1
|
Gauthier M, Hebert LP, Dugast E, Lardeux V, Letort K, Thiriet N, Belnoue L, Balado E, Solinas M, Belujon P. Sex-dependent effects of stress on aIC-NAc circuit neuroplasticity: Role of the endocannabinoid system. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111335. [PMID: 40113129 DOI: 10.1016/j.pnpbp.2025.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Stress is a major risk factor for psychiatric disorders and affects neuroplasticity in brain areas like the nucleus accumbens core (NAcC) and the insular cortex (IC). This study examined neuroplasticity changes in the aIC-NAcC circuit after restraint stress in male and female rats, and explored the role of the endocannabinoid system. Male and female rats underwent 2 h of acute restraint stress. Behavioral tests and in vivo electrophysiological recordings were performed immediately and 24 h after stress exposure. cFos was performed immediately after stress. Since stress effects were observed only in males, we evaluated the systemic and intra-NAc blockade of CB1 receptors in male rats. We found increased c-Fos expression in the hypothalamus but not in the IC in both sexes after acute restraint stress, along with heightened anxiety and reduced exploratory behavior. Males and females exhibited different neuronal plasticity in the aIC-NAcC pathway. Under basal conditions, males showed equal proportions of long-term potentiation (LTP) and long-term depression (LTD), whereas females predominantly exhibited LTP. Stress disrupted synaptic plasticity in males by eliminating LTD in the aIC-NAcC pathway 24 h after exposure. This effect was reversed by systemic and local CB1 receptor blockade. These findings suggest that integration of aIC information into NAcC differs by sex, with stress-induced neuroplasticity changes occurring only in males, dependent on the endocannabinoid system. This study provides insight into sex differences in stress reactivity, which may relate to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Manon Gauthier
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Léo-Paul Hebert
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Kevin Letort
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Laure Belnoue
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
2
|
Di Re J, Koff L, Avchalumov Y, Singh AK, Baumgartner TJ, Marosi M, Matz LM, Hallberg LM, Ameredes BT, Seeley EH, Buffington SA, Green TA, Laezza F. Environmental exposure to common pesticide induces synaptic deficit and social memory impairment driven by neurodevelopmental vulnerability of hippocampal parvalbumin interneurons. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136893. [PMID: 39706027 PMCID: PMC11970102 DOI: 10.1016/j.jhazmat.2024.136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring. Clonazepam, a GABAa receptor agonist, rescued this deficit, indicating impaired hippocampal GABAergic signaling. Recordings from CA1 pyramidal neurons, complemented by MALDI mass spectrometry imaging, showed an imbalance in excitatory/inhibitory tone. Using a combination of parvalbumin (PV)-Cre transgenic mice and hippocampal injection of designer receptors exclusively activated by designer drugs (DREADDs), we show that developmental DM exposure reduces hippocampal PV interneuron intrinsic firing. DREADD activation rescued both PV interneuron firing and LTP deficits. Complementary behavioral experiments revealed a deficit in social memory, a behavior relevant to autism spectrum disorder (ASD) symptomatology, which was restored by DREADD activation. Overall, these results establish a novel mechanistic link between maternal exposure to DM at the NOAEL and known cellular, circuital, and behavioral vulnerabilities, indicating it is a potential driver in the exposome of ASD.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; NIEHS Environmental Toxicology Training Program, University of Texas Medical Branch, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lisa M Matz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lance M Hallberg
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Inhalation Toxicology Core, University of Texas Medical Branch, USA
| | - Bill T Ameredes
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Inhalation Toxicology Core, University of Texas Medical Branch, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Al-Husinat L, Obeidat S, Azzam S, Al-Gwairy Y, Obeidat F, Al Sharie S, Haddad D, Haddad F, Rekatsina M, Leoni MLG, Varrassi G. Role of Cannabis in the Management of Chronic Non-Cancer Pain: A Narrative Review. Clin Pract 2025; 15:16. [PMID: 39851799 PMCID: PMC11764316 DOI: 10.3390/clinpract15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic non-cancer pain, defined by the Center for Disease Control and Prevention (CDC) as lasting beyond three months, significantly affects individuals' quality of life and is often linked to various medical conditions or injuries. Its management is complex. Cannabis, containing the key compounds Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), has garnered interest for its potential in pain management, though it remains controversial due to its psychoactive effects and illegal status in many countries. THC provides pain relief by blocking nociceptive stimuli but has psychoactive effects and may potentially induce dependency. CBD has calming and antipsychotic properties. The inhalation of cannabis offers quick relief but poses respiratory risks, while its oral administrations are safer but act more slowly. Short-term cannabis use can impair cognition and motor skills, while long-term use may lead to dependency and cognitive decline, especially if used from an early age. Adverse effects vary by gender and prior use, with addiction mainly linked to THC and influenced by genetics. Despite these risks, patients often report more benefits, such as improved quality of life and reduced opioid use, although the evidence remains inconclusive. The legal landscape for medical cannabis varies globally, with some positive public health outcomes like reduced opioid-related issues in areas where it is legalized. Cannabis shows promise in managing chronic pain, but its psychoactive effects and dependency risks necessitate cautious use. Future research should prioritize long-term clinical trials to establish optimal dosing, efficacy, and safety, aiding in the development of informed guidelines for safe cannabis use in chronic pain management. This review examines the use of cannabis in managing chronic non-cancer pain, focusing on its benefits, drawbacks, mechanisms, delivery methods, and impact on quality of life.
Collapse
Affiliation(s)
- Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Shrouq Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Yara Al-Gwairy
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Fatima Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan
| | - Deema Haddad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Fadi Haddad
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Martina Rekatsina
- Department of Anesthesia, University of Athens, 11528 Athens, Greece;
| | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, “La Sapienza” University of Rome, 00100 Rome, Italy;
| | | |
Collapse
|
4
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
5
|
Lau D, Tobin S, Pribiag H, Nakajima S, Fisette A, Matthys D, Franco Flores AK, Peyot ML, Murthy Madiraju SR, Prentki M, Stellwagen D, Alquier T, Fulton S. ABHD6 loss-of-function in mesoaccumbens postsynaptic but not presynaptic neurons prevents diet-induced obesity in male mice. Nat Commun 2024; 15:10652. [PMID: 39681558 PMCID: PMC11649924 DOI: 10.1038/s41467-024-54819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
α/β-hydrolase domain 6 (ABHD6) is a lipase linked to physiological functions affecting energy metabolism. Brain ABHD6 degrades 2-arachidonoylglycerol and thereby modifies cannabinoid receptor signalling. However, its functional role within mesoaccumbens circuitry critical for motivated behaviour and considerably modulated by endocannabinoids was unknown. Using three viral approaches, we show that control of the nucleus accumbens by neuronal ABHD6 is a key determinant of body weight and reward-directed behaviour in male mice. Contrary to expected outcomes associated with increasing endocannabinoid tone, loss of ABHD6 in nucleus accumbens, but not ventral tegmental area, neurons completely prevents diet-induced obesity, reduces food- and drug-seeking and enhances physical activity without affecting anxiodepressive behaviour. These effects are explained by attenuated inhibitory synaptic transmission onto medium spiny neurons. ABHD6 deletion in nucleus accumbens neurons and dopamine ventral tegmental area neurons produces contrasting effects on effortful responding for food. Intraventricular infusions of an ABHD6 inhibitor also restrain appetite and promote weight loss. Together, these results reveal functional specificity of pre- and post-synaptic mesoaccumbens neuronal ABHD6 to differentially control energy balance and propose ABHD6 inhibition as a potential anti-obesity tool.
Collapse
Affiliation(s)
- David Lau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Tobin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Horia Pribiag
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Dominique Matthys
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Anna Kristyna Franco Flores
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Marie-Line Peyot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marc Prentki
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. Neuropsychopharmacology 2024; 49:1861-1871. [PMID: 38773314 PMCID: PMC11473522 DOI: 10.1038/s41386-024-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.
Collapse
Affiliation(s)
- Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilah D Jordan
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lily G Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Singh S, Ellioff KJ, Bruchas MR, Land BB, Stella N. Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2024; 391:162-173. [PMID: 39060165 PMCID: PMC11493443 DOI: 10.1124/jpet.124.002119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT: Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.
Collapse
Affiliation(s)
- Simar Singh
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Kaylin J Ellioff
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Benjamin B Land
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Nephi Stella
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Giua G, Pereira-Silva J, Caceres-Rodriguez A, Lassalle O, Chavis P, Manzoni OJ. Cell- and Pathway-Specific Disruptions in the Accumbens of Fragile X Mouse. J Neurosci 2024; 44:e1587232024. [PMID: 38830765 PMCID: PMC11270510 DOI: 10.1523/jneurosci.1587-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socioemotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPN pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of fragile X messenger ribonucleoprotein 1 (FMRP) led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.
Collapse
Affiliation(s)
- Gabriele Giua
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Jessica Pereira-Silva
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Alba Caceres-Rodriguez
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier Lassalle
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Pascale Chavis
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier J Manzoni
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| |
Collapse
|
9
|
Chowdhury KU, Holden ME, Wiley MT, Suppiramaniam V, Reed MN. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells 2024; 13:1130. [PMID: 38994982 PMCID: PMC11240741 DOI: 10.3390/cells13131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
There has been a significant increase in the consumption of cannabis for both recreational and medicinal purposes in recent years, and its use can have long-term consequences on cognitive functions, including memory. Here, we review the immediate and long-term effects of cannabis and its derivatives on glutamatergic neurotransmission, with a focus on both the presynaptic and postsynaptic alterations. Several factors can influence cannabinoid-mediated changes in glutamatergic neurotransmission, including dosage, sex, age, and frequency of use. Acute exposure to cannabis typically inhibits glutamate release, whereas chronic use tends to increase glutamate release. Conversely, the postsynaptic alterations are more complicated than the presynaptic effects, as cannabis can affect the glutamate receptor expression and the downstream signaling of glutamate. All these effects ultimately influence cognitive functions, particularly memory. This review will cover the current research on glutamate-cannabis interactions, as well as the future directions of research needed to understand cannabis-related health effects and neurological and psychological aspects of cannabis use.
Collapse
Affiliation(s)
- Kawsar U. Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | - Miles T. Wiley
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
11
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567903. [PMID: 38045379 PMCID: PMC10690210 DOI: 10.1101/2023.11.20.567903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. Proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. Activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant for alcohol use.
Collapse
Affiliation(s)
- Carly B. Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Nilah D. Jordan
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Lily G. Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Shannon M. Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
Bhardwaj AK, Mills L, Doyle M, Sahid A, Montebello M, Monds L, Arunogiri S, Haber P, Lorenzetti V, Lubman DI, Malouf P, Harrod ME, Dunlop A, Freeman T, Lintzeris N. A phase III multisite randomised controlled trial to compare the efficacy of cannabidiol to placebo in the treatment of cannabis use disorder: the CBD-CUD study protocol. BMC Psychiatry 2024; 24:175. [PMID: 38433233 PMCID: PMC10910760 DOI: 10.1186/s12888-024-05616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cannabis use disorder (CUD) is increasingly common and contributes to a range of health and social problems. Cannabidiol (CBD) is a non-intoxicating cannabinoid recognised for its anticonvulsant, anxiolytic and antipsychotic effects with no habit-forming qualities. Results from a Phase IIa randomised clinical trial suggest that treatment with CBD for four weeks reduced non-prescribed cannabis use in people with CUD. This study examines the efficacy, safety and quality of life of longer-term CBD treatment for patients with moderate-to-severe CUD. METHODS/DESIGN A phase III multi-site, randomised, double-blinded, placebo controlled parallel design of a 12-week course of CBD to placebo, with follow-up at 24 weeks after enrolment. Two hundred and fifty adults with moderate-to-severe CUD (target 20% Aboriginal), with no significant medical, psychiatric or other substance use disorders from seven drug and alcohol clinics across NSW and VIC, Australia will be enrolled. Participants will be administered a daily dose of either 4 mL (100 mg/mL) of CBD or a placebo dispensed every 3-weeks. All participants will receive four-sessions of Cognitive Behavioural Therapy (CBT) based counselling. Primary endpoints are self-reported cannabis use days and analysis of cannabis metabolites in urine. Secondary endpoints include severity of CUD, withdrawal severity, cravings, quantity of use, motivation to stop and abstinence, medication safety, quality of life, physical/mental health, cognitive functioning, and patient treatment satisfaction. Qualitative research interviews will be conducted with Aboriginal participants to explore their perspectives on treatment. DISCUSSION Current psychosocial and behavioural treatments for CUD indicate that over 80% of patients relapse within 1-6 months of treatment. Pharmacological treatments are highly effective with other substance use disorders but there are no approved pharmacological treatments for CUD. CBD is a promising candidate for CUD treatment due to its potential efficacy for this indication and excellent safety profile. The anxiolytic, antipsychotic and neuroprotective effects of CBD may have added benefits by reducing many of the mental health and cognitive impairments reported in people with regular cannabis use. TRIAL REGISTRATION Australian and New Zealand Clinical Trial Registry: ACTRN12623000526673 (Registered 19 May 2023).
Collapse
Affiliation(s)
- Anjali K Bhardwaj
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia.
| | - Llew Mills
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Michael Doyle
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Arshman Sahid
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Mark Montebello
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Lauren Monds
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Shalini Arunogiri
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Paul Haber
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug Health Services, Sydney Local Health District, Sydney, Australia
| | | | - Dan I Lubman
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Peter Malouf
- Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Mary E Harrod
- NSW Users and AIDS Association, Sydney, NSW, Australia
| | - Adrian Dunlop
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Newcastle, NSW, Australia
| | - Tom Freeman
- Addiction and Mental Health Group, University of Bath, Bath, UK
| | - Nicholas Lintzeris
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
13
|
Wei M, Yang L, Su F, Liu Y, Zhao X, Luo L, Sun X, Liu S, Dong Z, Zhang Y, Shi YS, Liang J, Zhang C. ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility. Prog Neurobiol 2024; 233:102559. [PMID: 38159878 DOI: 10.1016/j.pneurobio.2023.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Trafficking of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6KO) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6KO mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.
Collapse
Affiliation(s)
- Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Su
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Zhao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinyue Sun
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission of the PR China, IDG/McGovern Institute for Brain Research at PKU, Peking University, Beijing 100083, China
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing 210032, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
14
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
15
|
Alegre-Zurano L, Caceres-Rodriguez A, Berbegal-Sáez P, Lassalle O, Manzoni O, Valverde O. Cocaine-induced loss of LTD and social impairments are restored by fatty acid amide hydrolase inhibition. Sci Rep 2023; 13:18229. [PMID: 37880305 PMCID: PMC10600200 DOI: 10.1038/s41598-023-45476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
A single dose of cocaine abolishes endocannabinoid-mediated long-term depression (eCB-LTD) in the nucleus accumbens (NAc) within 24 h of administration. However, it is uncertain whether this altered neuroplasticity entails a behavioral deficit. As previously reported, after a single dose of cocaine (20 mg/kg), mice displayed impaired eCB-LTD in the NAc. Such cocaine-induced neuroplastic impairment was accompanied by an altered preference for saccharin and social interactions and a reduction in mRNA levels of the anandamide-catabolizing enzyme NAPE-PLD. The pharmacological increase of anandamide through the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 mg/kg) reversed the cocaine-induced loss of eCB-LTD in the NAc and restored normal social interaction in cocaine-exposed mice, but it did not affect saccharin preference. Overall, this research underlines the neuroplastic and behavioral alterations occurring after the initial use of cocaine and suggests a potential role for anandamide.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, C/ Dr Aiguader, 88, 08003, Barcelona, Spain
| | | | - Paula Berbegal-Sáez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, C/ Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, C/ Dr Aiguader, 88, 08003, Barcelona, Spain.
- Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
16
|
Kroll SL, Hulka LM, Kexel AK, Vonmoos M, Preller KH, Treyer V, Ametamey SM, Baumgartner MR, Boost C, Pahlisch F, Rohleder C, Leweke FM, Quednow BB. Plasma endocannabinoids in cocaine dependence and their relation to cerebral metabotropic glutamate receptor 5 density. Transl Psychiatry 2023; 13:325. [PMID: 37857616 PMCID: PMC10587180 DOI: 10.1038/s41398-023-02628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Animal models indicate that the endocannabinoid system (ECS) plays a modulatory role in stress and reward processing, both crucially impaired in addictive disorders. Preclinical findings showed endocannabinoid-modulated synaptic plasticity in reward brain networks linked to the metabotropic-glutamate-5 receptor (mGluR5), contributing to drug-reinforcing effects and drug-seeking behavior. Although animal models postulate a link between ECS and cocaine addiction, human translational studies are lacking. Here, we tested previous preclinical findings by investigating plasma endocannabinoids (eCBs) anandamide (AEA), 2-arachidonoylglycerol (2-AG), and the related N-acylethanolamines (NAEs) palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), including their interaction with cerebral mGluR5, in chronic cocaine users (CU). We compared basal plasma concentrations between chronic CU (N = 103; 69 recreational CU and 34 dependent CU) and stimulant-naïve healthy controls (N = 92). Follow-up basal eCB/NAE plasma levels after 12 months were used for reliability and stability check (CU: N = 33; controls: N = 43). In an additional analysis using 11C-ABP688 positron emission tomography (PET) in a male subsample (CU: N = 18; controls: N = 16), we investigated the relationships between eCBs/NAEs and mGluR5 density in the brain. We found higher 2-AG plasma levels in dependent CU compared to controls and recreational CU. 2-AG levels were stable over time across all groups. In the PET-subsample, a positive association between 2-AG and mGluR5 brain density only in CU was found. Our results corroborate animal findings suggesting an alteration of the ECS in cocaine dependence and an association between peripheral 2-AG levels and cerebral mGluR5 in humans. Therefore, the ECS might be a promising pharmaco-therapeutic target for novel treatments of cocaine dependence.
Collapse
Affiliation(s)
- Sara L Kroll
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lea M Hulka
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Kexel
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Vonmoos
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Carola Boost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franziska Pahlisch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
17
|
Thomazeau A, Lassalle O, Manzoni OJ. Glutamatergic synaptic deficits in the prefrontal cortex of the Ts65Dn mouse model for Down syndrome. Front Neurosci 2023; 17:1171797. [PMID: 37841687 PMCID: PMC10569174 DOI: 10.3389/fnins.2023.1171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Down syndrome (DS), the most prevalent cause of intellectual disability, stems from a chromosomal anomaly resulting in an entire or partial extra copy of chromosome 21. This leads to intellectual disability and a range of associated symptoms. While there has been considerable research focused on the Ts65Dn mouse model of DS, particularly in the context of the hippocampus, the synaptic underpinnings of prefrontal cortex (PFC) dysfunction in DS, including deficits in working memory, remain largely uncharted territory. In a previous study featuring mBACtgDyrk1a mice, which manifest overexpression of the Dyrk1a gene, a known candidate gene linked to intellectual disability and microcephaly in DS, we documented adverse effects on spine density, alterations in the molecular composition of synapses, and the presence of synaptic plasticity deficits within the PFC. The current study aimed to enrich our understanding of the roles of different genes in DS by studying Ts65Dn mice, which overexpress several genes including Dyrk1a, to compare with our previous work on mBACtgDyrk1a mice. Through ex-vivo electrophysiological experiments, including patch-clamp and extracellular field potential recordings, we identified alterations in the intrinsic properties of PFC layer V/VI pyramidal neurons in Ts65Dn male mice. Additionally, we observed changes in the synaptic plasticity range. Notably, long-term depression was absent in Ts65Dn mice, while synaptic or pharmacological long-term potentiation remained fully expressed in these mice. These findings provide valuable insights into the intricate synaptic mechanisms contributing to PFC dysfunction in DS, shedding light on potential therapeutic avenues for addressing the neurocognitive symptoms associated with this condition.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier Lassalle
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier J. Manzoni
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| |
Collapse
|
18
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
19
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
20
|
Niepokny TD, Mintz EM. A Cannabinoid Receptor 1 Agonist Reduces Light-induced Phase Delays in Male But Not Female Mice. J Biol Rhythms 2023:7487304231166785. [PMID: 37190758 PMCID: PMC10330025 DOI: 10.1177/07487304231166785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Animals adapt to a changing environment by synchronizing their circadian rhythms to different stimuli, the strongest and most reliable being the daily light-dark cycle. Photic information reaches the central circadian pacemaker, the suprachiasmatic nucleus (SCN), which drives rhythms in physiology and behavior throughout the brain and body. The endocannabinoid system (ECS) is a neuromodulatory system that is present within the SCN, including the primary receptor, cannabinoid receptor 1 (CB1). Exogenous cannabinoids that target CB1 inhibit the phase-shifting effects of light in hamsters, mice, and rats. Furthermore, there is evidence in cultured microglial cells that cannabidiol (CBD), a constituent of Cannabis sativa, alters core circadian clock genes, while the CB1 agonist delta-9-tetrahydrocannabinol (THC) does not. The CB1 agonist studies were conducted using male animals only, but cannabinoids exhibit sex-dependent effects in various aspects of physiology and behavior. In addition, the effects of CBD on circadian behavioral rhythms have yet to be investigated. Therefore, we decided to test the effects of acute injections of CBD or the CB1 agonist CP 55,940 on light-induced phase delays in male and female C57BL/6J mice. Animals received a single injection at circadian time (CT) 15.5, followed by a 10-min light or dark (sham) pulse at CT 16. Running-wheel activity was monitored to determine activity levels and the behavioral phase shifts from different treatments. We observed a sex difference in the magnitude of phase delay size in response to CP 55,940 administration. Males had attenuated phase delays with increasing doses of CP 55,940, while females did not differ from control. Various doses of CBD had no effect on the phase-delaying effects of light in either sex. Our results show a sex difference in the gating of photic phase shifts by CB1 activation.
Collapse
Affiliation(s)
- Timothy D Niepokny
- Department of Biological Sciences, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Eric M Mintz
- Department of Biological Sciences, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio
| |
Collapse
|
21
|
Hasbi A, Madras BK, George SR. Endocannabinoid System and Exogenous Cannabinoids in Depression and Anxiety: A Review. Brain Sci 2023; 13:brainsci13020325. [PMID: 36831868 PMCID: PMC9953886 DOI: 10.3390/brainsci13020325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Background: There is a growing liberalization of cannabis-based preparations for medical and recreational use. In multiple instances, anxiety and depression are cited as either a primary or a secondary reason for the use of cannabinoids. Aim: The purpose of this review is to explore the association between depression or anxiety and the dysregulation of the endogenous endocannabinoid system (ECS), as well as the use of phytocannabinoids and synthetic cannabinoids in the remediation of depression/anxiety symptoms. After a brief description of the constituents of cannabis, cannabinoid receptors and the endocannabinoid system, the most important evidence is presented for the involvement of cannabinoids in depression and anxiety both in human and from animal models of depression and anxiety. Finally, evidence is presented for the clinical use of cannabinoids to treat depression and anxiety. Conclusions: Although the common belief that cannabinoids, including cannabis, its main studied components-tetrahydrocannabinol (THC) and cannabidiol (CBD)-or other synthetic derivatives have been suggested to have a therapeutic role for certain mental health conditions, all recent systematic reviews that we report have concluded that the evidence that cannabinoids improve depressive and anxiety disorders is weak, of very-low-quality, and offers no guidance on the use of cannabinoids for mental health conditions within a regulatory framework. There is an urgent need for high-quality studies examining the effects of cannabinoids on mental disorders in general and depression/anxiety in particular, as well as the consequences of long-term use of these preparations due to possible risks such as addiction and even reversal of improvement.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| | - Bertha K. Madras
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Susan R. George
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| |
Collapse
|
22
|
Gimenez-Gomez P, Le T, Martin GE. Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 2023; 16:1098211. [PMID: 36866357 PMCID: PMC9971943 DOI: 10.3389/fnmol.2023.1098211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Drug use poses a serious threat to health systems throughout the world. The number of consumers rises every year being alcohol the drug of abuse most consumed causing 3 million deaths (5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years. In this review, we present an up-to-date summary about what is known regarding the global impact of binge alcohol drinking on brains and how it affects the development of cognitive functions, as well as the various preclinical models used to probe its effects on the neurobiology of the brain. This will be followed by a detailed report on the state of our current knowledge of the molecular and cellular mechanisms underlying the effects of binge drinking on neuronal excitability and synaptic plasticity, with an emphasis on brain regions of the meso-cortico limbic neurocircuitry.
Collapse
Affiliation(s)
- Pablo Gimenez-Gomez
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| |
Collapse
|
23
|
Asher MJ, McMullan HM, Dong A, Li Y, Thayer SA. A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell-Derived Neurons. Mol Pharmacol 2023; 103:100-112. [PMID: 36379717 PMCID: PMC9881009 DOI: 10.1124/molpharm.122.000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development. Despite recent interest in cannabinoid-based treatments, few preclinical studies are conducted in human systems. Human induced pluripotent stem cells (hiPSCs) provide one possible solution to this issue. However, it is not known if these cells have a fully functional ECS. Here, we show that hiPSC-derived neuron/astrocyte cultures exhibit a complete ECS. Using Ca2+ imaging and a genetically encoded endocannabinoid sensor, we demonstrate that they not only respond to exogenously applied cannabinoids but also produce and metabolize endocannabinoids. Synaptically driven [Ca2+]i spiking activity was inhibited (EC50 = 48 ± 13 nM) by the efficacious agonist [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol [1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] (Win 55,212-2) and by the endogenous ligand 2-arachidonoyl glycerol (2-AG; EC50 = 2.0 ± 0.6 µm). The effects of Win 55212-2 were blocked by a CB1 receptor-selective antagonist. Δ9-Tetrahydrocannabinol acted as a partial agonist, maximally inhibiting synaptic activity by 47 ± 14% (EC50 = 1.4 ± 1.9 µm). Carbachol stimulated 2-AG production in a manner that was independent of Ca2+ and blocked by selective inhibition of diacylglycerol lipase. 2-AG returned to basal levels via a process mediated by monoacylglycerol lipase as indicated by slowed recovery in cultures treated with 4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester (JZL 184). Win 55,212-2 markedly desensitized CB1 receptor function following a 1-day exposure, whereas desensitization was incomplete following 7-day treatment with JZL 184. This human cell culture model is well suited for functional analysis of the ECS and as a platform for drug development. SIGNIFICANCE STATEMENT: Despite known differences between the human response to cannabinoids and that of other species, an in vitro human model demonstrating a fully functional endocannabinoid system has not been described. Human induced pluripotent stem cells (hiPSCs) can be obtained from skin samples and then reprogrammed into neurons for use in basic research and drug screening. Here, we show that hiPSC-derived neuronal cultures exhibit a complete endocannabinoid system suitable for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Melissa J Asher
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Hannah M McMullan
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Ao Dong
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Yulong Li
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Stanley A Thayer
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| |
Collapse
|
24
|
Scheyer AF, Laviolette SR, Pelissier AL, Manzoni OJ. Cannabis in Adolescence: Lasting Cognitive Alterations and Underlying Mechanisms. Cannabis Cannabinoid Res 2023; 8:12-23. [PMID: 36301550 PMCID: PMC9940816 DOI: 10.1089/can.2022.0183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabis consumption during adolescence is an area of particular concern, owing to changes in the social and political perception of the drug, and presents a scientific, medical, and economic challenge. Major social and economic interests continue to push toward cannabis legalization as well as pharmaceutical development. As a result, shifting perceptions of both legal and illicit cannabis use across the population have changed the collective evaluation of the potential dangers of the product. The wave of cannabis legalization therefore comes with new responsibility to educate the public on potential risks and known dangers associated with both recreational and medical cannabis. Among these is the risk of long-term cognitive and psychological consequences, particularly following early-life initiation of use, compounded by high-potency and/or synthetic cannabis, and heavy/frequent use of the drug. Underlying these cognitive and psychiatric consequences are lasting aberrations in the development of synaptic function, often secondary to epigenetic changes. Additional factors such as genetic risk and environmental influences or nondrug toxic insults during development are also profound contributors to these long-term functional alterations following adolescent cannabis use. Preclinical studies indicate that exposure to cannabinoids during specific windows of vulnerability (e.g., adolescence) impacts neurodevelopmental processes and behavior by durably changing dendritic structure and synaptic functions, including those normally mediated by endogenous cannabinoids and neuronal circuits.
Collapse
Affiliation(s)
- Andrew F. Scheyer
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Steven R. Laviolette
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology and Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Anne-Laure Pelissier
- INMED, INSERM U1249, Marseille, France
- APHM, CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J.J. Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Address correspondence to: Olivier J.J. Manzoni, PhD, INMED, INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273 MARSEILLE Cedex 09, France,
| |
Collapse
|
25
|
Abstract
Electrophysiological technique is an efficient tool for investigating the synaptic regulatory effects mediated by the endocannabinoid system. Stimulation of presynaptic type 1 cannabinoid receptor (CB1) is the principal mode by which endocannabinoids suppress transmitter release in the central nervous system, but a non-retrograde manner of functioning and other receptors have also been described. Endocannabinoids are key modulators of both short- and long-term plasticity. Here, we discuss ex vivo electrophysiological approaches to examine synaptic signaling induced by cannabinoid and endocannabinoid molecules in the mammalian brain.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
26
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
27
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
28
|
Inbar K, Levi LA, Kupchik YM. Cocaine induces input and cell-type-specific synaptic plasticity in ventral pallidum-projecting nucleus accumbens medium spiny neurons. Neuropsychopharmacology 2022; 47:1461-1472. [PMID: 35121830 PMCID: PMC9205871 DOI: 10.1038/s41386-022-01285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Cocaine use and abstinence induce long-term synaptic alterations in the excitatory input to nucleus accumbens (NAc) medium spiny neurons (MSNs). The NAc regulates reward-related behaviors through two parallel projections to the ventral pallidum (VP)-originating in D1 or D2-expressing MSNs (D1-MSNs→VP; D2-MSNs→VP). The activity of these projections depends on their excitatory synaptic inputs, but it is not known whether and how abstinence from cocaine affects the excitatory transmission to D1-MSNs→VP and D2-MSNs→VP. Here we examined different forms of cocaine-induced synaptic plasticity in the inputs from the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) to NAc D1-MSNs→VP and putative D2-MSNs→VP (pD2-MSNs→VP) in the core and shell subcompartments of the NAc. We used the whole-cell patch-clamp technique to record excitatory postsynaptic currents from D1-tdTomato mice injected with ChR2 in either the BLA or the mPFC and retrograde tracer (RetroBeads) in the VP. We found that cocaine conditioned place preference (CPP) followed by abstinence potentiated the excitatory input from the BLA and mPFC to both D1-MSNs→VP and pD2-MSNs→VP. Interestingly, while the strengthening of the inputs to D1-MSNs→VP was of postsynaptic origin and manifested as increased AMPA to NMDA ratio, in pD2-MSNs→VP plasticity was predominantly presynaptic and was detected as changes in the paired-pulse ratio and coefficient of variation. Lastly, some of the changes were sex-specific. Overall our data show that abstinence from cocaine changes the excitatory inputs to both D1-MSNs→VP and pD2-MSNs→VP but with different mechanisms. This may help understand how circuits converging into the VP change after cocaine exposure.
Collapse
Affiliation(s)
- Kineret Inbar
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Liran A. Levi
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Yonatan M. Kupchik
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| |
Collapse
|
29
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
30
|
Grotsch K, Fokin VV. Between Science and Big Business: Tapping Mary Jane's Uncharted Potential. ACS CENTRAL SCIENCE 2022; 8:156-168. [PMID: 35233448 PMCID: PMC8875429 DOI: 10.1021/acscentsci.1c01100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
At the intersection of science and medicine, government policy, and pop culture, cannabis has prompted society since the beginning of recorded history. And yet, there is comparatively little replicable data on the plant, its constituents, and their capacity to modify human physiology. Over the past decades, several findings have pointed toward the importance of the endogenous cannabinoid system in maintaining homeostasis, making it an important target for various diseases. Here, we summarize the current state of knowledge on endogenous- and plant-based cannabinoids, address the issues related to cannabinoid-based drug discovery, and incite efforts to utilize their polypharmacological profile toward tackling diseases with a complex underlying pathophysiology. By fusing modern science and technology with the empirical data that has been gathered over centuries, we propose an outlook that could help us overcome the dearth of innovation for new drugs and synchronously redefine the future of drug discovery. Simultaneously, we call attention to the startling disconnect between the scientific, regulatory, and corporate entities that is becoming increasingly evident in this booming industry.
Collapse
Affiliation(s)
- Katharina Grotsch
- Bridge Institute and Loker
Hydrocarbon Research Institute, University
of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valery V. Fokin
- Bridge Institute and Loker
Hydrocarbon Research Institute, University
of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| |
Collapse
|
31
|
Sugaya Y, Kano M. Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures. Front Neural Circuits 2022; 15:781113. [PMID: 35046779 PMCID: PMC8762319 DOI: 10.3389/fncir.2021.781113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
Research on endocannabinoid signaling has greatly advanced our understanding of how the excitability of neural circuits is controlled in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses excitability by inhibiting glutamate release, while that at inhibitory synapses promotes excitability by inhibiting GABA release, although there are some exceptions in genetically epileptic animal models. In the epileptic brain, the physiological distributions of endocannabinoid signaling molecules are disrupted during epileptogenesis, contributing to the occurrence of spontaneous seizures. However, it is still unknown how endocannabinoid signaling changes during seizures and how the redistribution of endocannabinoid signaling molecules proceeds during epileptogenesis. Recent development of cannabinoid sensors has enabled us to investigate endocannabinoid signaling in much greater spatial and temporal details than before. Application of cannabinoid sensors to epilepsy research has elucidated activity-dependent changes in endocannabinoid signaling during seizures. Furthermore, recent endocannabinoid research has paved the way for the clinical use of cannabidiol for the treatment of refractory epilepsy, such as Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Cannabidiol significantly reduces seizures and is considered to have comparable tolerability to conventional antiepileptic drugs. In this article, we introduce recent advances in research on the roles of endocannabinoid signaling in epileptic seizures and discuss future directions.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- *Correspondence: Masanobu Kano,
| |
Collapse
|
32
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
33
|
Covey DP, Yocky AG. Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci 2021; 13:734975. [PMID: 34497503 PMCID: PMC8419321 DOI: 10.3389/fnsyn.2021.734975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is located in the ventromedial portion of the striatum and is vital to valence-based predictions and motivated action. The neural architecture of the NAc allows for complex interactions between various cell types that filter incoming and outgoing information. Dopamine (DA) input serves a crucial role in modulating NAc function, but the mechanisms that control terminal DA release and its effect on NAc neurons continues to be elucidated. The endocannabinoid (eCB) system has emerged as an important filter of neural circuitry within the NAc that locally shapes terminal DA release through various cell type- and site-specific actions. Here, we will discuss how eCB signaling modulates terminal DA release by shaping the activity patterns of NAc neurons and their afferent inputs. We then discuss recent technological advancements that are capable of dissecting how distinct cell types, their afferent projections, and local neuromodulators influence valence-based actions.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Alyssa G Yocky
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| |
Collapse
|
34
|
Rodríguez-Manzo G, González-Morales E, Garduño-Gutiérrez R. Endocannabinoids Released in the Ventral Tegmental Area During Copulation to Satiety Modulate Changes in Glutamate Receptors Associated With Synaptic Plasticity Processes. Front Synaptic Neurosci 2021; 13:701290. [PMID: 34483875 PMCID: PMC8416467 DOI: 10.3389/fnsyn.2021.701290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoids modulate mesolimbic (MSL) dopamine (DA) neurons firing at the ventral tegmental area (VTA). These neurons are activated by copulation, increasing DA release in nucleus accumbens (NAcc). Copulation to satiety in male rats implies repeated ejaculation within a short period (around 2.5 h), during which NAcc dopamine concentrations remain elevated, suggesting continuous neuronal activation. During the 72 h that follow copulation to satiety, males exhibit long-lasting changes suggestive of brain plasticity processes. Enhanced DA neuron activity triggers the synthesis and release of endocannabinoids (eCBs) in the VTA, which participate in several long-term synaptic plasticity processes. Blockade of cannabinoid type 1 receptors (CB1Rs) during copulation to satiety interferes with the appearance of the plastic changes. Glutamatergic inputs to the VTA express CB1Rs and contribute to DA neuron burst firing and synaptic plasticity. We hypothesized that eCBs, released during copulation to satiety, would activate VTA CB1Rs and modulate synaptic plasticity processes involving glutamatergic transmission. To test this hypothesis, we determined changes in VTA CB1R density, phosphorylation, and internalization in rats that copulated to satiety 24 h earlier as compared both to animals that ejaculated only once and to sexually experienced unmated males. Changes in glutamate AMPAR and NMDAR densities and subunit composition and in ERK1/2 activation were determined in the VTA of males that copulated to satiety in the presence or absence of AM251, a CB1R antagonist. The CB1R density decreased and the proportion of phosphorylated CB1Rs increased in the animals that copulated compared to control rats. The CB1R internalization was detected only in sexually satiated males. A decrease in α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) density, blocked by AM251 pretreatment, and an increase in the proportion of GluA2-AMPARs occurred in sexually satiated rats. GluN2A- N-methyl-D-aspartate receptor (NMDAR) expression decreased, and GluN2B-NMDARs increased in these animals, both of which were prevented by AM251 pre-treatment. An increase in phosphorylated ERK1/2 emerged in males copulating to satiety in the presence of AM251. Results demonstrate that during copulation to satiety, eCBs activate CB1Rs in the VTA, producing changes in glutamate receptors compatible with a reduced neuronal activation. These changes could play a role in the induction of the long-lasting physiological changes that characterize sexually satiated rats.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - Estefanía González-Morales
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - René Garduño-Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| |
Collapse
|
35
|
Mitra S, Gobira PH, Werner CT, Martin JA, Iida M, Thomas SA, Erias K, Miracle S, Lafargue C, An C, Dietz DM. A role for the endocannabinoid enzymes monoacylglycerol and diacylglycerol lipases in cue-induced cocaine craving following prolonged abstinence. Addict Biol 2021; 26:e13007. [PMID: 33496035 PMCID: PMC11000690 DOI: 10.1111/adb.13007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Following exposure to drugs of abuse, long-term neuroadaptations underlie persistent risk to relapse. Endocannabinoid signaling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate endocannabinoid biosynthesis and metabolism in regulating relapse behaviors following prolonged periods of drug abstinence has not been examined. Here, we investigated how pharmacological manipulation of lipases involved in regulating the expression of the endocannabinoid 2-AG in the nucleus accumbens (NAc) influence cocaine relapse via discrete neuroadaptations. At prolonged abstinence (30 days) from cocaine self-administration, there is an increase in the NAc levels of diacylglycerol lipase (DAGL), the enzyme responsible for the synthesis of the endocannabinoid 2-AG, along with decreased levels of monoacylglycerol lipase (MAGL), which hydrolyzes 2-AG. Since endocannabinoid-mediated behavioral plasticity involves phosphatase dysregulation, we examined the phosphatase calcineurin after 30 days of abstinence and found decreased expression in the NAc, which we demonstrate is regulated through the transcription factor EGR1. Intra-NAc pharmacological manipulation of DAGL and MAGL with inhibitors DO-34 and URB-602, respectively, bidirectionally regulated cue-induced cocaine seeking and altered the phosphostatus of translational initiation factor, eIF2α. Finally, we found that cocaine seeking 30 days after abstinence leads to decreased phosphorylation of eIF2α and reduced expression of its downstream target NPAS4, a protein involved in experience-dependent neuronal plasticity. Together, our findings demonstrate that lipases that regulate 2-AG expression influence transcriptional and translational changes in the NAc related to drug relapse vulnerability.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Pedro H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- These authors contributed equally to this work
| | - Craig T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Madoka Iida
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shruthi A. Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sophia Miracle
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles Lafargue
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
36
|
Murray CH, Gaulden AD, Kawa AB, Milovanovic M, Caccamise AJ, Funke JR, Patel S, Wolf ME. CaMKII Modulates Diacylglycerol Lipase-α Activity in the Rat Nucleus Accumbens after Incubation of Cocaine Craving. eNeuro 2021; 8:ENEURO.0220-21.2021. [PMID: 34544759 PMCID: PMC8503962 DOI: 10.1523/eneuro.0220-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Relapse is a major challenge to the treatment of substance use disorders. A progressive increase in cue-induced drug craving, termed incubation of craving, is observed after withdrawal from multiple drugs of abuse in humans and rodents. Incubation of cocaine craving involves the strengthening of excitatory synapses onto nucleus accumbens (NAc) medium spiny neurons via postsynaptic accumulation of high-conductance Ca2+-permeable AMPA receptors. This enhances reactivity to drug-associated cues and is required for the expression of incubation. Additionally, incubation of cocaine craving is associated with loss of the synaptic depression normally triggered by stimulation of metabotropic glutamate receptor 5 (mGlu5), leading to endocannabinoid production, and expressed presynaptically via cannabinoid receptor 1 activation. Previous studies have found alterations in mGlu5 and Homer proteins associated with the loss of this synaptic depression. Here we conducted coimmunoprecipitation studies to investigate associations of diacylglycerol lipase-α (DGL), which catalyzes formation of the endocannabinoid 2-arachidonylglycerol (2-AG), with mGlu5 and Homer proteins. Although these interactions were unchanged in the NAc core at incubation-relevant withdrawal times, the association of DGL with total and phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) and CaMKIIβ was increased. This would be predicted, based on other studies, to inhibit DGL activity and therefore 2-AG production. This was confirmed by measuring DGL enzymatic activity. However, the magnitude of DGL inhibition did not correlate with the magnitude of incubation of craving for individual rats. These results suggest that CaMKII contributes to the loss of mGlu5-dependent synaptic depression after incubation, but the functional significance of this loss remains unclear.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Andrew D Gaulden
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Mike Milovanovic
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Aaron J Caccamise
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Marina E Wolf
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
37
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
38
|
Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:187-219. [PMID: 34446246 DOI: 10.1016/bs.irn.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optogenetic tools allow for the selective activation, inhibition or modulation of genetically-defined neural circuits with incredible temporal precision. Over the past decade, application of these tools in preclinical models of psychiatric disease has advanced our understanding the neural circuit basis of maladaptive behaviors in these disorders. Despite their power as an investigational tool, optogenetics cannot yet be applied in the clinical for the treatment of neurological and psychiatric disorders. To date, deep brain stimulation (DBS) is the only clinical treatment that can be used to achieve circuit-specific neuromodulation in the context of psychiatric. Despite its increasing clinical indications, the mechanisms underlying the therapeutic effects of DBS for psychiatric disorders are poorly understood, which makes optimization difficult. We discuss the variety of optogenetic tools available for preclinical research, and how these tools have been leveraged to reverse-engineer the mechanisms underlying DBS for movement and compulsive disorders. We review studies that have used optogenetics to induce plasticity within defined basal ganglia circuits, to alter neural circuit function and evaluate the corresponding effects on motor and compulsive behaviors. While not immediately applicable to patient populations, the translational power of optogenetics is in inspiring novel DBS protocols by providing a rationale for targeting defined neural circuits to ameliorate specific behavioral symptoms, and by establishing optimal stimulation paradigms that could selectively compensate for pathological synaptic plasticity within these defined neural circuits.
Collapse
|
39
|
Xu X, Wu K, Ma X, Wang W, Wang H, Huang M, Luo L, Su C, Yuan T, Shi H, Han J, Wang A, Xu T. mGluR5-Mediated eCB Signaling in the Nucleus Accumbens Controls Vulnerability to Depressive-Like Behaviors and Pain After Chronic Social Defeat Stress. Mol Neurobiol 2021; 58:4944-4958. [PMID: 34227060 DOI: 10.1007/s12035-021-02469-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Stress contributes to major depressive disorder (MDD) and chronic pain, which affect a significant portion of the global population, but researchers have not clearly determined how these conditions are initiated or amplified by stress. The chronic social defeat stress (CSDS) model is a mouse model of psychosocial stress that exhibits depressive-like behavior and chronic pain. We hypothesized that metabotropic glutamate receptor 5 (mGluR5) expressed in the nucleus accumbens (NAc) normalizes the depressive-like behaviors and pain following CSDS. Here, we show that CSDS induced both pain and social avoidance and that the level of mGluR5 decreased in susceptible mice. Overexpression of mGluR5 in the NAc shell and core prevented the development of depressive-like behaviors and pain in susceptible mice, respectively. Conversely, depression-like behaviors and pain were exacerbated in mice with mGluR5 knockdown in the NAc shell and core, respectively, compared to control mice subjected to 3 days of social defeat stress. Furthermore, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, reversed the reduction in the level of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the NAc of susceptible mice, an effect that was blocked by 3-((2-methyl-1, 3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP), an mGluR5 antagonist. In addition, the injection of CHPG into the NAc shell and core normalized depressive-like behaviors and pain, respectively, and these effects were inhibited by AM251, a cannabinoid type 1 receptor (CB1R) antagonist. Based on these results, mGluR5-mediated eCB production in the NAc relieves stress-induced depressive-like behaviors and pain.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Kaixuan Wu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Wenying Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Haiyan Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Min Huang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Limin Luo
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Chen Su
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, 410013, People's Republic of China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, People's Republic of China
| | - Ji Han
- Internal medicine of TCM, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China.
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China.
| |
Collapse
|
40
|
Guzman AS, Avalos MP, De Giovanni LN, Euliarte PV, Sanchez MA, Mongi-Bragato B, Rigoni D, Bollati FA, Virgolini MB, Cancela LM. CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Sci Rep 2021; 11:12964. [PMID: 34155271 PMCID: PMC8217548 DOI: 10.1038/s41598-021-92389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 μl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 μl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.
Collapse
Affiliation(s)
- Andrea S Guzman
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Laura N De Giovanni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Pia V Euliarte
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Marianela A Sanchez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Miriam B Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina. .,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
41
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
42
|
Hoffman AF, Hwang EK, Lupica CR. Impairment of Synaptic Plasticity by Cannabis, Δ 9-THC, and Synthetic Cannabinoids. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039743. [PMID: 32341064 PMCID: PMC8091957 DOI: 10.1101/cshperspect.a039743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of neurons to dynamically and flexibly encode synaptic inputs via short- and long-term plasticity is critical to an organism's ability to learn and adapt to the environment. Whereas synaptic plasticity may be encoded by pre- or postsynaptic mechanisms, current evidence suggests that optimization of learning requires both forms of plasticity. Endogenous cannabinoids (eCBs) play critical roles in modulating synaptic transmission via activation of cannabinoid CB1 receptors (CB1Rs) in many central nervous system (CNS) regions, and the eCB system has been implicated, either directly or indirectly, in several forms of synaptic plasticity. Because of this, perturbations within the eCB signaling system can lead to impairments in a variety of learned behaviors. One agent of altered eCB signaling is exposure to "exogenous cannabinoids" such as the primary psychoactive constituent of cannabis, Δ9-THC, or illicit synthetic cannabinoids that in many cases have higher potency and efficacy than Δ9-THC. Thus, by targeting the eCB system, these agonists can produce widespread impairment of synaptic plasticity by disrupting ongoing eCB function. Here, we review studies in which Δ9-THC and synthetic cannabinoids impair synaptic plasticity in a variety of neuronal circuits and examine evidence that this contributes to their well-documented ability to disrupt cognition and behavior.
Collapse
Affiliation(s)
- Alexander F Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Eun-Kyung Hwang
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Carl R Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
43
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
44
|
The endocannabinoid system in humans: significant associations between anandamide, brain function during reward feedback and a personality measure of reward dependence. Neuropsychopharmacology 2021; 46:1020-1027. [PMID: 33007775 PMCID: PMC8114914 DOI: 10.1038/s41386-020-00870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023]
Abstract
Preclinical evidence indicates that the endocannabinoid system is involved in neural responses to reward. This study aimed to investigate associations between basal serum concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) with brain functional reward processing. Additionally, a personality measure of reward dependence was obtained. Brain functional data were obtained of 30 right-handed adults by conducting fMRI at 3 Tesla using a reward paradigm. Reward dependence was obtained using the subscale reward dependence of the Tridimensional Personality Questionnaire (TPQ). Basal concentrations of AEA and 2-AG were determined in serum. Analyzing the fMRI data, for AEA and 2-AG ANCOVAs were calculated using a full factorial model, with condition (reward > control, loss > control) and concentrations for AEA and 2-AG as factors. Regression analyses were conducted for AEA and 2-AG on TPQ-RD scores. A whole-brain analysis showed a significant interaction effect of AEA concentration by condition (positive vs. negative) within the putamen (x = 26, y = 16, z = -8, F13.51, TFCE(1, 54) = 771.68, k = 70, PFWE = 0.044) resulting from a positive association of basal AEA concentrations and putamen activity to rewarding stimuli, while this association was absent in the loss condition. AEA concentrations were significantly negatively correlated with TPQ reward dependence scores (rspearman = -0.56, P = 0.001). These results show that circulating AEA may modulate brain activation during reward feedback and that the personality measure reward dependence is correlated with AEA concentrations in healthy human volunteers. Future research is needed to further characterize the nature of the lipids' influence on reward processing, the impact on reward anticipation and outcome, and on vulnerability for psychiatric disorders.
Collapse
|
45
|
Turner BD, Smith NK, Manz KM, Chang BT, Delpire E, Grueter CA, Grueter BA. Cannabinoid type 1 receptors in A2a neurons contribute to cocaine-environment association. Psychopharmacology (Berl) 2021; 238:1121-1131. [PMID: 33454843 PMCID: PMC8386588 DOI: 10.1007/s00213-021-05759-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE Cannabinoid type 1 receptors (CB1Rs) are widely expressed within the brain's reward circuits and are implicated in regulating drug induced behavioral adaptations. Understanding how CB1R signaling in discrete circuits and cell types contributes to drug-related behavior provides further insight into the pathology of substance use disorders. OBJECTIVE AND METHODS We sought to determine how cell type-specific expression of CB1Rs within striatal circuits contributes to cocaine-induced behavioral plasticity, hypothesizing that CB1R function in distinct striatal neuron populations would differentially impact behavioral outcomes. We crossed conditional Cnr1fl/fl mice and striatal output pathway cre lines (Drd1a -cre; D1, Adora2a -cre; A2a) to generate cell type-specific CB1R knockout mice and assessed their performance in cocaine locomotor and associative behavioral assays. RESULTS Both knockout lines retained typical locomotor activity at baseline. D1-Cre x Cnr1fl/fl mice did not display hyperlocomotion in response to acute cocaine dosing, and both knockout lines exhibited blunted locomotor activity across repeated cocaine doses. A2a-cre Cnr1fl/fl, mice did not express a preference for cocaine paired environments in a two-choice place preference task. CONCLUSIONS This study aids in mapping CB1R-dependent cocaine-induced behavioral adaptations onto distinct striatal neuron subtypes. A reduction of cocaine-induced locomotor activation in the D1- and A2a-Cnr1 knockout mice supports a role for CB1R function in the motor circuit. Furthermore, a lack of preference for cocaine-associated context in A2a-Cnr1 mice suggests that CB1Rs on A2a-neuron inhibitory terminals are necessary for either reward perception, memory consolidation, or recall. These results direct future investigations into CB1R-dependent adaptations underlying the development and persistence of substance use disorders.
Collapse
MESH Headings
- Animals
- Cocaine-Related Disorders/psychology
- Conditioning, Operant/drug effects
- Corpus Striatum/drug effects
- Environment
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Neurons/drug effects
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Reward
Collapse
Affiliation(s)
- Brandon D Turner
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin M Manz
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Betty T Chang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Anesthesiology Research Division, Vanderbilt University School of Medicine, 2213 Garland Avenue, P435H MRB IV, Nashville, TN, 37232-0413, USA.
| |
Collapse
|
46
|
Gorodetski L, Loewenstern Y, Faynveitz A, Bar-Gad I, Blackwell KT, Korngreen A. Endocannabinoids and Dopamine Balance Basal Ganglia Output. Front Cell Neurosci 2021; 15:639082. [PMID: 33815062 PMCID: PMC8010132 DOI: 10.3389/fncel.2021.639082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yocheved Loewenstern
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Kim T Blackwell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
47
|
Murray CH, Christian DT, Milovanovic M, Loweth JA, Hwang EK, Caccamise AJ, Funke JR, Wolf ME. mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. Neuropharmacology 2021; 186:108452. [PMID: 33444640 DOI: 10.1016/j.neuropharm.2021.108452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Aaron J Caccamise
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
48
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
49
|
Mansoori M, Zarei MR, Chamani G, Nazeri M, Mohammadi F, Alavi SS, Shabani M. Chronic migraine caused a higher rate of tendency to cannabinoid agonist compared to morphine. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020185. [PMID: 33525279 PMCID: PMC7927472 DOI: 10.23750/abm.v91i4.8799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Opioid and cannabinoid systems have considerable roles in modulation of chronic pain as well as regulation reward circuit and addiction responses. This study investigated the effect of nitroglycerin (NTG)-induced migraine attack on the acquisition of morphine and cannabinoid-induced conditioned place preference (CPP) in male rats. METHODS Adult male rats (230-250 gr) were used. Experimental groups were included (n=10): control, opioid receptor agonist morphine (10mg/kg), WIN55,212-2 (1mg/kg) as a cannabinoid receptor agonist, NTG + morphine (10mg/kg) and NTG + WIN55,212-2 (1mg/kg). Nitroglycerin (10 mg/kg) was used to induce migraine attack every other day for 9 days. After migraine induction, conditioning performance was assessed by CPP test. During conditioning days, morphine and WIN55,212-2 were injected subcutaneously and intraperitoneally, respectively. Anxiety and locomotor activity were evaluated using open field test (OFT). RESULTS According to data, conditioning score for morphine-treated rats was significantly decreased following NTG-induced migraine. However, NTG-induced migraine was able to increase the conditioning score in WIN55,212-2 as compared to control group. In OFT, there were no significant differences in locomotor activity and grooming behaviors between experimental groups. However, time spent in the center of OFT box was significantly decreased in NTG plus morphine-treated rats as compared to control. Moreover, rearing response in NTG-treated groups which received either morphine or WIN55,212-2 decreased as compared to control group. CONCLUSION NTG induced migraine prompts a decrease in morphine and an increase in cannabinoid performances. So, these compounds effects on drug dependency during migraine attack may occur at different mechanism or mechanisms.
Collapse
Affiliation(s)
- Mojdeh Mansoori
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Mohammad Reza Zarei
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Goli Chamani
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Masoud Nazeri
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Fatemeh Mohammadi
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Samane Sadat Alavi
- 3Afzalipour faculty of Medicine, Kerman University of Medical Science, Kerman, Iran.
| | - Mohammad Shabani
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
50
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|