1
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Rodriguez R, Harris M, Kennedy LM. Deleting the ribosomal prolyl hydroxylase OGFOD1 protects mice against diet-induced obesity and insulin resistance. PLoS One 2024; 19:e0304761. [PMID: 38843265 PMCID: PMC11156292 DOI: 10.1371/journal.pone.0304761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024] Open
Abstract
Type 2 diabetes predisposes patients to heart disease, which is the primary cause of death across the globe. Type 2 diabetes often accompanies obesity and is defined by insulin resistance and abnormal glucose handling. Insulin resistance impairs glucose uptake and results in hyperglycemia, which damages tissues such as kidneys, liver, and heart. 2-oxoglutarate (2-OG)- and iron-dependent oxygenases (2-OGDOs), a family of enzymes regulating various aspects of cellular physiology, have been studied for their role in obesity and diet-induced insulin resistance. However, nothing is known of the 2-OGDO family member 2-oxoglutarate and iron-dependent prolyl hydroxylase domain containing protein 1 (OGFOD1) in this setting. OGFOD1 deletion leads to protection in cardiac ischemia-reperfusion injury and cardiac hypertrophy, which are two cardiac events that can lead to heart failure. Considering the remarkable correlation between heart disease and diabetes, the cardioprotection observed in OGFOD1-knockout mice led us to challenge these knockouts with high-fat diet. Wildtype mice fed a high-fat diet developed diet-induced obesity, insulin resistance, and glucose intolerance, but OGFOD1 knockout mice fed this same diet were resistant to diet-induced obesity and insulin resistance. These results support OGFOD1 down-regulation as a strategy for preventing obesity and insulin handling defects.
Collapse
Affiliation(s)
- Rebeca Rodriguez
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Harris
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Leslie M. Kennedy
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
5
|
Xie J, Zhang Y, Li B, Xi W, Wang Y, Li L, Liu C, Shen L, Han B, Kong Y, Yao H, Zhang Z. Inhibition of OGFOD1 by FG4592 confers neuroprotection by activating unfolded protein response and autophagy after ischemic stroke. J Transl Med 2024; 22:248. [PMID: 38454480 PMCID: PMC10921652 DOI: 10.1186/s12967-024-04993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bin Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Wen Xi
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chenchen Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - HongHong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China.
- The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Perugino F, Pedroni L, Galaverna G, Dall'Asta C, Dellafiora L. Virtual display of targets: A new level to rise the current understanding of ochratoxin A toxicity from a molecular standpoint. Toxicology 2024; 503:153765. [PMID: 38432407 DOI: 10.1016/j.tox.2024.153765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin spread worldwide contaminating several food and feed commodities and rising concerns for humans and animals. OTA toxicity has been thoroughly assessed over the last 60 years revealing a variety of adverse effects, including nephrotoxicity, hepatotoxicity and possible carcinogenicity. However, the underpinning mechanisms of action have yet to be completely displayed and understood. In this framework, we applied a virtual pipeline based on molecular docking, dynamics and umbrella simulations to display new OTA potential targets. The results collected consistently identified OGFOD1, a key player in protein translation, as possibly inhibited by OTA and its 2'R diastereomer. This is consistent with the current knowledge of OTA's molecular toxicology and may fill some gaps from a mechanistic standpoint. This could pave the way for further dedicated analysis focusing their attention on the OTA-OGFOD1 interaction, expanding the current understanding of OTA toxicity at a molecular level.
Collapse
Affiliation(s)
- Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Dickson AS, Pauzaite T, Arnaiz E, Ortmann BM, West JA, Volkmar N, Martinelli AW, Li Z, Wit N, Vitkup D, Kaser A, Lehner PJ, Nathan JA. A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis. Nat Commun 2023; 14:4816. [PMID: 37558666 PMCID: PMC10412576 DOI: 10.1038/s41467-023-40541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.
Collapse
Affiliation(s)
- Anna S Dickson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Ochre-Bio Ltd, Hayakawa Building, Oxford Science Park, Edmund Halley Road, Oxford, OX4 4GB, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Biosciences Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
- DISCO Pharmaceuticals Swiss GmbH, ETH Zürich, Zürich, Switzerland
| | - Anthony W Martinelli
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Zhaoqi Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tango Therapeutics, 201 Brookline Ave Suite 901, Boston, MA, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
8
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, Li W, Xue J, Zhou K, Sun M, Tan B, Chen Z, Shen C, Gao L, Small A, Wang K, Leung K, Zhang Z, Qin X, Deng X, Xia Q, Su R, Chen J. QKI shuttles internal m 7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 2023; 186:3208-3226.e27. [PMID: 37379838 PMCID: PMC10527483 DOI: 10.1016/j.cell.2023.05.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Ochkasova A, Arbuzov G, Malygin A, Graifer D. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int J Mol Sci 2023; 24:11458. [PMID: 37511213 PMCID: PMC10380927 DOI: 10.3390/ijms241411458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Rodriguez R, Harris M, Murphy E, Kennedy LM. OGFOD1 modulates the transcriptional and proteomic landscapes to alter isoproterenol-induced hypertrophy susceptibility. J Mol Cell Cardiol 2023; 179:42-46. [PMID: 37084634 PMCID: PMC10862384 DOI: 10.1016/j.yjmcc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Cardiac hypertrophy is associated with increased translation. However, little is known of the mechanisms that regulate translation in hypertrophy. Members of the 2-oxoglutarate-dependent dioxygenase family regulate several aspects of gene expression, including translation. An important member of this family is OGFOD1. Here, we show OGFOD1 accumulates in failing human hearts. Upon OGFOD1 deletion, murine hearts showed transcriptomic and proteomic changes, with only 21 proteins and mRNAs (0.6%) changing in the same direction. Additionally, OGFOD1-KO mice were protected from induced hypertrophy, supporting a role for OGFOD1 in the cardiac response to chronic stress.
Collapse
Affiliation(s)
- Rebeca Rodriguez
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Harris
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Leslie M Kennedy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
12
|
Zolotenkova EA, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA. Mutation at the Site of Hydroxylation in the Ribosomal Protein uL15 (RPL27a) Causes Specific Changes in the Repertoire of mRNAs Translated in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24076173. [PMID: 37047141 PMCID: PMC10094517 DOI: 10.3390/ijms24076173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.
Collapse
Affiliation(s)
- Elizaveta A Zolotenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Türkmen VA, Hintzen JCJ, Tumber A, Moesgaard L, Salah E, Kongsted J, Schofield CJ, Mecinović J. Substrate selectivity and inhibition of histidine JmjC hydroxylases MINA53 and NO66. RSC Chem Biol 2023; 4:235-243. [PMID: 36908702 PMCID: PMC9994133 DOI: 10.1039/d2cb00182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Non-haem Fe(ii) and 2-oxoglutarate (2OG) dependent oxygenases catalyse oxidation of multiple proteins in organisms ranging from bacteria to humans. We describe studies on the substrate selectivity and inhibition of the human ribosomal oxygenases (ROX) MINA53 and NO66, members of the JmjC 2OG oxygenase subfamily, which catalyse C-3 hydroxylation of histidine residues in Rpl27a and Rpl8, respectively. Assays with natural and unnatural histidine analogues incorporated into Rpl peptides provide evidence that MINA53 and NO66 have narrow substrate selectivities compared to some other human JmjC hydroxylases, including factor inhibiting HIF and JMJD6. Notably, the results of inhibition assays with Rpl peptides containing histidine analogues with acyclic side chains, including Asn, Gln and homoGln, suggest the activities of MINA53/NO66, and by implication related 2OG dependent protein hydroxylases/demethylases, might be regulated in vivo by competition with non-oxidised proteins/peptides. The inhibition results also provide avenues for development of inhibitors selective for MINA53 and NO66.
Collapse
Affiliation(s)
- Vildan A Türkmen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road OX1 3TA Oxford UK
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road OX1 3TA Oxford UK
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road OX1 3TA Oxford UK
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| |
Collapse
|
14
|
Fujisaki T, Saito K, Kikuchi T, Kondo E. The prolyl hydroxylase OGFOD1 promotes cancer cell proliferation by regulating the expression of cell cycle regulators. FEBS Lett 2022; 597:1073-1085. [PMID: 36464654 DOI: 10.1002/1873-3468.14547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
OGFOD1, a prolyl-hydroxylase, has been reported to translocate from the nucleus to the cytoplasm in response to cellular stress. Here, we demonstrate that OGFOD1 regulates the transcription and post-transcriptional stabilization of cell cycle-related genes. OGFOD1 knockdown in lung cancer cells induced cell cycle arrest through the specific depletion of cyclin-dependent kinase (CDK) 1, CDK2 and cyclin B1 (CCNB1) mRNAs and the nuclear accumulation of p21Cip1 . Analysis of the mRNA dynamics in these cells revealed that CDK1 decreased in a time-dependent manner, reflecting post-transcriptional regulation by OGFOD1 and the RNA-binding protein HuR. In contrast, the depletion of CDK2 and CCNB1 resulted from decreased transcription mediated by OGFOD1. These results indicate that OGFOD1 is required to maintain the function of specific cell cycle regulators during cancer cell proliferation.
Collapse
Affiliation(s)
- Toshiya Fujisaki
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Division of Tumor Pathology, Near Infrared Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
| |
Collapse
|
15
|
Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Alzheimers Dement 2022; 18:2637-2668. [PMID: 35852137 PMCID: PMC10083964 DOI: 10.1002/alz.12733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Hypoxia, that is, an inadequate oxygen supply, is linked to neurodegeneration and patients with cardiovascular disease are prone to Alzheimer's disease (AD). 2-Oxoglutarate and ferrous iron-dependent oxygenases (2OGDD) play a key role in the regulation of oxygen homeostasis by acting as hypoxia sensors. 2OGDD also have roles in collagen biosynthesis, lipid metabolism, nucleic acid repair, and the regulation of transcription and translation. Many biological processes in which the >60 human 2OGDD are involved are altered in AD patient brains, raising the question as to whether 2OGDD are involved in the transition from normal aging to AD. Here we give an overview of human 2OGDD and critically discuss their potential roles in AD, highlighting possible relationships with synapse dysfunction/loss. 2OGDD may regulate neuronal/glial differentiation through enzyme activity-dependent mechanisms and modulation of their activity has potential to protect against synapse loss. Work linking 2OGDD and AD is at an early stage, especially from a therapeutic perspective; we suggest integrated pathology and in vitro discovery research to explore their roles in AD is merited. We hope to help enable long-term research on the roles of 2OGDD and, more generally, oxygen/hypoxia in AD. We also suggest shorter term empirically guided clinical studies concerning the exploration of 2OGDD/oxygen modulators to help maintain synaptic viability are of interest for AD treatment.
Collapse
Affiliation(s)
- Haotian Liu
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yong Xie
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationDepartment of OrthopedicsGeneral Hospital of Chinese PLABeijingChina
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Martine I. Abboud
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Chao Ma
- Department of Human Anatomy, Histology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Christopher J. Schofield
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Leissing TM, Hardy AP, Chan H, Wang Y, Tumber A, Chowdhury R, Feng T, Coleman ML, Cockman ME, Kramer HB, Berridge G, Fischer R, Kessler BM, Ratcliffe PJ, Lu X, Schofield CJ. Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. J Biol Chem 2022; 298:102020. [PMID: 35537551 PMCID: PMC9189129 DOI: 10.1016/j.jbc.2022.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022] Open
Abstract
The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.
Collapse
Affiliation(s)
- Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Hokfung Chan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yihua Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Tianshu Feng
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; NDM Research Building, University of Oxford, Oxford, United Kingdom
| | - Mathew L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew E Cockman
- The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Roman Fischer
- NDM Research Building, University of Oxford, Oxford, United Kingdom
| | | | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Sci Rep 2022; 12:6065. [PMID: 35410347 PMCID: PMC9001643 DOI: 10.1038/s41598-022-10028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.
Collapse
|
19
|
Ratcliffe PJ. Harveian Oration 2020: Elucidation of molecular oxygen sensing mechanisms in human cells: implications for medicine. Clin Med (Lond) 2022; 22:23-33. [PMID: 34921056 PMCID: PMC8813027 DOI: 10.7861/clinmed.ed.22.1.harv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK, and director of clinical research, Francis Crick Institute, London, UK
| |
Collapse
|
20
|
Harris M, Sun J, Keeran K, Aponte A, Singh K, Springer D, Gucek M, Pirooznia M, Cockman ME, Murphy E, Kennedy LM. Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischemia-reperfusion injury. Cardiovasc Res 2021; 118:2847-2858. [PMID: 34668514 DOI: 10.1093/cvr/cvab323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Prolyl hydroxylation is a post-translational modification that regulates protein stability, turnover, and activity. The proteins that catalyze prolyl hydroxylation belong to the 2-oxoglutarate- and iron-dependent oxygenase family of proteins. 2-oxoglutarate- and iron-dependent oxygenase domain-containing protein 1 (Ogfod1), which hydroxylates a proline in ribosomal protein s23 is a newly-described member of this family. The aims of this study were to investigate roles for Ogfod1 in the heart, and in the heart's response to stress. METHODS AND RESULTS We isolated hearts from wild type (WT) and Ogfod1 knockout (KO) mice and performed quantitative proteomics using Tandem Mass Tag labelling coupled to Liquid Chromatography and tandem Mass Spectrometry (LC-MS/MS) to identify protein changes. Ingenuity Pathway Analysis identified "Urate Biosynthesis/Inosine 5'-phosphate Degradation" and "Purine Nucleotides Degradation II (Aerobic)" as the most significantly-enriched pathways. We performed metabolomics analysis and found that both purine and pyrimidine pathways were altered with the purine nucleotide inosine 5'-monophosphate (IMP) showing a 3.5-fold enrichment in KO hearts (P = 0.011) and the pyrimidine catabolism product beta-alanine showing a 1.7-fold enrichment in KO hearts (P = 0.014). As changes in these pathways have been shown to contribute to cardioprotection, we subjected isolated perfused hearts to ischemia and reperfusion (I/R). KO hearts showed a 41.4% decrease in infarct size and a 34% improvement in cardiac function compared to WT hearts. This protection was also evident in an in vivo I/R model. Additionally, our data show that treating isolated perfused WT hearts with carnosine, a metabolite of beta-alanine, improved protection in the context of I/R injury, whereas treating KO hearts with carnosine had no impact on recovery of function or infarct size. CONCLUSIONS Taken together, these data show that Ogfod1 deletion alters the myocardial proteome and metabolome to confer protection against I/R injury. TRANSLATIONAL PERSPECTIVE Heart disease is the leading cause of death in the US. In characterizing the cardiovascular effects of deleting the prolyl hydroxylase Ogfod1 and investigating its role in disease pathology, we found that deleting Ogfod1 protected hearts against ex vivo and in vivo I/R injury. Ogfod1-KO hearts showed significant metabolomic and proteomic changes that supported altered purine and pyrimidine nucleotide synthesis and turnover. Beta-alanine, a precursor of the anti-oxidant carnosine and a product of pyrimidine degradation, accumulated in KO hearts to help confer cardioprotection. Altogether, these data suggest a role for Ogfod1 downregulation as a therapeutic strategy for heart disease.
Collapse
Affiliation(s)
- Michael Harris
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Junhui Sun
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Karen Keeran
- Animal Surgery and Resources Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Angel Aponte
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Komudi Singh
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Danielle Springer
- Murine Phenotyping Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Marjan Gucek
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Elizabeth Murphy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Leslie M Kennedy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Gay DM, Lund AH, Jansson MD. Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci 2021; 47:66-81. [PMID: 34312084 DOI: 10.1016/j.tibs.2021.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
The conceptual origins of ribosome specialization can be traced back to the earliest days of molecular biology. Yet, this field has only recently begun to gather momentum, with numerous studies identifying distinct heterogeneous ribosome populations across multiple species and model systems. It is proposed that some of these compositionally distinct ribosomes may be functionally specialized and able to regulate the translation of specific mRNAs. Identification and functional characterization of specialized ribosomes has the potential to elucidate a novel layer of gene expression control, at the level of translation, where the ribosome itself is a key regulatory player. In this review, we discuss different sources of ribosome heterogeneity, evidence for ribosome specialization, and also the future directions of this exciting field.
Collapse
Affiliation(s)
- David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
22
|
Mori T, Zhai R, Ushimaru R, Matsuda Y, Abe I. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nat Commun 2021; 12:4417. [PMID: 34285212 PMCID: PMC8292354 DOI: 10.1038/s41467-021-24685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Endoperoxide-containing natural products are a group of compounds with structurally unique cyclized peroxide moieties. Although numerous endoperoxide-containing compounds have been isolated, the biosynthesis of the endoperoxides remains unclear. NvfI from Aspergillus novofumigatus IBT 16806 is an endoperoxidase that catalyzes the formation of fumigatonoid A in the biosynthesis of novofumigatonin. Here, we describe our structural and functional analyses of NvfI. The structural elucidation and mutagenesis studies indicate that NvfI does not utilize a tyrosyl radical in the reaction, in contrast to other characterized endoperoxidases. Further, the crystallographic analysis reveals significant conformational changes of two loops upon substrate binding, which suggests a dynamic movement of active site during the catalytic cycle. As a result, NvfI installs three oxygen atoms onto a substrate in a single enzyme turnover. Based on these results, we propose a mechanism for the NvfI-catalyzed, unique endoperoxide formation reaction to produce fumigatonoid A.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
23
|
Lee HT, Lee IH, Kim JH, Lee S, Kwak S, Suh MY, Hwang IY, Kang BG, Cha SS, Lee BI, Lee SE, Choi J, Roe JS, Cho EJ, Youn HD. Phosphorylation of OGFOD1 by Cell Cycle-Dependent Kinase 7/9 Enhances the Transcriptional Activity of RNA Polymerase II in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13143418. [PMID: 34298635 PMCID: PMC8304009 DOI: 10.3390/cancers13143418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Among the causes of accelerating cancer properties, dysregulated transcription is considerably prominent in many cancers. However, it is difficult to target transcriptional machineries due to their fundamental importance. Compared to breast cancer cell lines, we found that OGFOD1 aggravates cancers by enhancing RNA polymerase II transcriptional activity and it is improved by cell cycle-dependent kinases. Overall, we uncovered the novel mechanism for how OGFOD1 maliciously functions in breast cancers, suggesting it as a rational cancer treatment target protein. Abstract 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.
Collapse
Affiliation(s)
- Han-Teo Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Il-Hwan Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Sangho Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Min-Young Suh
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Bu-Gyeong Kang
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Byung-Il Lee
- Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Sang-Eun Lee
- Cardiology Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jinmi Choi
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Correspondence: ; Tel.: +82-2-740-8250; Fax: +82-2-3668-7622
| |
Collapse
|
24
|
Komov L, Melamed Kadosh D, Barnea E, Admon A. The Effect of Interferons on Presentation of Defective Ribosomal Products as HLA Peptides. Mol Cell Proteomics 2021; 20:100105. [PMID: 34087483 PMCID: PMC8724922 DOI: 10.1016/j.mcpro.2021.100105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
A subset of class I major histocompatibility complex (MHC)-bound peptides is produced from immature proteins that are rapidly degraded after synthesis. These defective ribosomal products (DRiPs) have been implicated in early alert of the immune system about impending infections. Interferons are important cytokines, produced in response to viral infection, that modulate cellular metabolism and gene expression patterns, increase the presentation of MHC molecules, and induce rapid degradation of proteins and cell-surface presentation of their derived MHC peptides, thereby contributing to the battle against pathogen infections. This study evaluated the role of interferons in the induction of rapid degradation of DRiPs to modulate the repertoire of DRiP-derived MHC peptides. Cultured human breast cancer cells were treated with interferons, and the rates of synthesis and degradation of cellular protein and their degradation products were determined by LC-MS/MS analysis, following the rates of incorporation of heavy stable isotope–labeled amino acids (dynamic stable isotope labeling by amino acids in cell culture, dynamic SILAC) at several time points after the interferon application. Large numbers of MHC peptides that incorporated the heavy amino acids faster than their source proteins indicated that DRiP peptides were abundant in the MHC peptidome; interferon treatment increased by about twofold their relative proportions in the peptidome. Such typical DRiP-derived MHC peptides were from the surplus subunits of the proteasome and ribosome, which are degraded because of the transition to immunoproteasomes and a new composition of ribosomes incorporating protein subunits that are induced by the interferon. We conclude that degradation of surplus subunits induced by the interferon is a major source for DRiP–MHC peptides, a phenomenon relevant to coping with viral infections, where a rapid presentation of MHC peptides derived from excess viral proteins may help alert the immune system about the impending infection. Degradation products of surplus subunits are often presented as HLA peptides. Interferons increase degradation and presentation of such defective products. Dynamic SILAC facilitates identification of such HLA peptides. This cellular pathway provides alert to the immune system about viral infections.
Collapse
Affiliation(s)
- Liran Komov
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
26
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
27
|
Poly(A)-Binding Protein Regulates the Efficiency of Translation Termination. Cell Rep 2020; 33:108399. [PMID: 33207198 DOI: 10.1016/j.celrep.2020.108399] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple factors influence translation termination efficiency, including nonsense codon identity and immediate context. To determine whether the relative position of a nonsense codon within an open reading frame (ORF) influences termination efficiency, we quantitate the production of prematurely terminated and/or readthrough polypeptides from 26 nonsense alleles of 3 genes expressed in yeast. The accumulation of premature termination products and the extent of readthrough for the respective premature termination codons (PTCs) manifest a marked dependence on PTC proximity to the mRNA 3' end. Premature termination products increase in relative abundance, whereas readthrough efficiencies decrease progressively across different ORFs, and readthrough efficiencies for a PTC increase in response to 3' UTR lengthening. These effects are eliminated and overall translation termination efficiency decreases considerably in cells harboring pab1 mutations. Our results support a critical role for poly(A)-binding protein in the regulation of translation termination and also suggest that inefficient termination is a trigger for nonsense-mediated mRNA decay (NMD).
Collapse
|
28
|
Fletcher SC, Coleman ML. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators. Biochem Soc Trans 2020; 48:1843-1858. [PMID: 32985654 PMCID: PMC7609023 DOI: 10.1042/bst20190333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases are a conserved enzyme class that catalyse diverse oxidative reactions across nature. In humans, these enzymes hydroxylate a broad range of biological substrates including DNA, RNA, proteins and some metabolic intermediates. Correspondingly, members of the 2OG-dependent oxygenase superfamily have been linked to fundamental biological processes, and found dysregulated in numerous human diseases. Such findings have stimulated efforts to understand both the biochemical activities and cellular functions of these enzymes, as many have been poorly studied. In this review, we focus on human 2OG-dependent oxygenases catalysing the hydroxylation of protein and polynucleotide substrates. We discuss their modulation by changes in the cellular microenvironment, particularly with respect to oxygen, iron, 2OG and the effects of oncometabolites. We also describe emerging evidence that these enzymes are responsive to cellular stresses including hypoxia and DNA damage. Moreover, we examine how dysregulation of 2OG-dependent oxygenases is associated with human disease, and the apparent paradoxical role for some of these enzymes during cancer development. Finally, we discuss some of the challenges associated with assigning biochemical activities and cellular functions to 2OG-dependent oxygenases.
Collapse
Affiliation(s)
- Sally C. Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mathew L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
29
|
Lafita-Navarro MC, Perez-Castro L, Zacharias LG, Barnes S, DeBerardinis RJ, Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J Biol Chem 2020; 295:12398-12407. [PMID: 32611766 DOI: 10.1074/jbc.ac120.014189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer Barnes
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, Dallas, Texas, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Yanshina DD, Gopanenko AV, Karpova GG, Malygin AA. Replacement of Hydroxylated His39 in Ribosomal Protein uL15 with Ala or Thr Impairs the Translational Activity of Human Ribosomes. Mol Biol 2020. [DOI: 10.1134/s0026893320030206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Bush JT, Chan MC, Mohammed S, Schofield CJ. Quantitative MS-Based Proteomics: Comparing the MCF-7 Cellular Response to Hypoxia and a 2-Oxoglutarate Analogue. Chembiochem 2020; 21:1647-1655. [PMID: 31919953 PMCID: PMC7317498 DOI: 10.1002/cbic.201900719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/19/2022]
Abstract
The hypoxia-inducible factors (HIFs) are key transcription factors in determining cellular responses involving alterations in protein levels in response to limited oxygen availability in animal cells. 2-Oxoglutarate-dependent oxygenases play key roles in regulating levels of HIF and its transcriptional activity. We describe MS-based proteomics studies in which we compared the results of subjecting human breast cancer MCF-7 cells to hypoxia or treating them with a cell-penetrating derivative (dimethyl N-oxalylglycine; DMOG) of the stable 2OG analogue N-oxalylglycine. The proteomic results are consistent with reported transcriptomic analyses and support the proposed key roles of 2OG-dependent HIF prolyl- and asparaginyl-hydroxylases in the hypoxic response. Differences between the data sets for hypoxia and DMOG might reflect context-dependent effects or HIF-independent effects of DMOG.
Collapse
Affiliation(s)
- Jacob T. Bush
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Current address: GSKMedicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | - Mun Chiang Chan
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Current address: Department of Molecular MedicineFaculty of MedicineUniversity of Malaya, Jalan Universiti50603Kuala LumpurMalaysia
| | - Shabaz Mohammed
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
32
|
Kremp M, Bittner E, Martorana D, Klingenberger A, Stehlik T, Bölker M, Freitag J. Non-AUG Translation Initiation Generates Peroxisomal Isoforms of 6-Phosphogluconate Dehydrogenase in Fungi. Front Cell Dev Biol 2020; 8:251. [PMID: 32432107 PMCID: PMC7214817 DOI: 10.3389/fcell.2020.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Proteins destined for transport to specific organelles usually contain targeting information, which are embedded in their sequence. Many enzymes are required in more than one cellular compartment and different molecular mechanisms are used to achieve dual localization. Here we report a cryptic type 2 peroxisomal targeting signal encoded in the 5′ untranslated region of fungal genes coding for 6-phosphogluconate dehydrogenase (PGD), a key enzyme of the oxidative pentose phosphate pathway. The conservation of the cryptic PTS2 motif suggests a biological function. We observed that translation from a non-AUG start codon generates an N-terminally extended peroxisomal isoform of Ustilago maydis PGD. Non-canonical initiation occurred at the sequence AGG AUU, consisting of two near-cognate start codons in tandem. Taken together, our data reveal non-AUG translation initiation as an additional mechanism to achieve the dual localization of a protein required both in the cytosol and the peroxisomes.
Collapse
Affiliation(s)
- Marco Kremp
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | | | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
33
|
Way CM, Lima Cunha D, Moosajee M. Translational readthrough inducing drugs for the treatment of inherited retinal dystrophies. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1762489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christopher M Way
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Dulce Lima Cunha
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. A human protein hydroxylase that accepts D-residues. Commun Chem 2020; 3:52. [PMID: 36703414 PMCID: PMC9814778 DOI: 10.1038/s42004-020-0290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a 2-oxoglutarate-dependent protein hydroxylase that catalyses C3 hydroxylations of protein residues. We report FIH can accept (D)- and (L)-residues for hydroxylation. The substrate selectivity of FIH differs for (D) and (L) epimers, e.g., (D)- but not (L)-allylglycine, and conversely (L)- but not (D)-aspartate, undergo monohydroxylation, in the tested sequence context. The (L)-Leu-containing substrate undergoes FIH-catalysed monohydroxylation, whereas (D)-Leu unexpectedly undergoes dihydroxylation. Crystallographic, mass spectrometric, and DFT studies provide insights into the selectivity of FIH towards (L)- and (D)-residues. The results of this work expand the potential range of known substrates hydroxylated by isolated FIH and imply that it will be possible to generate FIH variants with altered selectivities.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Philip A Gerken
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Helen Thorbjornsrud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
35
|
OGFOD1 negatively regulated by miR-1224-5p promotes proliferation in human papillomavirus-infected laryngeal papillomas. Mol Genet Genomics 2020; 295:675-684. [PMID: 32002629 DOI: 10.1007/s00438-020-01649-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/18/2020] [Indexed: 02/01/2023]
Abstract
Laryngeal papillomas (LP) is a difficult disease to manage due to its frequent recurrence, airway compromise, and risk of cancer. Recently, growing evidence indicates the aberrant expression of OGFPD1, a stress granule protein, links closely to the development of tumorigenesis; however, little is known about its role in LP progression. Here, we investigated the tumor promoting action of OGFOD1 in LP. The transcriptional and translational levels of OGFOD1 were significantly up-regulated in LP tissues and cells. Moreover, OGFOD1 promoted viability and proliferation, and inhibited LP cells apoptosis. We further revealed that OGFOD1 was directly targeted by miR-1224-5p, which was significantly down-regulated in LP. Overexpression of the miR-1224-5p suppressed OGFOD1-induced cell proliferation and viability, and promoted apoptosis of LP. In accordance, knockdown of miR-1224-5p inversed the inhibitory effects. In confederation of the central involvement of OGFOD1 in LP progression, targeting the miR-1224-5p/OGFOD1 pathway might provide a novel strategy for LP treatment.
Collapse
|
36
|
Ueki Y, Saito K, Iioka H, Sakamoto I, Kanda Y, Sakaguchi M, Horii A, Kondo E. PLOD2 Is Essential to Functional Activation of Integrin β1 for Invasion/Metastasis in Head and Neck Squamous Cell Carcinomas. iScience 2020; 23:100850. [PMID: 32058962 PMCID: PMC6997870 DOI: 10.1016/j.isci.2020.100850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 10/26/2022] Open
Abstract
Identifying the specific functional regulator of integrin family molecules in cancer cells is critical because they are directly involved in tumor invasion and metastasis. Here we report high expression of PLOD2 in oropharyngeal squamous cell carcinomas (SCCs) and its critical role as a stabilizer of integrin β1, enabling integrin β1 to initiate tumor invasion/metastasis. Integrin β1 stabilized by PLOD2-mediated hydroxylation was recruited to the plasma membrane, its functional site, and accelerated tumor cell motility, leading to tumor metastasis in vivo, whereas loss of PLOD2 expression abrogated it. In accordance with molecular analysis, examination of oropharyngeal SCC tissues from patients corroborated PLOD2 expression associated with integrin β1 at the invasive front of tumor nests. PLOD2 is thus implicated as the key regulator of integrin β1 that prominently regulates tumor invasion and metastasis, and it provides important clues engendering novel therapeutics for these intractable cancers.
Collapse
Affiliation(s)
- Yushi Ueki
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan; Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan.
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | | | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kita-ku, Okayama, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori, Chuo-ku, Niigata, Japan.
| |
Collapse
|
37
|
Onisko BC. The Hydroxyproline Proteome of HeLa Cells with Emphasis on the Active Sites of Protein Disulfide Isomerases. J Proteome Res 2020; 19:756-768. [DOI: 10.1021/acs.jproteome.9b00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
39
|
Smart TJ, Hamed RB, Claridge TDW, Schofield CJ. Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorg Chem 2019; 94:103386. [PMID: 31706681 PMCID: PMC6958525 DOI: 10.1016/j.bioorg.2019.103386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
Abstract
Studies on proline hydroxylase selectivity reveals new products. Proline hydroxylases can produce dihydroxylated 5-, 6-, and 7-membered ring products. Proline hydroxylases can accept bicyclic substrates. Bicyclic products arise via bifurcation: two C-H bonds are accessible to the reactive oxidising species. The results have implications for other oxygenases, including those catalysing protein modifications. The results highlight the potential for amino acid hydroxylases in biocatalysis.
Studies on the substrate selectivity of recombinant ferrous-iron- and 2-oxoglutarate-dependent proline hydroxylases (PHs) reveal that they can catalyse the production of dihydroxylated 5-, 6-, and 7-membered ring products, and can accept bicyclic substrates. Ring-substituted substrate analogues (such hydroxylated and fluorinated prolines) are accepted in some cases. The results highlight the considerable, as yet largely untapped, potential for amino acid hydroxylases and other 2OG oxygenases in biocatalysis.
Collapse
Affiliation(s)
- Tristan J Smart
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Refaat B Hamed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
40
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
41
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
42
|
Admiraal SJ, Eyler DE, Baldwin MR, Brines EM, Lohans CT, Schofield CJ, O'Brien PJ. Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. J Biol Chem 2019; 294:13629-13637. [PMID: 31320474 PMCID: PMC6746446 DOI: 10.1074/jbc.ra119.009813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli. However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Daniel E Eyler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Emily M Brines
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | | | | | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
43
|
Genuth NR, Barna M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 2019; 19:431-452. [PMID: 29725087 DOI: 10.1038/s41576-018-0008-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.
Collapse
Affiliation(s)
- Naomi R Genuth
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
44
|
Pickel C, Günter J, Ruiz-Serrano A, Spielmann P, Fabrizio JA, Wolski W, Peet DJ, Wenger RH, Scholz CC. Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biol 2019; 26:101265. [PMID: 31299612 PMCID: PMC6624438 DOI: 10.1016/j.redox.2019.101265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase. FIH forms a (likely amide) bond with client proteins. Bond formation is highly hypoxia sensitive and occurs co-translationally. FIH forms a heterotrimer with the client protein OTUB1 (FIH2OTUB11). Complex formation between OTUB1 and FIH regulates OTUB1 deubiquitinase activity. Bond formation by hydroxylases is an alternative mechanism for hypoxia adaptation.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland
| | | | - Patrick Spielmann
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| |
Collapse
|
45
|
Langley GW, Abboud MI, Lohans CT, Schofield CJ. Inhibition of a viral prolyl hydroxylase. Bioorg Med Chem 2019; 27:2405-2412. [PMID: 30737136 DOI: 10.1016/j.bmc.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
46
|
Devi U, Singh M, Roy S, Tripathi AC, Gupta PS, Saraf SK, Ansari MN, Saeedan AS, Kaithwas G. PHD-2 activation: a novel strategy to control HIF-1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1239-1256. [PMID: 31154466 DOI: 10.1007/s00210-019-01658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive mammary gland carcinoma and its involvement in regulation of overexpressed hypoxia-inducible factor-1α and fatty acid synthase level in hypoxia influenced cancer cells are the present molecular crosstalk of this entire study. To test the hypothesis, we have proceed our study through chemical activation of prolyl hydroxylase 2 which leads to inhibition of hypoxia-inducible factor-1α and fatty acid synthase in ER+MCF-7 cancer cell line and n-methyl-n-nitrosourea induced mammary gland carcinoma rat model. ER+MCF-7 cells were evident with array of nuclear changes when stained through acridine orange/ethidium bromide. Afterward, JC-1 staining of the cells was evident in mitochondrial depolarization. The cells were arrested in G2/M phase when analyzed with flow cytometry. The morphological analysis of rat mammary gland tissue revealed decrease in alveolar buds, restoration of histopathological features along with intra-arterial cushion. The western blotting and fold change expressions of the genes validating the anticancer efficacy of BBAPH-1 is mediated through mitochondria-mediated apoptosis pathway. BBAPH-1 also modulates the expression of prolyl hydroxylase-2 with significant curtailment of hypoxia-inducible factor-1α, fatty acid synthase expression, and their respective downstream markers. These finding suggest that the BBAP-1-mediated activation of prolyl hydroxylase-2 significantly decreased the level of hypoxia-inducible factor-1α and fatty acid synthase. BBAPH-1 also activates the mitochondria-mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Avinash C Tripathi
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
47
|
Stoehr A, Kennedy L, Yang Y, Patel S, Lin Y, Linask KL, Fergusson M, Zhu J, Gucek M, Zou J, Murphy E. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight 2019; 5:128496. [PMID: 31112528 DOI: 10.1172/jci.insight.128496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms regulating translation and splicing are not well understood. We provide insight into a new regulator of translation, OGFOD1 (2-oxoglutarate and iron dependent oxygenase domain-containing protein 1), which is a prolyl-hydroxylase that catalyzes the posttranslational hydroxylation of Pro-62 in the small ribosomal protein S23. We show that deletion of OGFOD1 in an in vitro model of human cardiomyocytes decreases translation of specific proteins (e.g., RNA-binding proteins) and alters splicing. RNA sequencing showed poor correlation between changes in mRNA and protein synthesis, suggesting that posttranscriptional regulation was the primary cause for the observed differences. We found that loss of OGFOD1 and the resultant alterations in protein translation modulates the cardiac proteome, shifting it towards higher protein amounts of sarcomeric proteins such as cardiac troponins, titin and cardiac myosin binding protein C. Furthermore, we found a decrease of OGFOD1 during cardiomyocyte differentiation. These results suggest that loss of OGFOD1 modulates protein translation and splicing, thereby leading to alterations in the cardiac proteome and highlight the role of altered translation and splicing in regulating the proteome..
Collapse
Affiliation(s)
| | | | | | | | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kaari L Linask
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Jun Zhu
- DNA Sequencing and Genomics Core
| | | | - Jizhong Zou
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
48
|
Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? RNA (NEW YORK, N.Y.) 2019; 25:521-538. [PMID: 30733326 PMCID: PMC6467006 DOI: 10.1261/rna.069823.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
49
|
Regulation of gene expression by miR-144/451 during mouse erythropoiesis. Blood 2019; 133:2518-2528. [PMID: 30971389 DOI: 10.1182/blood.2018854604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
The microRNA (miRNA) locus miR-144/451 is abundantly expressed in erythrocyte precursors, facilitating their terminal maturation and protecting against oxidant stress. However, the full repertoire of erythroid miR-144/451 target messenger RNAs (mRNAs) and associated cellular pathways is unknown. In general, the numbers of mRNAs predicted to be targeted by an miRNA vary greatly from hundreds to thousands, and are dependent on experimental approaches. To comprehensively and accurately identify erythroid miR-144/451 target mRNAs, we compared gene knockout and wild-type fetal liver erythroblasts by RNA sequencing, quantitative proteomics, and RNA immunoprecipitation of Argonaute (Ago), a component of the RNA-induced silencing complex that binds miRNAs complexed to their target mRNAs. Argonaute bound ∼1400 erythroblast mRNAs in a miR-144/451-dependent manner, accounting for one-third of all Ago-bound mRNAs. However, only ∼100 mRNAs were stabilized after miR-144/451 loss. Thus, miR-144 and miR-451 deregulate <10% of mRNAs that they bind, a characteristic that likely applies generally to other miRNAs. Using stringent selection criteria, we identified 53 novel miR-144/451 target mRNAs. One of these, Cox10, facilitates the assembly of mitochondrial electron transport complex IV. Loss of miR-144/451 caused increased Cox10 mRNA and protein, accumulation of complex IV, and increased mitochondrial membrane potential with no change in mitochondrial mass. Thus, miR-144/451 represses mitochondrial respiration during erythropoiesis by inhibiting the production of Cox10.
Collapse
|
50
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|