1
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Jahangiri Esfahani S, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 and its ligand maresin 1 regulate potassium channel signaling and pain homeostasis. J Clin Invest 2024; 134:e173537. [PMID: 38530364 PMCID: PMC11060744 DOI: 10.1172/jci173537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.
Collapse
Affiliation(s)
- Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharat Chandra
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Lorenna Oliveira Fernandes de Araujo
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Sahel Jahangiri Esfahani
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Qin Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
3
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Esfahan SJ, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 regulates maresin and potassium channel signaling for pain control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569787. [PMID: 38106084 PMCID: PMC10723316 DOI: 10.1101/2023.12.03.569787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.
Collapse
|
4
|
Mockenhaupt K, Tyc KM, McQuiston A, Gonsiewski AK, Zarei-Kheirabadi M, Hariprashad A, Biswas DD, Gupta AS, Olex AL, Singh SK, Waters MR, Dupree JL, Dozmorov MG, Kordula T. Yin Yang 1 controls cerebellar astrocyte maturation. Glia 2023; 71:2437-2455. [PMID: 37417428 PMCID: PMC10529878 DOI: 10.1002/glia.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.
Collapse
Affiliation(s)
- Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Katarzyna M. Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, Virginia
| | - Adam McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Alexandra K. Gonsiewski
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Masoumeh Zarei-Kheirabadi
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Avani Hariprashad
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael R. Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeff L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
- Research Service, Central Virginia VA Health Care System, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
6
|
Tsesmelis K, Maity‐Kumar G, Croner D, Sprissler J, Tsesmelis M, Hein T, Baumann B, Wirth T. Accelerated aging in mice with astrocytic redox imbalance as a consequence of SOD2 deletion. Aging Cell 2023; 22:e13911. [PMID: 37609868 PMCID: PMC10497807 DOI: 10.1111/acel.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 08/24/2023] Open
Abstract
Aging of the central nervous system (CNS) leads to motoric and cognitive decline and increases the probability for neurodegenerative disease development. Astrocytes fulfill central homeostatic functions in the CNS including regulation of immune responses and metabolic support of neurons and oligodendrocytes. In this study, we investigated the effect of redox imbalance in astrocytes by using a conditional astrocyte-specific SOD2-deficient mouse model (SOD2ako ) and analyzed these animals at different stages of their life. SOD2ako mice did not exhibit any overt phenotype within the first postnatal weeks. However, already as young adults, they displayed progressive motoric impairments. Moreover, as these mice grew older, they exhibited signs of a progeroid phenotype and early death. Histological analysis in moribund SOD2ako mice revealed the presence of age-related brain alterations, neuroinflammation, neuronal damage and myelin impairment in brain and spinal cord. Additionally, transcriptome analysis of primary astrocytes revealed that SOD2 deletion triggered a hypometabolic state and promoted polarization toward A1-neurotoxic status, possibly underlying the neuronal and myelin deficits. Conclusively, our study identifies maintenance of ROS homeostasis in astrocytes as a critical prerequisite for physiological CNS aging.
Collapse
Affiliation(s)
| | - Gandhari Maity‐Kumar
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Institute for Diabetes and ObesityHelmholtz Diabetes Center at Helmholtz Zentrum MünchenNeuherbergGermany
| | - Dana Croner
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Jasmin Sprissler
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Tabea Hein
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Bernd Baumann
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Thomas Wirth
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| |
Collapse
|
7
|
Nguyen TT, Camp CR, Doan JK, Traynelis SF, Sloan SA, Hall RA. GPR37L1 controls maturation and organization of cortical astrocytes during development. Glia 2023; 71:1921-1946. [PMID: 37029775 PMCID: PMC10315172 DOI: 10.1002/glia.24375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Collapse
Affiliation(s)
| | - Chad R. Camp
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Juleva K. Doan
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Stephen F. Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Steven A. Sloan
- Emory University School of Medicine, Department of Human Genetics
| | - Randy A. Hall
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| |
Collapse
|
8
|
Sohel MSH, Atoji Y, Onouchi S, Saito S. Expression patterns of prosaposin and neurotransmitter-related molecules in the chick paratympanic organ. Tissue Cell 2023; 83:102130. [PMID: 37320868 DOI: 10.1016/j.tice.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The paratympanic organ (PTO) is a small sense organ in the middle ear of birds that contains hair cells similar to those found in vestibuloauditory organs and receives afferent fibers from the geniculate ganglion. To consider the histochemical similarities between the PTO and vestibular hair cells, we examined the expression patterns of representative molecules in vestibular hair cells, including prosaposin, G protein-coupled receptor (GPR) 37 and GPR37L1 as prosaposin receptors, vesicular glutamate transporter (vGluT) 2 and vGluT3, nicotinic acetylcholine receptor subunit α9 (nAChRα9), and glutamic acid decarboxylase (GAD) 65 and GAD67, in the postnatal day 0 chick PTO and geniculate ganglion by in situ hybridization. Prosaposin mRNA was observed in PTO hair cells, supporting cells, and geniculate ganglion cells. vGluT3 mRNA was observed in PTO hair cells, whereas vGluT2 was observed in a small number of ganglion cells. nAChRα9 mRNA was observed in a small number of PTO hair cells. The results suggest that the histochemical character of PTO hair cells is more similar to that of vestibular hair cells than that of auditory hair cells in chicks.
Collapse
Affiliation(s)
- Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
9
|
Impaired Aversive Memory Formation in GPR37L1KO Mice. Int J Mol Sci 2022; 23:ijms232214290. [PMID: 36430766 PMCID: PMC9696904 DOI: 10.3390/ijms232214290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
GPR37L1 is an orphan G-protein-coupled receptor, which is implicated in neurological disorders, but its normal physiological role is poorly understood. Its close homologue, GPR37, is implicated in Parkinson's disease and affective disorders. In this study, we set out to characterize adult and middle-aged global GPR37L1 knock-out (KO) mice regarding emotional behaviors. Our results showed that GPR37L1KO animals, except adult GPR37L1KO males, exhibited impaired retention of aversive memory formation as assessed by the shorter retention latency in a passive avoidance task. Interestingly, the viral-mediated deletion of GPR37L1 in conditional knockout mice in the hippocampus of middle-aged mice also showed impaired retention in passive avoidance tasks, similar to what was observed in global GPR37L1KO mice, suggesting that hippocampal GPR37L1 is involved in aversive learning processes. We also observed that middle-aged GPR37L1KO male and female mice exhibited a higher body weight than their wild-type counterparts. Adult and middle-aged GPR37L1KO female mice exhibited a reduced level of serum corticosterone and middle-aged GPR37L1KO females showed a reduced level of epinephrine in the dorsal hippocampus in the aftermath of passive avoidance task, with no such effects observed in GPR37L1KO male mice, suggesting that lack of GPR37L1 influences behavior and biochemical readouts in age- and sex-specific manners.
Collapse
|
10
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Mouat MA, Wilkins BP, Ding E, Govindaraju H, Coleman JLJ, Graham RM, Turner N, Smith NJ. Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1. Cells 2022; 11:cells11111814. [PMID: 35681509 PMCID: PMC9180194 DOI: 10.3390/cells11111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1−/− mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1−/− mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1−/− mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1−/− mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.
Collapse
Affiliation(s)
- Margaret A. Mouat
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Brendan P. Wilkins
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
| | - Eileen Ding
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - Hemna Govindaraju
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - James L. J. Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Robert M. Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Nigel Turner
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Correspondence: (N.T.); (N.J.S.)
| | - Nicola J. Smith
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Correspondence: (N.T.); (N.J.S.)
| |
Collapse
|
12
|
GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts. Int J Mol Sci 2022; 23:ijms23105528. [PMID: 35628339 PMCID: PMC9144339 DOI: 10.3390/ijms23105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins.
Collapse
|
13
|
Massimi M, Di Pietro C, La Sala G, Matteoni R. Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications. Int J Mol Sci 2022; 23:ijms23084288. [PMID: 35457105 PMCID: PMC9025225 DOI: 10.3390/ijms23084288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. GPR37 transcripts are most abundant in oligodendrocytes and in the neurons of the substantia nigra and hippocampus, while the GPR37L1 gene is markedly expressed in cerebellar Bergmann glia astrocytes. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson’s disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.
Collapse
|
14
|
Li T, Oasa S, Ciruela F, Terenius L, Vukojević V, Svenningsson P. Cytosolic GPR37, but not GPR37L1, multimerization and its reversal by Parkin: A live cell imaging study. FASEB J 2021; 35:e22055. [PMID: 34822195 DOI: 10.1096/fj.202101213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Biochemical data have shown aggregated G protein-coupled receptor 37 (GPR37) in the cytoplasm and Lewy bodies in Parkinson's disease (PD). Properly folded GPR37 at the plasma membrane appears to be neuroprotective. GPR37, and its homologue GPR37L1, are orphan G protein-coupled receptors and their homo- and hetero-dimers have not been established. We therefore examined GPR37 and GPR37L1 dimerization and extended studies of multimerization of GPR37 to live cells. In this study, we investigated GPR37 and GPR37L1 dimerization and multimerization in live cells using three quantitative imaging methods: Fluorescence Cross-Correlation Spectroscopy, Förster Resonance Energy Transfer, and Fluorescence Lifetime Imaging Microscopy. Our data show that GPR37 and GPR37L1 form homo- and heterodimers in live N2a cells. Importantly, aggregation of GPR37, but not GPR37L1, was identified in the cytoplasm, which could be counteracted by Parkin overexpression. These data provide further evidence that GPR37 participate in cytosolic aggregation processes implicated in PD pathology.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Mouat MA, Coleman JLJ, Wu J, Dos Remedios CG, Feneley MP, Graham RM, Smith NJ. Involvement of GPR37L1 in murine blood pressure regulation and human cardiac disease pathophysiology. Am J Physiol Heart Circ Physiol 2021; 321:H807-H817. [PMID: 34533400 DOI: 10.1152/ajpheart.00198.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Cristobal G Dos Remedios
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
17
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
18
|
Alonso-Gardón M, Elorza-Vidal X, Castellanos A, La Sala G, Armand-Ugon M, Gilbert A, Di Pietro C, Pla-Casillanis A, Ciruela F, Gasull X, Nunes V, Martínez A, Schulte U, Cohen-Salmon M, Marazziti D, Estévez R. Identification of the GlialCAM interactome: the G protein-coupled receptors GPRC5B and GPR37L1 modulate megalencephalic leukoencephalopathy proteins. Hum Mol Genet 2021; 30:1649-1665. [PMID: 34100078 PMCID: PMC8369841 DOI: 10.1093/hmg/ddab155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC) is a type of vacuolating leukodystrophy, which is mainly caused by mutations in MLC1 or GLIALCAM. The two MLC-causing genes encode for membrane proteins of yet unknown function that have been linked to the regulation of different chloride channels such as the ClC-2 and VRAC. To gain insight into the role of MLC proteins, we have determined the brain GlialCAM interacting proteome. The proteome includes different transporters and ion channels known to be involved in the regulation of brain homeostasis, proteins related to adhesion or signaling as several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptor GPR37L1. Focusing on these two GPCRs, we could validate that they interact directly with MLC proteins. The inactivation of Gpr37l1 in mice upregulated MLC proteins without altering their localization. Conversely, a reduction of GPRC5B levels in primary astrocytes downregulated MLC proteins, leading to an impaired activation of ClC-2 and VRAC. The interaction between the GPCRs and MLC1 was dynamically regulated upon changes in the osmolarity or potassium concentration. We propose that GlialCAM and MLC1 associate with different integral membrane proteins modulating their functions and acting as a recruitment site for various signaling components as the GPCRs identified here. We hypothesized that the GlialCAM/MLC1 complex is working as an adhesion molecule coupled to a tetraspanin-like molecule performing regulatory effects through direct binding or influencing signal transduction events.
Collapse
Affiliation(s)
- Marta Alonso-Gardón
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Xabier Elorza-Vidal
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Aida Castellanos
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome I-00015, Italy
| | - Mercedes Armand-Ugon
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris F-75005, France
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome I-00015, Italy
| | - Adrià Pla-Casillanis
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08036, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona-IDIBAPS, Casanova 143 Barcelona 08036, Spain
| | - Virginia Nunes
- Unitat de Genètica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Laboratori de Genètica Molecular, Genes Disease and Therapy Program IDIBELL, L'Hospitalet de Llobregat 08036, Spain
| | - Albert Martínez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | | | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris F-75005, France
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome I-00015, Italy
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL - Institute of Neurosciences, Universitat de Barcelona, Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
19
|
Decoding the Roles of Astrocytes and Hedgehog Signaling in Medulloblastoma. ACTA ACUST UNITED AC 2021; 28:3058-3070. [PMID: 34436033 PMCID: PMC8395412 DOI: 10.3390/curroncol28040267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023]
Abstract
The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH expression and signal transduction mechanisms into the complex tumor microenvironment. In addition, we highlight the associations between tumor and stromal cells as possible prognostic markers that could be targeted with new therapeutic strategies.
Collapse
|
20
|
Taniguchi M, Nabeka H, Yamamiya K, Khan MSI, Shimokawa T, Islam F, Doihara T, Wakisaka H, Kobayashi N, Hamada F, Matsuda S. The expression of prosaposin and its receptors, GRP37 and GPR37L1, are increased in the developing dorsal root ganglion. PLoS One 2021; 16:e0255958. [PMID: 34379697 PMCID: PMC8357083 DOI: 10.1371/journal.pone.0255958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Prosaposin (PSAP), a highly conserved glycoprotein, is a precursor of saposins A-D. Accumulating evidence suggests that PSAP is a neurotrophic factor, as well as a regulator of lysosomal enzymes. Recently, the orphan G-protein-coupled receptors GPR37 and GPR37L1 were recognized as PSAP receptors, but their functions have not yet been clarified. In this study, we examined the distribution of PSAP and its receptors in the dorsal root ganglion (DRG) during development using specific antibodies, and showed that PSAP accumulates primarily in lysosomes and is dispersed throughout the cytoplasm of satellite cells. Later, PSAP colocalized with two receptors in satellite cells, and formed a characteristic ring shape approximately 8 weeks after birth, during a period of rapid DRG development. This ring shape, which was only observed around larger neurons, is evidence that several satellite cells are synchronously activated. We found that sortilin, a transporter of a wide variety of intracellular proteins containing PSAP, is strongly localized to the inner side of satellite cells, which contact the neuronal surface. These findings suggest that PSAP and GPR37/GPR37L1 play a role in activating both satellite and nerve cells.
Collapse
Affiliation(s)
- Miho Taniguchi
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroyuki Wakisaka
- Department of Otorhinolaryngology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naoto Kobayashi
- Department of Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
21
|
Zhu YL, Yuan SS, Liu JX. Similarity and Dissimilarity Regularized Nonnegative Matrix Factorization for Single-Cell RNA-seq Analysis. Interdiscip Sci 2021; 14:45-54. [PMID: 34231183 DOI: 10.1007/s12539-021-00457-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
In traditional sequencing techniques, the different functions of cells and the different roles they play in differentiation are often ignored. With the advancement of single-cell RNA sequencing (scRNA-seq) techniques, scientists can measure the gene expression value at the single-cell level, and it is helping to understand the heterogeneity hidden in cells. One of the most powerful ways to find heterogeneity is using the unsupervised clustering method to get separate subpopulations. In this paper, we propose a novel clustering method Similarity and Dissimilarity Regularized Nonnegative Matrix Factorization (SDCNMF) that simultaneously impose similarity and dissimilarity constraints on low-dimensional representations. SDCNMF both considers the similarity of closer cells and the dissimilarity of cells that are farther away. It can not only keep the similar cells getting closer in low-dimensional space, but also can push the dissimilar cells away from each other. We test the validity of our proposed method on five scRNA-seq datasets. Clustering results show that SDCNMF is better than other comparative methods, and the gene markers we find are also consistent with previous studies. Therefore, we can conclude that SDCNMF is effective in scRNA-seq data analysis. This paper proposes a novel clustering method Similarity and Dissimilarity Regularized Nonnegative Matrix Factorization (SDCNMF) that simultaneously impose similarity and dissimilarity constraints on low-dimensional representations. SDCNMF both considers the similarity of closer cells and the dissimilarity of cells that are farther away. It can not only keep the similar cells getting closer in low-dimensional space, but also can push the dissimilar cells away from each other. Clustering results show that SDCNMF is better than other comparative methods, and the gene markers we find are also consistent with previous studies.
Collapse
Affiliation(s)
- Ya-Li Zhu
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Sha-Sha Yuan
- School of Computer Science, Qufu Normal University, Rizhao, China.
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, China.,Rizhao Huilian Zhongchuang Institute of Intelligent Technology, Rizhao, 276826, China
| |
Collapse
|
22
|
Nguyen TT, Dammer EB, Owino SA, Giddens MM, Madaras NS, Duong DM, Seyfried NT, Hall RA. Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. J Proteome Res 2021; 19:744-755. [PMID: 31903766 DOI: 10.1021/acs.jproteome.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.
Collapse
Affiliation(s)
- TrangKimberly Thu Nguyen
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Sharon A Owino
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Michelle M Giddens
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Nora S Madaras
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| |
Collapse
|
23
|
Ngo T, Wilkins BP, So SS, Keov P, Chahal KK, Finch AM, Coleman JLJ, Kufareva I, Smith NJ. Orphan receptor GPR37L1 remains unliganded. Nat Chem Biol 2021; 17:383-386. [PMID: 33649602 DOI: 10.1038/s41589-021-00748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Brendan P Wilkins
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sean S So
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Keov
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirti K Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Angela M Finch
- G Protein-Coupled Receptor Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia. .,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia.
| |
Collapse
|
24
|
Mouat MA, Jackson KL, Coleman JLJ, Paterson MR, Graham RM, Head GA, Smith NJ. Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner. Front Pharmacol 2021; 11:600266. [PMID: 33633567 PMCID: PMC7901490 DOI: 10.3389/fphar.2020.600266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
GPR37L1 is a family A orphan G protein-coupled receptor (GPCR) with a putative role in blood pressure regulation and cardioprotection. In mice, genetic ablation of Gpr37l1 causes sex-dependent effects; female mice lacking Gpr37l1 (GPR37L1-/-) have a modest but significant elevation in blood pressure, while male GPR37L1-/- mice are more susceptible to cardiovascular dysfunction following angiotensin II-induced hypertension. Given that this receptor is highly expressed in the brain, we hypothesize that the cardiovascular phenotype of GPR37L1-/- mice is due to changes in autonomic regulation of blood pressure and heart rate. To investigate this, radiotelemetry was employed to characterize baseline cardiovascular variables in GPR37L1-/- mice of both sexes compared to wildtype controls, followed by power spectral analysis to quantify short-term fluctuations in blood pressure and heart rate attributable to alterations in autonomic homeostatic mechanisms. Additionally, pharmacological ganglionic blockade was performed to determine vasomotor tone, and environmental stress tests were used to assess whether cardiovascular reactivity was altered in GPR37L1-/- mice. We observed that mean arterial pressure was significantly lower in female GPR37L1-/- mice compared to wildtype counterparts, but was unchanged in male GPR37L1-/- mice. GPR37L1-/- genotype had a statistically significant positive chronotropic effect on heart rate across both sexes when analyzed by two-way ANOVA. Power spectral analysis of these data revealed a reduction in power in the heart rate spectrum between 0.5 and 3 Hz in female GPR37L1-/- mice during the diurnal active period, which indicates that GPR37L1-/- mice may have impaired cardiac vagal drive. GPR37L1-/- mice of both sexes also exhibited attenuated depressor responses to ganglionic blockade with pentolinium, indicating that GPR37L1 is involved in maintaining sympathetic vasomotor tone. Interestingly, when these mice were subjected to aversive and appetitive behavioral stressors, the female GPR37L1-/- mice exhibited an attenuation of cardiovascular reactivity to aversive, but not appetitive, environmental stimuli. Together, these results suggest that loss of GPR37L1 affects autonomic maintenance of blood pressure, giving rise to sex-specific cardiovascular changes in GPR37L1-/- mice.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Madeleine R Paterson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
25
|
La Sala G, Di Pietro C, Matteoni R, Bolasco G, Marazziti D, Tocchini-Valentini GP. Gpr37l1/prosaposin receptor regulates Ptch1 trafficking, Shh production, and cell proliferation in cerebellar primary astrocytes. J Neurosci Res 2020; 99:1064-1083. [PMID: 33350496 DOI: 10.1002/jnr.24775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/24/2024]
Abstract
Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.
Collapse
Affiliation(s)
- Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| |
Collapse
|
26
|
Kunihiro J, Nabeka H, Wakisaka H, Unuma K, Khan MSI, Shimokawa T, Islam F, Doihara T, Yamamiya K, Saito S, Hamada F, Matsuda S. Prosaposin and its receptors GRP37 and GPR37L1 show increased immunoreactivity in the facial nucleus following facial nerve transection. PLoS One 2020; 15:e0241315. [PMID: 33259479 PMCID: PMC7707515 DOI: 10.1371/journal.pone.0241315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Neurotrophic factor prosaposin (PS) is a precursor for saposins A, B, C, and D, which are activators for specific sphingolipid hydrolases in lysosomes. Both saposins and PS are widely contained in various tissues. The brain, skeletal muscle, and heart cells predominantly contain unprocessed PS rather than saposins. PS and PS-derived peptides stimulate neuritogenesis and increase choline acetyltransferase activity in neuroblastoma cells and prevent programmed cell death in neurons. We previously detected increases in PS immunoactivity and its mRNA in the rat facial nucleus following facial nerve transection. PS mRNA expression increased not only in facial motoneurons, but also in microglia during facial nerve regeneration. In the present study, we examined the changes in immunoreactivity of the PS receptors GPR37 and GPR37L1 in the rat facial nucleus following facial nerve transection. Following facial nerve transection, many small Iba1- and glial fibrillary acidic protein (GFAP)-positive cells with strong GPR37L1 immunoreactivity, including microglia and astrocytes, were observed predominately on the operated side. These results indicate that GPR37 mainly works in neurons, whereas GPR37L1 is predominant in microglia or astrocytes, and suggest that increased PS in damaged neurons stimulates microglia or astrocytes via PS receptor GPR37L1 to produce neurotrophic factors for neuronal recovery.
Collapse
Affiliation(s)
- Joji Kunihiro
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Hiroyuki Wakisaka
- Department of Otorhinolaryngology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kana Unuma
- Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Md. Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
27
|
The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Sci Rep 2020; 10:19995. [PMID: 33203955 PMCID: PMC7673139 DOI: 10.1038/s41598-020-76384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
GPR37L1 is an orphan G protein-coupled receptor expressed exclusively in the brain and linked to seizures, neuroprotection and cardiovascular disease. Based upon the observation that fragments of the GPR37L1 N-terminus are found in human cerebrospinal fluid, we hypothesized that GPR37L1 was subject to post-translational modification. Heterologous expression of GPR37L1-eYFP in either HEK293 or U87 glioblastoma cells yielded two cell surface species of approximately equivalent abundance, the larger of which is N-glycosylated at Asn105. The smaller species is produced by matrix metalloprotease/ADAM-mediated proteolysis (shown by the use of pharmacological inhibitors) and has a molecular weight identical to that of a mutant lacking the entire N-terminus, Δ122 GPR37L1. Serial truncation of the N-terminus prevented GPR37L1 expression except when the entire N-terminus was removed, narrowing the predicted site of N-terminal proteolysis to residues 105–122. Using yeast expressing different G protein chimeras, we found that wild type GPR37L1, but not Δ122 GPR37L1, coupled constitutively to Gpa1/Gαs and Gpa1/Gα16 chimeras, in contrast to previous studies. We tested the peptides identified in cerebrospinal fluid as well as their putative newly-generated N-terminal ‘tethered’ counterparts in both wild type and Δ122 GPR37L1 Gpa1/Gαs strains but saw no effect, suggesting that GPR37L1 does not signal in a manner akin to the protease-activated receptor family. We also saw no evidence of receptor activation or regulation by the reported GPR37L1 ligand, prosaptide/TX14A. Finally, the proteolytically processed species predominated both in vivo and ex vivo in organotypic cerebellar slice preparations, suggesting that GPR37L1 is rapidly processed to a signaling-inactive form. Our data indicate that the function of GPR37L1 in vivo is tightly regulated by metalloprotease-dependent N-terminal cleavage.
Collapse
|
28
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
29
|
Chiani F, Orsini T, Gambadoro A, Pasquini M, Putti S, Cirilli M, Ermakova O, Tocchini-Valentini GP. Functional loss of Ccdc151 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia. Dis Model Mech 2019; 12:dmm038489. [PMID: 31383820 PMCID: PMC6737950 DOI: 10.1242/dmm.038489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/03/2019] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting normal structure and function of motile cilia, phenotypically manifested as chronic respiratory infections, laterality defects and infertility. Autosomal recessive mutations in genes encoding for different components of the ciliary axoneme have been associated with PCD in humans and in model organisms. The CCDC151 gene encodes for a coiled-coil axonemal protein that ensures correct attachment of outer dynein arm (ODA) complexes to microtubules. A correct arrangement of dynein arm complexes is required to provide the proper mechanical force necessary for cilia beat. Loss-of-function mutations in CCDC151 in humans leads to PCD disease with respiratory distress and defective left-right body asymmetry. In mice with the Ccdc151Snbl loss-of-function mutation (Snowball mutant), left-right body asymmetry with heart defects have been observed. Here, we demonstrate that loss of Ccdc151 gene function via targeted gene deletion in mice leads to perinatal lethality and congenital hydrocephalus. Microcomputed tomography (microCT) X-ray imaging of Ccdc151-β-galactosidase reporter expression in whole-mount brain and histological analysis show that Ccdc151 is expressed in ependymal cells lining the ventricular brain system, further confirming the role of Ccdc151 dysfunction in hydrocephalus development. Analyzing the features of hydrocephalus in the Ccdc151-knockout animals by microCT volumetric imaging, we observe continuity of the aqueduct of Sylvius, indicating the communicating nature of hydrocephalus in the Ccdc151-knockout animals. Congenital defects in left-right asymmetry and male infertility have been also observed in Ccdc151-null animals. Ccdc151 gene deletion in adult animals results in abnormal sperm counts and defective sperm motility.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Francesco Chiani
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Tiziana Orsini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Sabrina Putti
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Maurizio Cirilli
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Olga Ermakova
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| |
Collapse
|
30
|
Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, Wang C, Myint MZZ, Bahadar N, Zhang L, Feng X, Zheng Y. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLoS One 2019; 14:e0213702. [PMID: 31291246 PMCID: PMC6619597 DOI: 10.1371/journal.pone.0213702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Disconnected interacting protein 2 homolog A (DIP2A) is highly expressed in nervous system and respiratory system of developing embryos. However, genes regulated by Dip2a in developing brain and lung have not been systematically studied. Transcriptome of brain and lung in embryonic 19.5 day (E19.5) were compared between wild type and Dip2a-/- mice. An average of 50 million reads per sample was mapped to the reference sequence. A total of 214 DEGs were detected in brain (82 up and 132 down) and 1900 DEGs in lung (1259 up and 641 down). GO enrichment analysis indicated that DEGs in both Brain and Lung were mainly enriched in biological processes ‘DNA-templated transcription and Transcription from RNA polymerase II promoter’, ‘multicellular organism development’, ‘cell differentiation’ and ‘apoptotic process’. In addition, COG classification showed that both were mostly involved in ‘Replication, Recombination, and Repair’, ‘Signal transduction and mechanism’, ‘Translation, Ribosomal structure and Biogenesis’ and ‘Transcription’. KEGG enrichment analysis showed that brain was mainly enriched in ‘Thyroid cancer’ pathway whereas lung in ‘Complement and Coagulation Cascades’ pathway. Transcription factor (TF) annotation analysis identified Zinc finger domain containing (ZF) proteins were mostly regulated in lung and brain. Interestingly, study identified genes Skor2, Gpr3711, Runx1, Erbb3, Frmd7, Fut10, Sox11, Hapln1, Tfap2c and Plxnb3 from brain that play important roles in neuronal cell maturation, differentiation, and survival; genes Hoxa5, Eya1, Errfi1, Sox11, Shh, Igf1, Ccbe1, Crh, Fgf9, Lama5, Pdgfra, Ptn, Rbp4 and Wnt7a from lung are important in lung development. Expression levels of the candidate genes were validated by qRT-PCR. Genome wide transcriptional analysis using wild type and Dip2a knockout mice in brain and lung at embryonic day 19.5 (E19.5) provided a genetic basis of molecular function of these genes.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Analn Yang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| |
Collapse
|
31
|
Di Pietro C, La Sala G, Matteoni R, Marazziti D, Tocchini-Valentini GP. Genetic ablation of Gpr37l1 delays tumor occurrence in Ptch1 +/- mouse models of medulloblastoma. Exp Neurol 2018; 312:33-42. [PMID: 30452905 DOI: 10.1016/j.expneurol.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
The G-protein coupled receptor 37-like 1 (Gpr37l1) is specifically expressed in most astrocytic glial cells, including cerebellar Bergmann astrocytes and interacts with patched 1 (Ptch1), a co-receptor of the sonic hedgehog (Shh)-smoothened (Smo) signaling complex. Gpr37l1 null mutant mice exhibit precocious post-natal cerebellar development, with altered Shh-Smo mitogenic cascade and premature down-regulation of granule cell precursor (GCP) proliferation. Gpr37l1 expression is downregulated in medulloblastoma (MB) and upregulated in glioma and glioblastoma tumors. Shh-associated MBs originate postnatally, from dysregulated hyperproliferation of GCPs in developing cerebellum's external granular layer (EGL), as shown in heterozygous Ptch1+/- knock-out mouse strains that model human MB occurrence and progression. This study investigates cerebellar MB phenotypes in newly produced Gpr37l1, Ptch1 double mutant mice. Natural history analysis shows that Gpr37l1 genetic ablation, in Ptch1+/- model animals, results in marked deferment of post-natal tumor occurrence and decreased incidence of more aggressive tumor types. It is also associated with the delayed and diminished presence of more severe types of hyperplastic lesions in Ptch1+/- mice. Consistently, during early post-natal development Gpr37l1-/-;Ptch1+/- pups exhibit reduction in cerebellar GCP proliferation and EGL thickness and a precocious, sustained expression of wingless-type MMTV integration site member 3 (Wnt3), a specific inhibitor of Shh-induced neuronal mitogenesis, in comparison with Ptch1+/- heterozygous single mutants. These findings highlight the specific involvement of Gpr37l1 in modulating postnatal cerebellar Shh-Ptch1-Smo mitogenic signaling in both normal and pathological conditions. The novel Gpr37l1-/-;Ptch1+/- mouse models may thus be instrumental in the detailed characterization of the initial phases of Shh-associated MB insurgence and development.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy.
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
32
|
Garbugino L, Golini E, Giuliani A, Mandillo S. Prolonged Voluntary Running Negatively Affects Survival and Disease Prognosis of Male SOD1G93A Low-Copy Transgenic Mice. Front Behav Neurosci 2018; 12:275. [PMID: 30483078 PMCID: PMC6243076 DOI: 10.3389/fnbeh.2018.00275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a disease in which physical activity plays a controversial role. Epidemiological studies indicate an association between intense exercise and risk of developing ALS. To study the impact of physical activity on ALS, mouse models rely mostly on forced exercise. In this study we hypothesized that voluntary wheel running could represent a better model of the influence of exercise in the pathogenesis of ALS. We used an automated home-cage running-wheel system that enables individual monitoring of performance. To verify the effect of voluntary running on disease progression, prognosis and survival as well as motor functions, we challenged SOD1G93A low-copy male and female mice on one (1 RW, at age 24 weeks) or multiple (3 RW) running sessions at age 13, 18, and 24 weeks. In parallel we measured performance on Rotarod and Grip strength tests at different ages. Several parameters were analyzed through Principal Component Analysis in order to detect what indices correlate and may be useful for deeper understanding of the relation between exercise and disease development. We found mutant male mice more negatively affected than females by prolonged and repeated exercise. SOD1G93A low-copy male mice showed shorter survival, increased body weight loss and poorer disease prognosis when exposed to multiple running sessions. These findings could encourage the investigation of the pathogenetic mechanisms underlying the supposedly increased risk to develop ALS in humans engaged in specific and intense exercise activities.
Collapse
Affiliation(s)
- Luciana Garbugino
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Elisabetta Golini
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Mandillo
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
33
|
Hertz E, Terenius L, Vukojević V, Svenningsson P. GPR37 and GPR37L1 differently interact with dopamine 2 receptors in live cells. Neuropharmacology 2018; 152:51-57. [PMID: 30423289 PMCID: PMC6599889 DOI: 10.1016/j.neuropharm.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 02/09/2023]
Abstract
Receptor-receptor interactions are essential to fine tune receptor responses and new techniques enable closer characterization of the interactions between involved proteins directly in the plasma membrane. Fluorescence cross-correlation spectroscopy (FCCS), which analyses concurrent movement of bound molecules with single-molecule detection limit, was here used to, in live N2a cells, study interactions between the Parkinson's disease (PD) associated orphan receptor GPR37, its homologue GPR37L1, and the two splice variants of the dopamine 2 receptor (D2R). An interaction between GPR37 and both splice forms of D2R was detected. 4-phenylbutyrate (4-PBA), a neuroprotective chemical chaperone known to increase GPR37 expression at the cell surface, increased the fraction of interacting molecules. The interaction was also increased by pramipexole, a D2R agonist commonly used in the treatment of PD, indicating a possible clinically relevance. Cross-correlation, indicating interaction between GPR37L1 and the short isoform of D2R, was also detected. However, this interaction was not changed with 4-PBA or pramipexole treatment. Overall, these data provide further evidence that heteromeric GPR37-D2R exist and can be pharmacologically modulated, which is relevant for the treatment of PD. This article is part of the Special Issue entitled ‘Receptor heteromers and their allosteric receptor-receptor interactions’. GPCR interaction is studied with fluorescence cross-correlation spectroscopy. Interaction between GPR37 and both isoforms of D2R is detected in live cells. GPR37's homologue GPR37L1 is detected to interact with D2RS in live cells. GPR37-D2R interaction is increased by D2-like agonist and 4-PBA treatment.
Collapse
Affiliation(s)
- E Hertz
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - L Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - V Vukojević
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - P Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
34
|
Orphan receptor GPR37L1 contributes to the sexual dimorphism of central cardiovascular control. Biol Sex Differ 2018; 9:14. [PMID: 29625592 PMCID: PMC5889568 DOI: 10.1186/s13293-018-0173-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background Over 100 mammalian G protein-coupled receptors are yet to be matched with endogenous ligands; these so-called orphans are prospective drug targets for the treatment of disease. GPR37L1 is one such orphan, abundant in the brain and detectable as mRNA in the heart and kidney. GPR37L1 ablation was reported to cause hypertension and left ventricular hypertrophy, and thus, we sought to further define the role of GPR37L1 in blood pressure homeostasis. Methods We investigated the cardiovascular effects of GPR37L1 using wild-type (GPR37L1wt/wt) and null (GPR37L1KO/KO) mice established on a C57BL/6J background, both under baseline conditions and during AngII infusion. We profiled GPR37L1 tissue expression, examining the endogenous receptor by immunoblotting and a β-galactosidase reporter mouse by immunohistochemistry. Results GPR37L1 protein was abundant in the brain but not detectable in the heart and kidney. We measured blood pressure in GPR37L1wt/wt and GPR37L1KO/KO mice and found that deletion of GPR37L1 causes a female-specific increase in systolic, diastolic, and mean arterial pressures. When challenged with short-term AngII infusion, only male GPR37L1KO/KO mice developed exacerbated left ventricular hypertrophy and evidence of heart failure, while the female GPR37L1KO/KO mice were protected from cardiac fibrosis. Conclusions Despite its absence in the heart and kidney, GPR37L1 regulates baseline blood pressure in female mice and is crucial for cardiovascular compensatory responses in males. The expression of GPR37L1 in the brain, yet absence from peripheral cardiovascular tissues, suggests this orphan receptor is a hitherto unknown contributor to central cardiovascular control. Electronic supplementary material The online version of this article (10.1186/s13293-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat Struct Mol Biol 2018; 25:244-251. [PMID: 29483647 DOI: 10.1038/s41594-018-0032-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3' UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3' trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavior.
Collapse
|
36
|
Temporal Profiling of Astrocyte Precursors Reveals Parallel Roles for Asef during Development and after Injury. J Neurosci 2017; 36:11904-11917. [PMID: 27881777 DOI: 10.1523/jneurosci.1658-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022] Open
Abstract
Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.
Collapse
|
37
|
Jolly S, Bazargani N, Quiroga AC, Pringle NP, Attwell D, Richardson WD, Li H. G protein-coupled receptor 37-like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia. Glia 2017; 66:47-61. [PMID: 28795439 PMCID: PMC5724489 DOI: 10.1002/glia.23198] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
We show that the G protein‐coupled receptor GPR37‐like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1–/– mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1‐mediated signalling inhibited astrocyte glutamate transporters and – surprisingly, given its lack of expression in neurons – reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D‐serine or TNF‐α, two astrocyte‐derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1–/– brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.
Collapse
Affiliation(s)
- Sarah Jolly
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Narges Bazargani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Alejandra C Quiroga
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Nigel P Pringle
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
38
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
39
|
GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant. Neurobiol Dis 2017; 106:181-190. [PMID: 28688853 DOI: 10.1016/j.nbd.2017.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022] Open
Abstract
Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.
Collapse
|
40
|
Smith BM, Giddens MM, Neil J, Owino S, Nguyen TT, Duong D, Li F, Hall RA. Mice lacking Gpr37 exhibit decreased expression of the myelin-associated glycoprotein MAG and increased susceptibility to demyelination. Neuroscience 2017. [PMID: 28642167 DOI: 10.1016/j.neuroscience.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GPR37 is an orphan G protein-coupled receptor that is predominantly expressed in the brain and found at particularly high levels in oligodendrocytes. GPR37 has been shown to exert effects on oligodendrocyte differentiation and myelination during development, but the molecular basis of these actions is incompletely understood and moreover nothing is known about the potential role(s) of this receptor under demyelinating conditions. To shed light on the fundamental biology of GPR37, we performed proteomic studies comparing protein expression levels in the brains of mice lacking GPR37 and its close relative GPR37-like 1 (GPR37L1). These studies revealed that one of the proteins most sharply decreased in the brains of Gpr37/Gpr37L1 double knockout mice is the myelin-associated glycoprotein MAG. Follow-up Western blot studies confirmed this finding and demonstrated that genetic deletion of Gpr37, but not Gpr37L1, results in strikingly decreased brain expression of MAG. Further in vitro studies demonstrated that GPR37 and MAG form a complex when expressed together in cells. As loss of MAG has previously been shown to result in increased susceptibility to brain insults, we additionally assessed Gpr37-knockout (Gpr37-/-) vs. wild-type mice in the cuprizone model of demyelination. These studies revealed that Gpr37-/- mice exhibit dramatically increased loss of myelin in response to cuprizone, yet do not show any increased loss of oligodendrocyte precursor cells or mature oligodendrocytes. These findings reveal that loss of GPR37 alters oligodendrocyte physiology and increases susceptibility to demyelination, indicating that GPR37 could be a potential drug target for the treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Brilee M Smith
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Neil
- Neurorepair Therapeutics, Inc., Research Triangle Park, NC, USA
| | - Sharon Owino
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Duc Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Fengqiao Li
- Neurorepair Therapeutics, Inc., Research Triangle Park, NC, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Berger BS, Acebron SP, Herbst J, Koch S, Niehrs C. Parkinson's disease-associated receptor GPR37 is an ER chaperone for LRP6. EMBO Rep 2017; 18:712-725. [PMID: 28341812 DOI: 10.15252/embr.201643585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky β-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/β-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.
Collapse
Affiliation(s)
- Birgit S Berger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan Koch
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany .,Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
42
|
Li X, Nabeka H, Saito S, Shimokawa T, Khan MSI, Yamamiya K, Shan F, Gao H, Li C, Matsuda S. Expression of prosaposin and its receptors in the rat cerebellum after kainic acid injection. IBRO Rep 2017; 2:31-40. [PMID: 30135931 PMCID: PMC6084904 DOI: 10.1016/j.ibror.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Prosaposin (PSAP), a highly conserved glycoprotein, is a precursor of saposins A–D. Accumulating evidence suggests that PSAP is a neurotrophic factor that induces differentiation and prevents death in a variety of neuronal cells through the active region within the saposin C domain both in vivo and in vitro. Recently, GPR37 and GPR37L1 were recognized as PSAP receptors. In this study, we examined the alteration in expression of PSAP and its receptors in the cerebellum using rats injected with kainic acid (KA). The results show that PSAP was strongly expressed in the cytoplasm of Purkinje cells and interneurons in the molecular layer, and that PSAP expression in both types of neurons was markedly enhanced following KA treatment. Immunoblotting revealed that the expression of GPR37 was diminished significantly three days after KA injection compared with control rats; however, no changes were observed through immunostaining. No discernable changes were found in GPR37L1. These findings may help us to understand the role of PSAP and the GPR37 and GPR37L1 receptors in alleviating the neural damage caused by KA.
Collapse
Key Words
- BSA, bovine serum albumin
- Cerebellum
- ER, endoplasmic reticulum
- GPCR, G protein-coupled receptor
- GPR37
- GPR37L1
- H-E staining, hematoxylin-eosin staining
- IF, immunofluorescence
- IHC, immunohistochemistry
- ISH, in situ hybridization
- KA, kainic acid
- Kainic acid
- Neurodegeneration
- PSAP, prosaposin
- Prosaposin
- SSC, standard saline citrate
Collapse
Affiliation(s)
- Xuan Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Huiling Gao
- College of Life and Health Science, Northeastern University, Shenyang, PR China
| | - Cheng Li
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
43
|
Coleman JLJ, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal 2017; 33:1-9. [PMID: 28188824 DOI: 10.1016/j.cellsig.2017.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are a vast family of membrane-traversing proteins, essential to the ability of eukaryotic life to detect, and mount an intracellular response to, a diverse range of extracellular stimuli. GPCRs have evolved with archetypal features including an extracellular N-terminus and intracellular C-terminus that flank a transmembrane structure of seven sequential helices joined by intracellular and extracellular loops. These structural domains contribute to the ability of a GPCR to be correctly synthesised and inserted into the cell membrane, to interact with its cognate ligand(s) and to couple with signal-transducing heterotrimeric G proteins, allowing the activated receptor to selectively modulate a number of signalling cascades. Whilst well known for its importance in receptor translation and trafficking, the GPCR N-terminus is underexplored as a participant in receptor signalling. This review aims to discuss and integrate recent advances in knowledge of the vital roles of the GPCR N-terminus in receptor signalling.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Tony Ngo
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola J Smith
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
44
|
Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, Tocchini-Valentini GP. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol 2017; 37:145-154. [PMID: 26935062 DOI: 10.1007/s10571-016-0354-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy.
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Zeinab Abbaszadeh
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Elisabetta Golini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
45
|
Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat Chem Biol 2016; 13:235-242. [PMID: 27992882 DOI: 10.1038/nchembio.2266] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.
Collapse
|
46
|
Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, Erickson RP, Canterini S, Fiorenza MT. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun 2016; 4:94. [PMID: 27586038 PMCID: PMC5009663 DOI: 10.1186/s40478-016-0370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs. These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.
Collapse
|
47
|
Coleman JLJ, Ngo T, Schmidt J, Mrad N, Liew CK, Jones NM, Graham RM, Smith NJ. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity. Sci Signal 2016; 9:ra36. [PMID: 27072655 DOI: 10.1126/scisignal.aad1089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Johannes Schmidt
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nadine Mrad
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chu Kong Liew
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Nicola J Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
48
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
49
|
Smith NJ. Drug Discovery Opportunities at the Endothelin B Receptor-Related Orphan G Protein-Coupled Receptors, GPR37 and GPR37L1. Front Pharmacol 2015; 6:275. [PMID: 26635605 PMCID: PMC4648071 DOI: 10.3389/fphar.2015.00275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
Orphan G protein-coupled receptors (GPCRs) represent a largely untapped resource for the treatment of a variety of diseases, despite sophisticated advances in drug discovery. Two promising orphan GPCRs are the endothelin B receptor-like proteins, GPR37 [ET(B)R-LP, Pael-R] and GPR37L1 [ET(B)R-LP-2]. Originally identified through searches for homologs of endothelin and bombesin receptors, neither GPR37 nor GPR37L1 were found to bind endothelins or related peptides. Instead, GPR37 was proposed to be activated by head activator (HA) and both GPR37 and GPR37L1 have been linked to the neuropeptides prosaposin and prosaptide, although these pairings are yet to be universally acknowledged. Both orphan GPCRs are widely expressed in the brain, where GPR37 has received the most attention for its link to Parkinson’s disease and parkinsonism, while GPR37L1 deletion leads to precocious cerebellar development and hypertension. In this review, the existing pharmacology and physiology of GPR37 and GPR37L1 is discussed and the potential therapeutic benefits of targeting these receptors are explored.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Cardiology Program, Victor Chang Cardiac Research Institute , Darlinghurst, NSW, Australia ; St. Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW, Australia
| |
Collapse
|
50
|
Molofsky AV, Deneen B. Astrocyte development: A Guide for the Perplexed. Glia 2015; 63:1320-9. [PMID: 25963996 DOI: 10.1002/glia.22836] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023]
Abstract
Astrocytes are the predominant cell type in the brain and perform key functions vital to CNS physiology, including blood brain barrier formation and maintenance, synaptogenesis, neurotransmission, and metabolic regulation. To fully understand the contributions of astrocytes to brain function, it will be important to bridge the existing gap between development and physiology. In this review, we provide an overview of Astrocyte development, including recent insights into molecular mechanisms of astrocyte specification, regional patterning and proliferation. This developmental perspective is complemented with recent findings that describe the functional maturation of astrocytes and their prospective diversity. Future progress in understanding Astrocyte development will depend on the development of astrocyte- stage specific markers and tools for manipulating astrocytes without affecting neuron production. Ultimately, a mechanistic approach to Astrocyte development will be crucial to developing new treatments for the many neurodevelopmental, neurodegenerative, neuroimmune, and neoplastic diseases involving astrocyte dysfunction.
Collapse
Affiliation(s)
- Anna Victoria Molofsky
- Department of Psychiatry, University of California-San Francisco, San Francisco, California
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|