1
|
Wang Y, Kulkarni VV, PantaleónGarcía J, Longmire MK, Lethier M, Cusack S, Evans SE. The RNA receptor RIG-I binding synthetic oligodeoxynucleotide promotes pneumonia survival. JCI Insight 2024; 9:e180584. [PMID: 39352770 DOI: 10.1172/jci.insight.180584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Pneumonia is a worldwide threat to public health, demanding novel preventative and therapeutic strategies. The lung epithelium is a critical environmental interface that functions as a physical barrier to pathogen invasion while also actively sensing and responding to pathogens. We have reported that stimulating lung epithelial cells with a combination therapeutic consisting of a diacylated lipopeptide and a synthetic CpG oligodeoxynucleotide (ODN) induces synergistic pneumonia protection against a wide range of pathogens. We report here that mice deficient in TLR9, the previously described receptor for ODN, still displayed partial ODN-induced protection. This prompted us to seek an alternate ODN receptor, and we discovered by mass spectroscopy that the RNA sensor RIG-I could also bind DNA-like ODN. ODN binding by RIG-I resulted in MAVS-dependent pneumonia-protective signaling events. While RIG-I is essential to native defenses against viral infections, we report that therapeutic RIG-I activation with ODN promoted pathogen killing and host survival following both viral and bacterial challenges. These data indicate that maximal ODN-induced pneumonia protection requires activation of both the TLR9/MyD88 and RIG-I/MAVS signaling pathways. These findings not only identify what we believe to be a novel pattern recognition receptor for DNA-like molecules, but reveal a potential therapeutic strategy to protect susceptible individuals against lethal pneumonias during periods of peak vulnerability.
Collapse
Affiliation(s)
- Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vikram V Kulkarni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| | - Jezreel PantaleónGarcía
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael K Longmire
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| | | | | | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Najm R, Yavuz L, Jain R, El Naofal M, Ramaswamy S, Abuhammour W, Loney T, Nowotny N, Alsheikh-Ali A, Abou Tayoun A, Kandasamy RK. IFIH1 loss of function predisposes to inflammatory and SARS-CoV-2-related infectious diseases. Scand J Immunol 2024; 100:e13373. [PMID: 38757311 DOI: 10.1111/sji.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The IFIH1 gene, encoding melanoma differentiation-associated protein 5 (MDA5), is an indispensable innate immune regulator involved in the early detection of viral infections. Previous studies described MDA5 dysregulation in weakened immunological responses, and increased susceptibility to microbial infections and autoimmune disorders. Monoallelic gain-of-function of the IFIH1 gene has been associated with multisystem disorders, namely Aicardi-Goutieres and Singleton-Merten syndromes, while biallelic loss causes immunodeficiency. In this study, nine patients suffering from recurrent infections, inflammatory diseases, severe COVID-19 or multisystem inflammatory syndrome in children (MIS-C) were identified with putative loss-of-function IFIH1 variants by whole-exome sequencing. All patients revealed signs of lymphopaenia and an increase in inflammatory markers, including CRP, amyloid A, ferritin and IL-6. One patient with a pathogenic homozygous variant c.2807+1G>A was the most severe case showing immunodeficiency and glomerulonephritis. The c.1641+1G>C variant was identified in the heterozygous state in patients suffering from periodic fever, COVID-19 or MIS-C, while the c.2016delA variant was identified in two patients with inflammatory bowel disease or MIS-C. There was a significant association between IFIH1 monoallelic loss of function and susceptibility to infections in males. Expression analysis showed that PBMCs of one patient with a c.2016delA variant had a significant decrease in ISG15, IFNA and IFNG transcript levels, compared to normal PBMCs, upon stimulation with Poly(I:C), suggesting that MDA5 receptor truncation disrupts the immune response. Our findings accentuate the implication of rare monogenic IFIH1 loss-of-function variants in altering the immune response, and severely predisposing patients to inflammatory and infectious diseases, including SARS-CoV-2-related disorders.
Collapse
Affiliation(s)
- Rania Najm
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Lemis Yavuz
- Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Ruchi Jain
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Maha El Naofal
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Sathishkumar Ramaswamy
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | | | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Dubai Health, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Richard K Kandasamy
- Departments of Laboratory Medicine and Pathology and Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
3
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
4
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
5
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
6
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Role of mitochondria in regulating immune response during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:159-200. [PMID: 36858655 DOI: 10.1016/bs.ircmb.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
Collapse
|
8
|
Mahmud SA, Qureshi MA, Pellegrino MW. On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS J 2022; 289:7014-7037. [PMID: 34270874 PMCID: PMC9192128 DOI: 10.1111/febs.16126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens employ a variety of tactics to persist in their host and promote infection. Pathogens often target host organelles in order to benefit their survival, either through manipulation or subversion of their function. Mitochondria are regularly targeted by bacterial pathogens owing to their diverse cellular roles, including energy production and regulation of programmed cell death. However, disruption of normal mitochondrial function during infection can be detrimental to cell viability because of their essential nature. In response, cells use multiple quality control programs to mitigate mitochondrial dysfunction and promote recovery. In this review, we will provide an overview of mitochondrial recovery programs including mitochondrial dynamics, the mitochondrial unfolded protein response (UPRmt ), and mitophagy. We will then discuss the various approaches used by bacterial pathogens to target mitochondria, which result in mitochondrial dysfunction. Lastly, we will discuss how cells leverage mitochondrial recovery programs beyond their role in organelle repair, to promote host defense against pathogen infection.
Collapse
Affiliation(s)
- Siraje A Mahmud
- Department of Biology, University of Texas Arlington, TX, USA
| | | | | |
Collapse
|
9
|
Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, Rioux J, Hodin R, Mihindukulasuriya KA, Handley SA, Jeffrey KL. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022; 7:eabn6660. [PMID: 35394816 PMCID: PMC9416881 DOI: 10.1126/sciimmunol.abn6660] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sreehaas Digumarthi
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L. Saunders
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raza-Ur Rahman
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jean Paquette
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
| | | | - John Rioux
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
- Université de Montréal, Montreal Quebec Canada H3C 3J7
| | - Richard Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kate L. Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Linh H, Iwata Y, Senda Y, Sakai-Takemori Y, Nakade Y, Oshima M, Yoneda-Nakagawa S, Ogura H, Sato K, Minami T, Kitajima S, Toyama T, Yamamura Y, Miyakawa T, Hara A, Shimizu M, Furuichi K, Sakai N, Yamada H, Asanuma K, Matsushima K, Wada T. Intestinal Bacterial Translocation Contributes to Diabetic Kidney Disease. J Am Soc Nephrol 2022; 33:1105-1119. [PMID: 35264456 PMCID: PMC9161796 DOI: 10.1681/asn.2021060843] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022] Open
Abstract
Background In recent years, many studies have focused on the intestinal environment to elucidate pathogenesis of various diseases, including kidney diseases. Impairment of the intestinal barrier function, the "leaky gut," reportedly contributes to pathological processes in some disorders. Mitochondrial antiviral signaling protein (MAVS), a component of innate immunity, maintains intestinal integrity. The effects of disrupted intestinal homeostasis associated with MAVS signaling in diabetic kidney disease remains unclear. Methods To evaluate the contribution of intestinal barrier impairment to kidney injury under diabetic conditions, we induced diabetic kidney disease in wild-type and MAVS knockout mice through unilateral nephrectomy and streptozotocin treatment. We then assessed effects on the kidney, intestinal injuries, and bacterial translocation. Results MAVS knockout diabetic mice showed more severe glomerular and tubular injuries compared with wild-type diabetic mice. Owing to impaired intestinal integrity, the presence of intestine-derived Klebsiella oxytoca and elevated IL-17 were detected in the circulation and kidneys of diabetic mice, especially in diabetic MAVS knockout mice. Stimulation of tubular epithelial cells with K. oxytoca activated MAVS pathways and the phosphorylation of Stat3 and ERK1/2, leading to the production of kidney injury molecule-1 (KIM-1). Nevertheless, MAVS inhibition induced inflammation in the intestinal epithelial cells and KIM-1 production in tubular epithelial cells under K. oxytoca supernatant or IL-17 stimulation. Treatment with neutralizing anti-IL-17 antibody treatment had renoprotective effects. In contrast, lipopolysaccharide administration accelerated kidney injury in the murine diabetic kidney disease model. Conclusions Impaired MAVS signaling both in the kidney and intestine contributes to the disrupted homeostasis, leading to diabetic kidney disease progression. Controlling intestinal homeostasis may offer a novel therapeutic approach for this condition.
Collapse
Affiliation(s)
- Hoang Linh
- H Linh, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Y Iwata, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasuko Senda
- Y Senda, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukiko Sakai-Takemori
- Y Sakai-Takemori, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yusuke Nakade
- Y Nakade, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Megumi Oshima
- M Oshima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shiori Yoneda-Nakagawa
- S Yoneda-Nakagawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- H Ogura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- K Sato, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taichiro Minami
- T Minami, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- S Kitajima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- T Toyama, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Y Yamamura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyakawa
- T Miyakawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- A Hara, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- M Shimizu, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- K Furuichi, Division of Nephrology, Kanazawa Medical University School of Medicine Graduate School of Medicine, Kahoku-gun, Japan
| | - Norihiko Sakai
- N Sakai, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Yamada
- H Yamada, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Katsuhiko Asanuma
- K Asanuma, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Kouji Matsushima
- K Matsushima, Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Shinjuku-ku, Japan
| | - Takashi Wada
- T Wada, Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
11
|
Ahmad HI, Afzal G, Iqbal MN, Iqbal MA, Shokrollahi B, Mansoor MK, Chen J. Positive Selection Drives the Adaptive Evolution of Mitochondrial Antiviral Signaling (MAVS) Proteins-Mediating Innate Immunity in Mammals. Front Vet Sci 2022; 8:814765. [PMID: 35174241 PMCID: PMC8841730 DOI: 10.3389/fvets.2021.814765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
The regulated production of filamentous protein complexes is essential in many biological processes and provides a new paradigm in signal transmission. The mitochondrial antiviral signaling protein (MAVS) is a critical signaling hub in innate immunity that is activated when a receptor induces a shift in the globular caspase activation and recruitment domain of MAVS into helical superstructures (filaments). It is of interest whether adaptive evolution affects the proteins involved in innate immunity. Here, we explore and confer the role of selection and diversification on mitochondrial antiviral signaling protein in mammalian species. We obtined the MAVS proteins of mammalian species and examined their differences in evolutionary patterns. We discovered evidence for these proteins being subjected to substantial positive selection. We demonstrate that immune system proteins, particularly those encoding recognition proteins, develop under positive selection using codon-based probability methods. Positively chosen regions within recognition proteins cluster in domains involved in microorganism recognition, implying that molecular interactions between hosts and pathogens may promote adaptive evolution in the mammalian immune systems. These significant variations in MAVS development in mammalian species highlights the involvement of MAVS in innate immunity. Our findings highlight the significance of accounting for how non-synonymous alterations affect structure and function when employing sequence-level studies to determine and quantify positive selection.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | | | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Jinping Chen
| |
Collapse
|
12
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
13
|
Zhu Y, Cai Q, Zheng X, Liu L, Hua Y, Du B, Zhao G, Yu J, Zhuo Z, Xie Z, Ji S. Aspirin Positively Contributes to Drosophila Intestinal Homeostasis and Delays Aging through Targeting Imd. Aging Dis 2021; 12:1821-1834. [PMID: 34631223 PMCID: PMC8460307 DOI: 10.14336/ad.2020.1008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
The intestine, a high-turnover tissue, plays a critical role in regulating aging and health in both vertebrates and invertebrates. Maintaining the epithelial barrier function of the intestine by preserving innate immune homeostasis significantly delays aging and prevents mortality. In an effort to explore effective chemicals and materials that can improve intestinal integrity, we performed a nonbiased screen utilizing Drosophila as an animal model. We showed that long-term uptake of aspirin markedly prevented age-onset gut leakage, the over-proliferation of intestinal stem cells, and the dysbiosis of commensal microbiota in fruit flies. Mechanistically, aspirin efficiently downregulated chronic activation of intestinal immune deficiency signaling during aging. Furthermore, our in vivo and in vitro biochemical analyses indicated that aspirin is a negative modulator in control of the K63-linked ubiquitination of Imd. Our findings uncover a novel regulatory mechanism by which aspirin positively modulates intestinal homeostasis, thus delaying aging, in Drosophila.
Collapse
Affiliation(s)
- Yangyang Zhu
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingshuang Cai
- 2State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xianrui Zheng
- 3Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Lei Liu
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongzhi Hua
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Beibei Du
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guomin Zhao
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiangliu Yu
- 4School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhao Zhuo
- 5College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- 2State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shanming Ji
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
14
|
Cananzi M, Wohler E, Marzollo A, Colavito D, You J, Jing H, Bresolin S, Gaio P, Martin R, Mescoli C, Bade S, Posey JE, Dalle Carbonare M, Tung W, Jhangiani SN, Bosa L, Zhang Y, Filho JS, Gabelli M, Kellermayer R, Kader HA, Oliva-Hemker M, Perilongo G, Lupski JR, Biffi A, Valle D, Leon A, de Macena Sobreira NL, Su HC, Guerrerio AL. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease. Hum Genet 2021; 140:1299-1312. [PMID: 34185153 PMCID: PMC8423350 DOI: 10.1007/s00439-021-02300-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Genetic defects of innate immunity impairing intestinal bacterial sensing are linked to the development of Inflammatory Bowel Disease (IBD). Although much evidence supports a role of the intestinal virome in gut homeostasis, most studies focus on intestinal viral composition rather than on host intestinal viral sensitivity. To demonstrate the association between the development of Very Early Onset IBD (VEOIBD) and variants in the IFIH1 gene which encodes MDA5, a key cytosolic sensor for viral nucleic acids. Whole exome sequencing (WES) was performed in two independent cohorts of children with VEOIBD enrolled in Italy (n = 18) and USA (n = 24). Luciferase reporter assays were employed to assess MDA5 activity. An enrichment analysis was performed on IFIH1 comparing 42 VEOIBD probands with 1527 unrelated individuals without gastrointestinal or immunological issues. We identified rare, likely loss-of-function (LoF), IFIH1 variants in eight patients with VEOIBD from a combined cohort of 42 children. One subject, carrying a homozygous truncating variant resulting in complete LoF, experienced neonatal-onset, pan-gastrointestinal, IBD-like enteropathy plus multiple infectious episodes. The remaining seven subjects, affected by VEOIBD without immunodeficiency, were carriers of one LoF variant in IFIH1. Among these, two patients also carried a second hypomorphic variant, with partial function apparent when MDA5 was weakly stimulated. Furthermore, IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p = 0.007). Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.
Collapse
Affiliation(s)
- Mara Cananzi
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, Italy
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, Padova, Italy
| | - Jing You
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, Italy
| | - Paola Gaio
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University Hospital of Padova, Padova, Italy
| | - Sangeeta Bade
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Wesley Tung
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Bosa
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joselito Sobreira Filho
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Maria Gabelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Howard A Kader
- Department of Pediatrics, Division of Pediatric Gastroenterology & Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Oliva-Hemker
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Perilongo
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, Padova, Italy
| | | | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anthony L Guerrerio
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Hamza KH, Dunér E, Ulmert I, Arias A, Sorobetea D, Lahl K. Minor alterations in the intestinal microbiota composition upon Rotavirus infection do not affect susceptibility to DSS colitis. Sci Rep 2021; 11:13485. [PMID: 34188111 PMCID: PMC8242028 DOI: 10.1038/s41598-021-92796-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Viral triggers at the intestinal mucosa can have multiple global effects on intestinal integrity, causing elevated intestinal barrier strength and relative protection from subsequent inflammatory bowel disease (IBD) induction in various models. As viruses can interfere with the intestinal immune system both directly and indirectly through commensal bacteria, cause-effect relationships are difficult to define. Due to the complexity of putatively causative factors, our understanding of such virus-mediated protection is currently very limited. We here set out to better understand the impact that adult enteric infection with rotavirus (RV) might have on the composition of the intestinal microbiome and on the severity of IBD. We found that RV infection neither induced significant long-lasting microbiota community changes in the small or large intestine nor affected the severity of subsequent dextran sulfate sodium-induced colitis. Hence, adult murine RV infection does not exert lasting effects on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Emma Dunér
- Immunology Section, Lund University, 221 84, Lund, Sweden
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Armando Arias
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - Daniel Sorobetea
- Immunology Section, Lund University, 221 84, Lund, Sweden
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Lahl
- Immunology Section, Lund University, 221 84, Lund, Sweden.
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
16
|
Iliev ID, Cadwell K. Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology 2021; 160:1050-1066. [PMID: 33347881 PMCID: PMC7956156 DOI: 10.1053/j.gastro.2020.06.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. These microbes interact with the immune system and affect human physiology. Advances in metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal and viral species in the gut. Studies of animal models have found that commensal fungi and viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can also induce reactions that contribute to events associated with inflammatory bowel disease. Changes in our environment associated with modernization and the COVID-19 pandemic have exposed humans to new fungi and viruses, with unknown consequences. We review the lessons learned from studies of animal viruses and fungi commonly detected in the human gut and how these might affect health and intestinal disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University Grossman School of Medicine, New York, New York; Department of Microbiology, New York University Grossman School of Medicine, New York, New York; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, New York.
| |
Collapse
|
17
|
She L, Barrera GD, Yan L, Alanazi HH, Brooks EG, Dube PH, Sun Y, Zan H, Chupp DP, Zhang N, Zhang X, Liu Y, Li XD. STING activation in alveolar macrophages and group 2 innate lymphoid cells suppresses IL-33-driven type 2 immunopathology. JCI Insight 2021; 6:143509. [PMID: 33400692 PMCID: PMC7934858 DOI: 10.1172/jci.insight.143509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
2'3'-cGAMP is known as a nonclassical second messenger and small immune modulator that possesses potent antitumor and antiviral activities via inducing the stimulator of IFN genes-mediated (STING-mediated) signaling pathway. However, its function in regulating type 2 immune responses remains unknown. Therefore, we sought to determine a role of STING activation by 2'3'-cGAMP in type 2 inflammatory reactions in multiple mouse models of eosinophilic asthma. We discovered that 2'3'-cGAMP administration strongly attenuated type 2 lung immunopathology and airway hyperreactivity induced by IL-33 and a fungal allergen, Aspergillus flavus. Mechanistically, upon the respiratory delivery, 2'3'-cGAMP was mainly internalized by alveolar macrophages, in which it activated the STING/IFN regulatory factor 3/type I IFN signaling axis to induce the production of inhibitory factors containing IFN-α, which blocked the IL-33-mediated activation of group 2 innate lymphoid (ILC2) cells in vivo. We further demonstrated that 2'3'-cGAMP directly suppressed the proliferation and function of both human and mouse ILC2 cells in vitro. Taken together, our findings suggest that STING activation by 2'3'-cGAMP in alveolar macrophages and ILC2 cells can negatively regulate type 2 immune responses, implying that the respiratory delivery of 2'3'-cGAMP might be further developed as an alternative strategy for treating type 2 immunopathologic diseases such as eosinophilic asthma.
Collapse
Affiliation(s)
- Li She
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gema D. Barrera
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Hamad H. Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Edward G. Brooks
- Division of Immunology and Infectious Disease, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Peter H. Dube
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, and
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, and
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Lin HB, Naito K, Oh Y, Farber G, Kanaan G, Valaperti A, Dawood F, Zhang L, Li GH, Smyth D, Moon M, Liu Y, Liang W, Rotstein B, Philpott DJ, Kim KH, Harper ME, Liu PP. Innate Immune Nod1/RIP2 Signaling Is Essential for Cardiac Hypertrophy but Requires Mitochondrial Antiviral Signaling Protein for Signal Transductions and Energy Balance. Circulation 2020; 142:2240-2258. [PMID: 33070627 DOI: 10.1161/circulationaha.119.041213] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.
Collapse
Affiliation(s)
- Han-Bin Lin
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Kotaro Naito
- Cardiology, Keiyu Hospital, Yokohama, Japan (K.N.).,University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| | - Yena Oh
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Gedaliah Farber
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Georges Kanaan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine (G.K., B.R., M.-E.H.), University of Ottawa, Canada
| | - Alan Valaperti
- Department of Clinical Immunology of the University Hospital Zurich, Switzerland (A.V.).,University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| | - Fayez Dawood
- University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| | - Liyong Zhang
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Guo Hua Li
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - David Smyth
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Mark Moon
- Department of Physiology, Institute of Medical Science (M.M., P.P.L.), University of Toronto, Canada.,University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| | - Youan Liu
- University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Benjamin Rotstein
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine (G.K., B.R., M.-E.H.), University of Ottawa, Canada
| | | | - Kyoung-Han Kim
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine (G.K., B.R., M.-E.H.), University of Ottawa, Canada
| | - Peter P Liu
- University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.,Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada.,Department of Physiology, Institute of Medical Science (M.M., P.P.L.), University of Toronto, Canada.,University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada
| |
Collapse
|
20
|
Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 2020; 11:771-788. [PMID: 31941397 PMCID: PMC7524384 DOI: 10.1080/19490976.2019.1707015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Type-I interferon (IFN-I) cytokines are produced by immune cells in response to microbial infections, cancer and autoimmune diseases, and subsequently, trigger cytoprotective and antiviral responses through the activation of IFN-I stimulated genes (ISGs). The ability of intestinal microbiota to modulate innate immune responses is well known, but the mechanisms underlying such responses remain elusive. Here we report that the intracellular sensors stimulator of IFN genes (STING) and mitochondrial antiviral signaling (MAVS) are essential for the production of IFN-I in response to lactic acid bacteria (LAB), common gut commensal bacteria with beneficial properties. Using human macrophage cells we show that LAB strains that potently activate the inflammatory transcription factor NF-κB are poor inducers of IFN-I and conversely, those triggering significant amounts of IFN-I fail to activate NF-κB. This IFN-I response is also observed in human primary macrophages, which modulate CD64 and CD40 upon challenge with IFN-I-inducing LAB. Mechanistically, IFN-I inducers interact more intimately with phagocytes as compared to NF-κB-inducers, and fail to activate IFN-I in the presence of phagocytosis inhibitors. These bacteria are then sensed intracellularly by the cytoplasmic sensors STING and, to a lesser extent, MAVS. Accordingly, macrophages deficient for STING showed dramatically reduced phosphorylation of TANK-binding kinase (TBK)-1 and IFN-I activation, which resulted in lower expression of ISGs. Our findings demonstrate a major role for intracellular sensing and STING in the production of IFN-I by beneficial bacteria and the existence of bacteria-specific immune signatures, which can be exploited to promote cytoprotective responses and prevent overreactive NF-κB-dependent inflammation in the gut.
Collapse
Affiliation(s)
| | - Beatriz Isla
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | - Theo Combes
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | | | | |
Collapse
|
21
|
Wiser C, Kim B, Vincent J, Ascano M. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Sci Rep 2020; 10:7604. [PMID: 32371942 PMCID: PMC7200739 DOI: 10.1038/s41598-020-64348-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cGAS-STING pathway is a major mechanism that mammalian cells utilize to detect cytoplasmic dsDNA from incoming viruses, bacteria, or self. CYCLIC GMP-AMP SYNTHASE (cGAS) is the sensor protein that directly binds dsDNAs. cGAS synthesizes cyclic GMP-AMP (cGAMP), which binds to the adaptor STIMULATOR OF INTERFERON GENES (STING), activating an INTERFERON REGULATORY FACTOR 3 (IRF3)-mediated immune response. Constitutive activation can result in interferonopathies such as Aicardi-Goutieres Syndrome (AGS) or other lupus-like autoimmune disorders. While inhibitors targeting mouse or human cGAS have been reported, the identification of a small molecule that targets both homologs of cGAS has been challenging. Here, we show that RU.521 is capable of potently and selectively inhibiting mouse and human cGAS in cell lines and human primary cells. This inhibitory activity requires the presence of cGAS, but it cannot suppress an immune response in cells activated by RNA, Toll-like receptor ligands, cGAMP, or recombinant interferon. Importantly, when RU.521 is applied to cells, the production of dsDNA-induced intracellular cGAMP is suppressed in a dose-dependent manner. Our work validates the use of RU.521 for probing DNA-induced innate immune responses and underscores its potential as an ideal scaffold towards pre-clinical development, given its potency against human and mouse cGAS.
Collapse
Affiliation(s)
- Caroline Wiser
- Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Byungil Kim
- Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Jessica Vincent
- Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Manuel Ascano
- Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
22
|
Stedman A, van Vliet AHM, A Chambers M, Gutierrez-Merino J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann N Y Acad Sci 2020; 1467:112-132. [PMID: 32026493 DOI: 10.1111/nyas.14302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom.,The Pirbright Institute, Surrey, United Kingdom
| | | | - Mark A Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Bacteriology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom
| |
Collapse
|
23
|
Liu L, Gong T, Tao W, Lin B, Li C, Zheng X, Zhu S, Jiang W, Zhou R. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat Immunol 2019; 20:1681-1691. [PMID: 31636462 DOI: 10.1038/s41590-019-0513-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/06/2019] [Indexed: 01/05/2023]
Abstract
Much attention has focused on commensal bacteria in health and disease, but the role of commensal viruses is understudied. Although metagenomic analysis shows that the intestine of healthy humans and animals harbors various commensal viruses and the dysbiosis of these viruses can be associated with inflammatory diseases, there is still a lack of causal data and underlying mechanisms to understand the physiological role of commensal viruses in intestinal homeostasis. In the present study, we show that commensal viruses are essential for the homeostasis of intestinal intraepithelial lymphocytes (IELs). Mechanistically, the cytosolic viral RNA-sensing receptor RIG-I in antigen-presenting cells can recognize commensal viruses and maintain IELs via a type I interferon-independent, but MAVS-IRF1-IL-15 axis-dependent, manner. The recovery of IELs by interleukin-15 administration reverses the susceptibility of commensal virus-depleted mice to dextran sulfate sodium-induced colitis. Collectively, our results indicate that commensal viruses maintain the IELs and consequently sustain intestinal homeostasis via noncanonical RIG-I signaling.
Collapse
Affiliation(s)
- Lei Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tao Gong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Bolong Lin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuesen Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China. .,CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
She L, Alanazi HH, Yan L, Zou Y, Sun Y, Dube PH, Brooks EG, Barrera GD, Lai Z, Chen Y, Liu Y, Zhang X, Li XD. Immune Sensing of Aeroallergen-Associated Double-Stranded RNA Triggers an IFN Response and Modulates Type 2 Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:2520-2531. [PMID: 31562213 DOI: 10.4049/jimmunol.1900720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
The innate immune sensing of allergens or allergen-associated components regulate the development of type 2 inflammatory responses. However, the underlying molecular basis by which allergens or allergen-associated components are detected by innate immune receptors remains elusive. In this study, we report that the most common aeroallergen, house dust mite (HDM), harbors a dsRNA species (HDM-dsRNA) that can activate TLR3-mediated IFN responses and counteract the development of an uncontrolled type 2 immune response. We demonstrate that the mouse strains defective in the dsRNA-sensing pathways show aggravated type 2 inflammation defined by severe eosinophilia, elevated level of type 2 cytokines, and mucus overproduction in a model of allergic lung inflammation. The inability to sense HDM-dsRNA resulted in significant increases in airway hyperreactivity. We further show that the administration of the purified HDM-dsRNA at a low dose is sufficient to induce an immune response to prevent the onset of a severe type 2 lung inflammation. Collectively, these results unveil a new role for the HDM-dsRNA/TLR3-signaling axis in the modulation of a type 2 lung inflammation in mice.
Collapse
Affiliation(s)
- Li She
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hamad H Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Edward G Brooks
- Division of Immunology and Infectious Disease, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Gema D Barrera
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yong Liu
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229;
| |
Collapse
|
25
|
Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci 2019; 26:59. [PMID: 31434568 PMCID: PMC6702754 DOI: 10.1186/s12929-019-0554-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing evidences have shown strong associations between gut microbiota and many human diseases, and understanding the dynamic crosstalks of host-microbe interaction in the gut has become necessary for the detection, prevention, or therapy of diseases. Many reports have showed that diet, nutrient, pharmacologic factors and many other stimuli play dominant roles in the modulation of gut microbial compositions. However, it is inappropriate to neglect the impact of host factors on shaping the gut microbiota. In this review, we highlighted the current findings of the host factors that could modulate the gut microbiota. Particularly the epithelium-associated factors, including the innate immune sensors, anti-microbial peptides, mucus barrier, secretory IgAs, epithelial microvilli, epithelial tight junctions, epithelium metabolism, oxygen barrier, and even the microRNAs are discussed in the context of the microbiota shaping. With these shaping factors, the gut epithelial cells could select the residing microbes and affect the microbial composition. This knowledge not only could provide the opportunities to better control many diseases, but may also be used for predicting the success of fecal microbiota transplantation clinically.
Collapse
|
26
|
Neil JA, Cadwell K. The Intestinal Virome and Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:1615-1624. [PMID: 30181300 DOI: 10.4049/jimmunol.1800631] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
The composition of the human microbiome is considered a major source of interindividual variation in immunity and, by extension, susceptibility to diseases. Intestinal bacteria have been the major focus of research. However, diverse communities of viruses that infect microbes and the animal host cohabitate the gastrointestinal tract and collectively constitute the gut virome. Although viruses are typically investigated as pathogens, recent studies highlight a relationship between the host and animal viruses in the gut that is more akin to host-microbiome interactions and includes both beneficial and detrimental outcomes for the host. These viruses are likely sources of immune variation, both locally and extraintestinally. In this review, we describe the components of the gut virome, in particular mammalian viruses, and their ability to modulate host responses during homeostasis and disease.
Collapse
Affiliation(s)
- Jessica A Neil
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Ken Cadwell
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
27
|
Critical role of MAVS in the protection against Clostridium difficile-induced colitis. Microb Pathog 2018; 125:306-312. [DOI: 10.1016/j.micpath.2018.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022]
|
28
|
Cheng Y, Schorey JS. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med 2018; 215:2919-2935. [PMID: 30337468 PMCID: PMC6219742 DOI: 10.1084/jem.20180508] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
RNA sensing pathways are key elements in a host immune response to viral pathogens, but little is known of their importance during bacterial infections. We found that Mycobacterium tuberculosis (M.tb) actively releases RNA into the macrophage cytosol using the mycobacterial SecA2 and ESX-1 secretion systems. The cytosolic M.tb RNA induces IFN-β production through the host RIG-I/MAVS/IRF7 RNA sensing pathway. The inducible expression of IRF7 within infected cells requires an autocrine signaling through IFN-β and its receptor, and this early IFN-β production is dependent on STING and IRF3 activation. M.tb infection studies using Mavs-/- mice support a role for RNA sensors in regulating IFN-β production and bacterial replication in vivo. Together, our data indicate that M.tb RNA is actively released during an infection and promotes IFN-β production through a regulatory mechanism involving cross-talk between DNA and RNA sensor pathways, and our data support the hypothesis that bacterial RNA can drive a host immune response.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN
| | - Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
29
|
Zhang M, Fu Z, Chen J, Zhu B, Cheng Y, Fu L. Low level expression of the Mitochondrial Antiviral Signaling protein (MAVS) associated with long-term nonprogression in SIV-infected rhesus macaques. Virol J 2018; 15:159. [PMID: 30326919 PMCID: PMC6192151 DOI: 10.1186/s12985-018-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Abnormally increased immune activation is one of the main pathological features of acquired immunodeficiency syndrome (AIDS). This study aimed to determine whether long-term nonprogression (LTNP) suppresses the upregulation of immune activation and to elucidate the mechanisms whereby the LTNP state is maintained. METHODS For this study we selected 4 rhesus macaques(RMs) infected with simian immunodeficiency virus (SIV) that were long-term nonprogressors (LTNP); for comparison we chose 4 healthy RMs that were seronegative for SIV (hereafter referred to as the Control group), and 4 progressing infection (Progressive group) SIV RMs. We observed these animals for 6 months without intervention and explored the immunological and pathological differences among the 3 groups. A series of immune activation and inflammation markers-such as C- C chemokine receptor type 5 (CCR5), beta 2- microglobulin (β2-MG), Human Leukocyte Antigen - antigen D Related (HLA-DR), CD38, the levels of microbial translocation (LPS -binding protein), and MAVS-and histological features were monitored during this period. RESULTS Both SIV RNA and SIV DNA in the plasma and lymph nodes (LNs) of the LTNP group were at significantly lower levels than those of the Progressive group (P < 0.05). The CD4/CD8 ratio and CD4 cell count and proportion in the LTNP group were between those of the Progressive and Control groups (P < 0.05): that is, they were higher than in the Progressive group and lower than in the Control group. The LTNP macaques manifested slow progression and decreased immune activation and inflammation; they also had lower levels of CCR5, LPS-binding protein, and β2-MG than the Progressive RMs (P < 0.05). Activation of LTNP in both CD4+ and CD8+ T cells was significantly lower than in the Progressive group and closer to that in the Control group. The histological features of the LTNP macaques were also closer to those of the Control group, even though they had been infected with SIV 4 years earlier. These data point to low viral replication in the LTNP macaques but it is not static. The expression of MAVS in peripheral blood and LNs was lower in the LTNP group than that in the Progressive group (P < 0.01), and MAVS was positively correlated with SIV DNA in LNs (P < 0.05). This may reflect the low activation of T lymphocytes. It was speculated that MAVS may be the link between innate and acquired antiviral immunity in SIV infection. CONCLUSIONS The LTNP RMs in our study were in a relatively stable state of low activation and inflammation, some biological progression with no disease events. This may have been associated with their low levels of the mitochondrial antiviral signaling protein (MAVS).
Collapse
Affiliation(s)
- Miaomiao Zhang
- College of Traditional Chinese medicine, Hebei University, Baoding, 071000, China. .,Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| | - Zhuotao Fu
- The first Affiliated Hospital, Guangzhou University of Chinese medicine, Guangzhou, China
| | - Jiantao Chen
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Boqiang Zhu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Ye Cheng
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Linchun Fu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| |
Collapse
|
30
|
Plantamura E, Dzutsev A, Chamaillard M, Djebali S, Moudombi L, Boucinha L, Grau M, Macari C, Bauché D, Dumitrescu O, Rasigade JP, Lippens S, Plateroti M, Kress E, Cesaro A, Bondu C, Rothermel U, Heikenwälder M, Lina G, Bentaher-Belaaouaj A, Marie JC, Caux C, Trinchieri G, Marvel J, Michallet MC. MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype. Proc Natl Acad Sci U S A 2018; 115:10404-10409. [PMID: 30249647 PMCID: PMC6187193 DOI: 10.1073/pnas.1722372115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prominent changes in the gut microbiota (referred to as "dysbiosis") play a key role in the development of allergic disorders, but the underlying mechanisms remain unknown. Study of the delayed-type hypersensitivity (DTH) response in mice contributed to our knowledge of the pathophysiology of human allergic contact dermatitis. Here we report a negative regulatory role of the RIG-I-like receptor adaptor mitochondrial antiviral signaling (MAVS) on DTH by modulating gut bacterial ecology. Cohousing and fecal transplantation experiments revealed that the dysbiotic microbiota of Mavs-/- mice conferred a proallergic phenotype that is communicable to wild-type mice. DTH sensitization coincided with increased intestinal permeability and bacterial translocation within lymphoid organs that enhanced DTH severity. Collectively, we unveiled an unexpected impact of RIG-I-like signaling on the gut microbiota with consequences on allergic skin disease outcome. Primarily, these data indicate that manipulating the gut microbiota may help in the development of therapeutic strategies for the treatment of human allergic skin pathologies.
Collapse
Affiliation(s)
- Emilie Plantamura
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
- Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Mathias Chamaillard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, F-59000 Lille, France
- Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France
- UMR 8204, Centre National de la Recherche Scientifique, F-59000 Lille, France
- U1019, Team 7, Equipe Fondation pour la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale, F-59000 Lille, France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Lyvia Moudombi
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Lilia Boucinha
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Morgan Grau
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Claire Macari
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - David Bauché
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, 69008 Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Transforming Growth Factor-b and Immune-Evasion Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
- Department of Clinical Microbiology, Hospices Civils de Lyon, 69002 Lyon, France
| | - Jean-Philippe Rasigade
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
- Department of Clinical Microbiology, Hospices Civils de Lyon, 69002 Lyon, France
| | - Saskia Lippens
- Inflammation Research Center, Department of Biomedical Molecular Biology, Ghent University, Flanders Institute for Biotechnology, 9000 Ghent, Belgium
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, 69008 Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Elsa Kress
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, 69008 Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Annabelle Cesaro
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, F-59000 Lille, France
| | - Clovis Bondu
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, F-59000 Lille, France
| | - Ulrike Rothermel
- Chronic Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mathias Heikenwälder
- Chronic Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Gerard Lina
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
- Department of Clinical Microbiology, Hospices Civils de Lyon, 69002 Lyon, France
| | - Azzak Bentaher-Belaaouaj
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Julien C Marie
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, 69008 Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Transforming Growth Factor-b and Immune-Evasion Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christophe Caux
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, 69008 Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France
| | - Marie-Cecile Michallet
- Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, 69365 Lyon Cedex 07, France;
| |
Collapse
|
31
|
Martin PK, Marchiando A, Xu R, Rudensky E, Yeung F, Schuster SL, Kernbauer E, Cadwell K. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat Microbiol 2018; 3:1131-1141. [PMID: 30202015 PMCID: PMC6179362 DOI: 10.1038/s41564-018-0229-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
As a conserved pathway that lies at the intersection between host defence and cellular homeostasis, autophagy serves as a rheostat for immune reactions. In particular, autophagy suppresses excess type I interferon (IFN-I) production in response to viral nucleic acids. It is unknown how this function of autophagy relates to the intestinal barrier where host-microbe interactions are pervasive and perpetual. Here, we demonstrate that mice deficient in autophagy proteins are protected from the intestinal bacterial pathogen Citrobacter rodentium in a manner dependent on IFN-I signalling and nucleic acid sensing pathways. Enhanced IFN-stimulated gene expression in intestinal tissue of autophagy-deficient mice in the absence of infection was mediated by the gut microbiota. Additionally, monocytes infiltrating into the autophagy-deficient intestinal microenvironment displayed an enhanced inflammatory profile and were necessary for protection against C. rodentium. Finally, we demonstrate that the microbiota-dependent IFN-I production that occurs in the autophagy-deficient host also protects against chemical injury of the intestine. Thus, autophagy proteins prevent a spontaneous IFN-I response to microbiota that is beneficial in the presence of infectious and non-infectious intestinal hazards. These results identify a role for autophagy proteins in controlling the magnitude of IFN-I signalling at the intestinal barrier.
Collapse
Affiliation(s)
- Patricia K Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Amanda Marchiando
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Ruliang Xu
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Eugene Rudensky
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Samantha L Schuster
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Elisabeth Kernbauer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Tachypleus tridentatus Lectin Enhances Oncolytic Vaccinia Virus Replication to Suppress In Vivo Hepatocellular Carcinoma Growth. Mar Drugs 2018; 16:md16060200. [PMID: 29880736 PMCID: PMC6025575 DOI: 10.3390/md16060200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lectins play diverse roles in physiological processes as biological recognition molecules. In this report, a gene encoding Tachypleus tridentatus Lectin (TTL) was inserted into an oncolytic vaccinia virus (oncoVV) vector to form oncoVV-TTL, which showed significant antitumor activity in a hepatocellular carcinoma mouse model. Furthermore, TTL enhanced oncoVV replication through suppressing antiviral factors expression such as interferon-inducible protein 16 (IFI16), mitochondrial antiviral signaling protein (MAVS) and interferon-beta (IFN-β). Further investigations revealed that oncoVV-TTL replication was highly dependent on ERK activity. This study might provide insights into a novel way of the utilization of TTL in oncolytic viral therapies.
Collapse
|
33
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
34
|
Coleman OI, Haller D. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Front Immunol 2018; 8:1927. [PMID: 29354132 PMCID: PMC5760496 DOI: 10.3389/fimmu.2017.01927] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.
Collapse
Affiliation(s)
| | - Dirk Haller
- Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
35
|
Targeting RIG-I or STING promotes epithelial regeneration. Oncotarget 2017; 8:114418-114419. [PMID: 29383086 PMCID: PMC5777698 DOI: 10.18632/oncotarget.22994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
|
36
|
Ranson N, Kunde D, Eri R. Regulation and Sensing of Inflammasomes and Their Impact on Intestinal Health. Int J Mol Sci 2017; 18:ijms18112379. [PMID: 29120406 PMCID: PMC5713348 DOI: 10.3390/ijms18112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors such as nucleotide-binding oligomerization domain (NOD)-containing protein receptors (NLRs) and the pyrin and hematopoitic interferon-inducible nuclear protein (HIN) domain (PYHIN) receptors initiate the inflammatory response following cell stress or pathogenic challenge. When activated, some of these receptors oligomerize to form the structural backbone of a signalling platform known as an inflammasome. Inflammasomes promote the activation of caspase-1 and the maturation of the proinflammatory cytokines, interleukin (IL)-1β and IL-18. The gut dysregulation of the inflammasome complex is thought to be a contributing factor in the development of inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). The importance of inflammasomes to intestinal health has been emphasized by various inflammasome-deficient mice in dextran sulphate sodium (DSS) models of intestinal inflammation and by the identification of novel potential candidate genes in population-based human studies. In this review, we summarise the most recent findings with regard to the formation, sensing, and regulation of the inflammasome complex and highlight their importance in maintaining intestinal health.
Collapse
Affiliation(s)
- Nicole Ranson
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
37
|
Strickertsson JAB, Desler C, Rasmussen LJ. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol 2017; 47:95-100. [PMID: 28754330 DOI: 10.1016/j.semcancer.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023]
Abstract
As up to a fifth of all cancers worldwide, have now been linked to microbial infections, it is essential to understand the carcinogenic nature of the bacterial/host interaction. This paper reviews the bacterial targeting of mediators of mitochondrial genomic fidelity and of mitochondrial apoptotic pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis.
Collapse
Affiliation(s)
| | - Claus Desler
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
He L, Chen Y, Wu Y, Xu Y, Zhang Z, Liu Z. Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis. Cell Mol Life Sci 2017; 74:2395-2411. [PMID: 28224203 PMCID: PMC11107753 DOI: 10.1007/s00018-017-2477-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths that is often associated with inflammation initiated by activation of pattern recognition receptors (PRRs). Nucleic acid sensing PRRs are one of the major subsets of PRRs that sense nucleic acid (DNA and RNA), mainly including some members of Toll-like receptors (TLR3, 7, 8, 9), AIM2-like receptors (AIM2, IFI16), STING, cGAS, RNA polymerase III, and DExD/H box nucleic acid helicases (such as RIG-I like receptors (RIG-I, MDA5, LPG2), DDX1, 3, 5, 7, 17, 21, 41, 60, and DHX9, 36). Activation of these receptors eventually leads to the release of cytokines and activation of immune cells, which are well known to play crucial roles in host defense against intracellular bacterial and virus infection. However, the functions of these nucleic acid sensing PRRs in the other diseases such as CRC and colitis remain largely unknown. Recent studies indicated that nucleic acid sensing PRRs contribute to CRC and/or colitis development, and therapeutic modulation of nucleic acid sensing PRRs may reduce the risk of CRC development. However, until now, a comprehensive review on the role of nucleic acid sensing PRRs in CRC and colitis is still lacking. This review provided an overview of the roles as well as the mechanisms of these nucleic acid sensing PRRs (AIM2, STING, cGAS, RIG-I and its downstream molecules, DDX3, 5, 6,17, and DHX9, 36) in CRC and colitis, which may aid the diagnosis, therapy, and prognostic prediction of CRC and colitis.
Collapse
Affiliation(s)
- Liangmei He
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yayun Chen
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yuanbing Wu
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ying Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zixiang Zhang
- The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
39
|
Jin HS, Suh HW, Kim SJ, Jo EK. Mitochondrial Control of Innate Immunity and Inflammation. Immune Netw 2017; 17:77-88. [PMID: 28458619 PMCID: PMC5407986 DOI: 10.4110/in.2017.17.2.77] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/02/2017] [Accepted: 02/19/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are key organelles involved in energy production, functioning as the metabolic hubs of cells. Recent findings emphasize the emerging role of the mitochondrion as a key intracellular signaling platform regulating innate immune and inflammatory responses. Several mitochondrial proteins and mitochondrial reactive oxygen species have emerged as central players orchestrating the innate immune responses to pathogens and damaging ligands. This review explores our current understanding of the roles played by mitochondria in regulation of innate immunity and inflammatory responses. Recent advances in our understanding of the relationship between autophagy, mitochondria, and inflammasome activation are also briefly discussed. A comprehensive understanding of mitochondrial role in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation, will facilitate development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Suh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
40
|
Fischer JC, Bscheider M, Eisenkolb G, Lin CC, Wintges A, Otten V, Lindemans CA, Heidegger S, Rudelius M, Monette S, Porosnicu Rodriguez KA, Calafiore M, Liebermann S, Liu C, Lienenklaus S, Weiss S, Kalinke U, Ruland J, Peschel C, Shono Y, Docampo M, Velardi E, Jenq RR, Hanash AM, Dudakov JA, Haas T, van den Brink MRM, Poeck H. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Sci Transl Med 2017; 9:eaag2513. [PMID: 28424327 PMCID: PMC5604790 DOI: 10.1126/scitranslmed.aag2513] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/30/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
The molecular pathways that regulate the tissue repair function of type I interferon (IFN-I) during acute tissue damage are poorly understood. We describe a protective role for IFN-I and the RIG-I/MAVS signaling pathway during acute tissue damage in mice. Mice lacking mitochondrial antiviral-signaling protein (MAVS) were more sensitive to total body irradiation- and chemotherapy-induced intestinal barrier damage. These mice developed worse graft-versus-host disease (GVHD) in a preclinical model of allogeneic hematopoietic stem cell transplantation (allo-HSCT) than did wild-type mice. This phenotype was not associated with changes in the intestinal microbiota but was associated with reduced gut epithelial integrity. Conversely, targeted activation of the RIG-I pathway during tissue injury promoted gut barrier integrity and reduced GVHD. Recombinant IFN-I or IFN-I expression induced by RIG-I promoted growth of intestinal organoids in vitro and production of the antimicrobial peptide regenerating islet-derived protein 3 γ (RegIIIγ). Our findings were not confined to RIG-I/MAVS signaling because targeted engagement of the STING (stimulator of interferon genes) pathway also protected gut barrier function and reduced GVHD. Consistent with this, STING-deficient mice suffered worse GVHD after allo-HSCT than did wild-type mice. Overall, our data suggest that activation of either RIG-I/MAVS or STING pathways during acute intestinal tissue injury in mice resulted in IFN-I signaling that maintained gut epithelial barrier integrity and reduced GVHD severity. Targeting these pathways may help to prevent acute intestinal injury and GVHD during allogeneic transplantation.
Collapse
Affiliation(s)
- Julius C Fischer
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Bscheider
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriel Eisenkolb
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chia-Ching Lin
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Wintges
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vera Otten
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Caroline A Lindemans
- Pediatric Blood and Bone Marrow Transplant Program, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Heidegger
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Marco Calafiore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sophie Liebermann
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University, Newark, NJ 08903, USA
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Christian Peschel
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Melissa Docampo
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Velardi
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert R Jenq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jarrod A Dudakov
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias Haas
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hendrik Poeck
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
41
|
Matta B, Song S, Li D, Barnes BJ. Interferon regulatory factor signaling in autoimmune disease. Cytokine 2017; 98:15-26. [PMID: 28283223 DOI: 10.1016/j.cyto.2017.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factors (IRFs) play critical roles in pathogen-induced innate immune responses and the subsequent induction of adaptive immune response. Dysregulation of IRF signaling is therefore thought to contribute to autoimmune disease pathogenesis. Indeed, numerous murine in vivo studies have documented protection from or enhanced susceptibility to particular autoimmune diseases in Irf-deficient mice. What has been lacking, however, is replication of these in vivo observations in primary immune cells from patients with autoimmune disease. These types of studies are essential as the majority of in vivo data support a protective role for IRFs in Irf-deficient mice, yet IRFs are often found to be overexpressed in patient immune cells. A significant body of work is beginning to emerge from both of these areas of study - mouse and human.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Su Song
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Dan Li
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Betsy J Barnes
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States.
| |
Collapse
|
42
|
Extrinsic MAVS signaling is critical for Treg maintenance of Foxp3 expression following acute flavivirus infection. Sci Rep 2017; 7:40720. [PMID: 28094802 PMCID: PMC5240555 DOI: 10.1038/srep40720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Given the rapid spread of flaviviruses such as West Nile virus (WNV) and Zika virus, it is critical that we develop a complete understanding of the key mediators of an effective anti-viral response. We previously demonstrated that WNV infection of mice deficient in mitochondrial antiviral-signaling protein (MAVS), the signaling adaptor for RNA helicases such as RIG-I, resulted in increased death and dysregulated immunity, which correlated with a failure of Treg expansion following infection. Thus, we sought to determine if intrinsic MAVS signaling is required for participation of Tregs in anti-WNV immunity. Despite evidence of increased Treg cell division, Foxp3 expression was not stably maintained after WNV infection in MAVS-deficient mice. However, intrinsic MAVS signaling was dispensable for Treg proliferation and suppressive capacity. Further, we observed generation of an effective anti-WNV immune response when Tregs lacked MAVS, thereby demonstrating that Treg detection of the presence of WNV through the MAVS signaling pathway is not required for generation of effective immunity. Together, these data suggest that while MAVS signaling has a considerable impact on Treg identity, this effect is not mediated by intrinsic MAVS signaling but rather is likely an effect of the overproduction of pro-inflammatory cytokines generated in MAVS-deficient mice after WNV infection.
Collapse
|
43
|
Abstract
Autophagy is a catabolic process by which cells remove protein aggregates and damaged organelles for recycling. It can also be used by cells to remove intracellular microbial pathogens, including viruses, in a process known as xenophagy. However, many viruses have developed mechanisms to subvert this intracellular antiviral response and even use this pathway to support their own replications. Hepatitis C virus (HCV) is one such virus and is an important human pathogen that can cause severe liver diseases. Recent studies indicated that HCV could activate the autophagic pathway to support its replication. This review summarizes the current knowledge on the interplay between HCV and autophagy and how this interplay affects HCV replication and host innate immune responses.
Collapse
|
44
|
Abstract
Immune sensing of foreign nucleic acids among abundant self nucleic acids is a hallmark of virus detection and antiviral defence. Efficient antiviral defence requires a balanced process of sensing foreign nucleic acids and ignoring self nucleic acids. This balance is accomplished by a multilevel, fail-safe system which combines immune sensing of pathogen-specific nucleic acid structures with specific labelling of self nucleic acids and nuclease-mediated degradation. Cellular localization of nucleic acids, nucleic acid secondary structure, nucleic acid sequence and chemical modification all contribute to selective recognition of foreign nucleic acids. Nucleic acid sensing occurs in immune cells and non-immune cells and results in antiviral responses that include the induction of antiviral effector proteins, the secretion of cytokines alarming neighbouring cells, the secretion of chemokines, which attract immune cells, and the induction of cell death. Vertebrate cells cannot completely avoid the occurrence of endogenous self nucleic acid structures with immunostimulatory properties. Therefore, additional mechanisms involving self-nucleic acid modification and nuclease-mediated degradation are necessary to diminish uncontrolled immune activation. Viruses have established sophisticated mechanisms to exploit and adopt endogenous tolerance mechanisms or to avoid the presentation of characteristic molecular features recognized by nucleic acid sensing receptors.
The detection of viruses by the immune system is mediated predominantly by the sensing of nucleic acids. Here, the authors review our current understanding of how this complex immune sensory system discriminates self from non-self nucleic acids to reliably detect pathogenic viruses, and discuss the future perspectives and implications for human disease. Innate immunity against pathogens relies on an array of immune receptors to detect molecular patterns that are characteristic of the pathogens, including receptors that are specialized in the detection of foreign nucleic acids. In vertebrates, nucleic acid sensing is the dominant antiviral defence pathway. Stimulation of nucleic acid receptors results in antiviral immune responses with the production of type I interferon (IFN), as well as the expression of IFN-stimulated genes, which encode molecules such as cell-autonomous antiviral effector proteins. This Review summarizes the tremendous progress that has been made in understanding how this sophisticated immune sensory system discriminates self from non-self nucleic acids in order to reliably detect pathogenic viruses.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| |
Collapse
|
45
|
Lee Y, Kim H, Kang S, Lee J, Park J, Jon S. Bilirubin Nanoparticles as a Nanomedicine for Anti-inflammation Therapy. Angew Chem Int Ed Engl 2016; 55:7460-3. [PMID: 27144463 DOI: 10.1002/anie.201602525] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/11/2016] [Indexed: 12/12/2022]
Abstract
Despite the high potency of bilirubin as an endogenous anti-inflammatory compound, its clinical translation has been hampered because of its insolubility in water. Bilirubin-based nanoparticles that may overcome this critical issue are presented. A polyethylene glycol compound (PEG) was covalently attached to bilirubin, yielding PEGylated bilirubin (PEG-BR). The PEG-BR self-assembled into nanoscale particles with a size of approximately 110 nm, termed bilirubin nanoparticles (BRNPs). BRNPs are highly efficient hydrogen peroxide scavengers, thereby protecting cells from H2 O2 -induced cytotoxicity. In a murine model of ulcerative colitis, intravenous injection of BRNPs showed preferential accumulation of nanoparticles at the sites of inflammation and significantly inhibited the progression of acute inflammation in the colon. Taken together, BRNPs show potential for use as a therapeutic nanomedicine in various inflammatory diseases.
Collapse
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sukmo Kang
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinju Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinho Park
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
46
|
Lee Y, Kim H, Kang S, Lee J, Park J, Jon S. Bilirubin Nanoparticles as a Nanomedicine for Anti-inflammation Therapy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Hyungjun Kim
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sukmo Kang
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Jinju Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Jinho Park
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
47
|
Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production. Immunity 2016; 44:889-900. [DOI: 10.1016/j.immuni.2016.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/19/2022]
|
48
|
Haynes LD, Verma S, McDonald B, Wu R, Tacke R, Nowyhed HN, Ekstein J, Feuvrier A, Benedict CA, Hedrick CC. Cardif (MAVS) Regulates the Maturation of NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2157-67. [PMID: 26232430 PMCID: PMC4709023 DOI: 10.4049/jimmunol.1402060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
Cardif, also known as IPS-1, VISA, and MAVS, is an intracellular adaptor protein that functions downstream of the retinoic acid-inducible gene I family of pattern recognition receptors. Cardif is required for the production of type I IFNs and other inflammatory cytokines after retinoic acid-inducible gene I-like receptors recognize intracellular antigenic RNA. Studies have recently shown that Cardif may have other roles in the immune system in addition to its role in viral immunity. In this study, we find that the absence of Cardif alters normal NK cell development and maturation. Cardif(-/-) mice have a 35% loss of mature CD27(-)CD11b(+) NK cells in the periphery. In addition, Cardif(-/-) NK cells have altered surface marker expression, lower cytotoxicity, decreased intracellular STAT1 levels, increased apoptosis, and decreased proliferation compared with wild-type NK cells. Mixed chimeric mice revealed that the defective maturation and increased apoptotic rate of peripheral Cardif(-/-) NK cells is cell intrinsic. However, Cardif(-/-) mice showed enhanced control of mouse CMV (a DNA β-herpesvirus) by NK cells, commensurate with increased activation and IFN-γ production by these immature NK cell subsets. These results indicate that the skewed differentiation and altered STAT expression of Cardif(-/-) NK cells can result in their hyperresponsiveness in some settings and support recent findings that Cardif-dependent signaling can regulate aspects of immune cell development and/or function distinct from its well-characterized role in mediating cell-intrinsic defense to RNA viruses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Blotting, Western
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Female
- Flow Cytometry
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/metabolism
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- NIH 3T3 Cells
- STAT1 Transcription Factor/immunology
- STAT1 Transcription Factor/metabolism
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- LaTeira D Haynes
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bryan McDonald
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Robert Tacke
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Heba N Nowyhed
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Jennifer Ekstein
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Ariana Feuvrier
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| |
Collapse
|
49
|
Xu S, Xu S, Chen S, Fan H, Luo X, Sun Y, Wang J, Yuan H, Xu A, Wu L. The acidic transformed nano-VO 2 causes macrophage cell death by the induction of lysosomal membrane permeabilization and Ca 2+ efflux. Toxicol Rep 2015; 2:870-879. [PMID: 28962423 PMCID: PMC5598166 DOI: 10.1016/j.toxrep.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Because of its outstanding thermochromic characteristics and metal-insulator transition (MIT) property, nano-vanadium dioxide (abbreviated as nano-VO2 or nVO2) has been applied widely in electrical/optical devices and design of intelligent window. However, the biological effect of nVO2 is not well understood, especially when affected by environmental factors or living organisms. For VO2 is an amphoteric oxide, we simulated pH's influence to nVO2’s physicochemical properties by exposure nVO2 in water of different pH values. We found that nVO2 transformed to a new product after exposure in acidic water for two weeks, as revealed by physicochemical characterization such as SEM, TEM, XRD, and DLS. This transformation product formed in acidic water was referred as (acidic) transformed nVO2). Both pristine/untransformed and transformed nVO2 displayed no obvious toxicity to common epithelial cells; however, the acidic transformed nVO2 rapidly induced macrophage cell death. Further investigation demonstrated that transformed nVO2 caused macrophage apoptosis by the induction of Ca2+ efflux and the following mitochondrial membrane permeabilization (MMP) process. And a more detailed time course study indicated that transformed nVO2 caused lysosomal membrane permeabilization (LMP) at the earlier stage, indicating LMP could be chosen as an earlier and sensitive end point for nanotoxicological study. We conclude that although nVO2 displays no acute toxicity, its acidic transformation product induces macrophage apoptosis by the induction of LMP and Ca2+ efflux. This report suggests that the interplay with environmental factors or living organisms can results in physicochemical transformation of nanomaterials and the ensuing distinctive biological effects.
Collapse
Affiliation(s)
- Shaohai Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Shengmin Xu
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Shaopeng Chen
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Huadong Fan
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xun Luo
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Yuxiang Sun
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Jun Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Hang Yuan
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| | - Lijun Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences and Anhui province, Hefei, Anhui, PR China
| |
Collapse
|
50
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|