1
|
Mohd-Ridwan AR, Md-Zain BM, Najmuddin MF, Othman N, Haris H, Sariyati NH, Matsuda I, Yee BS, Lee Y, Lye SF, Abdul-Latiff MAB. Unveiling the Gut Microbiome of Malaysia's Colobine Monkeys : Insights into Health and Evolution. J Med Primatol 2024; 53:e12742. [PMID: 39462819 DOI: 10.1111/jmp.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Colobines are primarily leaf-eating primates, depend on microbiota of gastrointestinal tracts for food digestion. However, the gut microbiota of Malaysia's colobines specifically langurs remains unstudied. AIMS Hence, we aim to analyze the fecal microbiomes of Malaysia's langurs using Presbytis femoralis, Presbytis robinsoni, Trachypithecus obscurus, and Trachypithecus cristatus from various landscapes as models. MATERIAL AND METHODS We collected samples from all four species across several areas in Peninsular Malaysia and performed 16S ribosomal RNA gene amplicon sequencing using the Illumina sequencing platform. RESULTS Presbytis femoralis exhibited the highest bacterial diversity, followed by T. obscurus, T. cristatus, P. robinsoni and the lowest, P. siamensis. Over 11 million operational taxonomic units (OTUs) were identified across Malaysia's langurs spanning 26 phyla, 180 families, and 329 genera of microbes. The OTUs were dominated by Firmicutes, Proteobacteria, and Bacteroidetes. There are 11 genera of pathogenic bacteria were identified across all host species. Nine pathogenic bacterial genera inhabit both T. obscurus, indicating poor health due to low bacterial diversity and heightened pathogenicity. In contrast, P. robinsoni with the fewest pathogenic species is deemed the healthiest among Malaysia's langurs. DISCUSSION This study demonstrates that alterations in diet, behavior, and habitat affect bacterial diversity in Malaysia's langurs' gut microbiota. Even though this is the first comprehensive analysis of langur microbiomes in Malaysia, it is important to note the limitations regarding the number of samples, populations sampled, and the geographical origins and landscapes of these populations. Our results suggest that Malaysia's langurs may harbor pathogenic bacteria, potentially posing a risk of transmission to humans. CONCLUSION This highlights the critical need for the conservation and management of Malaysia's langurs, particularly considering their interactions with humans. This data can serve as a foundation for authorities to inform the public about the origins and significance of animal health and the management of zoonotic diseases.
Collapse
Affiliation(s)
- Abd Rahman Mohd-Ridwan
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faudzir Najmuddin
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Hidayah Haris
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | | | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
2
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
3
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
4
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
5
|
Chen W, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen X, Chen Y, Zhao L, Wu Q, Chen X, Zhang Y, Xie A, Xie P. Comparative transcriptional analyses of the striatum in the chronic social defeat stress model in C57BL/6J male mice and the gut microbiota-dysbiosis model in Kumming mice. Neuroscience 2024; 562:217-226. [PMID: 39489477 DOI: 10.1016/j.neuroscience.2024.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Depression is a complex disorder with multiple contributing factors, and chronic stress has previously been recognized as a major causative factor, while gut microbes have also been found to be involved in depression recently. However, gene expression in depression models with different etiologies is unclear. Here, we compared the transcriptomes of the striatum in chronic social defeat stress (CSDS) model of C57BL/6J male mice and fecal microbiota transplant (FMT) model of Kumming male mice. We found that the proportion of shared differentially expressed genes (DEGs) between the two models was only 24 %. The specific DEGs of FMT model were enriched in immune and inflammatory, and are associated with changes in vascular and ciliated ependymal cells. The specific DEGs of CSDS model were enriched in neuron and synapse. The results of network analysis suggested the expression patterns and biological function of depressive-like behaviors-related modules in the two models are different. Further, the alternative splicing events of CSDS are more than FMT. Our results suggested models of depression induced by different etiologies differ significantly in gene expression and biological function. Our study also suggested us to pay attention to the characteristics of models of depression of different etiologies and provided a more comprehensive understanding of the heterogeneity of depression.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University 402160 Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
6
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
7
|
Chen VCH, Wu SI. An exploratory analysis on the association between suicidal ideation and the microbiome in patients with or without major depressive disorder. J Affect Disord 2024:S0165-0327(24)01824-X. [PMID: 39481689 DOI: 10.1016/j.jad.2024.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Scarce research has investigated associations between suicidal ideation and the gut microbiota. We aimed to explore variations in the gut microbiome associated with suicidal ideation and major depressive disorder (MDD). METHOD A case-control study compared abundances of fecal microbiota and biomarkers of gut permeability among patients with MDD, with or without suicidal ideation, and healthy volunteers without depression. Information on demographic variables and assessments of suicidal ideation (Beck Suicidal Ideation Scale), depression (Hamilton Depression Scale, Patient Health Questionnaire, Hospital Anxiety and Depression Scale- Depression), as well as anxiety (Hospital Anxiety and Depression Scale- Anxiety), were obtained. Univariate and multivariate regression model was performed to explore the possible predictors of suicidal ideation. RESULTS Among the 140 participants, significant differences in Beta diversity were found between MDD patients with (n = 43) or without suicidal ideation (n = 34), and healthy volunteers (n = 42) (all p < 0.001). The strain of g-Phascolarctobacterium was found to have significant positive associations with scores of BSSI and BSSI Part 1 (suicidal ideation), particularly in MDD patients with suicidal ideation, after controlling for demographic and mood covariates. Mediation analyses revealed that g-Phascolarctobacterium may be a partial mediator between depression and suicidal ideation; however, it is also possible that the association between g-Phascolarctobacterium and suicidal ideation was partially mediated by the level of depression. CONCLUSION We found different compositions, diversities, and possible mediating of the gut microbiome associated with suicidal ideations. Potential mechanisms need further investigation to establish whether this reflects a biological process that might be the focus for intervention development. SYNOPSIS Our objective was to investigate whether the diversities and abundances of the gut microbiome varied in people with or without suicidal ideation and with or without MDD after considering possible demographic and mood confounders.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County 613, Taiwan; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei- Shan Tao-Yuan, Taiwan; Department of Medicine, Mackay Medical College, No.46, Sec.3, Zhongzheng Rd., Sanzhi Dist., New Taipei City 25245, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, No.45, Ming-Shen Rd., Danshui., New Taipei City 25140, Taiwan
| | - Shu-I Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County 613, Taiwan; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei- Shan Tao-Yuan, Taiwan; Department of Medicine, Mackay Medical College, No.46, Sec.3, Zhongzheng Rd., Sanzhi Dist., New Taipei City 25245, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, No.45, Ming-Shen Rd., Danshui., New Taipei City 25140, Taiwan.
| |
Collapse
|
8
|
Chatterjee K, Pal A, Padhy DS, Saha R, Chatterjee A, Bharadwaj M, Sarkar B, Mazumder PM, Banerjee S. Vitamin K2 Ameliorates Diabetes-Associated Cognitive Decline by Reducing Oxidative Stress and Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:56. [PMID: 39466454 DOI: 10.1007/s11481-024-10156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetes, a chronic metabolic disease, affects approximately 422 million people and leads to 1.5 million deaths every year, It is found that 45% of individuals with diabetes eventually develop cognitive impairment. Here we study effects of Vitamin K2 on diabetes-associated cognitive decline (DACD) and its underlying mechanism. Diabetes was induced in adult Swiss albino mice with high-fat diet and a low dose (35 mg/kg) of streptozotocin and measured by fasting glucose and HbA1c levels. After one week of development of diabetes, one group of animals received Vitamin K2 (100 µg/kg) via oral gavage for 21 days. Then different behavioural studies, including the elevated plus maze, Morris water maze, passive avoidance test and novel object recognition test were performed followed by biochemical tests including AchE, different oxidative stress parameters (SOD, GSH, MDA, catalase, SIRT1, NRF2), inflammatory markers (TNFα, IL1β, MCP1, NFκB), apoptosis marker (Caspase 3). Hippocampal neuronal density was measured using histopathology. Vitamin K2 treatment in diabetic animals led to reduced fasting glucose and HbA1c, It could partially reverse DACD as shown by behavioural studies. Vitamin K2 adminstration reduced corticohippocampal AchE level and neuroinflammation (TNFα, IL1β, MCP1, NFκB, SIRT1). It reduced oxidative stress by increasing antioxidant enzymes (SOD, GSH, catalase), transcription factor NRF2 while reducing caspase 3. This eventually increased CA1 and CA3 neuronal density in diabetic animals. Vitamin K2 partially reverses DACD by increasing ACh while reducing the oxidative stress via Nrf2/ARE pathway and neuroinflammation, thus protecting the hippocampal neurons from diabetes associated damage.
Collapse
Affiliation(s)
- Kaberi Chatterjee
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Anubroto Pal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajdeep Saha
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Monika Bharadwaj
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India.
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| |
Collapse
|
9
|
Gustafson KL, Busi SB, McAdams ZL, McCorkle RE, Khodakivskyi P, Bivens NJ, Davis DJ, Raju M, Coghill LM, Goun EA, Amos-Landgraf J, Franklin CL, Wilmes P, Cortese R, Ericsson AC. Fetal programming by the parental microbiome of offspring behavior, and DNA methylation and gene expression within the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589237. [PMID: 39484583 PMCID: PMC11526851 DOI: 10.1101/2024.04.12.589237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence supporting an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects. Results Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associated with features of the maternal microbiome including bile salt hydrolase activity gene expression (bsh), abundance of certain bile acids, and hepatic expression of Slc10a1. In cross-foster experiments, offspring resembled their birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. Genome-wide methylation analysis of hippocampal DNA identified microbiome-associated differences in methylation of 196 loci in total, 176 of which show conserved profiles between mother and offspring. Further, single-cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed differences in expression of neuropeptides associated with satiety. Conclusions Collectively, these data provide proof-of-principle that the maternal gut microbiome has a dominant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selectively affects genome methylation and gene expression in the offspring CNS in conjunction with that neurodevelopment.
Collapse
Affiliation(s)
- Kevin L Gustafson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Zachary L McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Rachael E McCorkle
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Pavlo Khodakivskyi
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- University of Missouri Genomics Technology Core, University of Missouri, Columbia, MO, 65211, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Murugesan Raju
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Lyndon M Coghill
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Elena A Goun
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rene Cortese
- Department of Child Health & Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
10
|
Delgado-Ocaña S, Cuesta S. From microbes to mind: germ-free models in neuropsychiatric research. mBio 2024; 15:e0207524. [PMID: 39207144 PMCID: PMC11481874 DOI: 10.1128/mbio.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The gut-microbiota-brain axis refers to the bidirectional communication system between the gut, its microbial community, and the brain. This interaction involves a complex interplay of neural pathways, chemical transmitters, and immunological mechanisms. Germ-free animal models have been extensively employed to investigate gut-microbiota-brain interactions, significantly contributing to our current understanding of the role of intestinal microbes in brain function. However, despite the many benefits, this absence of microbiota is not futile. Germ-free animals present physiological and neurodevelopmental alterations that can persist even after reconstitution with normal microbiota. Therefore, the main goal of this minireview is to discuss how some of the inherent limitations of this model can interfere with the conclusion obtained when using these animals to study the complex nature of neuropsychiatric disorders. Furthermore, we examine the inclusion and use of antibiotic-based treatments as an alternative in the research of gut-brain interactions.
Collapse
Affiliation(s)
- Susana Delgado-Ocaña
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Alway E, Reicher N, Bohórquez DV. Deciphering visceral instincts: a scientific quest to unravel food choices from molecules to mind. Genes Dev 2024; 38:798-801. [PMID: 39362782 PMCID: PMC11535160 DOI: 10.1101/gad.352279.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The study of biological mechanisms, while crucial, cannot fully explain complex phenomena like the instinct to eat. The mind-body connection, as exemplified by the concept of "voodoo death," highlights the profound influence of belief and cultural context on physiology. Indigenous knowledge systems further emphasize the interconnectedness of humans with their environment. Recent discoveries in gut-brain communication reveal the intricate neural circuits that drive our visceral desires, but a holistic approach that integrates both physiological mechanisms and the subjective experience of life, informed by diverse cultural perspectives, will be essential to truly understand what it means to be alive.
Collapse
Affiliation(s)
- Emily Alway
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, North Carolina 27710; USA;
- Department of Medicine, Duke University, Durham, North Carolina 27710; USA
- Department of Neurobiology, Duke University, Durham, North Carolina 27710; USA
| | - Naama Reicher
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, North Carolina 27710; USA
- Department of Medicine, Duke University, Durham, North Carolina 27710; USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, North Carolina 27710; USA
- Department of Medicine, Duke University, Durham, North Carolina 27710; USA
- Department of Neurobiology, Duke University, Durham, North Carolina 27710; USA
- Department of Pathology, Duke University, Durham, North Carolina 27710; USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27710; USA
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710; USA
| |
Collapse
|
12
|
Medina-Rodriguez EM, Han D, Zeltzer SE, Moraskie Alvarez-Tabío MP, O'Connor G, Daunert S, Beurel E. Stress-induced VIPergic activation mediates microbiota/Th17cell-dependent depressive-like behaviors. Brain Behav Immun 2024; 123:739-751. [PMID: 39419356 DOI: 10.1016/j.bbi.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic stress often has deleterious effects leading to the development of psychiatric diseases. The gut-brain axis represents a novel avenue for stress research. The negative effects of stress on the gut physiology have been well-described, whereas the pathways whereby stress controls microbial composition to modulate behaviors remains mainly unknown. We discovered that vasoactive intestinal peptide (VIP) activation promoted stress-induced microbial changes leading to increased infiltration of T helper (Th) 17 cells and microglial activation in the hippocampus and depressive-like behaviors, uncovering a close crosstalk between intestinal VIPergic release and the gut microbiota during stress and providing a new interaction between the nervous system and the gut microbiome after stress. Neutralization of the signature cytokine of Th17 cells, interleukin (IL)-17A, was sufficient to block depressive-like behaviors, reduce neuronal VIPergic activation and microglia activation induced by VIPergic activation after stress, opening new potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Shanie E Zeltzer
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Michael P Moraskie Alvarez-Tabío
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
13
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hyder N, Abbas G, Ahmed A, Azhar M. Post-natal antibiotic exposure in mother rat (F0) induces anxiety like behavior in adult rat offspring (F1) by activating HPA axis and down-regulating the Nr3c1 gene. BRAZ J BIOL 2024; 84:e286928. [PMID: 39383417 DOI: 10.1590/1519-6984.286928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/03/2024] [Indexed: 10/11/2024] Open
Abstract
Early postnatal administration of antibiotics has been linked to lasting effects on brain development and behavior. Research conducted on animals that are free from germs has demonstrated that the impact of microbiome colonization on the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and neuroendocrine pathways is substantial, which play a crucial role in stress management. Nevertheless, it is still uncertain if the exposure to antibiotics in rat dams (F0-generation) before weaning is associated with neurobehavioral changes in rat offspring (F1-generation) during adulthood. In order to investigate the effects, we perturbed the intestinal microbiota of rat dams (F0 generation) by administering cefixime (CEF), an antibiotic commonly used for obstetric purposes, at clinically relevant doses (1 mg/kg, 2.5 mg/kg or 5 mg/kg). Anxiety-like behaviors in adult offspring was evaluated through the utilization of elevated plus maze (EPM) and open field paradigm (OFP) following a six-week interval from birth (PND42). Subsequent to behavioral assessments, the rats were euthanized, and their brains and blood was collected for biochemical analysis. Plasma corticosterone concentration was used to assess HPA activity, whereas the quantitative real-time polymerase chain reaction (PCR) was employed to determine the transcription levels of the glucocorticoid receptor (GR) Nr3c1. The offspring of F1 that were administered antibiotics before being weaned spent less time in the EPM open arm. The alterations were accompanied by increased levels of corticosterone in the bloodstream. The gene expression study revealed a decrease in the levels of mRNA transcription of Nr3c1. This research emphasizes the possible long-term effects of antibiotic exposure before weaning on the development of anxiety in offspring upon adulthood.
Collapse
Affiliation(s)
- N Hyder
- Hamdard University, Department of Pharmacology, Faculty of Pharmacy, Karachi, Pakistan
- University of Karachi, HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi, Pakistan
| | - G Abbas
- Ziauddin University, Faculty of Pharmacy, Department of Pharmacology, Karachi, Pakistan
| | - A Ahmed
- University of Karachi, International Center for Chemical and Biological Sciences, Panjwani Center for Molecular Medicine and Drug Research, Karachi, Pakistan
| | - M Azhar
- Salim Habib University, Faculty of Pharmacy, Karachi, Pakistan
| |
Collapse
|
15
|
Alba C, Herranz C, Monroy MA, Aragón A, Jurado R, Díaz-Regañón D, Sánchez C, Tolín M, Miranda C, Gómez-Taylor B, Sempere F, Álvarez-Calatayud G, Rodríguez JM. Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan-McDermid Syndrome. Microorganisms 2024; 12:2006. [PMID: 39458315 PMCID: PMC11509408 DOI: 10.3390/microorganisms12102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by a developmental delay and autism spectrum disorder (ASD)-like behaviors. Emerging research suggests a link between gut microbiota and neuropsychiatric conditions, including PMS. This study aimed to investigate the fecal microbiota and immune profiles of children with PMS compared to healthy controls. Fecal samples were collected from children diagnosed with PMS and age-matched healthy controls. The bacterial composition was analyzed using 16S rRNA gene sequencing, while short-chain fatty acids (SCFAs) were quantified through gas chromatography. Immunological profiling was conducted using a multiplex cytokine assay. Significant differences were observed in the gut microbiota composition between PMS patients and controls, including a lower abundance of key bacterial genera such as Faecalibacterium and Agathobacter in PMS patients. SCFA levels were also reduced in PMS patients. Immunological analysis revealed higher levels of several pro-inflammatory cytokines in the PMS group, although these differences were not statistically significant. The findings indicate that children with PMS have distinct gut microbiota and SCFA profiles, which may contribute to the gastrointestinal and neurodevelopmental symptoms observed in this syndrome. These results suggest potential avenues for microbiota-targeted therapies in PMS.
Collapse
Affiliation(s)
- Claudio Alba
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | - Carmen Herranz
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | | | - Alberto Aragón
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rubén Jurado
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Díaz-Regañón
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
| | - César Sánchez
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Mar Tolín
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Carmen Miranda
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Bárbara Gómez-Taylor
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Francisca Sempere
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | | | - Juan M. Rodríguez
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| |
Collapse
|
16
|
Bruzaferro EVM, de Lima TM, Ariga SK, Barbeiro DF, Barbeiro HV, Pinheiro da Silva F. Effects of CRAMP on the gut-brain axis in experimental sepsis. Immunol Lett 2024; 269:106906. [PMID: 39122093 DOI: 10.1016/j.imlet.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The collaboration between the microbiota, mucosa, and intestinal epithelium is crucial for defending against pathogens and external antigens. Dysbiosis disrupts this balance, allowing pathogens to thrive and potentially enter the bloodstream, triggering immune dysregulation and potentially leading to sepsis. Antimicrobial peptides like LL-37 and CRAMP are pivotal in innate immune defense. Their expression varies with infection severity, exhibiting a dual pro- and anti-inflammatory response. Understanding this dynamic is key to comprehending sepsis progression. In our study, we examined the inflammatory response in CRAMP knockout mice post-cecal ligation and puncture (CLP). We assessed its impact on brain tissue damage and the intestinal microbiota. Our findings revealed higher gene expression of S100A8 and S100A9 in the prefrontal cortex of wild-type mice versus CRAMP-knockout mice. This trend was consistent in the hippocampus and cerebellum, although protein concentrations remained constant. Notably, there was a notable increase in Escherichia coli, Lactobacillus spp., and Enterococcus faecalis populations in wild-type mice 24 h post-CLP compared to the CRAMP-deficient group. These results align with our previous data suggesting that the absence of CRAMP may confer protection in this sepsis model.
Collapse
Affiliation(s)
| | - Thais Martins de Lima
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Suely Kubo Ariga
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Spielbauer J, Glotfelty EJ, Sarlus H, Harris RA, Diaz Heijtz R, Karlsson TE. Bacterial peptidoglycan signalling in microglia: Activation by MDP via the NF-κB/MAPK pathway. Brain Behav Immun 2024; 121:43-55. [PMID: 38971207 DOI: 10.1016/j.bbi.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
Bacterial peptidoglycan (PGN) fragments are commonly studied in the context of bacterial infections. However, PGN fragments recently gained recognition as signalling molecules from the commensal gut microbiota in the healthy host. Here we focus on the minimal bioactive PGN motif muramyl dipeptide (MDP), found in both Gram-positive and Gram-negative commensal bacteria, which signals through the Nod2 receptor. MDP from the gut microbiota translocates to the brain and is associated with changes in neurodevelopment and behaviour, yet there is limited knowledge about the underlying mechanisms. In this study we demonstrate that physiologically relevant doses of MDP induce rapid changes in microglial gene expression and lead to cytokine and chemokine secretion. In immortalised microglial (IMG) cells, C-C Motif Chemokine Ligand 5 (CCL5/RANTES) expression is acutely sensitive to the lowest physiologically prevalent dose (0.1 µg/ml) of MDP. As CCL5 plays an important role in memory formation and synaptic plasticity, microglial CCL5 might be the missing link in elucidating MDP-induced alterations in synaptic gene expression. We observed that a higher physiological dose of MDP elevates the expression of cytokines TNF-α and IL-1β, indicating a transition toward a pro-inflammatory phenotype in IMG cells, which was validated in primary microglial cultures. Furthermore, MDP induces the translocation of NF-κB subunit p65 into the nucleus, which is blocked by MAPK p38 inhibitor SB202190, suggesting that an interplay of both the NF-κB and MAPK pathways is responsible for the MDP-specific microglial phenotype. These findings underscore the significance of different MDP levels in shaping microglial function in the CNS and indicate MDP as a potential mediator for early inflammatory processes in the brain. It also positions microglia as an important target in the gut microbiota-brain-axis pathway through PGN signalling.
Collapse
Affiliation(s)
- Julia Spielbauer
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Heela Sarlus
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital at Solna, 171 77 Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital at Solna, 171 77 Stockholm, Sweden
| | | | - Tobias E Karlsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
19
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
20
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
21
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
22
|
Gonia S, Heisel T, Miller N, Haapala J, Harnack L, Georgieff MK, Fields DA, Knights D, Jacobs K, Seburg E, Demerath EW, Gale CA, Swanson MH. Maternal oral probiotic use is associated with decreased breastmilk inflammatory markers, infant fecal microbiome variation, and altered recognition memory responses in infants-a pilot observational study. Front Nutr 2024; 11:1456111. [PMID: 39385777 PMCID: PMC11462058 DOI: 10.3389/fnut.2024.1456111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Early life gut microbiomes are important for brain and immune system development in animal models. Probiotic use has been proposed as a strategy to promote health via modulation of microbiomes. In this observational study, we explore if early life exposure to probiotics via the mother during pregnancy and lactation, is associated with decreased inflammation in breastmilk, maternal and infant microbiome variation, and altered infant neurodevelopmental features. Methods Exclusively breastfeeding mother-infant dyads were recruited as part of the "Mothers and Infants Linked for Healthy Growth (MILk) Study." Probiotic comparison groups were defined by exposure to maternal probiotics (NO/YES) and by timing of probiotic exposure (prenatal, postnatal, total). C-reactive protein (CRP) and IL-6 levels were determined in breastmilk by immunoassays, and microbiomes were characterized from 1-month milk and from 1- and 6-month infant feces by 16S rDNA sequencing. Infant brain function was profiled via electroencephalogram (EEG); we assessed recognition memory using event-related potential (ERP) responses to familiar and novel auditory (1 month) and visual (6 months) stimuli. Statistical comparisons of study outcomes between probiotic groups were performed using permutational analysis of variance (PERMANOVA) (microbiome) and linear models (all other study outcomes), including relevant covariables as indicated. Results We observed associations between probiotic exposure and lower breastmilk CRP and IL-6 levels, and infant gut microbiome variation at 1- and 6-months of age (including higher abundances of Bifidobacteria and Lactobacillus). In addition, maternal probiotic exposure was associated with differences in infant ERP features at 6-months of age. Specifically, infants who were exposed to postnatal maternal probiotics (between the 1- and 6-month study visits) via breastfeeding/breastmilk, had larger differential responses between familiar and novel visual stimuli with respect to the late slow wave component of the EEG, which may indicate greater memory updating potential. The milk of mothers of this subgroup of infants had lower IL-6 levels and infants had different 6-month fecal microbiomes as compared to those in the "NO" maternal probiotics group. Discussion These results support continued research into "Microbiota-Gut-Brain" connections during early life and the role of pre- and postnatal probiotics in mothers to promote healthy microbiome-associated outcomes in infants.
Collapse
Affiliation(s)
- Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Neely Miller
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Haapala
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Lisa Harnack
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David A. Fields
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Jacobs
- Division of Maternal-Fetal Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elisabeth Seburg
- Pregnancy and Child Health Research Center, HealthPartners Institute, Bloomington, MN, United States
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Marie H. Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024:S0022-3166(24)01032-0. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
24
|
Gustafson KL, Rodriguez TR, McAdams ZL, Coghill LM, Ericsson AC, Franklin CL. Failure of colonization following gut microbiota transfer exacerbates DSS-induced colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614792. [PMID: 39386691 PMCID: PMC11463381 DOI: 10.1101/2024.09.25.614792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful. By comparing CH and gastric gavage for fecal material transfer, we isolated the microbial component of this effect and determined that differences in disease severity and survival were associated with microbial factors rather than the transfer method itself. Mice receiving a low richness GM via CH and gastric gavage exhibited greater disease severity and higher expression of pro-inflammatory immune mediators compared to those receiving a high richness GM. This study provides valuable insights into the role of GM composition and colonization in disease modulation.
Collapse
Affiliation(s)
- Kevin L. Gustafson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- Comparative Medicine Program, University of Missouri, Columbia, MO 65201, USA
- MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
| | - Trevor R. Rodriguez
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- Comparative Medicine Program, University of Missouri, Columbia, MO 65201, USA
| | - Zachary L. McAdams
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- Molecular Pathogenesis and Therapeutics Program, University of Missouri, Columbia, MO, 65201, USA
- MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
| | - Lyndon M. Coghill
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- Comparative Medicine Program, University of Missouri, Columbia, MO 65201, USA
- MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- University of Missouri College of Veterinary Medicine, Columbia, Missouri, MO 65201, USA
- University of Missouri Metagenomics Center, Columbia, Missouri, MO 65201, USA
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
- Comparative Medicine Program, University of Missouri, Columbia, MO 65201, USA
- MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- University of Missouri College of Veterinary Medicine, Columbia, Missouri, MO 65201, USA
| |
Collapse
|
25
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2024; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
26
|
Fang X, Lee S, Rayalam S, Park HJ. Docosahexaenoic acid supplementation and infant brain development: role of gut microbiome. Nutr Res 2024; 131:1-13. [PMID: 39342808 DOI: 10.1016/j.nutres.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Perinatal stage represents a critical period for brain development. Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid preferentially accumulated in the brain that may benefit neurodevelopment. Microbial colonization and maturation parallel with the rapid development of infant metabolic and brain function that may influence the effects of DHA on neurological development. This review aims to summarize the current literature on the mediating effects of DHA on brain and gut microbiome development and attempts to reevaluate the efficacy of DHA from a gut microbiome-mediated perspective. Specifically, the regulatory roles of DHA on hypothalamic-pituitary-adrenal axis, inflammation, and neuroactive mediators may be partly moderated through gut microbiome. Consideration of the gut microbiome and gut-brain communication, when evaluating the efficacy of DHA, may provide new insights in better understanding the mechanisms of DHA and impart advantages to future development of nutritional therapy based on the nutrient-microbiome interaction.
Collapse
Affiliation(s)
- Xi Fang
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Soon Lee
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA.
| |
Collapse
|
27
|
Liang B, Deng Y, Huang Y, Zhong Y, Li Z, Du J, Ye R, Feng Y, Bai R, Fan B, Chen X, Huang X, Yang X, Xian H, Yang X, Huang Z. Fragile Guts Make Fragile Brains: Intestinal Epithelial Nrf2 Deficiency Exacerbates Neurotoxicity Induced by Polystyrene Nanoplastics. ACS NANO 2024; 18:24044-24059. [PMID: 39158845 DOI: 10.1021/acsnano.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
28
|
Huang Q, Liu L, Tan X, Wang S, Wang S, Luo J, Chen J, Yang N, Jiang J, Liu Y, Hong X, Guo S, Shen Y, Gao F, Feng H, Zhang J, Shen Q, Li C, Ji L. Empagliflozin alleviates neuroinflammation by inhibiting astrocyte activation in the brain and regulating gut microbiota of high-fat diet mice. J Affect Disord 2024; 360:229-241. [PMID: 38823591 DOI: 10.1016/j.jad.2024.05.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.
Collapse
Affiliation(s)
- Qiaoyan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyao Tan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shitong Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Sichen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Na Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajun Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Feng Gao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Huina Feng
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Jianliang Zhang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
29
|
Kurdi M, Bajwa SJS, Sharma R, Choudhary R. Gut Microbiota and Probiotics in Perioperative Management: A Narrative Review. Cureus 2024; 16:e68404. [PMID: 39360063 PMCID: PMC11445195 DOI: 10.7759/cureus.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
The human gut is the abode of several complex and diverse microbes. It is a fact that the human brain is interconnected with the spinal cord and sense organs; however, there is also a possibility of a connection between the brain and the gut microbiome. The human gut can be altered in various ways, the principal method being the intake of prebiotics, probiotics and synbiotics. Can this alteration in the gut microbiome be clinically utilised in the perioperative period? We conducted a literature search related to this topic using databases and search engines (Medical Literature Analysis and Retrieval System Online {MEDLINE}, Embase, Scopus, PubMed and Google Scholar). The search revealed some preclinical and clinical studies in animals and humans that demonstrate the alteration of the gut microbiome with the use of anxiolysis, probiotics/prebiotics and other perioperative factors including opioids, anaesthetics and perioperative stress. The significant effects of this alteration have been seen on preoperative anxiety and postoperative delirium/cognitive dysfunction/pain. These effects are described in this narrative review, which opens up newer vistas for high-quality research related to the gut microbiome, gut-brain axis, the related signaling pathways and their clinical application in the perioperative period.
Collapse
Affiliation(s)
- Madhuri Kurdi
- Department of Anaesthesiology, Karnataka Medical College and Research Institute, Hubballi, IND
| | - Sukhminder J S Bajwa
- Department of Anaesthesiology, Gian Sagar Medical College and Hospital, Patiala, IND
| | - Ridhima Sharma
- Department of Anaesthesiology, All India Institute of Medical Sciences, Nagpur, IND
| | - Ripon Choudhary
- Department of Anaesthesiology, Datta Meghe Medical College and Research Institute, Nagpur, IND
| |
Collapse
|
30
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
31
|
Kooij KL, Andreani NA, van der Gun LL, Keller L, Trinh S, van der Vijgh B, Luijendijk M, Dempfle A, Herpertz-Dahlmann B, Seitz J, van Elburg A, Danner UN, Baines J, Adan RAH. Fecal microbiota transplantation of patients with anorexia nervosa did not alter flexible behavior in rats. Int J Eat Disord 2024; 57:1868-1881. [PMID: 38934721 DOI: 10.1002/eat.24231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Patients with anorexia nervosa (AN) are often anxious, display inflexible behavior and disrupted reward processing. Emerging evidence suggests that gut dysbiosis in patients contributes to the disease phenotype and progression. METHODS In a preclinical study, we explored whether AN-derived microbiota impacts cognitive flexibility, anxiety, and dopamine signaling using fecal microbiota transplantation (FMT) in tyrosine hydroxylase-cre rats. We performed probabilistic reversal learning task (PRLT) at the baseline, after antibiotic treatment, and following FMT from patients with AN and controls. We assessed flexible behavior, task engagement, and ventral tegmental area (VTA) dopamine signaling during and in the absence of reward. Furthermore, anxiety-like behavior was evaluated with open field (OF) and elevated plus maze (EPM) tests. RESULTS Neither antibiotic-induced dysbiosis nor AN FMT led to significant alterations in the number of reversals or lever press strategies after reinforced or nonreinforced lever presses (win and lose-stay) in the PRLT. However, the number of initiated trials decreased after antibiotic treatment while remaining unchanged after FMT. No significant differences were observed in VTA dopamine activity, anxiety measures in the OF and EPM tests. Microbiome analysis revealed limited overlap between the microbiota of the donors and recipients. DISCUSSION No evidence was found that the microbiota of patients compared to controls, nor a depleted microbiome impacts cognitive flexibility. Nonetheless, antibiotic-induced dysbiosis resulted in reduced task engagement during the PRLT. The relatively low efficiency of the FMT is a limitation of our study and highlights the need for improved protocols to draw robust conclusions in future studies. PUBLIC SIGNIFICANCE While our study did not reveal direct impacts of AN-associated gut microbiota on cognitive flexibility or anxiety behaviors in our preclinical model, we observed a decrease in task engagement after antibiotic-induced dysbiosis, underscoring that the presence of a gut microbiome matters. Our findings underscore the need for further refinement in FMT protocols to better elucidate the complex interplay between gut microbiota and behaviors characteristic of anorexia nervosa.
Collapse
Affiliation(s)
- Karlijn L Kooij
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - Nadia Andrea Andreani
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Luna L van der Gun
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | | - Mieneke Luijendijk
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | | | - Jochen Seitz
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Essen, Germany
| | - Annemarie van Elburg
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Faculty of Social Sciences, Utrecht University, Utrecht, The Netherlands
| | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - John Baines
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Roger A H Adan
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Bharti A, Sharma I, Mahajan R, Langer S, Kapoor N. From Cirrhosis to the Dysbiosis (A Loop of Cure or Complications?). Indian J Microbiol 2024; 64:810-820. [PMID: 39282182 PMCID: PMC11399373 DOI: 10.1007/s12088-024-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/18/2024] [Indexed: 09/18/2024] Open
Abstract
Gut dysbiosis and liver cirrhosis are two corelated complications that highly disturbs the metabolism of a normal human body. Liver cirrhosis is scarring of the hepatic tissue and gut dysbiosis is the imbalance in the microbiome of the gut. Gut dysbiosis in cirrhosis occurs due to increased permeability of the intestinal membrane which might induce immune responses and damage the normal functioning of the body. Dysbiosis can cause liver damage from cirrhosis and can further lead to liver failure by hepatocellular carcinoma. In this review we discuss if eubiosis can revert the poorly functioning cirrhotic liver to normal functioning state? A normal microbiome converts various liver products into usable forms that regulates the overgrowth of microbiome in the gut. The imbalance caused by dysbiosis retards the normal functioning of liver and increases the complications. To correct this dysbiosis, measures like use of antibiotics with probiotics and prebiotics are used. This correction of the gut microbiome serves as a ray of hope to recover from this chronic illness. In case of alcohol induced liver cirrhosis, intervention of microbes can possibly be helpful in modulating the addiction as well as associated complications like depression as microbes are known to produce and consume neurotransmitters that are involved in alcohol addiction. Hence a correction of gut liver brain axis using microbiome can be a milestone achieved not only for treatment of liver cirrhosis but also for helping alcohol addicts quit and live a healthy or at least a near healthy life.
Collapse
Affiliation(s)
- Aanchal Bharti
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Isar Sharma
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Ritu Mahajan
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Seema Langer
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Nisha Kapoor
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| |
Collapse
|
33
|
Li Y, Peng J, Cheng Z, Zhang K, Gu H, Feng J, Liu Y. Excessive heavy metal enrichment disturbs liver functions through the gut microbe in the great Himalayan leaf-nosed bat (Hipposideros armiger). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116758. [PMID: 39029226 DOI: 10.1016/j.ecoenv.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Heavy metal residues in natural ecosystems have emerged as a significant global environmental problem requiring urgent resolution. Because these elements are non-biodegradable, organisms can accumulate excessive levels of heavy metal elements into their tissues. Previous studies suggest that prolonged exposure to heavy metal enrichment poses comprehensive toxicity to various organs in vertebrates. However, few studies have focused on elucidating the molecular mechanism underlying the hepatotoxic effects of heavy metal enrichment in Chiroptera. In this study, 10 Hipposideros armiger individuals were dissected from Yingde City (YD, relatively pollution-free) and Chunwan City (CW, excessive heavy metals emission). Environmental samples were also obtained. To investigate the mechanism of heavy metal toxicity in bat livers, we employed a combination of multi-omics, pathology, and molecular biology methods. Our results revealed significant enrichment of Cd and Pb in the bat livers and food sources in the CW group (P<0.05). Furthermore, prolonged accumulation of heavy metals disrupted hepatic transcription profiles associated with the solute carriers family, the ribosome pathway, ATP usage, and heat shock proteins. Excessive heavy metal enrichment also altered the relative abundance of typical gut microbe taxa significantly (P<0.05), inhibiting tight-junction protein expression. We observed a significant decrease in the levels of superoxide dismutase, glutathione peroxidase, and glutathione (P<0.05), along with elevated reactive oxygen species (ROS) density and malondialdehyde content following excessive heavy metal enrichment. Additionally, hepatic fat accumulation and inflammation injuries were present under conditions of excessive heavy metal enrichment, while the contents of metabolism biomarkers significantly decreased (P<0.05). Consequently, prolonged heavy metal enrichment can induce hepatotoxicity by disturbing the microbes-gut-liver axis and hepatic transcription modes, leading to a decrease in overall metabolic activity in bats. Our study offers strategies for biodiversity conservation and highlights the importance of addressing environmental pollution to raise public awareness.
Collapse
Affiliation(s)
- Yutao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | - Jie Peng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Zheng Cheng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Northeast Normal University, Changchun, China.
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China; Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Northeast Normal University, Changchun, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.
| |
Collapse
|
34
|
Buchanan RW, Werkheiser AE, Michel H, Zaranski J, Glassman M, Adams HA, Vyas G, Blatt F, Pilli NR, Pan Y, Chen S, Fraser CM, Kelly DL, Kane MA. Prebiotic Treatment in People With Schizophrenia. J Clin Psychopharmacol 2024; 44:457-461. [PMID: 39146178 PMCID: PMC11384470 DOI: 10.1097/jcp.0000000000001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND Preliminary evidence suggests that people with schizophrenia have decreased relative abundance of butyrate-producing bacteria in the gut microbiota. Butyrate plays a critical role in maintaining the integrity of the gut-blood barrier and has a number of anti-inflammatory effects. This proof-of-concept study was designed to assess whether the addition of the oligofructose-enriched inulin (OEI) prebiotic: Prebiotin could increase the production of butyrate. METHODS Twenty-seven people who met the criteria for either Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, schizophrenia or schizoaffective disorder were entered into a 10-day, double-blind, placebo-controlled, randomized clinical trial. The study was conducted on an inpatient unit to standardize the participant diet and environment. Participants were randomized to either OEI (4 g, 3 times a day) or a placebo (4 g of maltodextrin, 3 times a day). In order to assess the effect of OEI treatment on butyrate levels, participants underwent pretreatment and posttreatment OEI challenges. The primary outcome measure was relative change in postchallenge plasma butyrate levels after 10 days of OEI treatment. RESULTS In both the intent-to-treat and completer analyses, OEI treatment was associated with a greater number of participants who met the OEI challenge responder criteria than those treated with placebo. OEI treatment was also associated with an increase in baseline butyrate levels (effect size for the group difference in the change of baseline butyrate levels was 0.58). CONCLUSIONS We were able to demonstrate that treatment with the prebiotic OEI selectively increased the level of plasma butyrate in people with schizophrenia.Trial registration:ClinicalTrials.gov identifier NCT03617783.
Collapse
Affiliation(s)
- Robert W Buchanan
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Hanna Michel
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Jennifer Zaranski
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew Glassman
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Heather A Adams
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Gopal Vyas
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Frank Blatt
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Nageswara R Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy
| | - Yezhi Pan
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Shuo Chen
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Claire M Fraser
- Institute of Genomic Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Deanna L Kelly
- From the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- Institute of Genomic Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
37
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
38
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
39
|
Altın H, Delice B, Yıldırım B, Demircan T, Yıldırım S. Temporal microbiome changes in axolotl limb regeneration: Stage-specific restructuring of bacterial and fungal communities with a Flavobacterium bloom during blastema proliferation. Wound Repair Regen 2024. [PMID: 39105277 DOI: 10.1111/wrr.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The intricate relationship between regeneration and microbiota has recently gained attention, spanning diverse model organisms. Axolotl (Ambystoma mexicanum) is a critically endangered salamander species and a model organism for regenerative and developmental biology. Despite its significance, a noticeable gap exists in understanding the interplay between axolotl regeneration and its microbiome. Here, we analyse in depth bacterial 16S rRNA amplicon dataset that we reported before as data resource and profile fungal community by sequencing ITS amplicons at the critical stages of limb regeneration (0-1-4-7-30-60 days post amputation, 'dpa'). Results reveal a decline in richness and evenness in the course of limb regeneration, with bacterial community richness recovering beyond 30 dpa unlike fungi community. Beta diversity analysis reveals precise restructuring of the bacterial community along the three phases of limb regeneration, contrasting with less congruent changes in the fungal community. Temporal dynamics of the bacterial community highlight prevalent anaerobic bacteria in initiation phase and Flavobacterium bloom in the early phase correlating with limb blastema proliferation. Predicted functional analysis mirrors these shifts, emphasising a transition from amino acid metabolism to lipid metabolism control. Fungal communities shift from Blastomycota to Ascomycota dominance in the late regeneration stage. Our findings provide ecologically relevant insights into stage specific role of microbiome contributions to axolotl limb regeneration.
Collapse
Affiliation(s)
- Hanne Altın
- Department of Medical Microbiology, Istanbul Medipol University International School of Medicine, Istanbul, Türkiye
| | - Büşra Delice
- Department of Medical Microbiology, Istanbul Medipol University International School of Medicine, Istanbul, Türkiye
| | - Berna Yıldırım
- Department of Histology and Embryology, Atlas University School of Medicine, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Turan Demircan
- Medical Biology Department, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Süleyman Yıldırım
- Department of Medical Microbiology, Istanbul Medipol University International School of Medicine, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
40
|
Ling Z, Lan Z, Cheng Y, Liu X, Li Z, Yu Y, Wang Y, Shao L, Zhu Z, Gao J, Lei W, Ding W, Liao R. Altered gut microbiota and systemic immunity in Chinese patients with schizophrenia comorbid with metabolic syndrome. J Transl Med 2024; 22:729. [PMID: 39103909 PMCID: PMC11302365 DOI: 10.1186/s12967-024-05533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in β-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China.
| | - Zhiyong Lan
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhimeng Li
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Ying Yu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
- Department of Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Rongxian Liao
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China.
| |
Collapse
|
41
|
Liu Y, Shu Y, Huang Y, Tan J, Wang F, Tang L, Fang T, Yuan S, Wang L. Microbial Biogeography along the Gastrointestinal Tract of a Wild Chinese Muntjac ( Muntiacus reevesi). Microorganisms 2024; 12:1587. [PMID: 39203429 PMCID: PMC11356339 DOI: 10.3390/microorganisms12081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota plays an important role in host nutrient absorption, immune function, and behavioral patterns. Much research on the gut microbiota of wildlife has focused on feces samples, so the microbial composition along the gastrointestinal tract of wildlife is not well reported. To address this gap, we performed high-throughput sequencing of 16s rRNA genes and ITs rRNA genes in the gastrointestinal contents of a wild adult male Chinese muntjac (Muntiacus reevesi) to comparatively analyze the microbial diversity of different gastrointestinal regions. The results showed that the dominant bacterial phyla were Firmicutes (66.19%) and Bacteroidetes (22.7%), while the dominant fungal phyla were Ascomycetes (72.81%). The highest bacterial diversity was found in the stomach, and the highest fungal diversity was found in the cecum. The microbial communities of the large intestine and small intestine were of similar structures, which were distinct from that of the stomach. These results would facilitate the continued exploration of the microbial composition and functional diversity of the gastrointestinal tract of wild Chinese muntjacs and provide a scientific basis for microbial resource conservation of more wildlife.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Yan Shu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Yuling Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Jinchao Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Fengmei Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Lin Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Tingting Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Shibin Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Le Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| |
Collapse
|
42
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
43
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
44
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
45
|
Shekarabi A, Qureishy I, Puglisi CH, Dalseth M, Vuong HE. Host-microbe interactions: communication in the microbiota-gut-brain axis. Curr Opin Microbiol 2024; 80:102494. [PMID: 38824840 PMCID: PMC11323153 DOI: 10.1016/j.mib.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Animals harbor a diverse array of symbiotic micro-organisms that coexist in communities across different body sites. These microbes maintain host homeostasis and respond to environmental insults to impact host physiological processes. Trillions of indigenous microbes reside in the gastrointestinal tract and engage with the host central nervous system (microbiota-gut-brain axis) by modulating immune responses, interacting with gut intrinsic and extrinsic nervous system, and regulating neuromodulators and biochemicals. These gut microbiota to brain signaling pathways are constantly informed by each other and are hypothesized to mediate brain health across the lifespan. In this review, we will examine the crosstalk of gut microbiota to brain communications in neurological pathologies, with an emphasis on microbial metabolites and neuromodulators, and provide a discussion of recent advances that help elucidate the microbiota as a therapeutic target for treating brain and behavioral disorders.
Collapse
Affiliation(s)
- Aryan Shekarabi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Izhan Qureishy
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Chloe H Puglisi
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Marge Dalseth
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA
| | - Helen E Vuong
- University of Minnesota Twin-Cities, Department of Pediatrics, Neonatology Division, USA.
| |
Collapse
|
46
|
Doré J, Sansonetti PJ. [The human microbiome: 340 years of history, 140 years of interrogations, technological innovations and emergence of "microbial medicine"]. Med Sci (Paris) 2024; 40:654-660. [PMID: 39303118 DOI: 10.1051/medsci/2024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
For 350 years, we have known that the human body hosts microbes, then called "animalcules". For over a century, following the demonstration of the role of some of these microbes in diseases, questions have arisen about the role of the largely predominant ones colonizing human skin and mucous surfaces, particularly the rich microbial ecosystem of the intestine, the gut microbiota. From the invention of germ-free life - axenism - which experimentally validated the human-microbe symbiosis, resulting from a long coevolution, to the development of anaerobic culture methods, then to the invention of molecular diagnosis, deep sequencing opening up metagenomic and omics approaches in general, a remarkable race has taken place between technological innovations and conceptual advances. This race, beyond the exhaustive description of the microbiota in its intra- and inter-human diversity, and the essential symbiotic functions of the microbiome, has paved the way for a new field of medicine: microbial medicine.
Collapse
Affiliation(s)
- Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | | |
Collapse
|
47
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
48
|
Zhang X, Chen J, He F, Du W, Yu X. Assessing the causal effects of Eubacterium and Rumphococcus on constipation: a Mendelian randomized study. Front Microbiol 2024; 15:1376232. [PMID: 39144218 PMCID: PMC11324052 DOI: 10.3389/fmicb.2024.1376232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Constipation is affected by a number of risk variables, including cardiovascular disease and growth factors. However, the impacts of gut flora on constipation incidence has not been shown. This work, Single-Variable Mendelian Randomization (SVMR) was utilized to estimate the causal relationship between the Eubacterium genus or Rumphococcus, and constipation. Methods Data for constipation, Eubacterium genus and Rumphococcus were taken from the Integrated Epidemiology Unit (IEU) open GWAS database. Including 218,792 constipation samples, and there were 16,380,466 Single Nucleotide Polymorphisms (SNPs) for constipation. The ids of Eubacterium genus and Rumphococcus were sourced from MiBioGen database. The sample count for the Eubacterium genus was 17,380, with 656 SNPs. In addition, the sample size for Rumphococcus was 15,339, with 545 SNPs. The SVMR was performed to assess the risk of Eubacterium genus and Rumphococcus in constipation using weighted median, MR Egger, simple mode, inverse variance weighted (IVW), and weighted mode. Finally, we did a sensitivity analysis that included a heterogeneity, horizontal pleiotropy, and Leave-One-Out (LOO) test to examine the viability of the MR data. Results The SVMR revealed that the Eubacterium genus and Rumphococcus were causally connected to constipation, with Rumphococcus (P = 0.042, OR = 1.074) as a hazardous factor and Eubacterium genus (P = 0.004, OR = 0.909) as a safety factor. Sensitivity tests then revealed the absence of variability between the constipation and the exposure factors (Eubacterium genus and Rumphococcus). Additionally, there were no other confounding factors and the examined SNPs could only influence constipation through the aforementioned exposure factors, respectively. As a result, the MR results were fairly robust. Conclusion Our investigation verified the causal links between the Eubacterium genus or Rumphococcus, and constipation, with greater Rumphococcus expression increasing the likelihood of constipation and the opposite being true for the Eubacterium genus.
Collapse
Affiliation(s)
- Xiao Zhang
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Jiang Chen
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Feng He
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Wenchun Du
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Xianhao Yu
- Guizhou University of Commerce, Computer and Information Engineering College, Guiyang, China
| |
Collapse
|
49
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
50
|
Rosenfeld CS. Should Pregnant Women Consume Probiotics to Combat Endocrine-Disrupting Chemical-Induced Health Risks to Their Unborn Offspring? Biomedicines 2024; 12:1628. [PMID: 39200093 PMCID: PMC11351870 DOI: 10.3390/biomedicines12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have become so pervasive in our environment and daily lives that it is impossible to avoid contact with such compounds, including pregnant women seeking to minimize exposures to themselves and their unborn children. Developmental exposure of humans and rodent models to bisphenol A (BPA) and other EDCs is linked to increased anxiogenic behaviors, learning and memory deficits, and decreased socio-sexual behaviors. Prenatal exposure to BPA and other EDCs leads to longstanding and harmful effects on gut microbiota with reductions in beneficial bacteria, i.e., gut dysbiosis, and such microbial changes are linked to host changes in fecal metabolites, including those involved in carbohydrate metabolism and synthesis, and neurobehavioral alterations in adulthood, in particular, social and cognitive deficits. Gut dysbiosis is increasingly being recognized as a key driver of a myriad of diseases, ranging from metabolic, cardiovascular, reproductive, and neurobehavioral disorders via the gut-microbiome-brain axis. Thus, EDCs might induce indirect effects on physical and mental health by acting as microbiome-disrupting chemicals. Findings raise the important question as to whether pregnant women should consume a probiotic supplement to mitigate pernicious effects of EDCs, especially BPA, on themselves and their unborn offspring. Current studies investigating the effects of maternal probiotic supplementation on pregnant women's health and that of their unborn offspring will be reviewed. Data will inform on the potential application of probiotic supplementation to reverse harmful effects of EDCs, especially BPA, in pregnant women unwittingly exposed to these compounds and striving to give their offspring the best start in life.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|