1
|
Kaufmann WE, Luu S, Budimirovic DB. Drug Treatments for Neurodevelopmental Disorders: Targeting Signaling Pathways and Homeostasis. Curr Neurol Neurosci Rep 2024; 25:7. [PMID: 39641900 DOI: 10.1007/s11910-024-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Preclinical and clinical evidence support the notion that neurodevelopmental disorders (NDDs) are synaptic disorders, characterized by excitatory-inhibitory imbalance. Despite this, NDD drug development programs targeting glutamate or gamma-aminobutyric acid (GABA) receptors have been largely unsuccessful. Nonetheless, recent drug trials in Rett syndrome (RTT), fragile X syndrome (FXS), and other NDDs targeting other mechanisms have met their endpoints. The purpose of this review is to identify the basis of these successful studies. RECENT FINDINGS Despite increasing evidence of disruption in synaptic homeostasis, most genetic variants associated with NDDs implicate proteins involved in cell regulation and not in neurotransmission. Metabolic processes, in particular mitochondrial function, appear to play a role in NDD pathophysiology. NDDs are also characterized by distinctive cell signaling abnormalities, which link cellular and synaptic homeostasis. Recent successful trials in NDDs, including those of trofinetide, the first drug specifically approved for one of these disorders (i.e., RTT), implicate the targeting of downstream processes (i.e., signaling pathways) rather than neurotransmitter receptors. Recent positive drug studies in NDDs and their underlying mechanisms, in conjunction with new knowledge on the pathophysiology of these disorders, support the concept that targeting signaling and cellular and synaptic homeostasis may be a preferred approach for ameliorating synaptic abnormalities in many NDDs.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Boston Children's Hospital, Boston, MA, 02115, USA.
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Skylar Luu
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute and Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Camillo L, Pozzi M, Bernardo P, Pisano S, Nobile M. Profile of Trofinetide in the Treatment of Rett Syndrome: Design, Development and Potential Place in Therapy. Drug Des Devel Ther 2024; 18:5023-5040. [PMID: 39525048 PMCID: PMC11550706 DOI: 10.2147/dddt.s383133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Trofinetide is a first-in-class pharmacological treatment proposed for patients with Rett Syndrome. It is a long half-life derivative of glycine-proline-glutamate, the tripeptide normally excided from Insulin-like Growth Factor 1 upon degradation. Due to containing glutamate and glycine in its structure, trofinetide is thought to act through NMDA receptor modulation, thus providing a normalization of neuronal activity and survival. Trofinetide was tested in a series of short and long-term trials, showing good efficacy at improving scores on the Clinical Global Impression-Improvement scale and Rett Syndrome Behavior Questionnaire, with specific effect only on some subscales, ie General Mood subscale and Repetitive Face Movement subscale. No effects were documented on other subscales or on epilepsy, heart and bone -related symptoms. The main adverse effects of trofinetide, severe enough to determine discontinuation, include diarrhea, vomiting, and consequent weight loss. These may be scarcely avoidable, given the need to assume a very large amount of trofinetide per day. Other inherent limitations of use possibly regard the limited duration of drug supplies, as one bottle may last three days only, depending on weight, and the relatively high cost per bottle. Trofinetide has no direct competitors: single symptoms of the Rett Syndrome, for instance, seizures or aggressive behaviors, are currently treated with drugs that have been developed for patients without the Rett Syndrome. This leads to suboptimal efficacy and increased risk of adverse effects. The place in therapy of trofinetide is yet to be determined, based on the results of clinical trials, on its practical usability, and on the windows of opportunity for intervention. Moreover, trofinetide may be curative if given early enough during brain development, or merely symptomatic if given to young adults, and no data exist on this aspect. The place in therapy of trofinetide will require reassessment after competing treatments enter the market.
Collapse
Affiliation(s)
- Laura Camillo
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Pia Bernardo
- Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, NA, Italy
| | - Simone Pisano
- Department of Translational Medical Sciences, University Federico II, Naples, NA, Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| |
Collapse
|
3
|
Yu D, Jain S, Wangzhou A, De Florencio S, Zhu B, Kim JY, Choi JJY, Paredes MF, Nowakowski TJ, Huang EJ, Piao X. Microglia regulate GABAergic neurogenesis in prenatal human brain through IGF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619180. [PMID: 39464051 PMCID: PMC11507959 DOI: 10.1101/2024.10.19.619180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
GABAergic neurons are an essential cellular component of neural circuits. Their abundance and diversity have enlarged significantly in the human brain, contributing to the expanded cognitive capacity of humans. However, the developmental mechanism of the extended production of GABAergic neurons in the human brain remains elusive. Here, we use single-cell transcriptomics, bioinformatics, and histological analyses to uncover microglial regulation of the sustained proliferation of GABAergic progenitors and neuroblasts in the human medial ganglionic eminence (hMGE). We show that insulin-like growth factor 1 (IGF1) and its receptor IGR1R as the top ligand-receptor pair underlying microglia-progenitor communication in the prenatal human brain. Using our newly developed neuroimmune hMGE organoids, which mimics hMGE cytoarchitecture and developmental trajectory, we demonstrate that microglia-derived IGF1 promotes progenitor proliferation and the production of GABAergic neurons. Conversely, IGF1-neutralizing antibodies and IGF1 knockout human embryonic stem cells (hESC)-induced microglia (iMG) completely abolished iMG-mediated progenitor proliferation. Together, these findings reveal a previously unappreciated role of microglia-derived IGF1 in promoting proliferation of neural progenitors and the development of GABAergic neurons.
Collapse
|
4
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Dong HW, Weiss K, Baugh K, Meadows MJ, Niswender CM, Neul JL. Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics 2024; 21:e00384. [PMID: 38880672 PMCID: PMC11284553 DOI: 10.1016/j.neurot.2024.e00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified neurophysiological features, such as auditory event-related potentials, that correlate with disease severity, suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10 and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform discharges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of putative therapies in RTT.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Weiss
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathryn Baugh
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA
| | - Mac J Meadows
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Chemical Biology, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| |
Collapse
|
6
|
Fernández-Arjona MDM, Navarro JA, López-Gambero AJ, de Ceglia M, Rodríguez M, Rubio L, Rodríguez de Fonseca F, Barrios V, Chowen JA, Argente J, Rivera P, Suárez J. Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments. Biol Sex Differ 2024; 15:34. [PMID: 38589872 PMCID: PMC11000399 DOI: 10.1186/s13293-024-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. METHODS Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. RESULTS Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. CONCLUSIONS Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, 33000, France
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Miguel Rodríguez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Leticia Rubio
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain.
- La Princesa Research Institute, Madrid, 28009, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain.
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain.
| |
Collapse
|
7
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
8
|
Lopes AG, Loganathan SK, Caliaperumal J. Rett Syndrome and the Role of MECP2: Signaling to Clinical Trials. Brain Sci 2024; 14:120. [PMID: 38391695 PMCID: PMC10886956 DOI: 10.3390/brainsci14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Rett syndrome (RTT) is a neurological disorder that mostly affects females, with a frequency of 1 in 10,000 to 20,000 live birth cases. Symptoms include stereotyped hand movements; impaired learning, language, and communication skills; sudden loss of speech; reduced lifespan; retarded growth; disturbance of sleep and breathing; seizures; autism; and gait apraxia. Pneumonia is the most common cause of death for patients with Rett syndrome, with a survival rate of 77.8% at 25 years of age. Survival into the fifth decade is typical in Rett syndrome, and the leading cause of death is cardiorespiratory compromise. Rett syndrome progression has multiple stages; however, most phenotypes are associated with the nervous system and brain. In total, 95% of Rett syndrome cases are due to mutations in the MECP2 gene, an X-linked gene that encodes for the methyl CpG binding protein, a regulator of gene expression. In this review, we summarize the recent developments in the field of Rett syndrome and therapeutics targeting MECP2.
Collapse
Affiliation(s)
- Adele Gaspar Lopes
- Department of Pharmacology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Sampath Kumar Loganathan
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Otolaryngology, Head & Neck Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Departments of Experimental Surgery and Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Jayalakshmi Caliaperumal
- Ingram School of Nursing, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2M7, Canada
| |
Collapse
|
9
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
11
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
12
|
Briguglio S, Cambria C, Albizzati E, Marcello E, Provenzano G, Frasca A, Antonucci F. New Views of the DNA Repair Protein Ataxia-Telangiectasia Mutated in Central Neurons: Contribution in Synaptic Dysfunctions of Neurodevelopmental and Neurodegenerative Diseases. Cells 2023; 12:2181. [PMID: 37681912 PMCID: PMC10486624 DOI: 10.3390/cells12172181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.
Collapse
Affiliation(s)
- Sabrina Briguglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Elena Albizzati
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, MI, Italy;
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Via Sommarive 9, 38068 Trento, TN, Italy;
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| |
Collapse
|
13
|
Rothschadl MJ, Sathyanesan M, Newton SS. Synergism of Carbamoylated Erythropoietin and Insulin-like Growth Factor-1 in Immediate Early Gene Expression. Life (Basel) 2023; 13:1826. [PMID: 37763230 PMCID: PMC10532867 DOI: 10.3390/life13091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Trophic factors are secreted proteins that can modulate neuronal integrity, structure, and function. Previous preclinical studies have shown synergistic effects on decreasing apoptosis and improving behavioral performance after stroke when combining two such trophic factors, erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1). However, EPO can elevate the hematocrit level, which can be life-threatening for non-anemic individuals. A chemically engineered derivative of EPO, carbamoylated EPO (CEPO), does not impact hematological parameters but retains neurotrophic effects similar to EPO. To obtain insight into CEPO and IGF-1 combination signaling, we examined immediate early gene (IEG) expression after treatment with CEPO, IGF-1, or CEPO + IGF-1 in rat pheochromocytoma (PC-12) cells and found that combining CEPO and IGF-1 produced a synergistic increase in IEG expression. An in vivo increase in the protein expression of Npas4 and Nptx2 was also observed in the rat hippocampus. We also examined which kinase signaling pathways might be mediating these effects and found that while AKT inhibition did not alter the pattern of IEG expression, both ERK and JAK2 inhibition significantly decreased IEG expression. These results begin to define the molecular effects of combining CEPO and IGF-1 and indicate the potential for these trophic factors to produce positive, synergistic effects.
Collapse
Affiliation(s)
| | | | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.J.R.); (M.S.)
| |
Collapse
|
14
|
Lotan M, Zwilling M, Romano A. Psychometric Values of a New Scale: The Rett Syndrome Fear of Movement Scale (RSFMS). Diagnostics (Basel) 2023; 13:2148. [PMID: 37443542 PMCID: PMC10502954 DOI: 10.3390/diagnostics13132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: One of the characteristics associated with Rett syndrome (RTT) is a fear of movement (FOM). Despite the grave consequences on health, function, and the caregiver's burden associated with bradykinesia accompanying FOM, there is no specific FOM assessment tool for RTT. (2) Objective: To construct and assess the psychometric values of a scale evaluating FOM in RTT (Rett syndrome fear of movement scale-RSFMS). (3) Methods: Twenty-five girls aged 5-33, including a research group (N = 12 individuals with RTT) and control group (N = 13 typically developing girls at equivalent ages). The Pain and Discomfort Scale (PADS) and Facial Action Coding System (FACS) assessed the participants' behavior and facial expressions in rest and movement situations. (4) Results: Significant behavioral differences were recorded in these rest and movement situations within the research groups using the RSFMS (p = 0.003), FACS (p = 0.002) and PADS (p = 0.002). No differences in reactions were found within the control group. The new scale, RSFMS, was found to show a high inter- and intra-rater reliability (r = 0.993, p < 0.001; r = 0.958, p < 0.001; respectively), good internal consistency (α = 0.77), and high accuracy (94.4%). (5) Conclusions: The new scale for measuring FOM in RTT, the RSFMS, was validated using the FACS and PADS. The RSFMS was found to be a tool that holds excellent psychometric values. The new scale can help clinicians working with individuals with RTT to plan appropriate management strategies for this population.
Collapse
Affiliation(s)
- Meir Lotan
- Department of Physiotherapy, Ariel University, Ariel 4070000, Israel
- Israeli Rett Syndrome National Evaluation Team, Ramat Gan 5200100, Israel
| | - Moti Zwilling
- Department of Economics and Business Administration, Ariel University, Ariel 4070000, Israel
| | - Alberto Romano
- Department of Health System Management, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
15
|
Ehlers JS, Bracke K, von Bohlen Und Halbach V, Siegerist F, Endlich N, von Bohlen Und Halbach O. Morphological and behavioral analysis of Slc35f1-deficient mice revealed no neurodevelopmental phenotype. Brain Struct Funct 2023; 228:895-906. [PMID: 36951990 PMCID: PMC10147817 DOI: 10.1007/s00429-023-02629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Julia Sophie Ehlers
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Katharina Bracke
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Viola von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Oliver von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany.
| |
Collapse
|
16
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
17
|
IGF-1 receptor regulates upward firing rate homeostasis via the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A 2022; 119:e2121040119. [PMID: 35943986 PMCID: PMC9388073 DOI: 10.1073/pnas.2121040119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An emerging hypothesis is that neuronal circuits homeostatically maintain a stable spike rate despite continuous environmental changes. This firing rate homeostasis is believed to confer resilience to neurodegeneration and cognitive decline. We show that insulin-like growth factor-1 receptor (IGF-1R) is necessary for homeostatic response of mean firing rate to inactivity, termed “upward firing rate homeostasis.” We show that its mechanism of action is to couple spike bursts with downstream mitochondrial Ca2+ influx via the mitochondrial calcium uniporter complex (MCUc). We propose that MCUc is a homeostatic Ca2+ sensor that triggers the integrated homeostatic response. Firing rate homeostasis may be the principal mechanism by which IGF-1R regulates aging and neurodevelopmental and neurodegenerative disorders. Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa2+) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R–deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa2+ coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.
Collapse
|
18
|
Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology 2022; 217:109204. [PMID: 35931212 DOI: 10.1016/j.neuropharm.2022.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditionally knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.
Collapse
|
19
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
20
|
Zhang WJ, Shi LL, Zhang L. Dysregulated cortical synaptic plasticity under methyl-CpG binding protein 2 deficiency and its implication in motor impairments. World J Psychiatry 2022; 12:673-682. [PMID: 35663301 PMCID: PMC9150038 DOI: 10.5498/wjp.v12.i5.673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Caused by the mutation of methyl-CpG binding protein 2 (MeCP2), Rett syndrome leads to a battery of severe neural dysfunctions including the regression of motor coordination and motor learning. Current understanding has revealed the motor cortex as the critical region mediating voluntary movement. In this review article, we will summarize major findings from human patients and animal models regarding the cortical synaptic plasticity under the regulation of MeCP2. We will also discuss how mutation of MeCP2 leads to the disruption of cortical circuitry homeostasis to cause motor deficits. Lastly, potential values of physical exercise and neuromodulation approaches to recover neural plasticity and motor function will be evaluated. All of this evidence may help to accelerate timely diagnosis and effective interventions for Rett syndrome patients.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ling-Ling Shi
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
21
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Pinto-Benito D, Paradela-Leal C, Ganchala D, de Castro-Molina P, Arevalo MA. IGF-1 regulates astrocytic phagocytosis and inflammation through the p110α isoform of PI3K in a sex-specific manner. Glia 2022; 70:1153-1169. [PMID: 35175663 PMCID: PMC9305764 DOI: 10.1002/glia.24163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor-I (IGF-I) signaling plays a key role in neuroinflammation. Here we show that IGF-1 also regulates phagocytosis of reactive astrocytes through p110α isoform of phosphatidylinositol 3-kinase (PI3K), differentially in both sexes. Systemic bacterial lipopolysaccharide (LPS)-treatment increased the expression of GFAP, a reactive astrocyte marker, in the cortex of mice in both sexes and was blocked by IGF-1 only in males. In primary astrocytes, LPS enhanced the mRNA expression of Toll-like receptors (TLR2,4) and proinflammatory factors: inducible nitric oxide synthase (iNOS), chemokine interferon-γ-inducible protein-10 (IP-10) and cytokines (IL-1β, IL-6, and IL-10) in male and female. Treatment with IGF-1 counteracted TLR4 but not TLR2, iNOS, and IP10 expression in both sexes and cytokines expression in males. Furthermore, reactive astrocyte phagocytosis was modulated by IGF-1 only in male astrocytes. IGF-1 was also able to increase AKT-phosphorylation only in male astrocytes. PI3K inhibitors, AG66, TGX-221, and CAL-101, with selectivity toward catalytic p110α, p110β, and p110δ isoforms respectively, reduced AKT-phosphorylation in males. All isoforms interact physically with IGF-1-receptor in both sexes. However, the expression of p110α is higher in males while the expression of IGF-1-receptor is similar in male and female. AG66 suppressed the IGF-1 effect on cytokine expression and counteracted the IGF-1-produced phagocytosis decrease in male reactive astrocytes. Results suggest that sex-differences in the effect of IGF-1 on the AKT-phosphorylation could be due to a lower expression of the p110α in female and that IGF-1-effects on the inflammatory response and phagocytosis of male reactive astrocytes are mediated by p110α/PI3K subunit.
Collapse
Affiliation(s)
- Daniel Pinto-Benito
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Paradela-Leal
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain
| | - Danny Ganchala
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain
| | | | - Maria-Angeles Arevalo
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Research Progress on Neuroprotection of Insulin-like Growth Factor-1 towards Glutamate-Induced Neurotoxicity. Cells 2022; 11:cells11040666. [PMID: 35203315 PMCID: PMC8870287 DOI: 10.3390/cells11040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and its binding proteins and receptors are widely expressed in the central nervous system (CNS), proposing IGF-1-induced neurotrophic actions in normal growth, development, and maintenance. However, while there is convincing evidence that the IGF-1 system has specific endocrine roles in the CNS, the concept is emerging that IGF-I might be also important in disorders such as ischemic stroke, brain trauma, Alzheimer’s disease, epilepsy, etc., by inducing neuroprotective effects towards glutamate-mediated excitotoxic signaling pathways. Research in rodent models has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 was administered by different routes, and several clinical studies have shown safety and promise of efficacy in neurological disorders of the CNS. Focusing on the relationship between IGF-1-induced neuroprotection and glutamate-induced excitatory neurotoxicity, this review addresses the research progress in the field, intending to provide a rationale for using IGF-I clinically to confer neuroprotective therapy towards neurological diseases with glutamate excitotoxicity as a common pathological pathway.
Collapse
|
24
|
Sethuram S, Levy T, Foss-Feig J, Halpern D, Sandin S, Siper PM, Walker H, Buxbaum JD, Rapaport R, Kolevzon A. A proof-of-concept study of growth hormone in children with Phelan–McDermid syndrome. Mol Autism 2022; 13:6. [PMID: 35093163 PMCID: PMC8800321 DOI: 10.1186/s13229-022-00485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Background Phelan–McDermid syndrome (PMS) is caused by 22q13 deletions including SHANK3 or pathogenic sequence variants in SHANK3 and is among the more common rare genetic findings in autism spectrum disorder (ASD). SHANK3 is critical for synaptic function, and preclinical and clinical studies suggest that insulin-like growth factor-1 (IGF-1) can reverse a range of deficits in PMS. IGF-1 release is stimulated by growth hormone secretion from the anterior pituitary gland, and this study sought to assess the feasibility of increasing IGF-1 levels through recombinant human growth hormone (rhGH) treatment, in addition to establishing safety and exploring efficacy of rhGH in children with PMS. Methods rhGH was administered once daily for 12 weeks to six children with PMS using an open-label design. IGF-1 levels, safety, and efficacy assessments were measured every 4 weeks throughout the study. Results rhGH administration increased levels of IGF-1 by at least 2 standard deviations and was well tolerated without serious adverse events. rhGH treatment was also associated with clinical improvement in social withdrawal, hyperactivity, and sensory symptoms. Limitations Results should be interpreted with caution given the small sample size and lack of a placebo control. Conclusions Overall, findings are promising and indicate the need for larger studies with rhGH in PMS. Trial registration NCT04003207. Registered July 1, 2019, https://clinicaltrials.gov/ct2/show/NCT04003207.
Collapse
|
25
|
Shovlin S, Delepine C, Swanson L, Bach S, Sahin M, Sur M, Kaufmann WE, Tropea D. Molecular Signatures of Response to Mecasermin in Children With Rett Syndrome. Front Neurosci 2022; 16:868008. [PMID: 35712450 PMCID: PMC9197456 DOI: 10.3389/fnins.2022.868008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder without effective treatments. Attempts at developing targetted therapies have been relatively unsuccessful, at least in part, because the genotypical and phenotypical variability of the disorder. Therefore, identification of biomarkers of response and patients' stratification are high priorities. Administration of Insulin-like Growth Factor 1 (IGF-1) and related compounds leads to significant reversal of RTT-like symptoms in preclinical mouse models. However, improvements in corresponding clinical trials have not been consistent. A 20-weeks phase I open label trial of mecasermin (recombinant human IGF-1) in children with RTT demonstrated significant improvements in breathing phenotypes. However, a subsequent randomised controlled phase II trial did not show significant improvements in primary outcomes although two secondary clinical endpoints showed positive changes. To identify molecular biomarkers of response and surrogate endpoints, we used RNA sequencing to measure differential gene expression in whole blood samples of participants in the abovementioned phase I mecasermin trial. When all participants (n = 9) were analysed, gene expression was unchanged during the study (baseline vs. end of treatment, T0-T3). However, when participants were subclassified in terms of breathing phenotype improvement, specifically by their plethysmography-based apnoea index, individuals with moderate-severe apnoea and breathing improvement (Responder group) displayed significantly different transcript profiles compared to the other participants in the study (Mecasermin Study Reference group, MSR). Many of the differentially expressed genes are involved in the regulation of cell cycle processes and immune responses, as well as in IGF-1 signalling and breathing regulation. While the Responder group showed limited gene expression changes in response to mecasermin, the MSR group displayed marked differences in the expression of genes associated with inflammatory processes (e.g., neutrophil activation, complement activation) throughout the trial. Our analyses revealed gene expression profiles associated with severe breathing phenotype and its improvement after mecasermin administration in RTT, and suggest that inflammatory/immune pathways and IGF-1 signalling contribute to treatment response. Overall, these data support the notion that transcript profiles have potential as biomarkers of response to IGF-1 and related compounds.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Lindsay Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Snow Bach
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
26
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
27
|
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits. Front Neural Circuits 2021; 15:803401. [PMID: 34949992 PMCID: PMC8689143 DOI: 10.3389/fncir.2021.803401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.
Collapse
Affiliation(s)
- Kyle R Jenks
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Katya Tsimring
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jose C Zepeda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
28
|
Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front Cell Neurosci 2021; 15:764761. [PMID: 34867203 PMCID: PMC8640214 DOI: 10.3389/fncel.2021.764761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Rett syndrome (RTT) and Fragile X syndrome (FXS) are two monogenetic neurodevelopmental disorders with complex clinical presentations. RTT is caused by mutations in the Methyl-CpG binding protein 2 gene (MECP2) altering the function of its protein product MeCP2. MeCP2 modulates gene expression by binding methylated CpG dinucleotides, and by interacting with transcription factors. FXS is caused by the silencing of the FMR1 gene encoding the Fragile X Mental Retardation Protein (FMRP), a RNA binding protein involved in multiple steps of RNA metabolism, and modulating the translation of thousands of proteins including a large set of synaptic proteins. Despite differences in genetic etiology, there are overlapping features in RTT and FXS, possibly due to interactions between MeCP2 and FMRP, and to the regulation of pathways resulting in dysregulation of common molecular signaling. Furthermore, basic physiological mechanisms are regulated by these proteins and might concur to the pathophysiology of both syndromes. Considering that RTT and FXS are disorders affecting brain development, and that most of the common targets of MeCP2 and FMRP are involved in brain activity, we discuss the mechanisms of synaptic function and plasticity altered in RTT and FXS, and we consider the similarities and the differences between these two disorders.
Collapse
Affiliation(s)
- Snow Bach
- School of Mathematical Sciences, Dublin City University, Dublin, Ireland.,Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | | | - Barbara Bardoni
- Inserm, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Université Côte d'Azur, Valbonne, France
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
29
|
Gigliucci V, Teutsch J, Woodbury-Smith M, Luoni M, Busnelli M, Chini B, Banerjee A. Region-Specific KCC2 Rescue by rhIGF-1 and Oxytocin in a Mouse Model of Rett Syndrome. Cereb Cortex 2021; 32:2885-2894. [PMID: 34791112 DOI: 10.1093/cercor/bhab388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Rett syndrome (RTT) is characterized by dysfunction in neuronal excitation/inhibition (E/I) balance, potentially impacting seizure susceptibility via deficits in K+/Cl- cotransporter 2 (KCC2) function. Mice lacking the Methyl-CpG binding protein 2 (MeCP2) recapitulate many symptoms of RTT, and recombinant human insulin-like growth factor-1 (rhIGF-1) restores KCC2 expression and E/I balance in MeCP2 KO mice. However, clinical trial outcomes of rhIGF-1 in RTT have been variable, and increasing its therapeutic efficacy is highly desirable. To this end, the neuropeptide oxytocin (OXT) is promising, as it also critically modulates KCC2 function during early postnatal development. We measured basal KCC2 expression levels in MeCP2 KO mice and identified 3 key frontal brain regions showing KCC2 alterations in young adult mice, but not in postnatal P10 animals. We hypothesized that deficits in an IGF-1/OXT signaling crosstalk modulating KCC2 may occur in RTT during postnatal development. Consistently, we detected alterations of IGF-1 receptor and OXT receptor levels in those brain areas. rhIGF-1 and OXT treatments in KO mice rescued KCC2 expression in a region-specific and complementary manner. These results suggest that region-selective combinatorial pharmacotherapeutic strategies could be most effective at normalizing E/I balance in key brain regions subtending the RTT pathophysiology.
Collapse
Affiliation(s)
| | - Jasper Teutsch
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Marc Woodbury-Smith
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom
| | - Mirko Luoni
- Stem Cells and Neurogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Bice Chini
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Abhishek Banerjee
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
31
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
32
|
Levy JA, LaFlamme CW, Tsaprailis G, Crynen G, Page DT. Dyrk1a Mutations Cause Undergrowth of Cortical Pyramidal Neurons via Dysregulated Growth Factor Signaling. Biol Psychiatry 2021; 90:295-306. [PMID: 33840455 PMCID: PMC8787822 DOI: 10.1016/j.biopsych.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.
Collapse
Affiliation(s)
- Jenna A Levy
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida
| | - Christy W LaFlamme
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; The Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Gogce Crynen
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida.
| |
Collapse
|
33
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Protein Phosphorylation Signaling Cascades in Autism: The Role of mTOR Pathway. BIOCHEMISTRY (MOSCOW) 2021; 86:577-596. [PMID: 33993859 DOI: 10.1134/s0006297921050072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is a central regulator of cell metabolism, growth, and survival in response to hormones, growth factors, nutrients, and stress-induced signals. In this review, we analyzed the studies on the molecular abnormalities of the mTOR-associated signaling cascades in autism spectrum disorders (ASDs) and outlined the prospects for the pathogenicity-targeting pharmacotherapeutic approaches to ASDs, in particular syndromic ASDs. Based on available experimental and clinical data, we suggest that very early detection of molecular abnormalities in the ASD risk groups can be facilitated by using peripheral blood platelets. Also, identification of the time window of critical dysregulations in the described pathways in the ASD risk groups might suggest further research directions leading to more efficacious pharmacotherapeutic interventions in ASDs.
Collapse
Affiliation(s)
- Irina S Boksha
- Mental Health Research Center, Moscow, 115522, Russia. .,Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | | | | | | |
Collapse
|
34
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
35
|
Urbinati C, Cosentino L, Germinario EAP, Valenti D, Vigli D, Ricceri L, Laviola G, Fiorentini C, Vacca RA, Fabbri A, De Filippis B. Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. Int J Mol Sci 2021; 22:6739. [PMID: 34201747 PMCID: PMC8269120 DOI: 10.3390/ijms22136739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Daniela Valenti
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy;
| | - Rosa Anna Vacca
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| |
Collapse
|
36
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
37
|
Gomes AR, Fernandes TG, Cabral JM, Diogo MM. Modeling Rett Syndrome with Human Pluripotent Stem Cells: Mechanistic Outcomes and Future Clinical Perspectives. Int J Mol Sci 2021; 22:3751. [PMID: 33916879 PMCID: PMC8038474 DOI: 10.3390/ijms22073751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
38
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
39
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
40
|
Pejhan S, Rastegar M. Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease. Biomolecules 2021; 11:75. [PMID: 33429932 PMCID: PMC7827577 DOI: 10.3390/biom11010075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide an overview of recent advances in understanding the underlying mechanism of disease in RTT and the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
41
|
Basilico B, Morandell J, Novarino G. Molecular mechanisms for targeted ASD treatments. Curr Opin Genet Dev 2020; 65:126-137. [PMID: 32659636 DOI: 10.1016/j.gde.2020.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
The possibility to generate construct valid animal models enabled the development and testing of therapeutic strategies targeting the core features of autism spectrum disorders (ASDs). At the same time, these studies highlighted the necessity of identifying sensitive developmental time windows for successful therapeutic interventions. Animal and human studies also uncovered the possibility to stratify the variety of ASDs in molecularly distinct subgroups, potentially facilitating effective treatment design. Here, we focus on the molecular pathways emerging as commonly affected by mutations in diverse ASD-risk genes, on their role during critical windows of brain development and the potential treatments targeting these biological processes.
Collapse
Affiliation(s)
| | - Jasmin Morandell
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
42
|
Chen ST, Lai WJ, Zhang WJ, Chen QP, Zhou LB, So KF, Shi LL. Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. Neural Regen Res 2020; 15:2335-2343. [PMID: 32594058 PMCID: PMC7749486 DOI: 10.4103/1673-5374.285002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
SHANK2 is a scaffold protein that serves as a protein anchor at the postsynaptic density in neurons. Genetic variants of SHANK2 are strongly associated with synaptic dysfunction and the pathophysiology of autism spectrum disorder. Recent studies indicate that early neuronal developmental defects play a role in the pathogenesis of autism spectrum disorder, and that insulin-like growth factor 1 has a positive effect on neurite development. To investigate the effects of SHANK2 knockdown on early neuronal development, we generated a sparse culture system using human induced pluripotent stem cells, which then differentiated into neural progenitor cells after 3-14 days in culture, and which were dissociated into single neurons. Neurons in the experimental group were infected with shSHANK2 lentivirus carrying a red fluorescent protein reporter (shSHANK2 group). Control neurons were infected with scrambled shControl lentivirus carrying a red fluorescent protein reporter (shControl group). Neuronal somata and neurites were reconstructed based on the lentiviral red fluorescent protein signal. Developmental dendritic and motility changes in VGLUT1+ glutamatergic neurons and TH+ dopaminergic neurons were then evaluated in both groups. Compared with shControl VGLUT1+ neurons, the dendritic length and arborizations of shSHANK2 VGLUT1+ neurons were shorter and fewer, while cell soma speed was higher. Furthermore, dendritic length and arborization were significantly increased after insulin-like growth factor 1 treatment of shSHANK2 neurons, while cell soma speed remained unaffected. These results suggest that insulin-like growth factor 1 can rescue morphological defects, but not the change in neuronal motility. Collectively, our findings demonstrate that SHANK2 deficiency perturbs early neuronal development, and that IGF1 can partially rescue the neuronal defects caused by SHANK2 knockdown. All experimental procedures and protocols were approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. 20170228010) on February 28, 2017.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wan-Jing Lai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Clinical Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Jia Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Qing-Pei Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Bing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
43
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
44
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
45
|
Vigli D, Cosentino L, Pellas M, De Filippis B. Chronic Treatment with Cannabidiolic Acid (CBDA) Reduces Thermal Pain Sensitivity in Male Mice and Rescues the Hyperalgesia in a Mouse Model of Rett Syndrome. Neuroscience 2020; 453:113-123. [PMID: 33010341 DOI: 10.1016/j.neuroscience.2020.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is a rare neurologic disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available. Recent evidence suggests that non-euphoric phytocannabinoids (pCBs) extracted from Cannabis sativa may represent innovative therapeutic molecules for RTT, with the cannabinoid cannabidivarin having beneficial effects on behavioural and brain molecular alterations in RTT mouse models. The present study evaluated the potential therapeutic efficacy for RTT of cannabidiolic acid (CBDA; 0.2, 2, 20 mg/kg through intraperitoneal injections for 14 days), a pCB that has proved to be effective for the treatment of nausea and anxiety in rodents. This study demonstrates that systemic treatment with the low dose of CBDA has anti-nociceptive effects and reduces the thermal hyperalgesia in 8 month-old MeCP2-308 male mice, a validated RTT mouse model. CBDA did not affect other behavioural or molecular parameters. These results provide support to the antinociceptive effects of CBDA and stress the need for further studies aimed at clarifying the mechanisms underlying the abnormal pain perception in RTT.
Collapse
Affiliation(s)
- Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
46
|
Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol 2020; 19:689-698. [PMID: 32702338 DOI: 10.1016/s1474-4422(20)30217-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
The X-linked gene encoding MECP2 is involved in two severe and complex neurodevelopmental disorders. Loss of function of the MeCP2 protein underlies Rett syndrome, whereas duplications of the MECP2 locus cause MECP2 duplication syndrome. Research on the mechanisms by which MeCP2 exerts effects on gene expression in neurons, studies of animal models bearing different disease-causing mutations, and more in-depth observations of clinical presentations have clarified some issues even as they have raised further questions. Yet there is enough evidence so far to suggest possible approaches to therapy for these two diseases that could go beyond attempting to address specific signs and symptoms (of which there are many) and instead target the pathophysiology underlying MECP2 disorders. Further work could bring antisense oligonucleotides, deep brain stimulation, and gene therapy into the clinic within the next decade or so.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Vicky L Brandt
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
47
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
48
|
Functional Network Mapping Reveals State-Dependent Response to IGF1 Treatment in Rett Syndrome. Brain Sci 2020; 10:brainsci10080515. [PMID: 32756423 PMCID: PMC7465931 DOI: 10.3390/brainsci10080515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/20/2023] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder associated with mutations in the gene MeCP2, which is involved in the development and function of cortical networks. The clinical presentation of RTT is generally severe and includes developmental regression and marked neurologic impairment. Insulin-Like growth factor 1 (IGF1) ameliorates RTT-relevant phenotypes in animal models and improves some clinical manifestations in early human trials. However, it remains unclear whether IGF1 treatment has an impact on cortical electrophysiology in line with MeCP2’s role in network formation, and whether these electrophysiological changes are related to clinical response. We performed clinical assessments and resting-state electroencephalogram (EEG) recordings in eighteen patients with classic RTT, nine of whom were treated with IGF1. Among the treated patients, we distinguished those who showed improvements after treatment (responders) from those who did not show any changes (nonresponders). Clinical assessments were carried out for all individuals with RTT at baseline and 12 months after treatment. Network measures were derived using statistical modelling techniques based on interelectrode coherence measures. We found significant interaction between treatment groups and timepoints, indicating an effect of IGF1 on network measures. We also found a significant effect of responder status and timepoint, indicating that these changes in network measures are associated with clinical response to treatment. Further, we found baseline variability in network characteristics, and a machine learning model using these measures applied to pretreatment data predicted treatment response with 100% accuracy (100% sensitivity and 100% specificity) in this small patient group. These results highlight the importance of network pathology in RTT, as well as providing preliminary evidence for the potential of network measures as tools for the characterisation of disease subtypes and as biomarkers for clinical trials.
Collapse
|
49
|
Xiang Y, Tanaka Y, Patterson B, Hwang SM, Hysolli E, Cakir B, Kim KY, Wang W, Kang YJ, Clement EM, Zhong M, Lee SH, Cho YS, Patra P, Sullivan GJ, Weissman SM, Park IH. Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Mol Cell 2020; 79:84-98.e9. [PMID: 32526163 PMCID: PMC7375197 DOI: 10.1016/j.molcel.2020.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sung-Min Hwang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eriona Hysolli
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wanshan Wang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yee Sook Cho
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Gareth J Sullivan
- Department of Molecular Medicine, Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Oslo University Hospital and University of Oslo, Oslo 0424, Norway; Department of Pediatric Research, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Sherman M Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Linker SB, Mendes APD, Marchetto MC. IGF-1 treatment causes unique transcriptional response in neurons from individuals with idiopathic autism. Mol Autism 2020; 11:55. [PMID: 32591005 PMCID: PMC7320548 DOI: 10.1186/s13229-020-00359-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Research evidence accumulated in the past years in both rodent and human models for autism spectrum disorders (ASD) have established insulin-like growth factor 1 (IGF-1) as one of the most promising ASD therapeutic interventions to date. ASD is phenotypically and etiologically heterogeneous, making it challenging to uncover the underlying genetic and cellular pathophysiology of the condition; and to efficiently design drugs with widespread clinical benefits. While IGF-1 effects have been comprehensively studied in the literature, how IGF-1 activity may lead to therapeutic recovery in the ASD context is still largely unknown. METHODS In this study, we used a previously characterized neuronal population derived from induced pluripotent stem cells (iPSC) from neurotypical controls and idiopathic ASD individuals to study the transcriptional signature of acutely and chronically IGF-1-treated cells. RESULTS We present a comprehensive list of differentially regulated genes and molecular interactions resulting from IGF-1 exposure in developing neurons from controls and ASD individuals. Our results indicate that IGF-1 treatment has a different impact on neurons from ASD patients compared to controls. Response to IGF-1 treatment in neurons derived from ASD patients was heterogeneous and correlated with IGF-1 receptor expression, indicating that IGF-1 response may have responder and non-responder distinctions across cohorts of ASD patients. Our results suggest that caution should be used when predicting the effect of IGF-1 treatment on ASD patients using neurotypical controls. Instead, IGF-1 response should be studied in the context of ASD patients' neural cells. LIMITATIONS The limitation of our study is that our cohort of eight sporadic ASD individuals is comorbid with macrocephaly in childhood. Future studies will address weather downstream transcriptional response of IGF-1 is comparable in non-macrocephalic ASD cohorts. CONCLUSIONS The results presented in this study provide an important resource for researchers in the ASD field and underscore the necessity of using ASD patient lines to explore ASD neuronal-specific responses to drugs such as IGF-1. This study further helps to identify candidate pathways and targets for effective clinical intervention and may help to inform clinical trials in the future.
Collapse
Affiliation(s)
- Sara B Linker
- The Salk Institute, Laboratory of Genetics, La Jolla, CA, 92037, USA
| | - Ana P D Mendes
- The Salk Institute, Laboratory of Genetics, La Jolla, CA, 92037, USA
| | - Maria C Marchetto
- The Salk Institute, Laboratory of Genetics, La Jolla, CA, 92037, USA. .,Department of Anthropology, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|