1
|
Lin A, Akafia C, Dal Monte O, Fan S, Fagan N, Putnam P, Tye KM, Chang S, Ba D, Allsop AZAS. An unbiased method to partition diverse neuronal responses into functional ensembles reveals interpretable population dynamics during innate social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593229. [PMID: 38766234 PMCID: PMC11100741 DOI: 10.1101/2024.05.08.593229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In neuroscience, understanding how single-neuron firing contributes to distributed neural ensembles is crucial. Traditional methods of analysis have been limited to descriptions of whole population activity, or, when analyzing individual neurons, criteria for response categorization varied significantly across experiments. Current methods lack scalability for large datasets, fail to capture temporal changes and rely on parametric assumptions. There's a need for a robust, scalable, and non-parametric functional clustering approach to capture interpretable dynamics. To address this challenge, we developed a model-based, statistical framework for unsupervised clustering of multiple time series datasets that exhibit nonlinear dynamics into an a-priori-unknown number of parameterized ensembles called Functional Encoding Units (FEUs). FEU outperforms existing techniques in accuracy and benchmark scores. Here, we apply this FEU formalism to single-unit recordings collected during social behaviors in rodents and primates and demonstrate its hypothesis-generating and testing capacities. This novel pipeline serves as an analytic bridge, translating neural ensemble codes across model systems.
Collapse
Affiliation(s)
- Alexander Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cyril Akafia
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Siqi Fan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Nicholas Fagan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Philip Putnam
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| | - Steve Chang
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Demba Ba
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Sciences, Harvard University, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Artificial and Natural Intelligence, Harvard University, Cambridge, Massachusetts, USA
| | - AZA Stephen Allsop
- Center for Collective Healing, Department of Psychiatry and Behavioral Sciences, Howard University, Washington DC, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Rautio IV, Holmberg EH, Kurup D, Dunn BA, Whitlock JR. A novel paradigm for observational learning in rats. Cogn Neurodyn 2024; 18:757-767. [PMID: 38699625 PMCID: PMC11061086 DOI: 10.1007/s11571-023-10022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 05/05/2024] Open
Abstract
The ability to learn by observing the behavior of others is energy efficient and brings high survival value, making it an important learning tool that has been documented in a myriad of species in the animal kingdom. In the laboratory, rodents have proven useful models for studying different forms of observational learning, however, the most robust learning paradigms typically rely on aversive stimuli, like foot shocks, to drive the social acquisition of fear. Non-fear-based tasks have also been used but they rarely succeed in having observer animals perform a new behavior de novo. Consequently, little known regarding the cellular mechanisms supporting non-aversive types of learning, such as visuomotor skill acquisition. To address this we developed a reward-based observational learning paradigm in adult rats, in which observer animals learn to tap lit spheres in a specific sequence by watching skilled demonstrators, with successful trials leading to rewarding intracranial stimulation in both observers and performers. Following three days of observation and a 24-hour delay, observer animals outperformed control animals on several metrics of task performance and efficiency, with a subset of observers demonstrating correct performance immediately when tested. This paradigm thus introduces a novel tool to investigate the neural circuits supporting observational learning and memory for visuomotor behavior, a phenomenon about which little is understood, particularly in rodents.
Collapse
Affiliation(s)
- Ida V. Rautio
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Ella Holt Holmberg
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Devika Kurup
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Benjamin A. Dunn
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 1, Trondheim, 7491 Norway
| | - Jonathan R. Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| |
Collapse
|
4
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-related differences in affective behaviors in mice: possible role of prefrontal cortical-hippocampal functional connectivity and metabolomic profiles. Front Aging Neurosci 2024; 16:1356086. [PMID: 38524115 PMCID: PMC10957556 DOI: 10.3389/fnagi.2024.1356086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. Methods We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Results Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and during re-testing in a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. Discussion The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Nicholas A. Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joy Buraima
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marjory Pompilus
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Aeja M. Pinto
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matteo M. Grudny
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adriaan W. Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
5
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-Related Differences in Affective Behaviors in Mice: Possible Role of Prefrontal Cortical-Hippocampal Functional Connectivity and Metabolomic Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566691. [PMID: 38014219 PMCID: PMC10680600 DOI: 10.1101/2023.11.13.566691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and with re-testing with a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
|
6
|
Bahader GA, Naghavi F, Alotaibi A, Dehghan A, Swain CC, Burkett JP, Shah ZA. Neurobehavioral and inflammatory responses following traumatic brain injury in male and female mice. Behav Brain Res 2024; 456:114711. [PMID: 37827252 PMCID: PMC10615863 DOI: 10.1016/j.bbr.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and is associated with a high rate of functional comorbidities, including motor, cognitive, anxiety, depression, and emotional disorders. TBI pathophysiology and recovery are complicated and involve several mechanistic pathways that control neurobehavioral outcomes. In this study, male and female C57Bl/6 J mice were subjected to a controlled cortical impact model of TBI or sham injury and evaluated for different neurobehavioral and inflammatory outcomes over a month. We demonstrate that TBI mice have increased motor dysfunction at early and late time points following the injury as compared to the sham group. Anxiety-like symptoms were time- and task-dependent, with both sexes having increased anxiety-like behavior 2 weeks post-injury. Cognitive functions measured by T-maze presented greater deficits in TBI mice, while there was no sex or injury-related difference in depressive-like behaviors. Notably, a significant effect of sex was found in empathy-like behavior, with females showing more allogrooming and freezing behavior in the consoling and fear observational tests, respectively. Evaluating the impact of the injury-induced brain damage demonstrated a greater injury volume and neuronal degeneration in males compared to females one month after TBI. Moreover, male mice showed higher peripheral inflammatory responses, as represented by elevated serum levels of peripheral leukocytes and inflammatory markers. These results will have significant implications for understanding TBI's long-term consequences on neurobehavioral and inflammatory responses, which are sex-specific and can be considered for individualized therapeutic strategies in treating TBI.
Collapse
Affiliation(s)
- Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Farzaneh Naghavi
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Ahmed Alotaibi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Amir Dehghan
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Caroline C Swain
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
7
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
8
|
Keysers C, Gazzola V. Vicarious Emotions of Fear and Pain in Rodents. AFFECTIVE SCIENCE 2023; 4:662-671. [PMID: 38156261 PMCID: PMC10751282 DOI: 10.1007/s42761-023-00198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/24/2023] [Indexed: 12/30/2023]
Abstract
Affective empathy, the ability to share the emotions of others, is an important contributor to the richness of our emotional experiences. Here, we review evidence that rodents show signs of fear and pain when they witness the fear and pain of others. This emotional contagion creates a vicarious emotion in the witness that mirrors some level of detail of the emotion of the demonstrator, including its valence and the vicinity of threats, and depends on brain regions such as the cingulate, amygdala, and insula that are also at the core of human empathy. Although it remains impossible to directly know how witnessing the distress of others feels for rodents, and whether this feeling is similar to the empathy humans experience, the similarity in neural structures suggests some analogies in emotional experience across rodents and humans. These neural homologies also reveal that feeling distress while others are distressed must serve an evolutionary purpose strong enough to warrant its stability across ~ 100 millions of years. We propose that it does so by allowing observers to set in motion the very emotions that have evolved to prepare them to deal with threats - with the benefit of triggering them socially, by harnessing conspecifics as sentinels, before the witness personally faces that threat. Finally, we discuss evidence that rodents can engage in prosocial behaviors that may be motivated by vicarious distress or reward.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Terranova JI, Yokose J, Osanai H, Ogawa SK, Kitamura T. Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice. Nat Commun 2023; 14:3976. [PMID: 37407567 DOI: 10.1038/s41467-023-39718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Observers learn to fear the context in which they witnessed a demonstrator's aversive experience, called observational contextual fear conditioning (CFC). The neural mechanisms governing whether recall of the observational CFC memory occurs from the observer's own or from the demonstrator's point of view remain unclear. Here, we show in male mice that recent observational CFC memory is recalled in the observer's context only, but remote memory is recalled in both observer and demonstrator contexts. Recall of recent memory in the observer's context requires dorsal hippocampus activity, while recall of remote memory in both contexts requires the medial prefrontal cortex (mPFC)-basolateral amygdala pathway. Although mPFC neurons activated by observational CFC are involved in remote recall in both contexts, distinct mPFC subpopulations regulate remote recall in each context. Our data provide insights into a flexible recall strategy and the functional reorganization of circuits and memory engram cells underlying observational CFC memory.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60615, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
11
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
13
|
Yarden-Rabinowitz Y, Choi GB. Uncovering the rhythm for the expression of empathetic fear. Neuron 2023; 111:299-301. [PMID: 36731428 DOI: 10.1016/j.neuron.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this issue of Neuron, Kim et al.1 demonstrate that theta oscillations between the right ACC and BLA are critical for observational fear and identify a role for the hippocampus in modulating these oscillations. They further show that theta oscillations are specifically involved in vicarious rather than directly experienced fear.
Collapse
Affiliation(s)
- Yasmin Yarden-Rabinowitz
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gloria B Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Kim SW, Kim M, Baek J, Latchoumane CF, Gangadharan G, Yoon Y, Kim DS, Lee JH, Shin HS. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron 2023; 111:418-429.e4. [PMID: 36460007 PMCID: PMC10681369 DOI: 10.1016/j.neuron.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Observational fear, a form of emotional contagion, is thought to be a basic form of affective empathy. However, the neural process engaged at the specific moment when socially acquired information provokes an emotional response remains elusive. Here, we show that reciprocal projections between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) in the right hemisphere are essential for observational fear, and 5-7 Hz neural oscillations were selectively increased in those areas at the onset of observational freezing. A closed-loop disruption demonstrated the causal relationship between 5-7 Hz oscillations in the cingulo-amygdala circuit and observational fear responses. The increase/decrease in theta power induced by optogenetic manipulation of the hippocampal theta rhythm bi-directionally modulated observational fear. Together, these results indicate that hippocampus-dependent 5-7 Hz oscillations in the cingulo-amygdala circuit in the right hemisphere are the essential component of the cognitive process that drives empathic fear, but not freezing, in general.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Minsoo Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jinhee Baek
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yongwoo Yoon
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Republic of Korea
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; SL Bigen, Incheon 21983, Republic of Korea.
| |
Collapse
|
15
|
Xue X, Wang Q, Huang Z, Wang Y. An Empathic Pain-Regulated Neural Circuit. Neurosci Bull 2022; 38:1613-1616. [PMID: 36342655 PMCID: PMC9722988 DOI: 10.1007/s12264-022-00978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Vázquez D, Schneider KN, Roesch MR. Neural signals implicated in the processing of appetitive and aversive events in social and non-social contexts. Front Syst Neurosci 2022; 16:926388. [PMID: 35993086 PMCID: PMC9381696 DOI: 10.3389/fnsys.2022.926388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In 2014, we participated in a special issue of Frontiers examining the neural processing of appetitive and aversive events. Specifically, we reviewed brain areas that contribute to the encoding of prediction errors and value versus salience, attention and motivation. Further, we described how we disambiguated these cognitive processes and their neural substrates by using paradigms that incorporate both appetitive and aversive stimuli. We described a circuit in which the orbitofrontal cortex (OFC) signals expected value and the basolateral amygdala (BLA) encodes the salience and valence of both appetitive and aversive events. This information is integrated by the nucleus accumbens (NAc) and dopaminergic (DA) signaling in order to generate prediction and prediction error signals, which guide decision-making and learning via the dorsal striatum (DS). Lastly, the anterior cingulate cortex (ACC) is monitoring actions and outcomes, and signals the need to engage attentional control in order to optimize behavioral output. Here, we expand upon this framework, and review our recent work in which within-task manipulations of both appetitive and aversive stimuli allow us to uncover the neural processes that contribute to the detection of outcomes delivered to a conspecific and behaviors in social contexts. Specifically, we discuss the involvement of single-unit firing in the ACC and DA signals in the NAc during the processing of appetitive and aversive events in both social and non-social contexts.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Kevin N. Schneider
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Matthew R. Roesch,
| |
Collapse
|
17
|
Shi T, Feng S, Shi W, Fu Y, Zhou W. A modified mouse model for observational fear learning and the influence of social hierarchy. Front Behav Neurosci 2022; 16:941288. [PMID: 35957923 PMCID: PMC9359141 DOI: 10.3389/fnbeh.2022.941288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Background Indirectly experiencing traumatic events either by witnessing or learning of a loved one’s suffering is associated with the highest prevalence rates of epidemiological features of PTSD. Social species can develop fear by observing conspecifics in distress. Observational fear learning (OFL) is one of the most widely used paradigms for studying fear contagion in mice. However, the impact of empathic fear behavior and social hierarchy on fear transfer in mice is not well understood. Methods Fear emotions are best characterized in mice by using complementary tests, rather than only freezing behavior, and simultaneously avoiding behavioral variability in different tests across time. In this study, we modified the OFL model by implementing freezing (FZ), open field (OF), and social interaction (SI) tests in a newly designed experimental facility and applied Z-normalization to assess emotionality changes across different behaviors. Results The integrated emotionality scores revealed a robustly increased emotionality of observer mice and, more importantly, contributed to distinguishing susceptible individuals. Interestingly, fos-positive neurons were mainly found in the interoceptive network, and mice of a lower social rank showed more empathy-like behaviors. Conclusion Our findings highlight that combining this experimental model with the Z-scoring method yields robust emotionality measures of individual mice, thus making it easier to screen and differentiate between empathic fear-susceptible mice and resilient mice, and refining the translational applicability of these models.
Collapse
Affiliation(s)
- Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Medical Psychology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenlong Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Wenxia Zhou,
| |
Collapse
|
18
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Lee RX, Stephens GJ, Kuhn B. Social Relationship as a Factor for the Development of Stress Incubation in Adult Mice. Front Behav Neurosci 2022; 16:854486. [PMID: 35685272 PMCID: PMC9172995 DOI: 10.3389/fnbeh.2022.854486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
While stress reactions can emerge long after the triggering event, it remains elusive how they emerge after a protracted, seemingly stress-free period during which stress incubates. Here, we study the behavioral development in mice isolated after observing an aggressive encounter inflicted upon their pair-housed partners. We developed a spatially resolved fine-scale behavioral analysis and applied it to standard behavioral tests. It reveals that the seemingly sudden behavioral changes developed gradually. These behavioral changes were not observed if the aggressive encounter happened to a stranger mouse, suggesting that social bonding is a prerequisite for stress incubation in this paradigm. This finding was corroborated by hemisphere-specific morphological changes in cortex regions centering at the anterior cingulate cortex, a cognitive and emotional center. Our non-invasive analytical methods to capture informative behavioral details may have applications beyond laboratory animals.
Collapse
Affiliation(s)
- Ray X. Lee
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- *Correspondence: Ray X. Lee,
| | - Greg J. Stephens
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| |
Collapse
|
20
|
Terranova JI, Yokose J, Osanai H, Marks WD, Yamamoto J, Ogawa SK, Kitamura T. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 2022; 110:1416-1431.e13. [PMID: 35139362 PMCID: PMC9035063 DOI: 10.1016/j.neuron.2022.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
The empathic ability to vicariously experience the other's fearful situation, a process called observational fear (OF), is critical to survive in nature and function in society. OF can be facilitated by both prior similar fear experience in the observer and social familiarity with the demonstrator. However, the neural circuit mechanisms of experience-dependent OF (Exp OF) remain unknown. Here, we demonstrate that hippocampal-basolateral amygdala (HPC-BLA) circuits in mice without involving the anterior cingulate cortex, considered a center of OF, mediate Exp OF. Dorsal HPC neurons generate fear memory engram cells in BLA encoding prior similar fear experiences, which are essential for Exp OF. On the other hand, ventral HPC neurons respond to the familiar demonstrator's aversive situation during Exp OF, which reactivates the fear memory engram cells in BLA to elicit Exp OF. Our study provides new insights into the memory engram-dependent perception-action coupling that underlies empathic behaviors like Exp OF.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022; 110:1993-2008.e6. [PMID: 35443154 DOI: 10.1016/j.neuron.2022.03.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.
Collapse
|
22
|
Kim KR, Jeong HJ, Kim Y, Lee SY, Kim Y, Kim HJ, Lee SH, Cho H, Kang JS, Ho WK. Calbindin regulates Kv4.1 trafficking and excitability in dentate granule cells via CaMKII-dependent phosphorylation. Exp Mol Med 2021; 53:1134-1147. [PMID: 34234278 PMCID: PMC8333054 DOI: 10.1038/s12276-021-00645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Calbindin, a major Ca2+ buffer in dentate granule cells (GCs), plays a critical role in shaping Ca2+ signals, yet how it regulates neuronal function remains largely unknown. Here, we found that calbindin knockout (CBKO) mice exhibited dentate GC hyperexcitability and impaired pattern separation, which co-occurred with reduced K+ current due to downregulated surface expression of Kv4.1. Relatedly, manipulation of calbindin expression in HT22 cells led to changes in CaMKII activation and the level of surface localization of Kv4.1 through phosphorylation at serine 555, confirming the mechanism underlying neuronal hyperexcitability in CBKO mice. We also discovered that Ca2+ buffering capacity was significantly reduced in the GCs of Tg2576 mice to the level of CBKO GCs, and this reduction was restored to normal levels by antioxidants, suggesting that calbindin is a target of oxidative stress. Our data suggest that the regulation of CaMKII signaling by Ca2+ buffering is crucial for neuronal excitability regulation.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of BioInnovation Research, Kolon Life Science Inc, 110 Magokdong-ro, Gangseo-gu, Seoul, 07793, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoonsub Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Affective empathy and prosocial behavior in rodents. Curr Opin Neurobiol 2021; 68:181-189. [PMID: 34091136 DOI: 10.1016/j.conb.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Empathy is an essential function for humans as social animals. Emotional contagion, the basic form of afffective empathy, comprises the cognitive process of perceiving and sharing the affective state of others. The observational fear assay, an animal model of emotional contagion, has enabled researchers to undertake molecular, cellular, and circuit mechanism of this behavior. Such studies have revealed that observational fear is mediated through neural circuits involved in processing the affective dimension of direct pain experiences. A mouse can also respond to milder social stimuli induced by either positive or negative emotional changes in another mouse, which seems not dependent on the affective pain circuits. Further studies should explore how different neural circuits contribute to integrating different dimensions of affective empathy.
Collapse
|
24
|
Qian K, Liu J, Cao Y, Yang J, Qiu S. Intraperitoneal injection of lithium chloride induces lateralized activation of the insular cortex in adult mice. Mol Brain 2021; 14:71. [PMID: 33874995 PMCID: PMC8056688 DOI: 10.1186/s13041-021-00780-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
Insular cortex is a critical brain region that participates in the interoceptive sensations. Here, we combined the iDISCO + method and Fos immunostaining to confirm that the middle part of the right-side, but not the left-side, insular cortex in adult male mice is activated by intraperitoneal injection of lithium chloride. Lateralized activation of the insular cortex is also observed in adult female mice, but not in young or aged male mice. Furthermore, asymmetrical activation of the insular cortex was completely blocked when both sides of the vagal nerve are transected, whereas intravenous injection of lithium chloride has no effect on the insular activation. Combined together, these results indicate that the insular cortex unilaterally responds to aversive visceral stimuli in an age-dependent way and this process depends on the vagal afferent pathways.
Collapse
Affiliation(s)
- Kai Qian
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Liu
- School of Life Sciences, Center for Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yiqing Cao
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing Yang
- School of Life Sciences, Center for Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shuang Qiu
- Department of Neurobiology, Department of Anesthesiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Abstract
Empathy is a complex phenomenon critical for group survival and societal bonds. In addition, there is mounting evidence demonstrating empathic behaviors are dysregulated in a multitude of psychiatric disorders ranging from autism spectrum disorder, substance use disorders, and personality disorders. Therefore, understanding the underlying drive and neurobiology of empathy is paramount for improving the treatment outcomes and quality of life for individuals suffering from these psychiatric disorders. While there is a growing list of human studies, there is still much about empathy to understand, likely due to both its complexity and the inherent limitations of imaging modalities. It is therefore imperative to develop, validate, and utilize rodent models of empathic behaviors as translational tools to explore this complex topic in ways human research cannot. This review outlines some of the more prevailing theories of empathy, lists some of the psychiatric disorders with disrupted empathic processes, describes rat and mouse models of empathic behaviors currently used, and discusses ways in which these models have elucidated social, environmental, and neurobiological factors that may modulate empathy. The research tools afforded to rodent models will provide an increasingly clear translational understanding of empathic processes and consequently result in improvements in care for those diagnosed with any one of the many psychiatric disorders.
Collapse
Affiliation(s)
- Stewart S. Cox
- Medical University of South Carolina, Charleston SC, USA
| | | |
Collapse
|
26
|
Fendt M, Gonzalez-Guerrero CP, Kahl E. Observational Fear Learning in Rats: Role of Trait Anxiety and Ultrasonic Vocalization. Brain Sci 2021; 11:brainsci11040423. [PMID: 33810488 PMCID: PMC8066558 DOI: 10.3390/brainsci11040423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Rats can acquire fear by observing conspecifics that express fear in the presence of conditioned fear stimuli. This process is called observational fear learning and is based on the social transmission of the demonstrator rat’s emotion and the induction of an empathy-like or anxiety state in the observer. The aim of the present study was to investigate the role of trait anxiety and ultrasonic vocalization in observational fear learning. Two experiments with male Wistar rats were performed. In the first experiment, trait anxiety was assessed in a light–dark box test before the rats were submitted to the observational fear learning procedure. In the second experiment, ultrasonic vocalization was recorded throughout the whole observational fear learning procedure, and 22 kHz and 50 kHz calls were analyzed. The results of our study show that trait anxiety differently affects direct fear learning and observational fear learning. Direct fear learning was more pronounced with higher trait anxiety, while observational fear learning was the best with a medium-level of trait anxiety. There were no indications in the present study that ultrasonic vocalization, especially emission of 22 kHz calls, but also 50 kHz calls, are critical for observational fear learning.
Collapse
Affiliation(s)
- Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Claudia Paulina Gonzalez-Guerrero
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
| |
Collapse
|
27
|
Paradiso E, Gazzola V, Keysers C. Neural mechanisms necessary for empathy-related phenomena across species. Curr Opin Neurobiol 2021; 68:107-115. [PMID: 33756399 DOI: 10.1016/j.conb.2021.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The neural basis of empathy and prosociality has received much interest over the past decades. Neuroimaging studies localized a network of brain regions with activity that correlates with empathy. Here, we review how the emergence of rodent and nonhuman primate models of empathy-related phenomena supplements human lesion and neuromodulation studies providing evidence that activity in several nodes is necessary for these phenomena to occur. We review proof that (i) affective states triggered by the emotions of others, (ii) motivations to act in ways that benefit others, and (iii) emotion recognition can be altered by perturbing brain activity in many nodes identified by human neuroimaging, with strongest evidence for the cingulate and the amygdala. We also include evidence that manipulations of the oxytocin system and analgesics can have such effects, the latter providing causal evidence for the recruitment of an individual's own nociceptive system to feel with the pain of others.
Collapse
Affiliation(s)
- Enrica Paradiso
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| |
Collapse
|
28
|
Schneider KN, Sciarillo XA, Nudelman JL, Cheer JF, Roesch MR. Anterior Cingulate Cortex Signals Attention in a Social Paradigm that Manipulates Reward and Shock. Curr Biol 2020; 30:3724-3735.e2. [PMID: 32763169 PMCID: PMC7541607 DOI: 10.1016/j.cub.2020.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
The ability to recognize emotions in others and adapt one's behavior accordingly is critical for functioning in any social context. This ability is impaired in several psychiatric disorders, such as autism and psychopathy. Recent work has identified the anterior cingulate cortex (ACC) among other brain regions involved in this process. Neural recording studies have shown that neurons in ACC are modulated by reward or shock when delivered to a conspecific and when experienced first-hand. Because previous studies do not vary reward and shock within the same experiment, it has been unclear whether the observed activity reflects how much attention is being paid to outcomes delivered to a conspecific or the valence associated with those stimuli. To address this issue, we recorded from ACC as rats performed a Pavlovian task that predicted whether reward, shock, or nothing would be delivered to the rat being recorded from or a conspecific located in the opposite chamber. Consistent with previous reports, we found that the firing of ACC neurons was modulated by aversive stimuli delivered to the recording rat and their conspecific. Activity of some of these neurons genuinely reflected outcome identity (i.e., reward or shock); however, the population of neurons as a whole responded similarly for both reward and shock, as well as for cues that predicted their occurrence (i.e., reward > neutral and shock > neutral; attention). These results suggest that ACC can process information about outcomes (i.e., identity and recipient) in the service of promoting attention in some social contexts.
Collapse
Affiliation(s)
- Kevin N Schneider
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| | - Xavier A Sciarillo
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Jacob L Nudelman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
29
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
30
|
Silva PRR, Silva RH, Lima RH, Meurer YS, Ceppi B, Yamamoto ME. Are There Multiple Motivators for Helping Behavior in Rats? Front Psychol 2020; 11:1795. [PMID: 32849060 PMCID: PMC7403447 DOI: 10.3389/fpsyg.2020.01795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Empathy is the ability to (a) be affected by and share the emotional state of another; (b) assess the reasons for the other’s state; and (c) identify with the other, adopting their perspective. This phenomenon has been shown to exist in several species and is proposed as a motivator for prosocial behavior. The experimental study of this feature in laboratory rodents is a more viable alternative in comparison to wild animals. A recent report showed that rats opened a door to free their cage mate from a restraint box. Although this behavior has been suggested to be motivated by empathy, this fact has been questioned by several studies that proposed other motivators for the releasing behavior. In the present study, we use an adaptation of the protocol of releasing behavior to investigate aspects of empathy and pro-sociality such as familiarity and reciprocity. In addition, we addressed some potential motivational factors that could influence this behavior. The main results showed that (1) rats opened the restraint box to free conspecifics most of the time; (2) direct reciprocity or past restriction experience did not improve releasing performance, probably due to a ceiling effect; (3) after a series of trials in the presence of a restricted conspecific, the free rat continues to open the restraint box even if it is empty; (4) in general, the opening performance improves across trials and phases, resembling learning curves; (5) if the first series of trials occurs with the empty box, the opening behavior does not occur and is modest in subsequent trials with a trapped animal; (6) the exploratory drive toward the restraint box and desire for social contact do not seem to function as key motivators for releasing behavior. In conclusion, our findings do not support that the opening behavior is exclusively related to empathic motivation. While multiple factors might be involved, our study suggests that task learning triggered (and possibly reinforced) by the presence of the restricted rat can function as a motivator. Further investigations are required to fully understand the mechanisms and motivation factors guiding the releasing behavior.
Collapse
Affiliation(s)
- Phietica R R Silva
- Laboratory of Evolution of Human Behavior, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Ramón Hypolito Lima
- Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| | - Ywlliane S Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Bruno Ceppi
- Neuroscience and Behavior Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Emilia Yamamoto
- Laboratory of Evolution of Human Behavior, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
31
|
Gray Matter Volume Differences in Impulse Control and Addictive Disorders-An Evidence From a Sample of Heterosexual Males. J Sex Med 2020; 17:1761-1769. [PMID: 32690426 DOI: 10.1016/j.jsxm.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/16/2020] [Accepted: 05/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUNDS The classification of addictions and impulse control disorders is changing as reflected in the 11th version of International Classification of Disorders (WHO, 2018). However, studies focusing on direct comparison of structural brain differences in behavioral and substance addictions are limited. AIM Here, we contrast gray matter volumes (GMVs) across groups of individuals with compulsive sexual behavior disorder (CSBD), gambling disorder (GD), and alcohol use disorder (AUD) with those with none of these disorders (healthy controls participants; HCs). METHODS Voxel-based morphometry was used to study brain structure, and severities of addiction symptoms were assessed with questionnaires. To identify brain regions related to severities of addictions, correlations between questionnaire scores and GMVs were computed. MAIN OUTCOME We collected magnetic resonance imaging (GMVs) data from 26 patients with CSBD, 26 patients with GD, 21 patients with AUD, and 25 HC participants (all heterosexual males; age: 24-60; mean = 34.5, standard deviation = 6.48). RESULTS Affected individuals (CSBD, GD, AUD) compared with HC participants showed smaller GMVs in the left frontal pole, specifically in the orbitofrontal cortex. The most pronounced differences were observed in the GD and AUD groups, and the least in the CSBD group. In addition, a negative correlation was found between GMVs and disorder severity in the CSBD group. Higher severity of CSBD symptoms was correlated with decreased GMVs in the right anterior cingulate gyrus. CLINICAL IMPLICATIONS Our findings suggest similarities between CSBD and addictions. STRENGHS AND LIMITIATIONS This study is the first showing smaller GMVs in 3 clinical groups of CSBD, GD, and AUD. But the study was limited only to heterosexual men. Longitudinal studies should examine the extent to which ventral prefrontal decrements in volume may represent preexisting vulnerability factors or whether they may develop with disorder progression. CONCLUSIONS Our research extends prior findings in substance use disorders of lower GMVs in prefrontal cortical volumes among 3 clinical groups of patients with specific impulse control (CSBD) and behavioral (GD) and substance (AUD) addictive disorders. The negative correlation between CSBD symptoms and GMV of right anterior cingulate gyrus suggests a link with clinical symptomatology. Draps M, Sescousse G, Potenza MN, et al. Gray Matter Volume Differences in Impulse Control and Addictive Disorders-An Evidence From a Sample of Heterosexual Males. J Sex Med 2020;17:1761-1769.
Collapse
|
32
|
Kondrakiewicz K, Rokosz-Andraka K, Nikolaev T, Górkiewicz T, Danielewski K, Gruszczyńska A, Meyza K, Knapska E. Social Transfer of Fear in Rodents. ACTA ACUST UNITED AC 2020; 90:e85. [PMID: 31756049 DOI: 10.1002/cpns.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Social transfer of fear is a potent tool facilitating response to danger in animals forming social groups. With many factors influencing the transfer-such as proximity of the animal receiving information to the donor, familiarity, proximity of danger, and species-specific coping strategies-it allows studies of neuronal correlates of a variety of behavioral responses. Since both the transfer of fear and social modulation of fear responses are impaired in many neuropsychological disorders, the models described in this article could be useful in disentangling the neuronal circuitry involved in the pathogenesis of these disorders. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Imminent threat in rats Alternate Protocol 1: Imminent threat in mice Basic Protocol 2: Remote threat in rats Alternate Protocol 2: Remote threat in mice Basic Protocol 3: Social modulation of fear extinction in rats Alternate Protocol 3: Social modulation of fear extinction in mice.
Collapse
Affiliation(s)
- Kacper Kondrakiewicz
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Rokosz-Andraka
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Górkiewicz
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Danielewski
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Gruszczyńska
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ksenia Meyza
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Neurobiology of Emotions Laboratory, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
33
|
Lateralized Expression of Cortical Perineuronal Nets during Maternal Experience is Dependent on MECP2. eNeuro 2020; 7:ENEURO.0500-19.2020. [PMID: 32332080 PMCID: PMC7294466 DOI: 10.1523/eneuro.0500-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cortical neuronal circuits along the sensorimotor pathways are shaped by experience during critical periods of heightened plasticity in early postnatal development. After closure of critical periods, measured histologically by the formation and maintenance of extracellular matrix structures called perineuronal nets (PNNs), the adult mouse brain exhibits restricted plasticity and maturity. Mature PNNs are typically considered to be stable structures that restrict synaptic plasticity on cortical parvalbumin+ (PV+) GABAergic neurons. Changes in environment (i.e., novel behavioral training) or social contexts (i.e., motherhood) are known to elicit synaptic plasticity in relevant neural circuitry. However, little is known about concomitant changes in the PNNs surrounding the cortical PV+ GABAergic neurons. Here, we show novel changes in PNN density in the primary somatosensory cortex (SS1) of adult female mice after maternal experience [called surrogate (Sur)], using systematic microscopy analysis of a whole brain region. On average, PNNs were increased in the right barrel field and decreased in the left forelimb regions. Individual mice had left hemisphere dominance in PNN density. Using adult female mice deficient in methyl-CpG-binding protein 2 (MECP2), an epigenetic regulator involved in regulating experience-dependent plasticity, we found that MECP2 is critical for this precise and dynamic expression of PNN. Adult naive Mecp2-heterozygous (Het) females had increased PNN density in specific subregions in both hemispheres before maternal experience, compared with wild-type (WT) littermate controls. The laterality in PNN expression seen in naive Het (NH) was lost after maternal experience in Sur Het (SH) mice, suggesting possible intact mechanisms for plasticity. Together, our results identify subregion and hemisphere-specific alterations in PNN expression in adult females, suggesting extracellular matrix plasticity as a possible neurobiological mechanism for adult behaviors in rodents.
Collapse
|
34
|
Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat Neurosci 2020; 23:625-637. [PMID: 32284608 DOI: 10.1038/s41593-020-0620-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/05/2020] [Indexed: 01/21/2023]
Abstract
Decades of research support the idea that associations between a conditioned stimulus (CS) and an unconditioned stimulus (US) are encoded in the lateral amygdala (LA) during fear learning. However, direct proof for the sources of CS and US information is lacking. Definitive evidence of the LA as the primary site for cue association is also missing. Here, we show that calretinin (Calr)-expressing neurons of the lateral thalamus (Calr+LT neurons) convey the association of fast CS (tone) and US (foot shock) signals upstream from the LA in mice. Calr+LT input shapes a short-latency sensory-evoked activation pattern of the amygdala via both feedforward excitation and inhibition. Optogenetic silencing of Calr+LT input to the LA prevents auditory fear conditioning. Notably, fear conditioning drives plasticity in Calr+LT neurons, which is required for appropriate cue and contextual fear memory retrieval. Collectively, our results demonstrate that Calr+LT neurons provide integrated CS-US representations to the LA that support the formation of aversive memories.
Collapse
|
35
|
Han Y, Sichterman B, Carrillo M, Gazzola V, Keysers C. Similar levels of emotional contagion in male and female rats. Sci Rep 2020; 10:2763. [PMID: 32066797 PMCID: PMC7026170 DOI: 10.1038/s41598-020-59680-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
Emotional contagion, the ability to feel what other individuals feel without necessarily understanding the feeling or knowing its source, is thought to be an important element of social life. In humans, emotional contagion has been shown to be stronger in women than men. Emotional contagion has been shown to exist also in rodents, and a growing number of studies explore the neural basis of emotional contagion in male rats and mice. Here we explore whether there are sex differences in emotional contagion in rats. We use an established paradigm in which a demonstrator rat receives footshocks while freezing is measured in both the demonstrator and an observer rat. The two rats can hear, smell and see each other. By comparing pairs of male rats with pairs of female rats, we found (i) that female demonstrators froze less when submitted to footshocks, but that (ii) the emotional contagion response, i.e. the degree of influence across the rats, did not depend on the sex of the rats. This was true whether emotional contagion was quantified based on the slope of a regression linking demonstrator and observer average freezing, or on Granger causality estimates of moment-to-moment freezing. The lack of sex differences in emotional contagion is compatible with an interpretation of emotional contagion as serving selfish danger detection.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Bo Sichterman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands. .,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, Jiang L, Yu L, Zhuo M, Qiu S. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020; 11:640. [PMID: 32005806 PMCID: PMC6994462 DOI: 10.1038/s41467-020-14281-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII+ (aICCamKII) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aICCamKII neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aICCamKII neurons project directly to the vGluT2+ neurons in the lateral hypothalamus (LH), and the right-side aICCamKII-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior.
Collapse
Affiliation(s)
- Yu Wu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Changwan Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ming Chen
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Kai Qian
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Xinyou Lv
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Haiting Wang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lifei Jiang
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lina Yu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Shuang Qiu
- Center for Neuroscience and Department of Anesthesiology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Kim S, Kyung T, Chung JH, Kim N, Keum S, Lee J, Park H, Kim HM, Lee S, Shin HS, Do Heo W. Non-invasive optical control of endogenous Ca 2+ channels in awake mice. Nat Commun 2020; 11:210. [PMID: 31924789 PMCID: PMC6954201 DOI: 10.1038/s41467-019-14005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice. Optogenetic applications in the brain of live animals often require the use of optic fibers due to poor tissue-penetration of blue light. Here the authors present monSTIM1, an improved high sensitivity optogenetic tool able to modulate Ca2+ signaling in the brain of awake mice using non-invasive light stimulation.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taeyoon Kyung
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jae-Hee Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyerim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea. .,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Han Y, Bruls R, Soyman E, Thomas RM, Pentaraki V, Jelinek N, Heinemans M, Bassez I, Verschooren S, Pruis I, Van Lierde T, Carrillo N, Gazzola V, Carrillo M, Keysers C. Bidirectional cingulate-dependent danger information transfer across rats. PLoS Biol 2019; 17:e3000524. [PMID: 31805039 PMCID: PMC6894752 DOI: 10.1371/journal.pbio.3000524] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rune Bruls
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Efe Soyman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rajat Mani Thomas
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Vasiliki Pentaraki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Naomi Jelinek
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Department of Applied Life Sciences, FH Campus Wien, Wien, Austria
| | - Mirjam Heinemans
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iege Bassez
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Sam Verschooren
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Illanah Pruis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thijs Van Lierde
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Nathaly Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| |
Collapse
|
39
|
Burgos-Robles A, Gothard KM, Monfils MH, Morozov A, Vicentic A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci Biobehav Rev 2019; 107:215-228. [PMID: 31509768 PMCID: PMC6875610 DOI: 10.1016/j.neubiorev.2019.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
The ability to observe, interpret, and learn behaviors and emotions from conspecifics is crucial for survival, as it bypasses direct experience to avoid potential dangers and maximize rewards and benefits. The anterior cingulate cortex (ACC) and its extended neural connections are emerging as important networks for the detection, encoding, and interpretation of social signals during observational learning. Evidence from rodents and primates (including humans) suggests that the social interactions that occur while individuals are exposed to important information in their environment lead to transfer of information across individuals that promotes adaptive behaviors in the form of either social affiliation, alertness, or avoidance. In this review, we first showcase anatomical and functional connections of the ACC in primates and rodents that contribute to the perception of social signals. We then discuss species-specific cognitive and social functions of the ACC and differentiate between neural activity related to 'self' and 'other', extending into the difference between social signals received and processed by the self, versus observing social interactions among others. We next describe behavioral and neural events that contribute to social learning via observation. Finally, we discuss some of the neural mechanisms underlying observational learning within the ACC and its extended network.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Marie H Monfils
- Department of Psychology, Institute for Mental Health Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexei Morozov
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Rockville, MD 20852, USA.
| |
Collapse
|
40
|
Keum S, Shin HS. Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron 2019; 104:78-86. [DOI: 10.1016/j.neuron.2019.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
|
41
|
Zheng C, Huang Y, Bo B, Wei L, Liang Z, Wang Z. Projection from the Anterior Cingulate Cortex to the Lateral Part of Mediodorsal Thalamus Modulates Vicarious Freezing Behavior. Neurosci Bull 2019; 36:217-229. [PMID: 31531804 DOI: 10.1007/s12264-019-00427-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023] Open
Abstract
Emotional contagion, a primary form of empathy, is present in rodents. Among emotional contagion behaviors, social transmission of fear is the most studied. Here, we modified a paradigm used in previous studies to more robustly assess the social transmission of fear in rats that experienced foot-shock. We used resting-state functional magnetic resonance imaging to show that foot-shock experience enhances the regional connectivity of the anterior cingulate cortex (ACC). We found that lesioning the ACC specifically attenuated the vicarious freezing behavior of foot-shock-experienced observer rats. Furthermore, ablation of projections from the ACC to the mediodorsal thalamus (MDL) bilaterally delayed the vicarious freezing responses, and activation of these projections decreased the vicarious freezing responses. Overall, our results demonstrate that, in rats, the ACC modulates vicarious freezing behavior via a projection to the MDL and provide clues to understanding the mechanisms underlying empathic behavior in humans.
Collapse
Affiliation(s)
- Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Carrillo M, Han Y, Migliorati F, Liu M, Gazzola V, Keysers C. Emotional Mirror Neurons in the Rat's Anterior Cingulate Cortex. Curr Biol 2019; 29:1301-1312.e6. [PMID: 30982647 PMCID: PMC6488290 DOI: 10.1016/j.cub.2019.03.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
Abstract
How do the emotions of others affect us? The human anterior cingulate cortex (ACC) responds while experiencing pain in the self and witnessing pain in others, but the underlying cellular mechanisms remain poorly understood. Here we show the rat ACC (area 24) contains neurons responding when a rat experiences pain as triggered by a laser and while witnessing another rat receive footshocks. Most of these neurons do not respond to a fear-conditioned sound (CS). Deactivating this region reduces freezing while witnessing footshocks to others but not while hearing the CS. A decoder trained on spike counts while witnessing footshocks to another rat can decode stimulus intensity both while witnessing pain in another and while experiencing the pain first-hand. Mirror-like neurons thus exist in the ACC that encode the pain of others in a code shared with first-hand pain experience. A smaller population of neurons responded to witnessing footshocks to others and while hearing the CS but not while experiencing laser-triggered pain. These differential responses suggest that the ACC may contain channels that map the distress of another animal onto a mosaic of pain- and fear-sensitive channels in the observer. More experiments are necessary to determine whether painfulness and fearfulness in particular or differences in arousal or salience are responsible for these differential responses.
Collapse
Affiliation(s)
- Maria Carrillo
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Yinging Han
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Filippo Migliorati
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ming Liu
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Nomura H, Teshirogi C, Nakayama D, Minami M, Ikegaya Y. Prior observation of fear learning enhances subsequent self-experienced fear learning with an overlapping neuronal ensemble in the dorsal hippocampus. Mol Brain 2019; 12:21. [PMID: 30871580 PMCID: PMC6419346 DOI: 10.1186/s13041-019-0443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
Information from direct experience and observation of others is integrated in the brain to enable appropriate responses to environmental stimuli. Fear memory can be acquired by observing a conspecific’s distress. However, it remains unclear how prior fear observation affects self-experienced fear learning. In this study, we tested whether prior observation of a conspecific receiving contextual fear conditioning affects subsequent self-experienced fear conditioning and how neuronal ensembles represent the integration of the observation and self-experience. Test mice observed demonstrator mice experiencing fear conditioning on day 1 and directly experienced fear conditioning on day 2. Contextual fear memory was tested on day 3. The prior observation of fear conditioning promoted subsequent self-experienced fear conditioning in a hippocampus-dependent manner. We visualized hippocampal neurons that were activated during the observation and self-experience of fear conditioning and found that self-experienced fear conditioning preferentially activated dorsal CA1 neurons that were activated during the observation. When mice observed and directly experienced fear conditioning in different contexts, preferential reactivation was not observed in the CA1, and fear memory was not enhanced. These findings indicate that dorsal CA1 neuronal ensembles that were activated during both the observation and self-experience of fear learning are implicated in the integration of observation and self-experience for strengthening fear memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan. .,Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Chie Teshirogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daisuke Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, 565-0871, Japan
| |
Collapse
|
44
|
Genetic factors associated with empathy in humans and mice. Neuropharmacology 2019; 159:107514. [PMID: 30716414 DOI: 10.1016/j.neuropharm.2019.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/10/2023]
Abstract
The neurocognitive ability to recognize and share the mental states of others is crucial for our emotional experience and social interaction. Extensive human studies have informed our understanding of the psychobehavioral and neurochemical bases of empathy. Recent evidence shows that simple forms of empathy are conserved from rodents to humans, and rodent models have become particularly useful for understanding the neurobiological correlates of empathy. In this review, we first summarize aspects of empathy at the behavioral and neural circuit levels, and describe recent developments in rodent model behavioral paradigms. We then highlight different neurobiological pathways involved in empathic abilities, with special emphasis on genetic polymorphisms associated with individual differences in empathy. By directly assessing various neurochemical correlates at molecular and neural circuit levels using relevant animal models, we conclude with the suggestion that rodent research can significantly advance our understanding of the neural basis of empathy. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
45
|
Taste Perception and Caffeine Consumption: An fMRI Study. Nutrients 2018; 11:nu11010034. [PMID: 30586867 PMCID: PMC6356791 DOI: 10.3390/nu11010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Caffeine is ubiquitous, yet its impact on central taste processing is not well understood. Although there has been considerable research on caffeine’s physiological and cognitive effects, there is a paucity of research investigating the effects of caffeine on taste. Here we used functional magnetic resonance imaging (fMRI) to investigate group differences between caffeine consumers and non-consumers in blood-oxygenation-level-dependent (BOLD) activation during hedonic evaluation of taste. We scanned 14 caffeine consumers and 14 caffeine non-consumers at 3 Tesla, while they rated three tastes: caffeine (bitter), sucrose (sweet), and saccharin (sweet with bitter after taste), in aqueous solutions. Differences in BOLD activation were analyzed using voxel wise independent samples t-tests within Analysis of Functional Neuroimage (AFNI). Results indicated that during the hedonic evaluation of caffeine or sucrose, caffeine non-consumers had significantly greater activation in neuronal areas associated with memory and reward. During the hedonic evaluation of saccharin, caffeine consumers had significantly greater activation in areas associated with memory and information processing. The findings suggest caffeine consumption is associated with differential activation in neuronal areas involved in reward, memory, and information processing. Further research on intensity and hedonics of bitter and sweet stimuli in caffeine consumers and non-consumers will be of great interest to better understand the nature of differences in taste perception between caffeine consumers and non-consumers.
Collapse
|
46
|
Blumstein DT, Diaz A, Yin L. Marmots do not consistently use their left eye to respond to an approaching threat but those that did fled sooner. Curr Zool 2018; 64:727-731. [PMID: 30538732 PMCID: PMC6280102 DOI: 10.1093/cz/zoy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/05/2018] [Indexed: 12/02/2022] Open
Abstract
In many vertebrates, the brain's right hemisphere which is connected to the left visual field specializes in the processing of information about threats while the left hemisphere which is connected to the right visual field specializes in the processing of information about conspecifics. This is referred to as hemispheric lateralization. But individuals that are too predictable in their response to predators could have reduced survival and we may expect selection for somewhat unpredictable responses. We studied hemispheric lateralization in yellow-bellied marmots Marmota flaviventer, a social rodent that falls prey to a variety of terrestrial and aerial predators. We first asked if they have lateralized responses to a predatory threat. We then asked if the eye that they used to assess risk influenced their perceptions of risk. We recorded the direction marmots were initially looking and then walked toward them until they fled. We recorded the distance that they responded to our experimental approach by looking, the eye with which they looked at us, and the distance at which they fled (i.e., flight initiation distance; FID). We found that marmots had no eye preference with which they looked at an approaching threat. Furthermore, the population was not comprised of individuals that responded in consistent ways. However, we found that marmots that looked at the approaching person with their left eye had larger FIDs suggesting that risk assessment was influenced by the eye used to monitor the threat. These findings are consistent with selection to make prey less predictable for their predators, despite underlying lateralization.
Collapse
Affiliation(s)
- Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Alexis Diaz
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Lijie Yin
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
47
|
Kim A, Keum S, Shin HS. Observational fear behavior in rodents as a model for empathy. GENES BRAIN AND BEHAVIOR 2018; 18:e12521. [DOI: 10.1111/gbb.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Arie Kim
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| | - Sehoon Keum
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| |
Collapse
|
48
|
Zhou C, Zhou Z, Han Y, Lei Z, Li L, Montardy Q, Liu X, Xu F, Wang L. Activation of parvalbumin interneurons in anterior cingulate cortex impairs observational fear. Sci Bull (Beijing) 2018; 63:771-778. [PMID: 36658951 DOI: 10.1016/j.scib.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 01/21/2023]
Abstract
The ability to detect conspecific's distress is crucial for animal survival. In rodent models, observational fear (OF) occurs when one animal perceives another fear related negative emotions, which may model certain behaviors caused by witnessing traumatic experiences in humans. Anterior cingulate cortex (ACC) has been showed to play a crucial role in OF. However, cellular and neural circuit basis relating to ACC governing OF is poorly understood. Here, we used Designer Receptor Exclusively Activated by a Designer Drug (DREADD) system to investigate the cell type specific circuit mechanism of ACC in OF. Firstly, inhibitory hM4D (Gi) designer receptor together with clozapine N-oxide (CNO) injection was applied to inactivate ACC neurons in the observer mice. We found that, chemogenetic inhibition of ACC resulted in a decreased freezing response in the observer mice. Next, combining PV-ires-Cre mice and Cre-dependent DREADD system, we selectively targeted the ACC parvalbumin (PV) interneurons with the excitatory hM3D (Gq) designer receptor. Activation of ACC PV interneurons following CNO injection reduced freezing response in the observer mice, while had no effect on freezing response in the demonstrator mice. Finally, monosynaptic rabies retrograde tracing revealed that ACC PV interneurons receive inputs from the mediodorsal thalamic nucleus (MD) and the ventromedial thalamic nucleus (VM), both known for their roles in OF. Taken together, these findings reveal that ACC activation is important for OF, during which PV interneurons in ACC play an important regulatory role. Abnormal function of ACC PV interneurons might contribute to the pathology of empathy- deficits related diseases, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Chunran Zhou
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhou
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yushui Han
- Southern Medical University, Guangzhou 510168, China
| | - Zhuogui Lei
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Li
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Quentin Montardy
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuemei Liu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
49
|
GABAergic malfunction in the anterior cingulate cortex underlying maternal immune activation-induced social deficits. J Neuroimmunol 2018; 321:92-96. [PMID: 29957393 DOI: 10.1016/j.jneuroim.2018.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Social deficits are one of the major symptoms of psychiatric disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, the underlying mechanism remains ill-defined. Here, we focused on the anterior cingulate cortex (ACC), a brain region that is related to social behaviors, of mice that received poly(I:C)-induced maternal immune activation. Offspring born from poly(I:C)-treated dams exhibited social deficits in a three-chamber task at juvenile stages. Using whole-cell patch clamp recordings, we found that layer 2/3 pyramidal cells were hyperactive in acute ACC slices prepared from poly(I:C)-treated mice compared to those from saline-treated mice. The hyperexcitation was associated with a reduction in inhibitory synapse activity. Local injection of the GABAA receptor enhancer clonazepam into the ACC of poly(I:C)-treated mice restored the social behaviors of the mice. These results suggest that the balanced excitability of ACC neurons is essential for social ability.
Collapse
|
50
|
Allsop SA, Wichmann R, Mills F, Burgos-Robles A, Chang CJ, Felix-Ortiz AC, Vienne A, Beyeler A, Izadmehr EM, Glober G, Cum MI, Stergiadou J, Anandalingam KK, Farris K, Namburi P, Leppla CA, Weddington JC, Nieh EH, Smith AC, Ba D, Brown EN, Tye KM. Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell 2018; 173:1329-1342.e18. [PMID: 29731170 DOI: 10.1016/j.cell.2018.04.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
Abstract
Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stephen A Allsop
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Romy Wichmann
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fergil Mills
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony Burgos-Robles
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chia-Jung Chang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ada C Felix-Ortiz
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alienor Vienne
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Beyeler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ehsan M Izadmehr
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gordon Glober
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meghan I Cum
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johanna Stergiadou
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kavitha K Anandalingam
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathryn Farris
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Praneeth Namburi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Leppla
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Javier C Weddington
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward H Nieh
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Demba Ba
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|