb region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes individuals to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Single mutant analysis shows that both mrpl40 and prodha mutants display aberrant neural stem and progenitor cell proliferation, with each gene regulating distinct cell populations. Finally, double mutants for both mrpl40 and prodha display aggravated behavioral phenotypes and neural stem and progenitor cell analysis reveals a previously unrecognized partially redundant role for mrpl40 and prodha in regulating radial glia-like cell proliferation. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isaiah Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Lagrange S, Roubert C, Zhang J. [Discovery of natural product-derived sequanamycins as potent oral anti-tuberculosis agents]. Med Sci (Paris) 2023; 39:599-602. [PMID: 37695145 DOI: 10.1051/medsci/2023091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Affiliation(s)
- Sophie Lagrange
- Sanofi R&D, Infectious diseases unit, 31036 Toulouse, France - Evotec ID (LYON) SAS, Lyon, France
| | - Christine Roubert
- Sanofi R&D, Infectious diseases unit, 31036 Toulouse, France - Evotec ID (LYON) SAS, Lyon, France
| | - Jidong Zhang
- Sanofi R&D, Integrated drug discovery, Vitry-sur-Seine, France
| |
Collapse
|
22
|
Chen CW, Leimer N, Syroegin EA, Dunand C, Bulman ZP, Lewis K, Polikanov YS, Svetlov MS. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat Commun 2023; 14:4196. [PMID: 37452045 PMCID: PMC10349075 DOI: 10.1038/s41467-023-39653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The ever-growing rise of antibiotic resistance among bacterial pathogens is one of the top healthcare threats today. Although combination antibiotic therapies represent a potential approach to more efficiently combat infections caused by susceptible and drug-resistant bacteria, only a few known drug pairs exhibit synergy/cooperativity in killing bacteria. Here, we discover that well-known ribosomal antibiotics, hygromycin A (HygA) and macrolides, which target peptidyl transferase center and peptide exit tunnel, respectively, can act cooperatively against susceptible and drug-resistant bacteria. Remarkably, HygA slows down macrolide dissociation from the ribosome by 60-fold and enhances the otherwise weak antimicrobial activity of the newest-generation macrolide drugs known as ketolides against macrolide-resistant bacteria. By determining a set of high-resolution X-ray crystal structures of drug-sensitive wild-type and macrolide-resistant Erm-methylated 70S ribosomes in complex with three HygA-macrolide pairs, we provide a structural rationale for the binding cooperativity of these drugs and also uncover the molecular mechanism of overcoming Erm-type resistance by macrolides acting together with hygromycin A. Altogether our structural, biochemical, and microbiological findings lay the foundation for the subsequent development of synergistic antibiotic tandems with improved bactericidal properties against drug-resistant pathogens, including those expressing erm genes.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Nadja Leimer
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Clémence Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
23
|
Tsirogianni A, Kournoutou GG, Mpogiatzoglou M, Dinos G, Athanassopoulos CM. Chloramphenicol Derivatization in Its Primary Hydroxyl Group with Basic Amino Acids Leads to New Pharmacophores with High Antimicrobial Activity. Antibiotics (Basel) 2023; 12:antibiotics12050832. [PMID: 37237735 DOI: 10.3390/antibiotics12050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In a previous study published by our group, successful modification of the antibiotic chloramphenicol (CHL) was reported, which was achieved by replacing the dichloroacetyl tail with alpha and beta amino acids, resulting in promising new antibacterial pharmacophores. In this study, CHL was further modified by linking the basic amino acids lysine, ornithine, and histidine to the primary hydroxyl group of CHL via triazole, carbamate, or amide bonding. Our results showed that while linking the basic amino acids retained antibacterial activity, it was somewhat reduced compared to CHL. However, in vitro testing demonstrated that all derivatives were comparable in activity to CHL and competed for the same ribosomal binding site with radioactive chloramphenicol. The amino acid-CHL tethering modes were evaluated either with carbamate (7, 8) derivatives, which exhibited higher activity, or with amide- (4-6) or triazole-bridged compounds (1-3), which were equally potent. Our findings suggest that these new pharmacophores have potential as antimicrobial agents, though further optimization is needed.
Collapse
Affiliation(s)
- Artemis Tsirogianni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Maria Mpogiatzoglou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | | |
Collapse
|
24
|
Zhang J, Lair C, Roubert C, Amaning K, Barrio MB, Benedetti Y, Cui Z, Xing Z, Li X, Franzblau SG, Baurin N, Bordon-Pallier F, Cantalloube C, Sans S, Silve S, Blanc I, Fraisse L, Rak A, Jenner LB, Yusupova G, Yusupov M, Zhang J, Kaneko T, Yang TJ, Fotouhi N, Nuermberger E, Tyagi S, Betoudji F, Upton A, Sacchettini JC, Lagrange S. Discovery of natural-product-derived sequanamycins as potent oral anti-tuberculosis agents. Cell 2023; 186:1013-1025.e24. [PMID: 36827973 PMCID: PMC9994261 DOI: 10.1016/j.cell.2023.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/03/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.
Collapse
Affiliation(s)
- Jidong Zhang
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403 Vitry-sur-Seine, France
| | - Christine Lair
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Christine Roubert
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Kwame Amaning
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403 Vitry-sur-Seine, France
| | | | - Yannick Benedetti
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403 Vitry-sur-Seine, France
| | - Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Zhongliang Xing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicolas Baurin
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403 Vitry-sur-Seine, France
| | | | | | - Stephanie Sans
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Sandra Silve
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Isabelle Blanc
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Laurent Fraisse
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Alexey Rak
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403 Vitry-sur-Seine, France
| | | | | | | | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, NY, USA
| | - T J Yang
- Global Alliance for TB Drug Development, New York, NY, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeep Tyagi
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabrice Betoudji
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Upton
- Evotec ID (LYON) SAS, Lyon, France; Global Alliance for TB Drug Development, New York, NY, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| | - Sophie Lagrange
- Evotec ID (LYON) SAS, Lyon, France; Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| |
Collapse
|
25
|
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel) 2023; 12:463. [PMID: 36978331 PMCID: PMC10044086 DOI: 10.3390/antibiotics12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.
Collapse
Affiliation(s)
- McKenna E. Buckley
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Audrey R. N. Ndukwe
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA 5042, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA 5000, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Santu Rana
- Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, VIC 3220, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
26
|
Lian X, Liu W, Fan B, Yu M, Liang J. Design, Synthesis and Biological Evaluation of Conjugates of 3- O-Descladinose-azithromycin and Nucleobases against rRNA A2058G- or A2059G-Mutated Strains. Molecules 2023; 28:molecules28031327. [PMID: 36770992 PMCID: PMC9920417 DOI: 10.3390/molecules28031327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Structurally unrelated antibiotics MLSB (macrolide-lincosamide-streptogramin B) compromised with clinically resistant pathogens because of the cross-resistance resulting from the structural modification of rRNA A2058. The structure-activity relationships of a novel 3-O-descladinose azithromycin chemotype conjugating with nucleobases were fully explored with the aid of engineered E. coli SQ110DTC and SQ110LPTD. The conjugates of macrolides with nucleobases, especially adenine, displayed antibacterial superiority over telithromycin, azithromycin and clindamycin against rRNA A2058/2059-mutated engineered E. coli strains at the cost of lowering permeability and increasing vulnerability to efflux proteins against clinical isolates.
Collapse
Affiliation(s)
- Xiaotian Lian
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Wentian Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Bingzhi Fan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Correspondence: (M.Y.); (J.L.)
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
- Correspondence: (M.Y.); (J.L.)
| |
Collapse
|
27
|
Zhang L, Toplak M, Saleem-Batcha R, Höing L, Jakob R, Jehmlich N, von Bergen M, Maier T, Teufel R. Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol. Chembiochem 2023; 24:e202200632. [PMID: 36353978 DOI: 10.1002/cbic.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Antimicrobial resistance represents a major threat to human health and knowledge of the underlying mechanisms is therefore vital. Here, we report the discovery and characterization of oxidoreductases that inactivate the broad-spectrum antibiotic chloramphenicol via dual oxidation of the C3-hydroxyl group. Accordingly, chloramphenicol oxidation either depends on standalone glucose-methanol-choline (GMC)-type flavoenzymes, or on additional aldehyde dehydrogenases that boost overall turnover. These enzymes also enable the inactivation of the chloramphenicol analogues thiamphenicol and azidamfenicol, but not of the C3-fluorinated florfenicol. Notably, distinct isofunctional enzymes can be found in Gram-positive (e. g., Streptomyces sp.) and Gram-negative (e. g., Sphingobium sp.) bacteria, which presumably evolved their selectivity for chloramphenicol independently based on phylogenetic analyses. Mechanistic and structural studies provide further insights into the catalytic mechanisms of these biotechnologically interesting enzymes, which, in sum, are both a curse and a blessing by contributing to the spread of antibiotic resistance as well as to the bioremediation of chloramphenicol.
Collapse
Affiliation(s)
- Lei Zhang
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lars Höing
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
28
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
29
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522615. [PMID: 36711666 PMCID: PMC9881859 DOI: 10.1101/2023.01.03.522615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha , encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Finally, we show that both mrpl40 and prodha mutants display neural stem and progenitor cell phenotypes, with each gene regulating different neural stem cell populations. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D. Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Isaiah Lee
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Michael Granato
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| |
Collapse
|
30
|
Xue L, Lenz S, Zimmermann-Kogadeeva M, Tegunov D, Cramer P, Bork P, Rappsilber J, Mahamid J. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 2022; 610:205-211. [PMID: 36171285 PMCID: PMC9534751 DOI: 10.1038/s41586-022-05255-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Swantje Lenz
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
| | - Maria Zimmermann-Kogadeeva
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
31
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
32
|
Gutiérrez Mena J, Kumar S, Khammash M. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback. Nat Commun 2022; 13:4808. [PMID: 35973993 PMCID: PMC9381578 DOI: 10.1038/s41467-022-32392-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 12/19/2022] Open
Abstract
Communities of microbes play important roles in natural environments and hold great potential for deploying division-of-labor strategies in synthetic biology and bioproduction. However, the difficulty of controlling the composition of microbial consortia over time hinders their optimal use in many applications. Here, we present a fully automated, high-throughput platform that combines real-time measurements and computer-controlled optogenetic modulation of bacterial growth to implement precise and robust compositional control of a two-strain E. coli community. In addition, we develop a general framework for dynamic modeling of synthetic genetic circuits in the physiological context of E. coli and use a host-aware model to determine the optimal control parameters of our closed-loop compositional control system. Our platform succeeds in stabilizing the strain ratio of multiple parallel co-cultures at arbitrary levels and in changing these targets over time, opening the door for the implementation of dynamic compositional programs in synthetic bacterial communities.
Collapse
Affiliation(s)
- Joaquín Gutiérrez Mena
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
33
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
34
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
35
|
Shichino Y, Iwasaki S. Compounds for selective translational inhibition. Curr Opin Chem Biol 2022; 69:102158. [PMID: 35598529 DOI: 10.1016/j.cbpa.2022.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Since many human diseases are caused by the unwelcome production of harmful proteins, compounds that selectively suppress protein synthesis should provide a unique path for drug development, expanding the druggable proteome. Although surveying the RNA/amino acid contexts that are preferentially affected by translation inhibitors has presented an analytic hurdle, the application of a technique termed ribosome profiling overcomes this problem. Indeed, this technique uncovers the selectivity of translation repression by small molecules such as chloramphenicol, macrolides, PF846, and rocaglates. The molecular understanding of how the compounds inspire context selectivity, despite their targeting to general translation machinery, facilitates rational drug design and discovery for therapeutic purposes.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
36
|
Syroegin EA, Aleksandrova EV, Polikanov YS. Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Nucleic Acids Res 2022; 50:7669-7679. [PMID: 35766409 PMCID: PMC9303264 DOI: 10.1093/nar/gkac548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
37
|
Lukianov DA, Buev VS, Ivanenkov YA, Kartsev VG, Skvortsov DA, Osterman IA, Sergiev PV. Imidazole Derivative As a Novel Translation Inhibitor. Acta Naturae 2022; 14:71-77. [PMID: 35923569 PMCID: PMC9307981 DOI: 10.32607/actanaturae.11654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Searching for novel compounds with antibiotic activity and understanding their
mechanism of action is extremely important. The ribosome is one of the main
targets for antibiotics in bacterial cells. Even if the molecule does not suit
the clinical application for whatever reasons, an investigation of its
mechanism of action can deepen our understanding of the ribosome function. Such
data can inform us on how the already used translational inhibitors can be
modified. In this study, we demonstrate that 1-(2-oxo-2-((4-phenoxyphenyl)
Collapse
Affiliation(s)
- D. A. Lukianov
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
| | - V. S. Buev
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991 Russia
| | - Y. A. Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa, 450054 Russia
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055 Russia
| | | | - D. A. Skvortsov
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Higher School of Economics, Faculty of biology and biotechnologies, Moscow, 101000 Russia
| | - I. A. Osterman
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| | - P. V. Sergiev
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119991 Russia
| |
Collapse
|
38
|
Liu XP, Lv W, Zhao F, Ding J, Zhang JR, Xue F, Zhang JZ, Liu LY, Cushman M, Li Y, Liang JH. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides. Bioorg Med Chem Lett 2022; 68:128761. [PMID: 35483593 DOI: 10.1016/j.bmcl.2022.128761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Resistance to telithromycin and off-target effects associated with the metabolic instability present serious and challenging problems for the development of novel macrolides. Herein, studies of hybrids of macrolides and quinolones (termed macrolones) bridged with linkers from 11,12-cyclic carbamate of macrolides revealed different structure-activity relationships from the previously reported macrolones bridged with linkers derived from 6-, 9- and 4''-positions of macrolides. The optimized macrolone 34 g with a longer and rigid sidechain than telithromycin had improved metabolic stability compared to telithromycin (t1/2: 110 vs 32 min), whose future has been heavily clouded by metabolic issues. Moreover, 34 g was 38-fold more potent than telithromycin against A2058/2059-mutated Mycoplasma pneumoniae (8 vs 315 μM), which may be attributed to a novel mode of action between the carboxylic acid of quinolone moiety and the bacterial ribosome. This work increases the prospect for discovery of novel and safe antibacterial agents to combat serious human infectious diseases.
Collapse
Affiliation(s)
- Xie-Peng Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jing Ding
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jue-Ru Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Jian-Zhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China.
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.
| |
Collapse
|
39
|
Zhou Y, Jiang Y, Chen SJ. RNA-ligand molecular docking: advances and challenges. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1571. [PMID: 37293430 PMCID: PMC10250017 DOI: 10.1002/wcms.1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
With rapid advances in computer algorithms and hardware, fast and accurate virtual screening has led to a drastic acceleration in selecting potent small molecules as drug candidates. Computational modeling of RNA-small molecule interactions has become an indispensable tool for RNA-targeted drug discovery. The current models for RNA-ligand binding have mainly focused on the docking-and-scoring method. Accurate docking and scoring should tackle four crucial problems: (1) conformational flexibility of ligand, (2) conformational flexibility of RNA, (3) efficient sampling of binding sites and binding poses, and (4) accurate scoring of different binding modes. Moreover, compared with the problem of protein-ligand docking, predicting ligand binding to RNA, a negatively charged polymer, is further complicated by additional effects such as metal ion effects. Thermodynamic models based on physics-based and knowledge-based scoring functions have shown highly encouraging success in predicting ligand binding poses and binding affinities. Recently, kinetic models for ligand binding have further suggested that including dissociation kinetics (residence time) in ligand docking would result in improved performance in estimating in vivo drug efficacy. More recently, the rise of deep-learning approaches has led to new tools for predicting RNA-small molecule binding. In this review, we present an overview of the recently developed computational methods for RNA-ligand docking and their advantages and disadvantages.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Yangwei Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
40
|
Tawde M, Bior A, Feiss M, Teng F, Freimuth P. A polypeptide model for toxic aberrant proteins induced by aminoglycoside antibiotics. PLoS One 2022; 17:e0258794. [PMID: 35486612 PMCID: PMC9053816 DOI: 10.1371/journal.pone.0258794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Aminoglycoside antibiotics interfere with the selection of cognate tRNAs during translation, resulting in the synthesis of aberrant proteins that are the ultimate cause of cell death. However, the toxic potential of aberrant proteins and how they avoid degradation by the cell’s protein quality control (QC) machinery are not understood. Here we report that levels of the heat shock (HS) transcription factor σ32 increased sharply following exposure of Escherichia coli to the aminoglycoside kanamycin (Kan), suggesting that at least some of the aberrant proteins synthesized in these cells were recognized as substrates by DnaK, a molecular chaperone that regulates the HS response, the major protein QC pathway in bacteria. To further investigate aberrant protein toxic potential and interaction with cell QC factors, we studied an acutely toxic 48-residue polypeptide (ARF48) that is encoded by an alternate reading frame in a plant cDNA. As occurred in cells exposed to Kan, σ32 levels were strongly elevated following ARF48 expression, suggesting that ARF48 was recognized as a substrate by DnaK. Paradoxically, an internal 10-residue region that was tightly bound by DnaK in vitro also was required for the ARF48 toxic effect. Despite the increased levels of σ32, levels of several HS proteins were unchanged following ARF48 expression, suggesting that the HS response had been aborted. Nucleoids were condensed and cell permeability increased rapidly following ARF48 expression, together suggesting that ARF48 disrupts DNA-membrane interactions that could be required for efficient gene expression. Our results are consistent with earlier studies showing that aberrant proteins induced by aminoglycoside antibiotics disrupt cell membrane integrity. Insights into the mechanism for this effect could be gained by further study of the ARF48 model system.
Collapse
Affiliation(s)
- Mangala Tawde
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, New York, United States of America
| | - Abdelaziz Bior
- Department of Natural and Applied Sciences, Cheyney University of Pennsylvania, Cheyney, Pennsylvania, United States of America
| | - Michael Feiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Feiyue Teng
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Paul Freimuth
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Heidary M, Ebrahimi Samangani A, Kargari A, Kiani Nejad A, Yashmi I, Motahar M, Taki E, Khoshnood S. Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J Clin Lab Anal 2022; 36:e24427. [PMID: 35447019 PMCID: PMC9169196 DOI: 10.1002/jcla.24427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Azithromycin (AZM), sold under the name Zithromax, is classified as a macrolide. It has many benefits due to its immunomodulatory, anti‐inflammatory, and antibacterial effects. This review aims to study different clinical and biochemisterial aspects and properties of this drug which has a priority based on literature published worldwide. Methods Several databases including Web of Science, Google Scholar, PubMed, and Scopus were searched to obtain the relevant studies. Results AZM mechanism of action including the inhibition of bacterial protein synthesis, inhibition of proinflammatory cytokine production, inhibition of neutrophil infestation, and macrophage polarization alteration, gives it the ability to act against a wide range of microorganisms. Resistant organisms are spreading and being developed because of the irrational use of the drug in the case of dose and duration. AZM shows synergistic effects with other drugs against a variety of organisms. This macrolide is considered a valuable antimicrobial agent because of its use as a treatment for a vast range of diseases such as asthma, bronchiolitis, COPD, cystic fibrosis, enteric infections, STIs, and periodontal infections. Conclusions Our study shows an increasing global prevalence of AZM resistance. Thus, synergistic combinations are recommended to treat different pathogens. Moreover, continuous monitoring of AZM resistance by registry centers and the development of more rapid diagnostic assays are urgently needed.
Collapse
Affiliation(s)
- Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Abolfazl Kargari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Aliakbar Kiani Nejad
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ilya Yashmi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moloudsadat Motahar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
42
|
Kragol G, Steadman VA, Marušić Ištuk Z, Čikoš A, Bosnar M, Jelić D, Ergović G, Trzun M, Bošnjak B, Bokulić A, Padovan J, Glojnarić I, Eraković Haber V. Unprecedented Epimerization of an Azithromycin Analogue: Synthesis, Structure and Biological Activity of 2'-Dehydroxy-5″-Epi-Azithromycin. Molecules 2022; 27:1034. [PMID: 35164298 PMCID: PMC8838534 DOI: 10.3390/molecules27031034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Certain macrolide antibiotics, azithromycin included, possess anti-inflammatory properties that are considered fundamental for their efficacy in the treatment of chronic inflammatory diseases, such as diffuse pan-bronchiolitis and cystic fibrosis. In this study, we disclose a novel azithromycin analog obtained via Barton-McCombie oxidation during which an unprecedented epimerization on the cladinose sugar occurs. Its structure was thoroughly investigated using NMR spectroscopy and compared to the natural epimer, revealing how the change in configuration of one single stereocenter (out of 16) profoundly diminished the antimicrobial activity through spatial manipulation of ribosome binding epitopes. At the same time, the anti-inflammatory properties of parent macrolide were retained, as demonstrated by inhibition of LPS- and cigarette-smoke-induced pulmonary inflammation. Not surprisingly, the compound has promising developable properties including good oral bioavailability and a half-life that supports once-daily dosing. This novel anti-inflammatory candidate has significant potential to fill the gap in existing anti-inflammatory agents and broaden treatment possibilities.
Collapse
Affiliation(s)
- Goran Kragol
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | | | - Zorica Marušić Ištuk
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Čikoš
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Martina Bosnar
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Gabrijela Ergović
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Marija Trzun
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Berislav Bošnjak
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Bokulić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Jasna Padovan
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ines Glojnarić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Vesna Eraković Haber
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| |
Collapse
|
43
|
Syroegin EA, Flemmich L, Klepacki D, Vazquez-Laslop N, Micura R, Polikanov YS. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol 2022; 29:152-161. [PMID: 35165455 PMCID: PMC9071271 DOI: 10.1038/s41594-022-00720-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laurin Flemmich
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vazquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ronald Micura
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
Sharkey RE, Herbert JB, McGaha DA, Nguyen V, Schoeffler AJ, Dunkle JA. Three critical regions of the erythromycin resistance methyltransferase, ErmE, are required for function supporting a model for the interaction of Erm family enzymes with substrate rRNA. RNA (NEW YORK, N.Y.) 2022; 28:210-226. [PMID: 34795028 PMCID: PMC8906542 DOI: 10.1261/rna.078946.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
6-Methyladenosine modification of DNA and RNA is widespread throughout the three domains of life and often accomplished by a Rossmann-fold methyltransferase domain which contains conserved sequence elements directing S-adenosylmethionine cofactor binding and placement of the target adenosine residue into the active site. Elaborations to the conserved Rossman-fold and appended domains direct methylation to diverse DNA and RNA sequences and structures. Recently, the first atomic-resolution structure of a ribosomal RNA adenine dimethylase (RRAD) family member bound to rRNA was solved, TFB1M bound to helix 45 of 12S rRNA. Since erythromycin resistance methyltransferases are also members of the RRAD family, and understanding how these enzymes recognize rRNA could be used to combat their role in antibiotic resistance, we constructed a model of ErmE bound to a 23S rRNA fragment based on the TFB1M-rRNA structure. We designed site-directed mutants of ErmE based on this model and assayed the mutants by in vivo phenotypic assays and in vitro assays with purified protein. Our results and additional bioinformatic analyses suggest our structural model captures key ErmE-rRNA interactions and indicate three regions of Erm proteins play a critical role in methylation: the target adenosine binding pocket, the basic ridge, and the α4-cleft.
Collapse
Affiliation(s)
- Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Johnny B Herbert
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Danielle A McGaha
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Vy Nguyen
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Allyn J Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
45
|
mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biol 2022; 20:12. [PMID: 34996455 PMCID: PMC8742369 DOI: 10.1186/s12915-021-01215-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. Results We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. Conclusion We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01215-w.
Collapse
|
46
|
Zhang W, Li Z, Sun Y, Cui P, Liang J, Xing Q, Wu J, Xu Y, Zhang W, Zhang Y, He L, Gao N. Cryo-EM structure of Mycobacterium tuberculosis 50S ribosomal subunit bound with clarithromycin reveals dynamic and specific interactions with macrolides. Emerg Microbes Infect 2021; 11:293-305. [PMID: 34935599 PMCID: PMC8786254 DOI: 10.1080/22221751.2021.2022439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis (Mtb). Clarithromycin (CTY), an analog of erythromycin (ERY), is more potent against multidrug-resistance (MDR) TB. ERY and CTY were previously reported to bind to the nascent polypeptide exit tunnel (NPET) near peptidyl transferase center (PTC), but the only available CTY structure in complex with D. radiodurans (Dra) ribosome could be misinterpreted due to resolution limitation. To date, the mechanism of specificity and efficacy of CTY for Mtb remains elusive since the Mtb ribosome-CTY complex structure is still unknown. Here, we employed new sample preparation methods and solved the Mtb ribosome-CTY complex structure at 3.3Å with cryo-EM technique, where the crucial gate site A2062 (E. coli numbering) is located at the CTY binding site within NPET. Two alternative conformations of A2062, a novel syn-conformation as well as a swayed conformation bound with water molecule at interface, may play a role in coordinating the binding of specific drug molecules. The previously overlooked C–H hydrogen bond (H-bond) and π interaction may collectively contribute to the enhanced binding affinity. Together, our structure data provide a structural basis for the dynamic binding as well as the specificity of CTY and explain of how a single methyl group in CTY improves its potency, which provides new evidence to reveal previously unclear mechanism of translational modulation for future drug design and anti-TB therapy. Furthermore, our sample preparation method may facilitate drug discovery based on the complexes with low water solubility drugs by cryo-EM technique.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - ZhiFei Li
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China.,China National Center for Biotechnology Development. 10039, Beijing, China
| | - Yufan Sun
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Peng Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianhua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Qinghe Xing
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Wu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China.,State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Lin He
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| |
Collapse
|
47
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
48
|
Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Res 2021; 49:9539-9547. [PMID: 34403461 PMCID: PMC8450073 DOI: 10.1093/nar/gkab665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.
Collapse
Affiliation(s)
- Ting Su
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Tobias Komar
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| |
Collapse
|
49
|
Beckert B, Leroy EC, Sothiselvam S, Bock LV, Svetlov MS, Graf M, Arenz S, Abdelshahid M, Seip B, Grubmüller H, Mankin AS, Innis CA, Vázquez-Laslop N, Wilson DN. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat Commun 2021; 12:4466. [PMID: 34294725 PMCID: PMC8298421 DOI: 10.1038/s41467-021-24674-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.
Collapse
Affiliation(s)
- Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Elodie C Leroy
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | | | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Graf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Stefan Arenz
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Maha Abdelshahid
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Britta Seip
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - C Axel Innis
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France.
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
50
|
Shedko ED, Goloveshkina EN, Akimkin VG. Molecular epidemiology and antimicrobials resistance mechanism of Mycoplasma genitlaium. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Currently, infections caused by Mycoplasma genitalium are ones the most common sexually transmitted infections. Their prevalence is varied from 1.3% to 15.9%. Infections caused by M.genitalium may lead to urethritis in men and a wide spectrum of diseases in women. Antibiotic resistance now is one of the most emerging problems both in the scientific and in the healthcare fields. The usage of antimicrobials inhibiting cell wall synthesis for the treatment of M.genitalium is ineffective, and resistance to macrolides and fluoroquinolones is increasing rapidly. M.genitalium infections diagnostics is complicated due to specific conditions and duration of culture methods. The usage of nucleic acid amplification techniques is the most relevant for laboratory diagnostics, and is used in existing assays. This review compiles current data on the prevalence, molecular mechanisms of pathogenesis and antibiotic resistance, as well as diagnostics methods of M.genitalium.
Collapse
|