1
|
Li J, Li XC, Gan HY, Zhang Y, Guo ZX, Liu YX, Lin YQ, Guo LD. Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2630-6. [PMID: 39432205 DOI: 10.1007/s11427-024-2630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
Plant diversity significantly impacts ecosystem processes and functions, yet its influence on the community assembly of leaf fungi remains poorly understood. In this study, we investigated leaf epiphytic and endophytic fungal communities in a Chinese subtropical tree species richness experiment, ranging from 1 to 16 species, using amplicon sequencing to target the internal transcribed spacer 1 region of the rDNA. We found that the community assembly of epiphytic and endophytic fungi was predominantly governed by stochastic processes, with a higher contribution of dispersal limitation on epiphytic than on endophytic fungal communities but a higher contribution of selection on endophytic than on epiphytic fungal communities. The plant-epiphytic fungus interaction network was more complex (e.g., more highly connected and strongly nested but less specialized and modularized) than the plant-endophytic fungus interaction network. Additionally, tree species richness was positively correlated with the network complexity and diversity of epiphytic (α-, β- and γ-diversity) and endophytic (β- and γ-diversity) fungi, but was not associated with the contribution of the stochastic and deterministic processes on the community assembly of epiphytic and endophytic fungi. This study highlights that tree species diversity enhances the diversity and network complexity, rather than alters the ecological processes in community assembly of leaf-associated fungi.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qing Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Deslippe JR. Aridity may alter the contributions of plants and fungi to grassland functions. PLoS Biol 2024; 22:e3002765. [PMID: 39146388 PMCID: PMC11326592 DOI: 10.1371/journal.pbio.3002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Grassland aridification threatens biodiversity which supports ecosystem multifunctionality (EMF), but the relative roles of biota in maintaining EMF are poorly known. A new study in PLoS Biology finds complementarity of above- and belowground biodiversity and a trade-off between fungal and plant richness in driving EMF with aridity.
Collapse
Affiliation(s)
- Julie R Deslippe
- School of Biological Sciences, and Centre for Biodiversity and Restoration Ecology, Te Herenga Waka-Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Lepinay C, Větrovský T, Chytrý M, Dřevojan P, Fajmon K, Cajthaml T, Kohout P, Baldrian P. Effect of plant communities on bacterial and fungal communities in a Central European grassland. ENVIRONMENTAL MICROBIOME 2024; 19:42. [PMID: 38902816 PMCID: PMC11188233 DOI: 10.1186/s40793-024-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Čertoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity. RESULTS High plant diversity was associated with treeless grassland areas with high primary productivity and high contents of soil nitrogen and organic carbon. In contrast, low plant diversity occurred in grasslands near solitary trees and forest edges. Fungal communities differed between low-diversity and high-diversity grasslands more strongly than bacterial communities, while the difference in arbuscular mycorrhizal fungi (AMF) depended on their location in soil versus plant roots. Compared to grasslands with low plant diversity, high-diversity plant communities had a higher diversity of fungi including soil AMF, a different fungal and soil AMF community composition and higher bacterial and soil AMF biomass. Root AMF composition differed only slightly between grasslands with low and high plant diversity. Trees dominated the belowground plant community in low-diversity grasslands, which influenced microbial diversity and composition. CONCLUSIONS The determinants of microbiome abundance and composition in grasslands are complex. Soil chemistry mainly influenced bacterial communities, while plant community type mainly affected fungal (including AMF) communities. Further studies on the functional roles of microbial communities are needed to understand plant-soil-microbe interactions and their involvement in grassland ecosystem services.
Collapse
Affiliation(s)
- Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Dřevojan
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Karel Fajmon
- Regional Office Protected Landscape Area Bílé Karpaty, Nature Conservation Agency of the Czech Republic, Nádražní 318, 763 26, Luhačovice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
4
|
Scherzinger F, Schädler M, Reitz T, Yin R, Auge H, Merbach I, Roscher C, Harpole WS, Blagodatskaya E, Siebert J, Ciobanu M, Marder F, Eisenhauer N, Quaas M. Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nat Commun 2024; 15:4930. [PMID: 38858378 PMCID: PMC11164979 DOI: 10.1038/s41467-024-48830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The currently dominant types of land management are threatening the multifunctionality of ecosystems, which is vital for human well-being. Here, we present a novel ecological-economic assessment of how multifunctionality of agroecosystems in Central Germany depends on land-use type and climate. Our analysis includes 14 ecosystem variables in a large-scale field experiment with five different land-use types under two different climate scenarios (ambient and future climate). We consider ecological multifunctionality measures using averaging approaches with different weights, reflecting preferences of four relevant stakeholders based on adapted survey data. Additionally, we propose an economic multifunctionality measure based on the aggregate economic value of ecosystem services. Results show that intensive management and future climate decrease ecological multifunctionality for most scenarios in both grassland and cropland. Only under a weighting based on farmers' preferences, intensively-managed grassland shows higher multifunctionality than sustainably-managed grassland. The economic multifunctionality measure is about ~1.7 to 1.9 times higher for sustainable, compared to intensive, management for both grassland and cropland. Soil biodiversity correlates positively with ecological multifunctionality and is expected to be one of its drivers. As the currently prevailing land management provides high multifunctionality for farmers, but not for society at large, we suggest to promote and economically incentivise sustainable land management that enhances both ecological and economic multifunctionality, also under future climatic conditions.
Collapse
Affiliation(s)
- Friedrich Scherzinger
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Rui Yin
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
- Institute for Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Institute of Biology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Str. Republicii 48, Cluj-Napoca, Romania
| | - Fabian Marder
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- Institute for Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany.
| | - Martin Quaas
- German Centre for Integrative Biodiversity Research (iDiv) Jena-Halle-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Economics, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Zhou G, Long F, Zu L, Jarvie S, Peng Y, Zang L, Chen D, Zhang G, Sui M, He Y, Liu Q. Stand spatial structure and microbial diversity are key drivers of soil multifunctionality during secondary succession in degraded karst forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173504. [PMID: 38797411 DOI: 10.1016/j.scitotenv.2024.173504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Studying the relationship between biodiversity and ecosystem multifunctionality (the ability of ecosystems to provide multiple ecosystem functions) (BEMF) is a current hotspot in ecology research. Previous studies on BEMF emphasized the role of plant and microbial diversity but rarely mention stand spatial structure. To investigate the effect of stand spatial structure on BEMF, this study established 30 forest dynamic plots in three natural restoration stages (shrubbery, secondary growth forest, and old-growth forest) in Maolan National Nature Reserve, Guizhou province, China. A positive response in soil multifunctionality (SMF), plant species diversity, stand spatial structure, and fungal β diversity (p < 0.05) followed natural restoration. However, bacterial β diversity showed a negative response (p < 0.05), while microbial α diversity remained unchanged (p > 0.05). These results based on a structural equation model showed that plant species diversity had no direct or indirect effect on SMF, soil microbial diversity was the only direct driver of SMF, and stand spatial structure indirectly affected SMF through soil microbial diversity. The random forest model showed that soil microbial β diversity and the Shannon-Wiener index of the diameter at breast height for woody plant species were the optimal variables to characterize SMF and soil microbial diversity, respectively. These results suggested that natural restoration promoted SMF, and microbial diversity had a direct positive effect on SMF. In the meantime, stand spatial structure had a significant indirect effect on SMF, while plant species diversity did not. Future work on degraded karst forest restoration should direct more attention to the role of the stand spatial structure and emphasize the importance of biodiversity.
Collapse
Affiliation(s)
- Guanghui Zhou
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Fayu Long
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Lei Zu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Scott Jarvie
- Otago Regional Council, Dunedin 9016, New Zealand
| | - Yan Peng
- Key Laboratory for Subtropical Mountain Ecology, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Lipeng Zang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Danmei Chen
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Guangqi Zhang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Mingzhen Sui
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Yuejun He
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Qingfu Liu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China.
| |
Collapse
|
6
|
Shi X, Eisenhauer N, Peñuelas J, Fu Y, Wang J, Chen Y, Liu S, He L, Lucas-Borja ME, Wang L, Huang Z. Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness. GLOBAL CHANGE BIOLOGY 2024; 30:e17234. [PMID: 38469998 DOI: 10.1111/gcb.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.
Collapse
Affiliation(s)
- Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Nico Eisenhauer
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Josep Peñuelas
- CREAF, Centre de Recerca Ecològicai Aplicacions Forestals, Cerdanyola del Vallès, Bellaterra, Catalonia, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Yanrong Fu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jianqing Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Shengen Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Manuel Esteban Lucas-Borja
- Higher Technical School of Agricultural and Forestry Engineering, Castilla-La Mancha University, Albacete, Spain
| | - Liyan Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Ferlian O, Goldmann K, Bonkowski M, Dumack K, Wubet T, Eisenhauer N. Invasive earthworms shift soil microbial community structure in northern North American forest ecosystems. iScience 2024; 27:108889. [PMID: 38322986 PMCID: PMC10844042 DOI: 10.1016/j.isci.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Invasive earthworms colonize ecosystems around the globe. Compared to other species' invasions, earthworm invasions have received little attention. Previous studies indicated their tremendous effects on resident soil biota representing a major part of the terrestrial biodiversity. We investigated effects of earthworm invasion on soil microbial communities in three forests in North America by conducting DNA sequencing of soil bacteria, fungi, and protists in two soil depths. Our study shows that microbial diversity was lower in highly invaded forest areas. While bacterial diversity was strongly affected compared to fungi and protists, fungal community composition and family dominance were strongly affected compared to bacteria and protists. We found most species specialized on invasion in fungi, mainly represented by saprotrophs. Comparably, few protist species, mostly bacterivorous, were specialized on invasion. As one of the first observational studies, we investigated earthworm invasion on three kingdoms showing distinct taxa- and trophic level-specific responses to earthworm invasion.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Kezia Goldmann
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Bucher SF, Uhde L, Weigelt A, Cesarz S, Eisenhauer N, Gebler A, Kyba C, Römermann C, Shatwell T, Hines J. Artificial light at night decreases plant diversity and performance in experimental grassland communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220358. [PMID: 37899022 PMCID: PMC10613542 DOI: 10.1098/rstb.2022.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/28/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lia Uhde
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alexandra Weigelt
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Simone Cesarz
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Nico Eisenhauer
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alban Gebler
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Christopher Kyba
- Interdisciplinary Geographic Information Sciences, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum GFZ, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz-Centre for Environmental Research – UFZ, 39114 Magdeburg, Germany
| | - Jes Hines
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
9
|
Cesarz S, Eisenhauer N, Bucher SF, Ciobanu M, Hines J. Artificial light at night (ALAN) causes shifts in soil communities and functions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220366. [PMID: 37899014 PMCID: PMC10613544 DOI: 10.1098/rstb.2022.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is increasing worldwide, but its effects on the soil system have not yet been investigated. We tested the influence of experimental manipulation of ALAN on two taxa of soil communities (microorganisms and soil nematodes) and three aspects of soil functioning (soil basal respiration, soil microbial biomass and carbon use efficiency) over four and a half months in a highly controlled Ecotron facility. We show that during peak plant biomass, increasing ALAN reduced plant biomass and was also associated with decreased soil water content. This further reduced soil respiration under high ALAN at peak plant biomass, but microbial communities maintained stable biomass across different levels of ALAN and times, demonstrating higher microbial carbon use efficiency under high ALAN. While ALAN did not affect microbial community structure, the abundance of plant-feeding nematodes increased and there was homogenization of nematode communities under higher levels of ALAN, indicating that soil communities may be more vulnerable to additional disturbances at high ALAN. In summary, the effects of ALAN reach into the soil system by altering soil communities and ecosystem functions, and these effects are mediated by changes in plant productivity and soil water content at peak plant biomass. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| |
Collapse
|
10
|
Tao S, Veen GFC, Zhang N, Yu T, Qu L. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. MICROBIOME 2023; 11:261. [PMID: 37996939 PMCID: PMC10666335 DOI: 10.1186/s40168-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.
Collapse
Affiliation(s)
- Siqi Tao
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Naili Zhang
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China.
| | - Tianhe Yu
- Department of Biology, Mudanjiang Normal University, Mudanjiang, 157011, People's Republic of China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
11
|
Zhang M, Delgado-Baquerizo M, Li G, Isbell F, Wang Y, Hautier Y, Wang Y, Xiao Y, Cai J, Pan X, Wang L. Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nat Commun 2023; 14:5040. [PMID: 37598205 PMCID: PMC10439935 DOI: 10.1038/s41467-023-40809-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Grazing by domestic herbivores is the most widespread land use on the planet, and also a major global change driver in grasslands. Yet, experimental evidence on the long-term impacts of livestock grazing on biodiversity and function is largely lacking. Here, we report results from a network of 10 experimental sites from paired grazed and ungrazed grasslands across an aridity gradient, including some of the largest remaining native grasslands on the planet. We show that aridity partly explains the responses of biodiversity and multifunctionality to long-term livestock grazing. Grazing greatly reduced biodiversity and multifunctionality in steppes with higher aridity, while had no effects in steppes with relatively lower aridity. Moreover, we found that long-term grazing further changed the capacity of above- and below-ground biodiversity to explain multifunctionality. Thus, while plant diversity was positively correlated with multifunctionality across grasslands with excluded livestock, soil biodiversity was positively correlated with multifunctionality across grazed grasslands. Together, our cross-site experiment reveals that the impacts of long-term grazing on biodiversity and function depend on aridity levels, with the more arid sites experiencing more negative impacts on biodiversity and ecosystem multifunctionality. We also highlight the fundamental importance of conserving soil biodiversity for protecting multifunctionality in widespread grazed grasslands.
Collapse
Affiliation(s)
- Minna Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - Guangyin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Yue Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Yao Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yingli Xiao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jinting Cai
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xiaobin Pan
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Ling Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Eisenhauer N, Angst G, Asato AEB, Beugnon R, Bönisch E, Cesarz S, Dietrich P, Jurburg SD, Madaj AM, Reuben RC, Ristok C, Sünnemann M, Yi H, Guerra CA, Hines J. The heterogeneity-diversity-system performance nexus. Natl Sci Rev 2023; 10:nwad109. [PMID: 37575691 PMCID: PMC10423029 DOI: 10.1093/nsr/nwad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 08/15/2023] Open
Abstract
Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Gerrit Angst
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Ana E B Asato
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, Leipzig 04103, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| |
Collapse
|
14
|
Liu J, Fang K, Kou Y, Xia R, He H, Zhao W, Liu Q. Variations in the soil micro-food web structure and its relationship with soil C and N mineralization during secondary succession of subalpine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163257. [PMID: 37011690 DOI: 10.1016/j.scitotenv.2023.163257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The soil micro-food web is an important network of belowground trophic relationships and it participates directly and indirectly in soil ecological processes. In recent decades, the roles of the soil micro-food web in regulating ecosystem functions in grasslands and agroecosystems have received much attention. However, the variations in the soil micro-food web structure and its relationship with ecosystem functions during forest secondary succession remain unclear. In this study, we investigated how forest secondary succession affected the soil micro-food web (including soil microbes and nematodes) and soil carbon and nitrogen mineralization across a successional sequence of "grasslands - shrublands - broadleaf forests - coniferous forests" in a subalpine region of southwestern China. With forest successional development, the total soil microbial biomass and the biomass of each microbial group generally increased. The significant influences of forest succession on soil nematodes were mainly reflected in several trophic groups with high colonizer-persister values (particularly bacterivore3, herbivore5 and omnivore-predator5) that are sensitive to environmental disturbance. The increases in the connectance and nematode genus richness, diversity, and maturity index indicated an increasingly stable and complex soil micro-food web with forest succession, which was closely related to soil nutrients, particularly the soil carbon contents. Additionally, we found that the soil carbon and nitrogen mineralization rates also exhibited generally increasing trends during forest succession, which had significant positive correlations with the soil micro-food web composition and structure. The path analysis results indicated that the variances in ecosystem functions induced by forest succession were significantly determined by soil nutrients and soil microbial and nematode communities. Overall, these results suggested that forest succession enriched and stabilized the soil micro-food web and promoted ecosystem functions via the increase in soil nutrients, and the soil micro-food web played an important role in regulating ecosystem functions during forest succession.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kai Fang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruixue Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heliang He
- College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
15
|
Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wang Y, Bruelheide H, Wubet T. Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spectr 2023; 11:e0457822. [PMID: 36951585 PMCID: PMC10111882 DOI: 10.1128/spectrum.04578-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
16
|
Müller J, Mitesser O, Cadotte MW, van der Plas F, Mori AS, Ammer C, Chao A, Scherer-Lorenzen M, Baldrian P, Bässler C, Biedermann P, Cesarz S, Claßen A, Delory BM, Feldhaar H, Fichtner A, Hothorn T, Kuenzer C, Peters MK, Pierick K, Schmitt T, Schuldt B, Seidel D, Six D, Steffan-Dewenter I, Thorn S, von Oheimb G, Wegmann M, Weisser WW, Eisenhauer N. Enhancing the structural diversity between forest patches-A concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. GLOBAL CHANGE BIOLOGY 2023; 29:1437-1450. [PMID: 36579623 DOI: 10.1111/gcb.16564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/12/2022] [Indexed: 05/26/2023]
Abstract
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.
Collapse
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Akira S Mori
- Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan
| | | | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Claus Bässler
- Bavarian Forest National Park, Grafenau, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Biedermann
- Chair of Forest Entomology and Protection, Faculty of Environment and Natural Resources, University of Freiburg, Stegen, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Alice Claßen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Benjamin M Delory
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - Heike Feldhaar
- Department of Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Claudia Kuenzer
- German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Wessling, Germany
- Chair of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Würzburg, Germany
| | - Marcell K Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kerstin Pierick
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Göttingen, Germany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Bernhard Schuldt
- Department of Botany II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Göttingen, Germany
| | - Diana Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Simon Thorn
- Hessian Agency for Nature Conservation, Environment and Geology, State Institute for the Protection of Birds, Gießen, Germany
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Goddert von Oheimb
- Professur für Biodiversität und Naturschutz, Technische Universität Dresden, FR Forstwissenschaften, Dresden, Germany
| | - Martin Wegmann
- Chair of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Würzburg, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Plant litter strengthens positive biodiversity-ecosystem functioning relationships over time. Trends Ecol Evol 2023; 38:473-484. [PMID: 36599737 DOI: 10.1016/j.tree.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Plant biodiversity-productivity relationships become stronger over time in grasslands, forests, and agroecosystems. Plant shoot and root litter is important in mediating these positive relationships, yet the functional role of plant litter remains overlooked in long-term experiments. We propose that plant litter strengthens biodiversity-ecosystem functioning relationships over time in four ways by providing decomposing detritus that releases nitrogen (N) over time for uptake by existing and succeeding plants, enhancing overall soil fertility, changing soil community composition, and reducing the impact of residue-borne pathogens and pests. We bring new insights into how diversity-productivity relationships may change over time and suggest that the diversification of crop residue retention through increased residue diversity from plant mixtures will improve the sustainability of food production systems.
Collapse
|
18
|
Gan H, Li X, Wang Y, Lü P, Ji N, Yao H, Li S, Guo L. Plants Play Stronger Effects on Soil Fungal than Bacterial Communities and Co-Occurrence Network Structures in a Subtropical Tree Diversity Experiment. Microbiol Spectr 2022; 10:e0013422. [PMID: 35475656 PMCID: PMC9241759 DOI: 10.1128/spectrum.00134-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/04/2023] Open
Abstract
Increasing biodiversity loss profoundly affects community structure and ecosystem functioning. However, the differences in community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria in association with tree species richness gradients are poorly documented. Here, we examined soil fungal and bacterial communities in a Chinese subtropical tree species richness experiment (from 1 to 16 species) using amplicon sequencing targeting the internal transcribed spacer 2 and V4 hypervariable region of the rRNA genes, respectively. Tree species richness had no significant effect on the diversity of either fungi or bacteria. In addition to soil and spatial distance, tree species richness and composition had a significant effect on fungal community composition but not on bacterial community composition. In fungal rather than bacterial co-occurrence networks, the average degree, degree centralization, and clustering coefficient significantly decreased, but the modularity significantly increased with increasing tree species richness. Fungal co-occurrence network structure was influenced by tree species richness and community composition as well as the soil carbon: nitrogen ratio, but the bacterial co-occurrence network structure was affected by soil pH and spatial distance. This study demonstrates that the community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria differ in the subtropical forest. IMPORTANCE Increasing biodiversity loss profoundly affects community structure and ecosystem functioning. Therefore, revealing the mechanisms associated with community assembly and co-occurrence network structure of microbes along plant species diversity gradients is very important for understanding biodiversity maintenance and community stability in response to plant diversity loss. Here, we compared the differences in community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria in a subtropical tree diversity experiment. In addition to soil and spatial distance, plants are more strongly predictive of the community and co-occurrence network structure of fungi than those of bacteria. The study highlighted that plants play more important roles in shaping community assembly and interactions of fungi than of bacteria in the subtropical tree diversity experiment.
Collapse
Affiliation(s)
- Huiyun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xingchun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Pengpeng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Niuniu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- DOE Center for Advanced Bioenergy & Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Eisenhauer N, Bonfante P, Buscot F, Cesarz S, Guerra C, Heintz-Buschart A, Hines J, Patoine G, Rillig M, Schmid B, Verheyen K, Wirth C, Ferlian O. Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biodiversity drives the maintenance and stability of ecosystem functioning as well as many of nature’s benefits to people, yet people cause substantial biodiversity change. Despite broad consensus about a positive relationship between biodiversity and ecosystem functioning (BEF), the underlying mechanisms and their context-dependencies are not well understood. This proposal, submitted to the European Research Council (ERC), aims at filling this knowledge gap by providing a novel conceptual framework for integrating biotic interactions across guilds of organisms, i.e. plants and mycorrhizal fungi, to explain the ecosystem consequences of biodiversity change. The overarching hypothesis is that EF increases when more tree species associate with functionally dissimilar mycorrhizal fungi. Taking a whole-ecosystem perspective, we propose to explore the role of tree-mycorrhiza interactions in driving BEF across environmental contexts and how this relates to nutrient dynamics. Given the significant role that mycorrhizae play in soil nutrient and water uptake, BEF relationships will be investigated under normal and drought conditions. Resulting ecosystem consequences will be explored by studying main energy channels and ecosystem multifunctionality using food web energy fluxes and by assessing carbon storage. Synthesising drivers of biotic interactions will allow us to understand context-dependent BEF relationships. This interdisciplinary and integrative project spans the whole gradient from local-scale process assessments to global relationships by building on unique experimental infrastructures like the MyDiv Experiment, iDiv Ecotron and the global network TreeDivNet, to link ecological mechanisms to reforestation initiatives. This innovative combination of basic scientific research with real-world interventions links trait-based community ecology, global change research and ecosystem ecology, pioneering a new generation of BEF research and represents a significant step towards implementing BEF theory for human needs.
Collapse
|
20
|
Shen C, Wang J, Jing Z, Qiao NH, Xiong C, Ge Y. Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151737. [PMID: 34808153 DOI: 10.1016/j.scitotenv.2021.151737] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Plant diversity is critical to the stability of ecosystems. However, our knowledge about the plant diversity effect on the stability of belowground communities is limited. Here, we characterized soil fungal diversity and co-occurrence network across a plant diversity gradient in a diversity manipulation experiment. We found that higher plant diversity resulted in higher fungal diversity, network complexity and stability. The positive plant diversity effect on fungal network stability was indirect via the increase of soil carbon and fungal keystone taxa richness based on structural equation modeling analysis. The model explained 44% variations of network stability when combining soil carbon and fungal keystone taxa richness, but explained approximate 30% variations of network stability when considering either one of the two factors, indicating that environmental filtering and biotic interaction processes play comparable roles in mediating the plant diversity effect on soil fungal network stability. The plant diversity-induced fungal network stability was significantly correlated with community-level functions including community resistance and enzyme activities. This study, from the view of networks, provides new insights into the plant diversity effect on the stability of soil microbial communities, which have implications for biodiversity conservation and policy development.
Collapse
Affiliation(s)
- Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Neng-Hu Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Zhao N, Zhang X, Hu L, Liu H, Ma L, Xu T, Han X, Kang S, Wang X, Zhao X, Xu S. Cropping practices manipulate soil bacterial structure and functions on the Qinghai-Tibet Plateau. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153666. [PMID: 35303514 DOI: 10.1016/j.jplph.2022.153666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
There is an increasing awareness of the adverse environmental effects of the intensive practices used in modern crop farming, such as those that cause greenhouse gas emissions and nutrient leaching. Harnessing beneficial microbes by changing planting practices presents a promising strategy for optimizing plant growth and agricultural sustainability. However, the characteristics of soil microorganisms under different planting patterns remain uncertain. We conducted a study of soil bacterial structure and function under monoculture vs. polyculture planting regimes using 16S rRNA gene sequencing on the Qinghai-Tibet Plateau. We observed substantial variations in bacterial richness, diversity, and relative abundances of taxa between gramineous and leguminous monocultures, as well as between gramineae-legume polycultures. The number of operational taxonomic units and alpha and beta diversity were markedly higher in the leguminous monocultures than in the gramineous monocultures; conversely, network analysis revealed that the interactions among the bacterial genera in the gramineous monocultures were more complex than those in the other two planting regimes. Moreover, nitrogen fixation, soil detoxification, and productivity were increased under the gramineous monocultures; more importantly, low soil-borne diseases (e.g., animals parasitic or symbiont) also facilitated strongly suppressive effects toward soil-borne pathogens. Nevertheless, the gramineae-legume polycultures were prone to nitrate seepage contamination, and leguminous monocultures exhibited strong denitrification effects. These results revealed that the gramineous monoculture is a more promising cropping pattern on the Qinghai-Tibetan Plateau. Understanding the bacterial distribution patterns and interactions of crop-sensitive microbes presents a basis for developing microbial management strategies for smart farming.
Collapse
Affiliation(s)
- Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China
| | - XiaoLing Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - LinYong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China
| | - HongJin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China
| | - Li Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - TianWei Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China
| | - XuePing Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - ShengPing Kang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - XunGang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - XinQuan Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China.
| | - ShiXiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, 810001, China.
| |
Collapse
|
22
|
Marco S, Loredana M, Riccardo V, Raffaella B, Walter C, Luca N. Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. HORTICULTURE RESEARCH 2022; 9:uhac160. [PMID: 36204199 PMCID: PMC9531342 DOI: 10.1093/hr/uhac160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
In the past years, breeding programs have been mainly addressed on pushing the commercial features, forgetting important traits, such as those related to environmental stress resilience, that are instead present in wild relatives. Among the traits neglected by breeding processes, the ability to recruit beneficial microorganisms that recently is receiving a growing attention due to its potentiality. In this context, this review will provide a spotlight on critical issues of the anthropocentric point of view that, until now, has characterized the selection of elite plant genotypes. Its effects on the plant-microbiome interactions, and the possibility to develop novel strategies mediated by the exploitation of beneficial root-microbe interactions, will be discussed. More sustainable microbial-assisted strategies might in fact foster the green revolution and the achievement of a more sustainable agriculture in a climatic change scenario.
Collapse
Affiliation(s)
| | | | - Velasco Riccardo
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | | | | | | |
Collapse
|
23
|
Dominant woody plants alter soil microbial community composition during succession. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Schmidt A, Hines J, Türke M, Buscot F, Schädler M, Weigelt A, Gebler A, Klotz S, Liu T, Reth S, Trogisch S, Roy J, Wirth C, Eisenhauer N. The iDiv Ecotron-A flexible research platform for multitrophic biodiversity research. Ecol Evol 2021; 11:15174-15190. [PMID: 34765169 PMCID: PMC8571575 DOI: 10.1002/ece3.8198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Across the globe, ecological communities are confronted with multiple global environmental change drivers, and they are responding in complex ways ranging from behavioral, physiological, and morphological changes within populations to changes in community composition and food web structure with consequences for ecosystem functioning. A better understanding of global change-induced alterations of multitrophic biodiversity and the ecosystem-level responses in terrestrial ecosystems requires holistic and integrative experimental approaches to manipulate and study complex communities and processes above and below the ground. We argue that mesocosm experiments fill a critical gap in this context, especially when based on ecological theory and coupled with microcosm experiments, field experiments, and observational studies of macroecological patterns. We describe the design and specifications of a novel terrestrial mesocosm facility, the iDiv Ecotron. It was developed to allow the setup and maintenance of complex communities and the manipulation of several abiotic factors in a near-natural way, while simultaneously measuring multiple ecosystem functions. To demonstrate the capabilities of the facility, we provide a case study. This study shows that changes in aboveground multitrophic interactions caused by decreased predator densities can have cascading effects on the composition of belowground communities. The iDiv Ecotrons technical features, which allow for the assembly of an endless spectrum of ecosystem components, create the opportunity for collaboration among researchers with an equally broad spectrum of expertise. In the last part, we outline some of such components that will be implemented in future ecological experiments to be realized in the iDiv Ecotron.
Collapse
Affiliation(s)
- Anja Schmidt
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - François Buscot
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Martin Schädler
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Stefan Klotz
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sascha Reth
- Umwelt‐Geräte‐Technik GmbH – UGTMünchebergGermany
| | - Stefan Trogisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Jacques Roy
- French National Centre for Scientific Research – CNRSParisFrance
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| |
Collapse
|
25
|
Sünnemann M, Alt C, Kostin JE, Lochner A, Reitz T, Siebert J, Schädler M, Eisenhauer N. Low‐intensity land‐use enhances soil microbial activity, biomass and fungal‐to‐bacterial ratio in current and future climates. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| | - Christina Alt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Faculty of Biology Technical University Dresden Dresden Germany
| | - Julia E. Kostin
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Faculty of Management Science and Economics Leipzig University Leipzig Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Soil Ecology Helmholtz‐Centre for Environmental Research – UFZ Halle Germany
| | - Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research – UFZ Halle Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| |
Collapse
|
26
|
Beugnon R, Du J, Cesarz S, Jurburg SD, Pang Z, Singavarapu B, Wubet T, Xue K, Wang Y, Eisenhauer N. Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning. ISME COMMUNICATIONS 2021; 1:41. [PMID: 37938251 PMCID: PMC9723754 DOI: 10.1038/s43705-021-00040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 05/26/2023]
Abstract
Microbial respiration is critical for soil carbon balance and ecosystem functioning. Previous studies suggest that plant diversity influences soil microbial communities and their respiration. Yet, the linkages between tree diversity, microbial biomass, microbial diversity, and microbial functioning have rarely been explored. In this study, we measured two microbial functions (microbial physiological potential, and microbial respiration), together with microbial biomass, microbial taxonomic and functional profiles, and soil chemical properties in a tree diversity experiment in South China, to disentangle how tree diversity affects microbial respiration through the modifications of the microbial community. Our analyses show a significant positive effect of tree diversity on microbial biomass (+25% from monocultures to 24-species plots), bacterial diversity (+12%), and physiological potential (+12%). In addition, microbial biomass and physiological potential, but not microbial diversity, were identified as the key drivers of microbial respiration. Although soil chemical properties strongly modulated soil microbial community, tree diversity increased soil microbial respiration by increasing microbial biomass rather than changing microbial taxonomic or functional diversity. Overall, our findings suggest a prevalence of microbial biomass over diversity in controlling soil carbon dynamics.
Collapse
Affiliation(s)
- Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany.
| | - Jianqing Du
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| | - Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| | - Zhe Pang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bala Singavarapu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor, Halle, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, Halle (Saale), Germany
| | - Kai Xue
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| | - Yanfen Wang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| |
Collapse
|
27
|
Gradient analysis of soil-plant interactions from the alpine-nival ecotone to the snowline on slopes of the Central Great Caucasus (Kazbegi Region, Georgia). UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alpine ecosystems are especially sensitive to climatic changes which affect the relationships among glaciers, snow, vegetation and soils. Our aim was to examine how the variation in the abiotic environment affected soil properties and plant species distribution at regional and local scales. We sampled soil and vegetation along two transects set on the opposite-facing slopes (North versus South), from the alpine-nival ecotone to the snowline (Central Great Caucasus, Kazbegi, Georgia). We measured also soil temperature and controlled for the slope inclination. Multivariate ordination methods were used to link abiotic factors, soil properties and plant species distribution along the gradients. We found that ordination models were better resolved when soil properties were used as environmental variables instead of abiotic ones such as elevation, inclination and slope aspect. Soil pH and plant available potassium were the best predictors of plant species distribution in these habitats. We conclude that the models that account for the role of soils as a mediator between the abiotic environment and vegetation can more accurately describe plant species distribution at local and regional scales: a potentially important amendment with implications for the monitoring of the effects of climate change on vegetation at least in high mountain systems.
Collapse
|
28
|
Dietrich P, Cesarz S, Liu T, Roscher C, Eisenhauer N. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia 2021; 197:297-311. [PMID: 34091787 PMCID: PMC8505370 DOI: 10.1007/s00442-021-04956-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/26/2021] [Indexed: 11/04/2022]
Abstract
Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Permoser Straße 15, 04318, Leipzig, Germany. .,German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| | - Simone Cesarz
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,Department of Experimental Interaction Ecology, Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Christiane Roscher
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Permoser Straße 15, 04318, Leipzig, Germany.,German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,Department of Experimental Interaction Ecology, Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| |
Collapse
|
29
|
Strecker T, Jesch A, Bachmann D, Jüds M, Karbstein K, Ravenek J, Roscher C, Weigelt A, Eisenhauer N, Scheu S. Incorporation of mineral nitrogen into the soil food web as affected by plant community composition. Ecol Evol 2021; 11:4295-4309. [PMID: 33976811 PMCID: PMC8093729 DOI: 10.1002/ece3.7325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral-derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral-derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral-derived 15N into soil microorganisms and mesofauna over 3 months. Mineral-derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral-derived N into microorganisms. In parallel, the incorporation of mineral-derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral-derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species-specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.
Collapse
Affiliation(s)
- Tanja Strecker
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Annette Jesch
- German Centre for Integrative Biodiversity Research Halle‐Jena‐LeipzigLeipzigGermany
| | - Dörte Bachmann
- Institute of Agricultural SciencesETH ZurichZürichSwitzerland
| | - Melissa Jüds
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of PlantsUniversity of GöttingenGöttingenGermany
| | - Janneke Ravenek
- Department of Experimental Plant Ecology Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| | - Christiane Roscher
- Institute of BiologyLeipzig UniversityLeipzigGermany
- Department of Physiological DiversityHelmholtz Centre for Environmental Research, UFZLeipzigGermany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research Halle‐Jena‐LeipzigLeipzigGermany
- Department of Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| |
Collapse
|
30
|
Microbial responses to herbivory-induced vegetation changes in a high-Arctic peatland. Polar Biol 2021. [DOI: 10.1007/s00300-021-02846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Herbivory by barnacle geese (Branta leucopsis) alters the vegetation cover and reduces ecosystem productivity in high-Arctic peatlands, limiting the carbon sink strength of these ecosystems. Here we investigate how herbivory-induced vegetation changes affect the activities of peat soil microbiota using metagenomics, metatranscriptomics and targeted metabolomics in a comparison of fenced exclosures and nearby grazed sites. Our results show that a different vegetation with a high proportion of vascular plants developed due to reduced herbivory, resulting in a larger and more diverse input of polysaccharides to the soil at exclosed study sites. This coincided with higher sugar and amino acid concentrations in the soil at this site as well as the establishment of a more abundant and active microbiota, including saprotrophic fungi with broad substrate ranges, like Helotiales (Ascomycota) and Agaricales (Basidiomycota). A detailed description of fungal transcriptional profiles revealed higher gene expression for cellulose, hemicellulose, pectin, lignin and chitin degradation at herbivory-exclosed sites. Furthermore, we observed an increase in the number of genes and transcripts for predatory eukaryotes such as Entomobryomorpha (Arthropoda). We conclude that in the absence of herbivory, the development of a vascular vegetation alters the soil polysaccharide composition and supports larger and more active populations of fungi and predatory eukaryotes.
Collapse
|
31
|
Moi DA, Romero GQ, Antiqueira PAP, Mormul RP, Teixeira de Mello F, Bonecker CC. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieison A. Moi
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | - Gustavo Q. Romero
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Pablo A. P. Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Roger P. Mormul
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | | | - Claudia C. Bonecker
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| |
Collapse
|
32
|
Wang B, Wu Y, Chen D, Hu S, Bai Y. Legacy effect of grazing intensity mediates the bottom‐up controls of resource addition on soil food webs. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Ying Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area China Three Gorges University Yichang China
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology Yunnan University Kunming China
| | - Dima Chen
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area China Three Gorges University Yichang China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology North Carolina State University Raleigh NC USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
33
|
Meng Y, Hui D, Huangfu C. Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141442. [PMID: 32836120 DOI: 10.1016/j.scitotenv.2020.141442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The home-field advantage (HFA) hypothesis predicts that plant litter would decompose more quickly beneath its own plant species in the soil than beneath other plant species. Theoretically, HFA can be induced by the rhizosphere of growing plants, due to so-called rhizosphere effect (RE). Despite growing evidence for the site condition-dependence of both effects, few work has be conducted to explore how site climate, vegetation type and soil properties interact to affect RE and HFA, and especially limited in situ representation from subtropical wetland systems. In a field experiment, we reciprocally incubated three root litter species (Rumex dentatus L., Carex thunbergii Steud., and Polygonum cripolitanum Hance) along a hydroperiod gradient in a subtropical wetland, which differed mainly with respect to vegetation and soil microclimate, with and without growing plants. The occurrence and magnitude of HFA and RE were mainly determined by litter quality and were stage-specific. Collectively, we detected significant HFA with chemically-recalcitrant litter from C. thunbergii and P. cripolitanum, but only at the first stage of decomposition. The presence of growing plants generally reduced litter decomposition, but the magnitude of the response was species-specific, with the positive effects detected only for root litters from C. thunbergii at the first stage of decomposition. In addition, we did not find a significant relationship between HFA and RE, indicating that plant species that produce litters exhibiting HFA may not accelerate litter decomposition via RE at same time. Structural equation models (SEM) revealed that site microclimate factors were conducive with soil properties in regulating C dynamics. Overall, soil microclimate in this wetland ecosystem was likely important in driving C cycling, either directly by changing environmental conditions, litter quality, and plant trait spectra, or indirectly by interrupting the interactions between litter and decomposers.
Collapse
Affiliation(s)
- Yingying Meng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chaohe Huangfu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
34
|
Henning JA, Kinkel L, May G, Lumibao CY, Seabloom EW, Borer ET. Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecology 2020; 102:e03210. [PMID: 32981067 DOI: 10.1002/ecy.3210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 01/20/2023]
Abstract
Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within-host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7-yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient-induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host, Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relative Andropogon cover, endophyte diversity did not covary with live plant biomass or Andropogon cover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.
Collapse
Affiliation(s)
- Jeremiah A Henning
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, 55108, USA.,Department of Biology, University of South Alabama, 5871 USA Drive N., Room 124, Mobile, Alabama, 36688, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St Paul, Minnesota, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, 55108, USA
| | - Candice Y Lumibao
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, 55108, USA.,Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, 55108, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, 55108, USA
| |
Collapse
|
35
|
Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M, Buscot F, Overmann J, Patoine G, Phillips HRP, Winter M, Wubet T, Küsel K, Bardgett RD, Cameron EK, Cowan D, Grebenc T, Marín C, Orgiazzi A, Singh BK, Wall DH, Eisenhauer N. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 2020; 11:3870. [PMID: 32747621 PMCID: PMC7400591 DOI: 10.1038/s41467-020-17688-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Soils harbor a substantial fraction of the world's biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Collapse
Affiliation(s)
- Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108, Halle(Saale), Germany.
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Nathaly Guerrero-Ramírez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Léa Beaumelle
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Fernando T Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain.,Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Helen R P Phillips
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Braunschweig, Germany
| | - Kirsten Küsel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Straße 159, 07743, Jena, Germany
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Erin K Cameron
- Department of Environmental Science, Saint Mary's University, Halifax, NS, Canada
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - César Marín
- Instituto de Ciencias Agronómicas y Veterinarias, Universidad de O'Higgins, Rancagua, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | | - Brajesh K Singh
- Hawkesbury Institute for the environment, Western Sydney University, Penrith, NSW, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana H Wall
- School of Global Environmental Sustainability and Department of Biology, Colorado State University, Fort Collins, CO, 80523-1036, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
36
|
Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N, Wang S, Liu L. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 2020; 101:e03053. [PMID: 32242918 DOI: 10.1002/ecy.3053] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022]
Abstract
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Zhou Wang
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, 510650, China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-ecosystems SKLGAE, Lanzhou University, Lanzhou, China
| | - Jialiang Kuang
- Institute of Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73109, USA
| | - Ning Ling
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
37
|
Jimoh SO, Muraina TO, Bello SK, NourEldeen N. Emerging issues in grassland ecology research: Perspectives for advancing grassland studies in Nigeria. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Li J, Yang C, Zhou H, Shao X. Responses of plant diversity and soil microorganism diversity to water and nitrogen additions in the Qinghai-Tibetan Plateau. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat Ecol Evol 2020; 4:393-405. [PMID: 32094542 DOI: 10.1038/s41559-020-1123-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/15/2020] [Indexed: 11/08/2022]
Abstract
The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.
Collapse
|
40
|
Phillips HRP, Heintz-Buschart A, Eisenhauer N. Putting soil invertebrate diversity on the map. Mol Ecol 2020; 29:655-657. [PMID: 32012394 DOI: 10.1111/mec.15371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
Ecologists have had a very good foundational knowledge of the global distribution of plants and aboveground animals for many decades. But despite the immense diversity of soil organisms, our knowledge of the global distribution, drivers and threats to soil biodiversity is very limited. In this issue of Molecular Ecology, Bastida et al. (2020) produce the first global maps of soil invertebrate diversity that have been sampled at 83 locations, across six continents, using standardised methods and DNA sequencing. Using data from nematodes, arachnids and rotifers, and structural equation models, they find that diversity of these taxa is primarily driven by vegetation and climate. Given the anthropogenic changes that are occurring, and are projected to continue, this study provides important baseline information for future soil biodiversity and function monitoring, as well as exciting working hypotheses for targeted experiments.
Collapse
Affiliation(s)
- Helen R P Phillips
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
41
|
Chen X, Chen HYH, Chen C, Ma Z, Searle EB, Yu Z, Huang Z. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol Rev Camb Philos Soc 2020; 95:167-183. [PMID: 31625247 DOI: 10.1111/brv.12554] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species-mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil-fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.
Collapse
Affiliation(s)
- Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| | - Chen Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Zilong Ma
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Eric B Searle
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Zaipeng Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China.,Institute of Geography, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China.,Institute of Geography, Fujian Normal University, 32 Shangshan Rd, Fuzhou, 350007, China
| |
Collapse
|
42
|
Singh J, Schädler M, Demetrio W, Brown GG, Eisenhauer N. Climate change effects on earthworms - a review. SOIL ORGANISMS 2019; 91:114-138. [PMID: 31908681 PMCID: PMC6944501 DOI: 10.25674/so91iss3pp114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Climate change can have a plethora of effects on organisms above and below the ground in terrestrial ecosystems. Given the tremendous biodiversity in the soil and the many ecosystem functions governed by soil organisms, the drivers of soil biodiversity have received increasing attention. Various climatic factors like temperature, precipitation, soil moisture, as well as extreme climate events like drought and flood have been shown to alter the composition and functioning of communities in the soil. Earthworms are important ecosystem engineers in the soils of temperate and tropical climates and play crucial roles for many ecosystem services, including decomposition, nutrient cycling, and crop yield. Here, we review the published literature on climate change effects on earthworm communities and activity. In general, we find highly species- and ecological group-specific responses to climate change, which are likely to result in altered earthworm community composition in future ecosystems. Earthworm activity, abundance, and biomass tend to increase with increasing temperature at sufficiently high soil water content, while climate extremes like drought and flooding have deleterious effects. Changing climate conditions may facilitate the invasion of earthworms at higher latitudes and altitudes, while dryer and warmer conditions may limit earthworm performance in other regions of the world. The present summary of available information provides a first baseline for predictions of future earthworm distribution. It also reveals the shortage of studies on interacting effects of multiple global change effects on earthworms, such as potential context-dependent effects of climate change at different soil pollution levels and across ecosystem types.
Collapse
Affiliation(s)
- Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, G.T Road, 143002 Punjab, India
- Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Martin Schädler
- Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Wilian Demetrio
- Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, Rua dos Funcionários 1540, 80035-050 Curitiba, Brazil
| | - George G Brown
- Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, Rua dos Funcionários 1540, 80035-050 Curitiba, Brazil
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Forestry, Estrada da Ribeira Km. 111, 83411-000 Colombo, Brazil
| | - Nico Eisenhauer
- Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany
- Leipzig University, Institute of Biology, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
43
|
Bennett JA, Koch AM, Forsythe J, Johnson NC, Tilman D, Klironomos J. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol Lett 2019; 23:119-128. [PMID: 31650676 DOI: 10.1111/ele.13408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/27/2023]
Abstract
Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long-term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant-feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.
Collapse
Affiliation(s)
- Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Alexander M Koch
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| | - Jennifer Forsythe
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| | - Nancy C Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011-5694, USA
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - John Klironomos
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
44
|
Yang X, Huang Z, Dong M, Ye X, Liu G, Hu D, Tuvshintogtokh I, Tumenjargal T, Cornelissen JHC. Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. ANNALS OF BOTANY 2019; 124:461-469. [PMID: 31161191 PMCID: PMC6798833 DOI: 10.1093/aob/mcz098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Long-term studies to disentangle the multiple, simultaneous effects of global change on community dynamics are a high research priority to forecast future distribution of diversity. Seldom are such multiple effects of global change studied across different ecosystems. METHODS Here we manipulated nitrogen deposition and rainfall at levels realistic for future environmental scenarios in three contrasting steppe types in Mongolia and followed community dynamics for 7 years. KEY RESULTS Redundancy analyses showed that community composition varied significantly among years. Rainfall and nitrogen manipulations did have some significant effects, but these effects were dependent on the type of response and varied between ecosystems. Community compositions of desert and meadow steppes, but not that of typical steppe, responded significantly to rainfall addition. Only community composition of meadow steppe responded significantly to nitrogen deposition. Species richness in desert steppe responded significantly to rainfall addition, but the other two steppes did not. Typical steppe showed significant negative response of species richness to nitrogen deposition, but the other two steppes did not. There were significant interactions between year and nitrogen deposition in desert steppe and between year and rainfall addition in typical steppe, suggesting that the effect of the treatments depends on the particular year considered. CONCLUSIONS Our multi-year experiment thus suggests that responses of community structure and diversity to global change drivers are ecosystem-dependent and that their responses to experimental treatments are dwarfed by the year-to-year community dynamics. Therefore, our results point to the importance of taking annual environmental variability into account for understanding and predicting the specific responses of different ecosystems to multiple global change drivers.
Collapse
Affiliation(s)
- Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Dong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Indree Tuvshintogtokh
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Tsogtsaikhan Tumenjargal
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - J Hans C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
46
|
Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, do Couto GM, van der Heijden MGA, Naz AA, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L, Eisenhauer N. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 2019; 9:9650. [PMID: 31273222 PMCID: PMC6609766 DOI: 10.1038/s41598-019-45702-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change.
Collapse
Affiliation(s)
- Agnieszka Sendek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.
- Department of Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Am Kirchweg 2, 06108, Halle, Germany.
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jara Domínguez-Begines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Gabriela Martucci do Couto
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ali Ahmad Naz
- Crop Genetics and Biotechnology Unit, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stefan Klotz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
| | - Lorena Gómez-Aparicio
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
47
|
Sun YQ, Wang J, Shen C, He JZ, Ge Y. Plant evenness modulates the effect of plant richness on soil bacterial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:8-14. [PMID: 30682712 DOI: 10.1016/j.scitotenv.2019.01.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Understanding the relationships between aboveground and belowground biodiversity will help to expand our knowledge on how ecological communities and processes are interactively determined, and thus provide new perspectives for the conservation of biodiversity. Despite the theoretical analyses generally predicting a positive relationship between plant richness and soil microbial diversity, the results from empirical studies have been mixed, probably due to the effect of plant evenness. To investigate this relationship, we conducted field experiments in two geographically distinct sites (Linhai and Shenmu, >1400km apart), by simultaneously manipulating plant richness (2, 4, and 8 species) and evenness (homogeneous versus non-homogeneous). After one year, the bacterial response to plant richness with different plant evenness levels was evaluated using terminal restriction fragment length polymorphism (T-RFLP) analysis. Our results showed that plant evenness modulated plant richness effects on bacterial community, as reflected by the more pronounced positive correlations between bacterial richness and plant richness in homogeneous plant community than in the non-homogeneous treatment. Additionally, plant community structure significantly affected bacterial communities only in the homogeneous treatment in Shenmu, but not in the non-homogeneous treatments. Our results demonstrate that plant evenness could regulate plant richness effects on bacterial alpha- and beta-diversity and thus provide valuable insights into the association between aboveground and belowground biodiversity.
Collapse
Affiliation(s)
- Yao-Qin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Eisenhauer N, Ferlian O, Craven D, Hines J, Jochum M. Ecosystem responses to exotic earthworm invasion in northern North American forests. RESEARCH IDEAS AND OUTCOMES 2019; 5:e34564. [PMID: 31032397 PMCID: PMC6485675 DOI: 10.3897/rio.5.e34564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/12/2022] Open
Abstract
Earth is experiencing a substantial loss of biodiversity at the global scale, while both species gains and losses are occurring at local and regional scales. The influence of these nonrandom changes in species distributions could profoundly affect the functioning of ecosystems and the essential services that they provide. However, few experimental tests have been conducted examining the influence of species invasions on ecosystem functioning. Even fewer have been conducted using invasive ecosystem engineers, which can have disproportionately strong influence on native ecosystems relative to their own biomass. The invasion of exotic earthworms is a prime example of an ecosystem engineer that is influencing many ecosystems around the world. In particular, European earthworm invasions of northern North American forests cause simultaneous species gains and losses with significant consequences for essential ecosystem processes like nutrient cycling and crucial services to humanity like soil erosion control and carbon sequestration. Exotic earthworms are expected to select for specific traits in communities of soil microorganisms (fast-growing bacteria species), soil fauna (promoting the bacterial energy channel), and plants (graminoids) through direct and indirect effects. This will accelerate some ecosystem processes and decelerate others, fundamentally altering how invaded forests function. This project aims to investigate ecosystem responses of northern North American forests to earthworm invasion. Using a novel, synthetic combination of field observations, field experiments, lab experiments, and meta-analyses, the proposed work will be the first systematic examination of earthworm effects on (1) plant communities and (2) soil food webs and processes. Further, (3) effects of a changing climate (warming and reduced summer precipitation) on earthworm performance will be investigated in a unique field experiment designed to predict the future spread and consequences of earthworm invasion in North America. By assessing the soil chemical and physical properties as well as the taxonomic (e.g., by the latest next-generation sequencing techniques) and functional composition of plant, soil microbial and animal communities and the processes they drive in four forests, work packages I-III take complementary approaches to derive a comprehensive and generalizable picture of how ecosystems change in response to earthworm invasion. Finally, in work package IV meta-analyses will be used to integrate the information from work packages I-III and existing literature to investigate if earthworms cause invasion waves, invasion meltdowns, habitat homogenization, and ecosystem state shifts. Global data will be synthesized to test if the relative magnitude of effects differs from place to place depending on the functional dissimilarity between native soil fauna and exotic earthworms. Moving from local to global scale, the present proposal examines the influence of earthworm invasions on biodiversity-ecosystem functioning relationships from an aboveground-belowground perspective in natural settings. This approach is highly innovative as it utilizes the invasion by exotic earthworms as an exciting model system that links invasion biology with trait-based community ecology, global change research, and ecosystem ecology, pioneering a new generation of biodiversity-ecosystem functioning research.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Dylan Craven
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| |
Collapse
|
49
|
Chen X, Chen HYH. Plant diversity loss reduces soil respiration across terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2019; 25:1482-1492. [PMID: 30614140 DOI: 10.1111/gcb.14567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 05/12/2023]
Abstract
The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published studies to evaluate the effects of plant and litter mixtures on Rs and its components. We found that total Rs and heterotrophic respiration (Rh) were, on average, greater in plant mixtures than expected from those of monocultures. These mixture effects increased with increasing species richness (SR) in both plant and litter mixtures. While the positive effects of species mixtures remained similar over time for total Rs, they increased over time for Rh in plant mixtures but decreased in litter mixtures. Despite the wide range of variations in mean annual temperature, annual aridity index, and ecosystem types, the plant mixture effects on total Rs and Rh did not change geographically, except for a more pronounced increase of total Rs in species mixtures with reduced water availability. Our structural equation models suggested that the positive effects of SR and stand age on total and Rh were driven by increased plant inputs and soil microbial biomass. Our results suggest that plant diversity loss has ubiquitous negative impacts on Rs, one of the fundamental carbon-cycle processes sustaining terrestrial element cycling and ecosystem function.
Collapse
Affiliation(s)
- Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
50
|
Docherty KM, Gutknecht JLM. Soil microbial restoration strategies for promoting climate-ready prairie ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01858. [PMID: 30680826 PMCID: PMC9286448 DOI: 10.1002/eap.1858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/10/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
Tractable practices for soil microbial restoration in tallgrass prairies reclaimed from agriculture are a critical gap in traditional ecological restoration. Long-term fertilization and tilling permanently alter soil bacterial and fungal communities, requiring microbe-targeted restoration methods to improve belowground ecosystem services and carbon storage in newly restored prairies. These techniques are particularly important when restoring for climate-ready ecosystems, adapted to altered temperature regimes. To approach these issues, we conducted a multi-factorial greenhouse experiment to test the effects of plant species richness, soil amendment and elevated temperature on soil microbial diversity, growth, and function. Treatments consisted of three seedlings of one plant species (Andropogon gerardii) or one seedling each of three plant species (A. gerardii, Echinacea pallida, Coreopsis lanceolata). Soil amendments included cellulose addition, inoculation with a microbial community collected from an undisturbed remnant prairie, and a control. We assessed microbial communities using extracellular enzyme assays, Illumina sequencing of the bacterial 16S rRNA gene, predicted bacterial metabolic pathways from sequence data and phospholipid fatty acid analysis (PLFA), which includes both bacterial and fungal lipid abundances. Our results indicate that addition of cellulose selects for slow-growing bacterial taxa (Verrucomicrobia) and fungi at ambient temperature. However, at elevated temperature, selection for slow-growing bacterial taxa is enhanced, while selection for fungi is lost, indicating temperature sensitivity among fungi. Cellulose addition was a more effective means of altering soil community composition than addition of microbial communities harvested from a remnant prairie. Soil water content was typically higher in the A. gerardii treatment alone, regardless of temperature, but at ambient temperature only, predicted metagenomics pathways for bacterial carbon metabolism were more abundant with A. gerardii. In summary, these results from a mesocosm test case indicate that adding cellulose to newly restored soil and increasing the abundance of C4 grasses, such as A. gerardii, can select for microbial communities adapted for slow growth and carbon storage. Further testing is required to determine if these approaches yield the same results in a field-level experiment.
Collapse
Affiliation(s)
- Kathryn M. Docherty
- Department of Biological SciencesWestern Michigan University1903 West Michigan Avenue, Mailstop 5410KalamazooMichigan49008USA
| | - Jessica L. M. Gutknecht
- Department of Soil, Water, and ClimateUniversity of Minnesota Twin CitiesSt. PaulMinnesota55108USA
| |
Collapse
|