1
|
Imamura F. Effects of prenatal alcohol exposure on the olfactory system development. Front Neural Circuits 2024; 18:1408187. [PMID: 38818309 PMCID: PMC11138157 DOI: 10.3389/fncir.2024.1408187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Orton SM, Millis K, Choate P. Epigenetics of Trauma Transmission and Fetal Alcohol Spectrum Disorder: What Does the Evidence Support? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6706. [PMID: 37681846 PMCID: PMC10487479 DOI: 10.3390/ijerph20176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) results from teratogenic impacts of alcohol consumption during pregnancy. Trauma and prenatal alcohol exposure (PAE) can both cause neurodevelopmental impairment, and it has been proposed that FASD can amplify effects of trauma. Certain PAE and trauma effects are mediated via epigenetic mechanisms. The objective of this review is to present the current evidence for epigenetics in trauma transmission as it relates to FASD, to help bridge a potential knowledge gap for social workers and related health professionals. We include a primer on epigenetic mechanisms and inheritance, followed by a summary of the current biomedical evidence supporting intergenerational and transgenerational epigenetic transmission of trauma, its relevance to FASD, the intersection with social transmission, and finally the application to social work. We propose potential models of transmission, considering where social and epigenetic pathways may intersect and/or compound across generations. Overall, we aim to provide a better understanding of epigenetic-trauma transmission for its application to health professions, in particular which beliefs are (and are not) evidence-based. We discuss the lack of research and challenges of studying epigenetic transmission in humans and identify the need for public health interventions and best practices that are based on the current evidence.
Collapse
Affiliation(s)
- Sarah M. Orton
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Kimberly Millis
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Peter Choate
- Faculty of Health, Community & Education, Department of Child Studies and Social Work, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| |
Collapse
|
3
|
Sautreuil C, Lecointre M, Derambure C, Brasse-Lagnel C, Leroux P, Laquerrière A, Nicolas G, Gil S, Savage DD, Marret S, Marguet F, Falluel-Morel A, Gonzalez BJ. Prenatal Alcohol Exposure Impairs the Placenta-Cortex Transcriptomic Signature, Leading to Dysregulation of Angiogenic Pathways. Int J Mol Sci 2023; 24:13484. [PMID: 37686296 PMCID: PMC10488081 DOI: 10.3390/ijms241713484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023] Open
Abstract
Although alcohol consumption during pregnancy is a major cause of behavioral and learning disabilities, most FASD infants are late- or even misdiagnosed due to clinician's difficulties achieving early detection of alcohol-induced neurodevelopmental impairments. Neuroplacentology has emerged as a new field of research focusing on the role of the placenta in fetal brain development. Several studies have reported that prenatal alcohol exposure (PAE) dysregulates a functional placenta-cortex axis, which is involved in the control of angiogenesis and leads to neurovascular-related defects. However, these studies were focused on PlGF, a pro-angiogenic factor. The aim of the present study is to provide the first transcriptomic "placenta-cortex" signature of the effects of PAE on fetal angiogenesis. Whole mouse genome microarrays of paired placentas and cortices were performed to establish the transcriptomic inter-organ "placenta-cortex" signature in control and PAE groups at gestational day 20. Genespring comparison of the control and PAE signatures revealed that 895 and 1501 genes were only detected in one of two placenta-cortex expression profiles, respectively. Gene ontology analysis indicated that 107 of these genes were associated with vascular development, and String protein-protein interaction analysis showed that they were associated with three functional clusters. PANTHER functional classification analysis indicated that "intercellular communication" was a significantly enriched biological process, and 27 genes were encoded for neuroactive ligand/receptors interactors. Protein validation experiments involving Western blot for one ligand-receptor couple (Agt/AGTR1/2) confirmed the transcriptomic data, and Pearson statistical analysis of paired placentas and fetal cortices revealed a negative correlation between placental Atg and cortical AGTR1, which was significantly impacted by PAE. In humans, a comparison of a 38WG control placenta with a 36WG alcohol-exposed placenta revealed low Agt immunolabeling in the syncytiotrophoblast layer of the alcohol case. In conclusion, this study establishes the first transcriptomic placenta-cortex signature of a developing mouse. The data show that PAE markedly unbalances this inter-organ signature; in particular, several ligands and/or receptors involved in the control of angiogenesis. These data support that PAE modifies the existing communication between the two organs and opens new research avenues regarding the impact of placental dysfunction on the neurovascular development of fetuses. Such a signature would present a clinical value for early diagnosis of brain defects in FASD.
Collapse
Affiliation(s)
- Camille Sautreuil
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Maryline Lecointre
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Céline Derambure
- University Rouen Normandie, INSERM U1245, Team Genetic Predisposition to Cancer, 76000 Rouen, France;
- Joint Genomics Facilities, Rouen University, 76183 Rouen, France
| | - Carole Brasse-Lagnel
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Philippe Leroux
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Annie Laquerrière
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Pathology, Rouen University Hospital, 76183 Rouen, France
| | - Gaël Nicolas
- University Rouen Normandie, INSERM U1245, Team Genomics for Brain Disorders, 76183 Rouen, France;
| | - Sophie Gil
- INSERM UMR-S1144, Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France;
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Stéphane Marret
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, University Rouen Normandie and CHU Rouen, 76183 Rouen, France
| | - Florent Marguet
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Pathology, Rouen University Hospital, 76183 Rouen, France
| | - Anthony Falluel-Morel
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Bruno J. Gonzalez
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| |
Collapse
|
4
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
5
|
Sambo D, Gohel C, Yuan Q, Sukumar G, Alba C, Dalgard CL, Goldman D. Cell type-specific changes in Wnt signaling and neuronal differentiation in the developing mouse cortex after prenatal alcohol exposure during neurogenesis. Front Cell Dev Biol 2022; 10:1011974. [PMID: 36544903 PMCID: PMC9761331 DOI: 10.3389/fcell.2022.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2022] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) encompasses an array of effects of prenatal alcohol exposure (PAE), including physical abnormalities and cognitive and behavioral deficits. Disruptions of cortical development have been implicated in multiple PAE studies, with deficits including decreased progenitor proliferation, disrupted neuronal differentiation, aberrant radial migration of pyramidal neurons, and decreased cortical thickness. While several mechanisms of alcohol teratogenicity have been explored, how specific cell types in the brain at different developmental time points may be differentially affected by PAE is still poorly understood. In this study, we used single nucleus RNA sequencing (snRNAseq) to investigate whether moderate PAE from neurulation through peak cortical neurogenesis induces cell type-specific transcriptomic changes in the developing murine brain. Cluster analysis identified 25 neuronal cell types, including subtypes of radial glial cells (RGCs), intermediate progenitor cells (IPCs), projection neurons, and interneurons. Only Wnt-expressing cortical hem RGCs showed a significant decrease in the percentage of cells after PAE, with no cell types showing PAE-induced apoptosis as measured by caspase expression. Cell cycle analysis revealed only a subtype of RGCs expressing the downstream Wnt signaling transcription factor Tcf7l2 had a decreased percentage of cells in the G2/M phase of the cell cycle, suggesting decreased proliferation in this RGC subtype and further implicating disrupted Wnt signaling after PAE at this early developmental timepoint. An increased pseudotime score in IPC and projection neuron cell types indicated that PAE led to increased or premature differentiation of these cells. Biological processes affected by PAE included the upregulation of pathways related to synaptic activity and neuronal differentiation and downregulation of pathways related to chromosome structure and the cell cycle. Several cell types showed a decrease in Wnt signaling pathways, with several genes related to Wnt signaling altered by PAE in multiple cell types. As Wnt has been shown to promote proliferation and inhibit differentiation at earlier stages in development, the downregulation of Wnt signaling may have resulted in premature neuronal maturation of projection neurons and their intermediate progenitors. Overall, these findings provide further insight into the cell type-specific effects of PAE during early corticogenesis.
Collapse
Affiliation(s)
- Danielle Sambo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Chiraag Gohel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Camille Alba
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States,*Correspondence: David Goldman,
| |
Collapse
|
6
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
7
|
Gillis RF, Palmour RM. mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder. J Neurodev Disord 2022; 14:21. [PMID: 35305552 PMCID: PMC8934503 DOI: 10.1186/s11689-022-09427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. Methods Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. Results and discussion Statistical analysis identified a preferential downregulation of expression when interrogating the factor ‘alcohol’ with a balanced effect of upregulation vs. downregulation for the independent variable ‘age’. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. Conclusion Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09427-z.
Collapse
|
8
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
9
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
10
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
11
|
Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman J, Jacobson M, Leong J, Tan P, Pavlidis P. Curation of over 10 000 transcriptomic studies to enable data reuse. Database (Oxford) 2021; 2021:6143045. [PMID: 33599246 PMCID: PMC7904053 DOI: 10.1093/database/baab006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.
Collapse
Affiliation(s)
- Nathaniel Lim
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada,Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Stepan Tesar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Manuel Belmadani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Guillaume Poirier-Morency
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Burak Ogan Mancarci
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jordan Sicherman
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Justin Leong
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Patrick Tan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | | |
Collapse
|
12
|
Shi M, Ren S, Chen H, Li J, Huang C, Li Y, Han Y, Li Y, Sun Z, Chen X, Xiong Z. Alcohol drinking inhibits NOTCH-PAX9 signaling in esophageal squamous epithelial cells. J Pathol 2021; 253:384-395. [PMID: 33314197 DOI: 10.1002/path.5602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Alcohol drinking has been established as a major risk factor for esophageal diseases. Our previous study showed that ethanol exposure inhibited PAX9 expression in human esophageal squamous epithelial cells in vitro and in vivo. In this study, we aimed to investigate the molecular pathways through which alcohol drinking suppresses PAX9 in esophageal squamous epithelial cells. We first demonstrated the inhibition of NOTCH by ethanol exposure in vitro. NOTCH regulated PAX9 expression in KYSE510 and KYSE410 cells in vitro and in vivo. RBPJ and NOTCH intracellular domain (NIC) D1 ChIP-PCR confirmed Pax9 as a direct downstream target of NOTCH signaling in mouse esophagus. NOTCH inhibition by alcohol drinking was further validated in mouse esophagus and human tissue samples. In conclusion, ethanol exposure inhibited NOTCH signaling and thus suppressed PAX9 expression in esophageal squamous epithelial cells in vitro and in vivo. Our data support a novel mechanism of alcohol-induced esophageal injury through the inhibition of NOTCH-PAX9 signaling. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Menghan Shi
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China.,Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Shuang Ren
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China.,Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Hao Chen
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Jing Li
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, PR China
| | - Caizhi Huang
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yahui Li
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yuning Han
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, PR China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, PR China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
13
|
Mohammad S, Page SJ, Sasaki T, Ayvazian N, Rakic P, Kawasawa YI, Hashimoto-Torii K, Torii M. Long-term spatial tracking of cells affected by environmental insults. J Neurodev Disord 2020; 12:38. [PMID: 33327938 PMCID: PMC7745478 DOI: 10.1186/s11689-020-09339-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/13/2020] [Indexed: 11/15/2022] Open
Abstract
Background Harsh environments surrounding fetuses and children can induce cellular damage in the developing brain, increasing the risk of intellectual disability and other neurodevelopmental disorders such as schizophrenia. However, the mechanisms by which early damage leads to disease manifestation in later life remain largely unknown. Previously, we demonstrated that the activation of heat shock (HS) signaling can be utilized as a unique reporter to label the cells that undergo specific molecular/cellular changes upon exposure to environmental insults throughout the body. Since the activation of HS signaling is an acute and transient event, this approach was not intended for long-term tracing of affected cells after the activation has diminished. In the present study, we generated new reporter transgenic mouse lines as a novel tool to achieve systemic and long-term tracking of affected cells and their progeny. Methods The reporter transgenic mouse system was designed so that the activation of HS signaling through HS response element (HSE) drives flippase (FLPo)-flippase recognition target (FRT) recombination-mediated permanent expression of the red fluorescent protein (RFP), tdTomato. With a priority on consistent and efficient assessment of the reporter system, we focused on intraperitoneal (i.p.) injection models of high-dose, short prenatal exposure to alcohol (ethanol) and sodium arsenite (ethanol at 4.0 g/kg/day and sodium arsenite at 5.0 mg/kg/day, at embryonic day (E) 12 and 13). Long-term reporter expression was examined in the brain of reporter mice that were prenatally exposed to these insults. Electrophysiological properties were compared between RFP+ and RFP− cortical neurons in animals prenatally exposed to arsenite. Results We detected RFP+ neurons and glia in the brains of postnatal mice that had been prenatally exposed to alcohol or sodium arsenite. In animals prenatally exposed to sodium arsenite, we also detected reduced excitability in RFP+ cortical neurons. Conclusion The reporter transgenic mice allowed us to trace the cells that once responded to prenatal environmental stress and the progeny derived from these cells long after the exposure in postnatal animals. Tracing of these cells indicates that the impact of prenatal exposure on neural progenitor cells can lead to functional abnormalities in their progeny cells in the postnatal brain. Further studies using more clinically relevant exposure models are warranted to explore this mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09339-w.
Collapse
Affiliation(s)
- Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Stephen J Page
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Nicholas Ayvazian
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Institute of Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Paudel P, Pierotti C, Lozano E, Amoah SK, Gardiner AS, Caldwell KK, Allan AM, Mellios N. Prenatal Alcohol Exposure Results in Sex-Specific Alterations in Circular RNA Expression in the Developing Mouse Brain. Front Neurosci 2020; 14:581895. [PMID: 33304235 PMCID: PMC7693437 DOI: 10.3389/fnins.2020.581895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are heterogeneous disorders associated with alcohol exposure to the developing fetus that are characterized by a range of adverse neurodevelopmental deficits. Despite the numerous genomics and genetic studies on FASD models, the comprehensive molecular understanding of the mechanisms that underlie FASD-related neurodevelopmental deficits remains elusive. Circular RNAs (circRNAs) are a subtype of long non-coding RNAs that are derived from back-splicing and covalent joining of exons and/or introns of protein-coding genes. Recent studies have shown that circRNAs are highly enriched in the brain, where they are developmentally regulated. However, the role of the majority of brain-enriched circRNAs in normal and pathological brain development and function has not been explored yet. Here we carried out the first systematic profiling of circRNA expression in response to prenatal alcohol exposure (PAE) in male and female embryonic day 18 (E18) whole brains. We observed that the changes in circRNA expression in response to PAE were notably sex-specific and that PAE tended to erase most of the sex-specificity in circRNA expression present in control (saccharin-treated) mice. On the other hand, RNA sequencing (RNA-seq) in the same samples showed that changes in protein-coding gene expression were not predominantly sex-specific. Using circRNA quantitative real-time PCR (qRT-PCR), we validated that circSatb2, which is generated from the special AT-rich sequence-binding protein 2 (Satb2) gene, is significantly upregulated in the brain of E18 male PAE mice. We also show that circPtchd2, a circRNA synthesized from dispatched RND transporter family member 3 (Disp3, also known as Ptchd2), exhibits significantly higher expression in E18 control but not PAE female mouse brain relative to males. Taken together, our results demonstrate that PAE differentially alters circRNA expression in the developing brain in a sex-specific manner.
Collapse
Affiliation(s)
- Praveen Paudel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Caroline Pierotti
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Evelyn Lozano
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Stephen K. Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Autophagy Inflammation and Metabolism (AIM) Center, Albuquerque, NM, United States
| | - Amy S. Gardiner
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kevin K. Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrea M. Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Autophagy Inflammation and Metabolism (AIM) Center, Albuquerque, NM, United States
| |
Collapse
|
15
|
Mohammad S, Page SJ, Wang L, Ishii S, Li P, Sasaki T, Basha A, Salzberg A, Quezado Z, Imamura F, Nishi H, Isaka K, Corbin JG, Liu JS, Kawasawa YI, Torii M, Hashimoto-Torii K. Kcnn2 blockade reverses learning deficits in a mouse model of fetal alcohol spectrum disorders. Nat Neurosci 2020; 23:533-543. [PMID: 32203497 PMCID: PMC7131887 DOI: 10.1038/s41593-020-0592-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Learning disabilities are hallmarks of congenital conditions caused by prenatal exposure to harmful agents. Those include Fetal Alcohol Spectrum Disorders (FASD) with a wide range of cognitive deficiencies including impaired motor skill development. While these effects have been well characterized, the molecular effects that bring about these behavioral consequences remain to be determined. We have previously found that the acute molecular responses to alcohol in the embryonic brain are stochastic, varying among neural progenitor cells. However, the pathophysiological consequences stemming from these heterogeneous responses remain unknown. Here we show that acute responses to alcohol in progenitor cells alter gene expression in their descendant neurons. Among the altered genes, an increase of the calcium-activated potassium channel Kcnn2 in the motor cortex correlates with motor learning deficits in the mouse model of FASD. Pharmacologic blockade of Kcnn2 improves these learning deficits, suggesting Kcnn2 blockers as a novel intervention for learning disabilities in FASD.
Collapse
Affiliation(s)
- Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Stephen J Page
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Li Wang
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Wenzhou Medical University, Ouhai, Wenzhou, China
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Aiesha Basha
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Anna Salzberg
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zenaide Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Hospital, Washington, DC, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Judy S Liu
- Department of Neurology, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
16
|
Delatour LC, Yeh PWL, Yeh HH. Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cereb Cortex 2020; 30:1735-1751. [PMID: 31647550 PMCID: PMC7132917 DOI: 10.1093/cercor/bhz199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses a range of cognitive and behavioral deficits, with aberrances in the function of cerebral cortical pyramidal neurons implicated in its pathology. However, the mechanisms underlying these aberrances, including whether they persist well beyond ethanol exposure in utero, remain to be explored. We addressed these issues by employing a mouse model of FASD in which pregnant mice were exposed to binge-type ethanol from embryonic day 13.5 through 16.5. In both male and female offspring (postnatal day 28-32), whole-cell patch clamp recording of layer V/VI somatosensory cortex pyramidal neurons revealed increases in the frequency of excitatory and inhibitory postsynaptic currents. Furthermore, expressing channelrhodopsin in either GABAergic interneurons (Nkx2.1Cre-Ai32) or glutamatergic pyramidal neurons (Emx1IRES Cre-Ai32) revealed a shift in optically evoked paired-pulse ratio. These findings are consistent with an excitatory-inhibitory imbalance with prenatal ethanol exposure due to diminished inhibitory but enhanced excitatory synaptic strength. Prenatal ethanol exposure also altered the density and morphology of spines along the apical dendrites of pyramidal neurons. Thus, while both presynaptic and postsynaptic mechanisms are affected following prenatal exposure to ethanol, there is a prominent presynaptic component that contributes to altered inhibitory and excitatory synaptic transmission in the somatosensory cortex.
Collapse
Affiliation(s)
- Laurie C Delatour
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
17
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
18
|
Bottom RT, Abbott CW, Huffman KJ. Rescue of ethanol-induced FASD-like phenotypes via prenatal co-administration of choline. Neuropharmacology 2020; 168:107990. [PMID: 32044264 DOI: 10.1016/j.neuropharm.2020.107990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Maternal consumption of alcohol during pregnancy can generate a multitude of deficits in the offspring. Fetal Alcohol Spectrum Disorders, or FASD, describe a palette of potentially life-long phenotypes that result from exposure to ethanol during human gestation. There is no cure for FASD and cognitive-behavioral therapies typically have low success rates, especially in severe cases. The neocortex, responsible for complex cognitive and behavioral function, is altered by prenatal ethanol exposure (PrEE). Supplementation with choline, an essential nutrient, during the prenatal ethanol insult has been associated with a reduction of negative outcomes associated with PrEE. However, choline's ability to prevent deficits within the developing neocortex, as well as the underlying mechanisms, remain unclear. Here, we exposed pregnant mice to 25% ethanol in addition to a 642 mg/L choline chloride supplement throughout gestation to determine the impact of choline supplementation on neocortical and behavioral development in ethanol-exposed offspring. We found that concurrent choline supplementation prevented gross developmental abnormalities associated with PrEE including reduced body weight, brain weight, and cortical length as well as partially ameliorated PrEE-induced abnormalities in intraneocortical circuitry. Additionally, choline supplementation prevented altered expression of RZRβ and Id2, two genes implicated in postmitotic patterning of neocortex, and global DNA hypomethylation within developing neocortex. Lastly, choline supplementation prevented sensorimotor behavioral dysfunction and partially ameliorated increased anxiety-like behavior observed in PrEE mice, as assessed by the Suok and Ledge tests. Our results suggest that choline supplementation may represent a potent preventative measure for the adverse outcomes associated with PrEE.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Charles W Abbott
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA; Dept. of Psychology, University of California, Riverside; 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Hwang HM, Ku RY, Hashimoto-Torii K. Prenatal Environment That Affects Neuronal Migration. Front Cell Dev Biol 2019; 7:138. [PMID: 31380373 PMCID: PMC6652208 DOI: 10.3389/fcell.2019.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Migration of neurons starts in the prenatal period and continues into infancy. This developmental process is crucial for forming a proper neuronal network, and the disturbance of this process results in dysfunction of the brain such as epilepsy. Prenatal exposure to environmental stress, including alcohol, drugs, and inflammation, disrupts neuronal migration and causes neuronal migration disorders (NMDs). In this review, we summarize recent findings on this topic and specifically focusing on two different modes of migration, radial, and tangential migration during cortical development. The shared mechanisms underlying the NMDs are discussed by comparing the molecular changes in impaired neuronal migration under exposure to different types of prenatal environmental stress.
Collapse
Affiliation(s)
- Hye M Hwang
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Ray Y Ku
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
20
|
Olateju OI, Ihunwo AO, Manger PR. Changes to the somatosensory barrel cortex in C57BL/6J mice at early adulthood (56 days post-natal) following prenatal alcohol exposure. J Chem Neuroanat 2018; 96:49-56. [PMID: 30572114 DOI: 10.1016/j.jchemneu.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/29/2022]
Abstract
Children with Fetal Alcohol Spectrum Disorder (FASD) have impaired sensory processing skills as a result of neurodevelopmental anomalies. The somatosensory barrel field of rodent brain is a readily accessible model for studying the effects of alcohol exposure. Within the barrel field, the posterior medial barrel subfield (PMBSF) receives sensory inputs from the large vibrissae on the contralateral face. This study reports on the consequence of prenatal exposure to alcohol on the somatosensory cortices of mice later in life. Two control groups, a sucrose and a non-treated control, were also examined. At postnatal day (PND) 56 the cerebral hemisphere of mice from each group were processed for cytochrome oxidase reactivity. In contrast to previous studies, there were no significant differences in the mean areas of: (I) the PMBSF enclosure, (II) the PMBSF barrels, (III) the individual PMBSF barrels and (IV) the septal portion of the PMBSF in the alcohol group compared to the controls. However barrel sizes in rows D and E in the alcohol group were significantly reduced, indicating an alcohol-induced damage on the barrel development and which may reduce the amount of the cortex devoted to processing somatosensory input- a common defect seen in children with FASD.
Collapse
Affiliation(s)
- Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
21
|
Oshigiri T, Sasaki T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Oka S, Morita T, Hirota R, Yoshimoto M, Yamashita T, Hashimoto-Torii K, Honmou O. Intravenous Infusion of Mesenchymal Stem Cells Alters Motor Cortex Gene Expression in a Rat Model of Acute Spinal Cord Injury. J Neurotrauma 2018; 36:411-420. [PMID: 29901416 DOI: 10.1089/neu.2018.5793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent evidence has demonstrated that remote responses in the brain, as well as local responses in the injured spinal cord, can be induced after spinal cord injury (SCI). Intravenous infusion of mesenchymal stem cells (MSCs) has been shown to provide functional improvements in SCI through local therapeutic mechanisms that provide neuroprotection, stabilization of the blood-spinal cord barrier, remyelination, and axonal sprouting. In the present study, we examined the brain response that might be associated with the functional improvements induced by the infused MSCs after SCI. Genome-wide RNA profiling was performed in the motor cortex of SCI rats at 3 days post-MSC or vehicle infusion. Then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data revealed that the "behaviorally-associated differentially expressed genes (DEGs)" were identified by the Pearson's correlation analysis with the behavioral function, suggesting that the "behaviorally-associated DEGs" may be related to the functional recovery after systemic infusion of MSCs in SCI. These results suggested that the infused MSCs alter the gene expression signature in the brain and that these expression changes may contribute to the improved function in SCI.
Collapse
Affiliation(s)
- Tsutomu Oshigiri
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,2 Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Sasaki
- 3 Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| | - Masanori Sasaki
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuko Kataoka-Sasaki
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Morita
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,2 Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryosuke Hirota
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,2 Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsunori Yoshimoto
- 2 Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- 2 Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazue Hashimoto-Torii
- 3 Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC.,4 Department of Pediatrics, Pharmacology, and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC.,5 Department of Neurobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Osamu Honmou
- 1 Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Saito A, Taniguchi Y, Kim SH, Selvakumar B, Perez G, Ballinger MD, Zhu X, Sabra J, Jallow M, Yan P, Ito K, Rajendran S, Hirotsune S, Wynshaw-Boris A, Snyder SH, Sawa A, Kamiya A. Developmental Alcohol Exposure Impairs Activity-Dependent S-Nitrosylation of NDEL1 for Neuronal Maturation. Cereb Cortex 2018; 27:3918-3929. [PMID: 27371763 DOI: 10.1093/cercor/bhw201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuronal nitric oxide synthase is involved in diverse signaling cascades that regulate neuronal development and functions via S-Nitrosylation-mediated mechanism or the soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway activated by nitric oxide. Although it has been studied extensively in vitro and in invertebrate animals, effects on mammalian brain development and underlying mechanisms remain poorly understood. Here we report that genetic deletion of "Nos1" disrupts dendritic development, whereas pharmacological inhibition of the sGC/cGMP pathway does not alter dendritic growth during cerebral cortex development. Instead, nuclear distribution element-like (NDEL1), a protein that regulates dendritic development, is specifically S-nitrosylated at cysteine 203, thereby accelerating dendritic arborization. This post-translational modification is enhanced by N-methyl-D-aspartate receptor-mediated neuronal activity, the main regulator of dendritic formation. Notably, we found that disruption of S-Nitrosylation of NDEL1 mediates impaired dendritic maturation caused by developmental alcohol exposure, a model of developmental brain abnormalities resulting from maternal alcohol use. These results highlight S-Nitrosylation as a key activity-dependent mechanism underlying neonatal brain maturation and suggest that reduction of S-Nitrosylation of NDEL1 acts as a pathological factor mediating neurodevelopmental abnormalities caused by maternal alcohol exposure.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Yu Taniguchi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sun-Hong Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Balakrishnan Selvakumar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gabriel Perez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael D Ballinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Sabra
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariama Jallow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Priscilla Yan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shreenath Rajendran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Abeno, Osaka 545-8585, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
23
|
Abstract
The genome revolution represents a complete change on our view of biological systems. The quantitative determination of changes in all major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of developmental toxicity assessment both for wildlife and humans. This is especially true for disciplines, like teratology, which rely on studies in model organisms, as studies at lower levels of organization are difficult to implement. Rodents and frogs have been the favorite models for studying human reproductive and developmental disorders for decades. Recently, the study of the development of zebrafish embryos (ZE) is becoming a major alternative tool to adult animal testing. ZE intrinsic characteristics makes this model a unique system to analyze in vivo developmental alterations that only can be studied applying in toto approaches. Moreover, under actual legislations, ZE is considered as a replacement model (and therefore, excluded from animal welfare regulations) during the first 5 days after fertilization. Here we review the most important components of the zebrafish toolbox available for analyzing early stages of embryotoxic events that could eventually lead to teratogenesis.
Collapse
|
24
|
Miozzo F, Arnould H, de Thonel A, Schang AL, Sabéran-Djoneidi D, Baudry A, Schneider B, Mezger V. Alcohol exposure promotes DNA methyltransferase DNMT3A upregulation through reactive oxygen species-dependent mechanisms. Cell Stress Chaperones 2018; 23:115-126. [PMID: 28712054 PMCID: PMC5741586 DOI: 10.1007/s12192-017-0829-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Abundant evidence has accumulated showing that fetal alcohol exposure broadly modifies DNA methylation profiles in the brain. DNA methyltransferases (DNMTs), the enzymes responsible for DNA methylation, are likely implicated in this process. However, their regulation by ethanol exposure has been poorly addressed. Here, we show that alcohol exposure modulates DNMT protein levels through multiple mechanisms. Using a neural precursor cell line and primary mouse embryonic fibroblasts (MEFs), we found that ethanol exposure augments the levels of Dnmt3a, Dnmt3b, and Dnmt3l transcripts. We also unveil similar elevation of mRNA levels for other epigenetic actors upon ethanol exposure, among which the induction of lysine demethylase Kdm6a shows heat shock factor dependency. Furthermore, we show that ethanol exposure leads to specific increase in DNMT3A protein levels. This elevation not only relies on the upregulation of Dnmt3a mRNA but also depends on posttranscriptional mechanisms that are mediated by NADPH oxidase-dependent production of reactive oxygen species (ROS). Altogether, our work underlines complex regulation of epigenetic actors in response to alcohol exposure at both transcriptional and posttranscriptional levels. Notably, the upregulation of DNMT3A emerges as a prominent molecular event triggered by ethanol, driven by the generation of ROS.
Collapse
Affiliation(s)
- Federico Miozzo
- CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75205, Paris Cedex 13, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
- Département Hospitalo-Universitaire PROTECT, Paris, France
- Department of Genetics and Evolution, Sciences III, University of Geneva, Geneva, Switzerland
| | - Hélène Arnould
- INSERM UMR-S1124, Paris Cedex 6, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex 6, France
| | - Aurélie de Thonel
- CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75205, Paris Cedex 13, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
- Département Hospitalo-Universitaire PROTECT, Paris, France
| | - Anne-Laure Schang
- CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75205, Paris Cedex 13, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
- Département Hospitalo-Universitaire PROTECT, Paris, France
- UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75205, Paris Cedex 13, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
- Département Hospitalo-Universitaire PROTECT, Paris, France
| | - Anne Baudry
- INSERM UMR-S1124, Paris Cedex 6, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex 6, France
| | - Benoît Schneider
- INSERM UMR-S1124, Paris Cedex 6, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex 6, France.
| | - Valérie Mezger
- CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75205, Paris Cedex 13, France.
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France.
- Département Hospitalo-Universitaire PROTECT, Paris, France.
| |
Collapse
|
25
|
Kawasawa YI, Mohammad S, Son AI, Morizono H, Basha A, Salzberg AC, Torii M, Hashimoto-Torii K. WITHDRAWN:Genome-wide profiling of differentially spliced mRNAs in human fetal cortical tissue exposed to alcohol. Alcohol 2017. [DOI: 10.1016/j.alcohol.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Abstract
Excessive alcohol consumption results in significant changes in gene expression and isoforms due to altered mRNA splicing. As such, an intriguing possibility is that disturbances in alternative splicing are involved in key pathological pathways triggered by alcohol exposure. However, no resources have been available to systematically analyze this possibility at a genome-wide scale. Here, we performed RNA sequencing of human fetal cortical slices that were obtained at the late first trimester and exposed to ethanol or control medium. We report 382 events that were identified as changes affecting the ratio of splicing isoforms in the ethanol-exposed fetal human cortex. Additionally, previously unreported novel isoforms of several genes were also identified. These results provide a broad perspective on the post-transcriptional regulatory network underlying ethanol-induced pathogenesis in the developing human cortex.
Collapse
|
27
|
Heterogeneity of p53 dependent genomic responses following ethanol exposure in a developmental mouse model of fetal alcohol spectrum disorder. PLoS One 2017; 12:e0180873. [PMID: 28723918 PMCID: PMC5516996 DOI: 10.1371/journal.pone.0180873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/22/2017] [Indexed: 11/28/2022] Open
Abstract
Prenatal ethanol exposure can produce structural and functional deficits in the brain and result in Fetal Alcohol Spectrum Disorder (FASD). In rodent models acute exposure to a high concentration of alcohol causes increased apoptosis in the developing brain. A single causal molecular switch that signals for this increase in apoptosis has yet to be identified. The protein p53 has been suggested to play a pivotal role in enabling cells to engage in pro-apoptotic processes, and thus figures prominently as a hub molecule in the intracellular cascade of responses elicited by alcohol exposure. In the present study we examined the effect of ethanol-induced cellular and molecular responses in primary somatosensory cortex (SI) and hippocampus of 7-day-old wild-type (WT) and p53-knockout (KO) mice. We quantified apoptosis by active caspase-3 immunohistochemistry and ApopTag™ labeling, then determined total RNA expression levels in laminae of SI and hippocampal subregions. Immunohistochemical results confirmed increased incidence of apoptotic cells in both regions in WT and KO mice following ethanol exposure. The lack of p53 was not protective in these brain regions. Molecular analyses revealed a heterogeneous response to ethanol exposure that varied depending on the subregion, and which may go undetected using a global approach. Gene network analyses suggest that the presence or absence of p53 alters neuronal function and synaptic modifications following ethanol exposure, in addition to playing a classic role in cell cycle signaling. Thus, p53 may function in a way that underlies the intellectual and behavioral deficits observed in FASD.
Collapse
|
28
|
Ishii S, Torii M, Son AI, Rajendraprasad M, Morozov YM, Kawasawa YI, Salzberg AC, Fujimoto M, Brennand K, Nakai A, Mezger V, Gage FH, Rakic P, Hashimoto-Torii K. Variations in brain defects result from cellular mosaicism in the activation of heat shock signalling. Nat Commun 2017; 8:15157. [PMID: 28462912 PMCID: PMC5418582 DOI: 10.1038/ncomms15157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner. While Hsf1 is essential for protecting the embryonic brain from environmental stress, excessive activation impairs critical developmental events such as neuronal migration. Our results suggest that mosaic activation of Hsf1 within the embryonic brain in response to prenatal environmental stress exposure may contribute to the resulting generation of phenotypic variations observed in complex congenital brain disorders. Prenatal exposure to environmental stressors is known to impair cortical development. Here the authors show that upon exposure to stressors, the activation of Hsf1-Hsp signalling is highly variable among cells in the embryonic cortex of mice, and either too much or too little activation can result in defects in cortical development.
Collapse
Affiliation(s)
- Seiji Ishii
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia 20052, USA
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA
| | - Meenu Rajendraprasad
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.,Department of Biomedical Engineering, School of Engineering and Applied Science, George Washington University, Washington, District of Columbia 20052, USA
| | - Yury M Morozov
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA.,Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA
| | - Anna C Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | - Kristen Brennand
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA.,Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | - Valerie Mezger
- CNRS, UMR7216 Epigenetics and Cell Fate, Paris 75205, France.,University Paris Diderot, 75205 Paris, France.,Département Hospitalo-Universitaire DHU PROTECT, Paris 75019, France
| | - Fred H Gage
- Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
29
|
Detection of vulnerable neurons damaged by environmental insults in utero. Proc Natl Acad Sci U S A 2017; 114:2367-2372. [PMID: 28123061 DOI: 10.1073/pnas.1620641114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Development of prognostic biomarkers for the detection of prenatally damaged neurons before manifestations of postnatal disorders is an essential step for prevention and treatment of susceptible individuals. We have developed a versatile fluorescence reporter system in mice enabling detection of Heat Shock Factor 1 activation in response to prenatal cellular damage caused by exposure to various harmful chemical or physical agents. Using an intrautero electroporation-mediated reporter assay and transgenic reporter mice, we are able to identify neurons that survive prenatal exposure to harmful agents but remain vulnerable in postnatal life. This system may provide a powerful tool for exploring the pathogenesis and treatment of multiple disorders caused by exposure to environmental stress before symptoms become manifested, exacerbated, and/or irreversible.
Collapse
|
30
|
Valenzuela CF, Medina AE, Wozniak JR, Klintsova AY. Proceedings of the 2015 Annual Meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2016; 50:37-42. [PMID: 26695590 DOI: 10.1016/j.alcohol.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
The 2015 Fetal Alcohol Spectrum Disorders Study Group (FASDSG) meeting was titled "Basic Mechanisms and Translational Implications." Despite decades of basic science and clinical research, our understanding of the mechanisms by which ethanol affects fetal development is still in its infancy. The first keynote presentation focused on the role of heat shock protein pathways in the actions of ethanol in the developing brain. The second keynote presentation addressed the use of magnetoencephalography to characterize brain function in children with FASD. The conference also included talks by representatives from several government agencies, short presentations by junior and senior investigators that showcased the latest in FASD research, and award presentations. An important part of the meeting was the presentation of the 2015 Henry Rosett award to Dr. Michael Charness in honor of his achievements in research on FASD.
Collapse
|
31
|
Riar AK, Narasimhan M, Rathinam ML, Henderson GI, Mahimainathan L. Ethanol induces cytostasis of cortical basal progenitors. J Biomed Sci 2016; 23:6. [PMID: 26786850 PMCID: PMC4717586 DOI: 10.1186/s12929-016-0225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/11/2016] [Indexed: 12/01/2022] Open
Abstract
Background Developing brain is a major target for alcohol’s actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known. Methods We utilized spontaneously immortalized rat brain neuroblasts obtained from cultures of 18-day-old fetal rat cerebral cortices using in vitro ethanol exposures and an in utero binge model. In the in vitro acute model, cells were exposed to 86 mM ethanol for 8, 12 and 24 h. The second in vitro model comprised of chronic intermittent ethanol (CIE) exposure which consisted of 14 h of ethanol treatment followed by 10 h of withdrawal with three repetitions. Results E18 neuroblasts expressing Tbr2 representing immature basal progenitors displayed significant reduction of proliferation in response to ethanol in both the models. The decreased proliferation was accompanied by absence of apoptosis or autophagy as illustrated by FACS analysis and expression of apoptotic and autophagic markers. The BrdU incorporation assay indicated that ethanol enhanced the accumulation of cells at G1 with reduced cell number in S phase. In addition, the ethanol-inhibited basal neuroblasts proliferation was connected to decrease in cyclin D1 and Rb phosphorylation indicating cell cycle arrest. Further, in utero ethanol exposure in pregnant rats during E15-E18 significantly decreased Tbr2 and cyclin D1 positive cell number in cerebral cortex of embryos as assessed by cell sorting analysis by flow cytometry. Conclusions Altogether, the current findings demonstrate that ethanol impacts the expansion of basal progenitors by inducing cytostasis that might explain the anomalies of cortico-cerebral development associated with fetal alcohol syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0225-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanjot Kaur Riar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.,South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Mary Latha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - George I Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.,South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
32
|
Effects of binge ethanol exposure during first-trimester equivalent on corticothalamic neurons in Swiss Webster outbred mice. Neuroreport 2015; 26:1083-8. [DOI: 10.1097/wnr.0000000000000473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Gautam P, Warner TD, Kan EC, Sowell ER. Executive function and cortical thickness in youths prenatally exposed to cocaine, alcohol and tobacco. Dev Cogn Neurosci 2015; 16:155-165. [PMID: 25743199 PMCID: PMC4522382 DOI: 10.1016/j.dcn.2015.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/30/2022] Open
Abstract
Small and detrimental, albeit inconsistent, effects of prenatal cocaine exposure (PCE) during early childhood have been reported. The teratogenic effects of prenatal alcohol (PAE) and tobacco exposure (PTE) on neurobehavior are more firmly established than PCE. We tested if co-exposure to all three drugs could be related to greater differences in brain structure than exposure to cocaine alone. Participants (n=42, PCE=27; age range=14-16 years) received an executive function battery prior to a T1-weighted 3T structural MRI scan. Cortical thickness was measured using FreeSurfer (v5.1). Fetal drug exposure was quantified through maternal self-reports usage during pregnancy. Using general linear modeling, we found no main effects of PCE on cortical thickness, but significant main effects of PAE and PTE in superior and medial frontal regions, after co-varying for the effects of age, sex, and each drug of exposure. Significant alcohol-by-tobacco interactions, and significant cocaine-by-alcohol interactions on cortical thickness in medial parietal and temporal regions were also observed. Poly-drug exposure and cognitive function also showed significant interactions with cortical thickness: lower cortical thickness was associated with better performance in PCE-exposed adolescents. Results suggest that although children with PCE have subtle but persistent brain cortical differences until mid-to-late adolescence.
Collapse
Affiliation(s)
- Prapti Gautam
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - Tamara D Warner
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Eric C Kan
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, United States; Department of Neurology, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Wehrspaun CC, Haerty W, Ponting CP. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol Aging 2015; 36:2443.e9-2443.e20. [PMID: 26002684 PMCID: PMC4503803 DOI: 10.1016/j.neurobiolaging.2015.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/18/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis.
Collapse
Affiliation(s)
- Claudia C Wehrspaun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, MD, USA.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, UK
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, UK
| |
Collapse
|
35
|
Ishii S, Hashimoto-Torii K. Impact of prenatal environmental stress on cortical development. Front Cell Neurosci 2015; 9:207. [PMID: 26074774 PMCID: PMC4444817 DOI: 10.3389/fncel.2015.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: (1) molecular mechanisms shared by various types of environmental stressors, (2) the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and (3) interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.
Collapse
Affiliation(s)
- Seiji Ishii
- Center for Neuroscience Research, Children's National Medical Center, Children's Research Institute Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, Children's Research Institute Washington, DC, USA ; Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA ; Department of Neurobiology, School of Medicine, Kavli Institute for Neuroscience, Yale University New Haven, CT, USA
| |
Collapse
|
36
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
37
|
Liu Y, Chen H, Sun Z, Chen X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 2015; 361:164-73. [PMID: 25766659 DOI: 10.1016/j.canlet.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China; Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
38
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
39
|
Gautam P, Nuñez SC, Narr KL, Mattson SN, May PA, Adnams CM, Riley EP, Jones KL, Kan EC, Sowell ER. Developmental Trajectories for Visuo-Spatial Attention are Altered by Prenatal Alcohol Exposure: A Longitudinal FMRI Study. Cereb Cortex 2014; 25:4761-71. [PMID: 25092900 DOI: 10.1093/cercor/bhu162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) reveals brain activation abnormalities during visuo-spatial attention and working memory among those with fetal alcohol spectrum disorders (FASD) in cross-sectional reports, but little is known about how activation changes over time during development within FASD or typically developing children. We studied 30 controls and 31 individuals with FASD over 2 years (7-14 years at first participation) with a total of 122 scans, as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Despite comparable performance, there were significant group differences in visuo-spatial activation over time bilaterally in frontal, parietal, and temporal regions. Controls showed an increase in signal intensity in these multiple regions whereas FASD participants showed a decrease in brain activation. Effects were also found in 2 small independent samples from the USA, corroborating the findings from the larger group. Results suggest that the long-lasting effect of prenatal alcohol may impact the maturation of visuo-spatial attention and differentiate those with FASD from controls. Based on this first longitudinal fMRI study in FASD children, our novel findings suggest a possible neural mechanism for attention deficits common among individuals with FASD.
Collapse
Affiliation(s)
- P Gautam
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - S C Nuñez
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - K L Narr
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - S N Mattson
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - P A May
- Department of Nutrition, Gillings School of Global Public Health, Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - C M Adnams
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - E P Riley
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - K L Jones
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - E C Kan
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - E R Sowell
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
40
|
Tyler CR, Allan AM. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model. Alcohol 2014; 48:483-92. [PMID: 24954023 DOI: 10.1016/j.alcohol.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis. This study is the first to use chronic low to moderate PAE, to more accurately reflect maternal alcohol consumption, and subsequent neural progenitor cell culture to demonstrate that PAE throughout gestation alters expression of genes involved in neural development and embryonic neurogenesis.
Collapse
|
41
|
Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 2014; 82:560-72. [PMID: 24726381 DOI: 10.1016/j.neuron.2014.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/25/2022]
Abstract
Prenatal exposure of the developing brain to various environmental challenges increases susceptibility to late onset of neuropsychiatric dysfunction; still, the underlying mechanisms remain obscure. Here we show that exposure of embryos to a variety of environmental factors such as alcohol, methylmercury, and maternal seizure activates HSF1 in cerebral cortical cells. Furthermore, Hsf1 deficiency in the mouse cortex exposed in utero to subthreshold levels of these challenges causes structural abnormalities and increases seizure susceptibility after birth. In addition, we found that human neural progenitor cells differentiated from induced pluripotent stem cells derived from schizophrenia patients show higher variability in the levels of HSF1 activation induced by environmental challenges compared to controls. We propose that HSF1 plays a crucial role in the response of brain cells to prenatal environmental insults and may be a key component in the pathogenesis of late-onset neuropsychiatric disorders.
Collapse
|
42
|
Teixeira CM, Masachs N, Muhaisen A, Bosch C, Pérez-Martínez J, Howell B, Soriano E. Transient downregulation of Dab1 protein levels during development leads to behavioral and structural deficits: relevance for psychiatric disorders. Neuropsychopharmacology 2014; 39:556-68. [PMID: 24030361 PMCID: PMC3895234 DOI: 10.1038/npp.2013.226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders have been hypothesized to originate during development, with genetic and environmental factors interacting in the etiology of disease. Therefore, developmentally regulated genes have received attention as risk modulators in psychiatric diseases. Reelin is an extracellular protein essential for neuronal migration and maturation during development, and its expression levels are reduced in psychiatric disorders. Interestingly, several perinatal insults that increase the risk of behavioral deficits alter Reelin signaling. However, it is not known whether a dysfunction in Reelin signaling during perinatal stages increases the risk of psychiatric disorders. Here we used a floxed dab1 allele to study whether a transient decrease in Dab1, a key component of the Reelin pathway, is sufficient to induce behavioral deficits related to psychiatric disorders. We found that transient Dab1 downregulation during perinatal stages leads to permanent abnormalities of structural layering in the neocortex and hippocampus. In contrast, conditional inactivation of the dab1 gene in the adult brain does not result in additional layering abnormalities. Furthermore, perinatal Dab1 downregulation causes behavior impairments in adult mice, such as deficits in memory, maternal care, pre-pulse inhibition, and response to cocaine. Some of these deficits were also found to be present in adolescence. We also show that D-cycloserine rescues the cognitive deficits observed in floxed dab1 mice with layering alterations in the hippocampus and neocortex. Our results indicate a causal relation between the downregulation of Dab1 protein levels during development and the structural and behavioral deficits associated with psychiatric diseases in the adult.
Collapse
Affiliation(s)
- Catia M Teixeira
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| | - Nuria Masachs
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Carles Bosch
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Brian Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Fundación CIEN, Vallecas, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| |
Collapse
|
43
|
Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci 2014; 33:18893-905. [PMID: 24285895 DOI: 10.1523/jneurosci.3721-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In utero ethanol exposure from a mother's consumption of alcoholic beverages impacts brain and cognitive development, creating a range of deficits in the child (Levitt, 1998; Lebel et al., 2012). Children diagnosed with fetal alcohol spectrum disorders (FASD) are often born with facial dysmorphology and may exhibit cognitive, behavioral, and motor deficits from ethanol-related neurobiological damage in early development. Prenatal ethanol exposure (PrEE) is the number one cause of preventable mental and intellectual dysfunction globally, therefore the neurobiological underpinnings warrant systematic research. We document novel anatomical and gene expression abnormalities in the neocortex of newborn mice exposed to ethanol in utero. This is the first study to demonstrate large-scale changes in intraneocortical connections and disruption of normal patterns of neocortical gene expression in any prenatal ethanol exposure animal model. Neuroanatomical defects and abnormal neocortical RZRβ, Id2, and Cadherin8 expression patterns are observed in PrEE newborns, and abnormal behavior is present in 20-d-old PrEE mice. The vast network of neocortical connections is responsible for high-level sensory and motor processing as well as complex cognitive thought and behavior in humans. Disruptions to this network from PrEE-related changes in gene expression may underlie some of the cognitive-behavioral phenotypes observed in children with FASD.
Collapse
|
44
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
45
|
Veazey KJ, Carnahan MN, Muller D, Miranda RC, Golding MC. Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation. Alcohol Clin Exp Res 2013; 37:1111-22. [PMID: 23488822 DOI: 10.1111/acer.12080] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. METHODS Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. RESULTS We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. CONCLUSIONS Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic program. These observations indicate that alterations to chromatin structure may represent a crucial component of alcohol teratogenesis and progress toward a better understanding of the developmental origins of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Kylee J Veazey
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
46
|
Veazey KJ, Muller D, Golding MC. Prenatal alcohol exposure and cellular differentiation: a role for Polycomb and Trithorax group proteins in FAS phenotypes? Alcohol Res 2013; 35:77-85. [PMID: 24313167 PMCID: PMC3860417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell-cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell's identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes--the Polycomb and Trithorax proteins--are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder.
Collapse
|
47
|
Ungerer M, Knezovich J, Ramsay M. In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res 2013; 35:37-46. [PMID: 24313163 PMCID: PMC3860424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Exposure to alcohol has serious consequences for the developing fetus, leading to a range of conditions collectively known as fetal alcohol spectrum disorders (FASD). Most importantly, alcohol exposure affects the development of the brain during critical periods of differentiation and growth, leading to cognitive and behavioral deficits. The molecular mechanisms and processes underlying the teratogenic effects of alcohol exposure remain poorly understood and are complex, because the specific effects depend on the timing, amount, and duration of exposure as well as genetic susceptibility. Accumulating evidence from studies on DNA methylation and histone modification that affect chromatin structure, as well as on the role of microRNAs in regulating mRNA levels supports the contribution of epigenetic mechanisms to the development of FASD. These epigenetic effects are difficult to study, however, because they often are cell-type specific and transient in nature. Rodent models play an important role in FASD research. Although recent studies using these models have yielded some insight into epigenetic mechanisms affecting brain development, they have generated more questions than they have provided definitive answers. Researchers are just beginning to explore the intertwined roles of different epigenetic mechanisms in neurogenesis and how this process is affected by exposure to alcohol, causing FASD.
Collapse
|
48
|
Yang Y, Roussotte F, Kan E, Sulik KK, Mattson SN, Riley EP, Jones KL, Adnams CM, May PA, O'Connor MJ, Narr KL, Sowell ER. Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cereb Cortex 2012; 22:1170-9. [PMID: 21799209 PMCID: PMC3328347 DOI: 10.1093/cercor/bhr193] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence from structural brain imaging studies on individuals with fetal alcohol spectrum disorder (FASD) has supported links between prenatal alcohol exposure and brain morphological deficits. Although global and regional volumetric reductions appear relatively robust, the effects of alcohol exposure on cortical thickness and relationships with facial dysmorphology are not yet known. The structural magnetic resonance imaging data from 69 children and adolescents with FASD and 58 nonexposed controls collected from 3 sites were examined using FreeSurfer to detect cortical thickness changes across the entire brain in FASD and their associations with facial dysmorphology. Controlling for brain size, subjects with FASD showed significantly thicker cortices than controls in several frontal, temporal, and parietal regions. Analyses conducted within site further revealed prominent group differences in left inferior frontal cortex within all 3 sites. In addition, increased inferior frontal thickness was significantly correlated with reduced palpebral fissure length. Consistent with previous reports, findings of this study are supportive of regional increases in cortical thickness serving as a biomarker for disrupted brain development in FASD. Furthermore, the significant associations between thickness and dysmorphic measures suggest that the severity of brain anomalies may be reflected by that of the face.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of NeuroImaging (LONI), Department of Neurology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ. Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res 2012; 36:1519-29. [PMID: 22530671 DOI: 10.1111/j.1530-0277.2012.01757.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/03/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prenatal alcohol exposure can result in fetal alcohol spectrum disorders (FASD). Not all women who consume alcohol during pregnancy have children with FASD and studies have shown that genetic factors can play a role in ethanol teratogenesis. We examined gene expression in embryos and placentae from C57BL/6J (B6) and DBA/2J (D2) mice following prenatal alcohol exposure. B6 fetuses are susceptible to morphological malformations following prenatal alcohol exposure while D2 are relatively resistant. METHODS Male and female B6 and D2 mice were mated for 2 hours in the morning, producing 4 embryonic genotypes: true-bred B6B6 and D2D2, and reciprocal B6D2 and D2B6. On gestational day 9, dams were intubated with 5.8 g/kg ethanol, an isocaloric amount of maltose dextrin, or nothing. Four hours later, dams were sacrificed and embryos and placentae were harvested. RNA was extracted, labeled and hybridized to Affymetrix Mouse Genome 430 v2 microarray chips. Data were normalized, subjected to analysis of variance and tested for enrichment of gene ontology molecular function and biological process using the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS Several gene classes were differentially expressed in B6 and D2 regardless of treatment, including genes involved in polysaccharide binding and mitosis. Prenatal alcohol exposure altered expression of a subset of genes, including genes involved in methylation, chromatin remodeling, protein synthesis, and mRNA splicing. Very few genes were differentially expressed between maltose-exposed tissues and tissues that received nothing, so we combined these groups for comparisons with ethanol. While we observed many expression changes specific to B6 following prenatal alcohol exposure, none were specific for D2. Gene classes up- or down-regulated in B6 following prenatal alcohol exposure included genes involved in mRNA splicing, transcription, and translation. CONCLUSIONS Our study identified several classes of genes with altered expression following prenatal alcohol exposure, including many specific for B6, a strain susceptible to ethanol teratogenesis. Lack of strain specific effects in D2 suggests there are few gene expression changes that confer resistance. Future studies will begin to analyze functional significance of the expression changes.
Collapse
Affiliation(s)
- Chris Downing
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Mo Z, Milivojevic V, Zecevic N. Enforced Pax6 expression rescues alcohol-induced defects of neuronal differentiation in cultures of human cortical progenitor cells. Alcohol Clin Exp Res 2012; 36:1374-84. [PMID: 22524987 DOI: 10.1111/j.1530-0277.2012.01736.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/12/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alcohol is the most widely consumed substance of abuse, and its use during pregnancy can lead to serious disorders of brain development. The precise molecular action of alcohol on human brain development, however, is still unknown. We previously enriched multipotent progenitor cells, radial glia (RG) cells, from human fetal forebrain and demonstrated that they express transcription factor Pax6 that is necessary for their neurogenic fate. METHODS Enriched human fetal RG cells were maintained in vitro as either control or Pax6-expressing retrovirus infected cells. Cultures were treated with increasing doses of alcohol to evaluate Pax6 expression, proliferation, and differentiation of RG cells by immunocytochemistry, Western blot, and RT-PCR methods. RESULTS In vitro treatment with alcohol reduced the expression of transcription factor Pax6 and proliferation of RG cells, which decreased neurogenesis. Consistent with this finding, the overexpression of Pax6 in RG cells under alcohol treatment rescued cell proliferation and restored the generation of neurons. In contrast to this effect on neurogenesis, the overexpression of Pax6 inhibits the generation of astroglia regardless of alcohol treatment, implying lineage-specific effects. CONCLUSIONS These findings suggest that the effect of alcohol on human neurogenesis is partially due to the reduced expression of transcription factor Pax6 in RG cells.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030-3401, USA
| | | | | |
Collapse
|