1
|
Dichtel LE, Corey KE, Haines MS, Chicote ML, Lee H, Kimball A, Colling C, Simon TG, Long MT, Husseini J, Bredella MA, Miller KK. Growth Hormone Administration Improves Nonalcoholic Fatty Liver Disease in Overweight/Obesity: A Randomized Trial. J Clin Endocrinol Metab 2023; 108:e1542-e1550. [PMID: 37379033 PMCID: PMC10655511 DOI: 10.1210/clinem/dgad375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
CONTEXT Overweight and obesity are associated with relative growth hormone (GH) deficiency, which has been implicated in the development of nonalcoholic fatty liver disease (NAFLD). NAFLD is a progressive disease without effective treatments. OBJECTIVE We hypothesized that GH administration would reduce hepatic steatosis in individuals with overweight/obesity and NAFLD. METHODS In this 6-month randomized, double-blind, placebo-controlled trial of low-dose GH administration, 53 adults aged 18 to 65 years with BMI ≥25 kg/m2 and NAFLD without diabetes were randomized to daily subcutaneous GH or placebo, targeting insulin-like growth factor 1 (IGF-1) to the upper normal quartile. The primary endpoint was intrahepatic lipid content (IHL) by proton magnetic resonance spectroscopy (1H-MRS) assessed before treatment and at 6 months. RESULTS Subjects were randomly assigned to a treatment group (27 GH; 26 placebo), with 41 completers (20 GH and 21 placebo) at 6 months. Reduction in absolute % IHL by 1H-MRS was significantly greater in the GH vs placebo group (mean ± SD: -5.2 ± 10.5% vs 3.8 ± 6.9%; P = .009), resulting in a net mean treatment effect of -8.9% (95% CI, -14.5 to -3.3%). All side effects were similar between groups, except for non-clinically significant lower extremity edema, which was more frequent in the GH vs placebo group (21% vs 0%, P = .02). There were no study discontinuations due to worsening of glycemic status, and there were no significant differences in change in glycemic measures or insulin resistance between the GH and placebo groups. CONCLUSION GH administration reduces hepatic steatosis in adults with overweight/obesity and NAFLD without worsening glycemic measures. The GH/IGF-1 axis may lead to future therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Melanie S Haines
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Mark L Chicote
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Allison Kimball
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Caitlin Colling
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Tracey G Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jad Husseini
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Soler Palacios B, Villares R, Lucas P, Rodríguez-Frade JM, Cayuela A, Piccirillo JG, Lombardía M, Delgado Gestoso D, Fernández-García M, Risco C, Barbas C, Corrales F, Sorzano COS, Martínez-Martín N, Conesa JJ, Iborra FJ, Mellado M. Growth hormone remodels the 3D-structure of the mitochondria of inflammatory macrophages and promotes metabolic reprogramming. Front Immunol 2023; 14:1200259. [PMID: 37475858 PMCID: PMC10354525 DOI: 10.3389/fimmu.2023.1200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. Methods Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. Results We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. Conclusions Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Cayuela
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Jonathan G. Piccirillo
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Manuel Lombardía
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - David Delgado Gestoso
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Miguel Fernández-García
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
- Department of Basic Medical Sciences, Medicine Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Cristina Risco
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria Martínez-Martín
- Tissue and Organ Homeostasis Program, Centro de Biologia Molecular Severo Ochoa, The Spanish National Research Council (CSIC)–Autonomus University of Madrid (UAM), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Francisco J. Iborra
- Príncipe Felípe Research Centre (Associated Unit to the Biomedicine Institute of Valencia), Biomedicine Institute of Valencia, Valencia, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Bell S, Young JA, List EO, Basu R, Geitgey DK, Lach G, Lee K, Swegan D, Caggiano LJ, Okada S, Kopchick JJ, Berryman DE. Increased Fibrosis in White Adipose Tissue of Male and Female bGH Transgenic Mice Appears Independent of TGF-β Action. Endocrinology 2023; 164:7069260. [PMID: 36869769 DOI: 10.1210/endocr/bqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Fibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-β in the development of WAT fibrosis. Our findings established that female bGH mice, like males, experience a depot-dependent increase in WAT fibrosis, and bGH mice of both sexes have elevated circulating levels of several markers of collagen turnover. Using various methods, TGF-β signaling was found unchanged or decreased-as opposed to an expected increase-despite the marked fibrosis in WAT of bGH mice. However, acute GH treatments in vivo, in vitro, or ex vivo did elicit a modest increase in TGF-β signaling in some experimental systems. Finally, single nucleus RNA sequencing confirmed no perturbation in TGF-β or its receptor gene expression in any WAT cell subpopulations of Sc bGH WAT; however, a striking increase in B lymphocyte infiltration in bGH WAT was observed. Overall, these data suggest that bGH WAT fibrosis is independent of the action of TGF-β and reveals an intriguing shift in immune cells in bGH WAT that should be further explored considering the increasing importance of B cell-mediated WAT fibrosis and pathology.
Collapse
Affiliation(s)
- Stephen Bell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Jonathan A Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | | | - Grace Lach
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Lee
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- College of Arts and Sciences, Ohio University, Athens, OH 45701, USA
| | | | - Shigeru Okada
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
In vivo and in vitro evidence for growth hormone-like bioactivity of Rhizoma Anemarrhenae extract. Biomed Pharmacother 2022; 153:113489. [DOI: 10.1016/j.biopha.2022.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
|
5
|
Huang Z, Xiao L, Xiao Y, Chen C. The Modulatory Role of Growth Hormone in Inflammation and Macrophage Activation. Endocrinology 2022; 163:6607489. [PMID: 35695371 DOI: 10.1210/endocr/bqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Inflammation is a body's response to remove harmful stimuli and heal tissue damage, which is involved in various physiology and pathophysiology conditions. If dysregulated, inflammation may lead to significant negative impacts. Growth hormone (GH) has been shown responsible for not only body growth but also critical in the modulation of inflammation. In this review, we summarize the current clinical and animal studies about the complex and critical role of GH in inflammation. Briefly, GH excess or deficiency may lead to pathological inflammatory status. In inflammatory diseases, GH may serve as an inflammatory modulator to control the disease progression and promote disease resolution. The detailed mechanisms and signaling pathways of GH on inflammation, with a focus on the modulation of macrophage polarization, are carefully discussed with potential direction for future investigations.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Dichtel LE, Cordoba-Chacon J, Kineman RD. Growth Hormone and Insulin-Like Growth Factor 1 Regulation of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2022; 107:1812-1824. [PMID: 35172328 PMCID: PMC9202731 DOI: 10.1210/clinem/dgac088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Patients with obesity have a high prevalence of nonalcoholic fatty liver disease (NAFLD), representing a spectrum of simple steatosis to nonalcoholic steatohepatitis (NASH), without and with fibrosis. Understanding the etiology of NAFLD is clinically relevant since NAFLD is an independent risk factor for diabetes and cardiovascular disease. In addition, NASH predisposes patients to the development of cirrhosis and hepatocellular carcinoma, and NASH cirrhosis represents the fastest growing indication for liver transplantation in the United States. It is appreciated that multiple factors are involved in the development and progression of NAFLD. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) regulate metabolic, immune, and hepatic stellate cell function, and alterations in the production and function of GH is associated with obesity and NAFLD/NASH. Therefore, this review will focus on the potential role of GH and IGF1 in the regulation of hepatic steatosis, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| |
Collapse
|
8
|
de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. Obesity and its impact on COVID-19. J Mol Med (Berl) 2021; 99:899-915. [PMID: 33824998 PMCID: PMC8023779 DOI: 10.1007/s00109-021-02072-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.
Collapse
Affiliation(s)
- Angélica J M de Leeuw
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | | | - Annemarijn C Wellen
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
9
|
Lubrano C, Masi D, Risi R, Balena A, Watanabe M, Mariani S, Gnessi L. Is Growth Hormone Insufficiency the Missing Link Between Obesity, Male Gender, Age, and COVID-19 Severity? Obesity (Silver Spring) 2020; 28:2038-2039. [PMID: 32808459 PMCID: PMC7461181 DOI: 10.1002/oby.23000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Evidence has emerged regarding an increased risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with worse prognosis in elderly male patients with obesity, and blunted growth hormone (GH) secretion represents a feature of this population subgroup. Here, a comprehensive review of the possible links between GH-insulinlike growth factor 1 axis impairment and coronavirus disease 2019 (COVID-19) severity is offered. First, unequivocal evidence suggests that immune system dysregulation represents a key element in determining SARS-CoV-2 severity, as well as the association with adult-onset GH deficiency (GHD); notably, if GH is physiologically involved in the development and maintenance of the immune system, its pharmacological replacement in GHD patients seems to positively influence their inflammatory status. In addition, the impaired fibrinolysis associated with GHD may represent a further link between GH-insulin-like growth factor 1 axis impairment and COVID-19 severity, as it has been associated with both conditions. In conclusion, several sources of evidence have supported a relationship between GHD and COVID-19, and they also shed light upon potential beneficial effects of recombinant GH treatment on COVID-19 patients.
Collapse
Affiliation(s)
- Carla Lubrano
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Davide Masi
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Renata Risi
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Angela Balena
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Mikiko Watanabe
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Stefania Mariani
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| | - Lucio Gnessi
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeViale Regina ElenaRomeItaly
| |
Collapse
|
10
|
Shapiro MR, Foster TP, Perry DJ, Rosenfeld RG, Dauber A, McNichols JA, Muir A, Hwa V, Brusko TM, Jacobsen LM. A Novel Mutation in Insulin-Like Growth Factor 1 Receptor (c.641-2A>G) Is Associated with Impaired Growth, Hypoglycemia, and Modified Immune Phenotypes. Horm Res Paediatr 2020; 93:322-334. [PMID: 33113547 PMCID: PMC7726096 DOI: 10.1159/000510764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 1 receptor (IGF1R) mutations lead to systemic disturbances in growth and glucose homeostasis due to widespread IGF1R expression throughout the body. IGF1R is expressed by innate and adaptive immune cells, facilitating their development and exerting immunomodulatory roles in the periphery. CASE PRESENTATION We report on a family presenting with a novel heterozygous IGF1R mutation with characterization of the mutation, IGF1R expression, and immune phenotyping. Twin probands presented clinically with short stature and hypoglycemia. Variable phenotypic expression was seen in 2 other family members carrying the IGF1R mutation. The probands were treated with exogenous growth hormone therapy and dietary cornstarch, improving linear growth and reducing hypoglycemic events. IGF1R c.641-2A>G caused abnormal mRNA splicing and premature protein termination. Flow cytometric immunophenotyping demonstrated lower IGF1R on peripheral blood mononuclear cells from IGF1R c.641-2A>G subjects. This alteration was associated with reduced levels of T-helper 17 cells and a higher percentage of T-helper 1 cells compared to controls, suggesting decreased IGF1R expression may affect CD4+ Th-cell lineage commitment. DISCUSSION Collectively, these data suggest a novel loss-of-function mutation (c.641-2A>G) leads to aberrant mRNA splicing and IGF1R expression resulting in hypoglycemia, growth restriction, and altered immune phenotypes.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Timothy P Foster
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
| | - James A McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Vivian Hwa
- Division of Endocrinology, Department of Pediatrics, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Laura M Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA,
| |
Collapse
|
11
|
Soler Palacios B, Nieto C, Fajardo P, González de la Aleja A, Andrés N, Dominguez-Soto Á, Lucas P, Cuenda A, Rodríguez-Frade JM, Martínez-A C, Villares R, Corbí ÁL, Mellado M. Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:776-788. [PMID: 32591394 DOI: 10.4049/jimmunol.1901330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Concha Nieto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Fajardo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Arturo González de la Aleja
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Nuria Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángeles Dominguez-Soto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ana Cuenda
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Carlos Martínez-A
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ricardo Villares
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángel L Corbí
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| |
Collapse
|
12
|
Schneider A, Wood HN, Geden S, Greene CJ, Yates RM, Masternak MM, Rohde KH. Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Sci Rep 2019; 9:19348. [PMID: 31852980 PMCID: PMC6920138 DOI: 10.1038/s41598-019-56017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Macrophages are an important component of the innate immune response. Priming and activation of macrophages is stimulated by cytokines (i.e IFNγ). However, growth hormone (GH) can also stimulate macrophage activation. Based on these observations, the goal of this work was to 1) to compare the transcriptome profile of macrophages activated in vitro with GH and IFNγ, and 2) to assess the impact of GH on key macrophage functional properties like reactive oxygen species (ROS) production and phagosomal proteolysis. To assess the global transcriptional and functional impact of GH on macrophage programming, bone marrow derived macrophages were treated with GH or IFNγ. Our data strongly support a potential link between GH, which wanes with age, and impaired macrophage function. The notable overlap of GH with IFNγ-induced pathways involved in innate immune sensing of pathogens and antimicrobial responses argue for an important role for GH in macrophage priming and maturation. By using functional assays that report on biochemical activities within the lumen of phagosomes, we have also shown that GH alters physiologically relevant processes such as ROS production and proteolysis. These changes could have far reaching impacts on antimicrobial capacity, signaling, and antigen presentation.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Hillary N Wood
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Sandra Geden
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| | - Kyle H Rohde
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
13
|
Teixeira CJ, Santos-Silva JC, de Souza DN, Rafacho A, Anhe GF, Bordin S. Dexamethasone during pregnancy impairs maternal pancreatic β-cell renewal during lactation. Endocr Connect 2019; 8:120-131. [PMID: 30768422 PMCID: PMC6376996 DOI: 10.1530/ec-18-0505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic β-cell proliferation rate and mass. Increased apoptosis during early lactation contributes to the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids during pregnancy has been previously reported to impair insulin secretion, but its impacts on pancreatic islet morphological changes during pregnancy and lactation have not been described. To address this issue, we assessed the morphological and molecular characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX). Pancreatic islets were analyzed on the 20th day of pregnancy (P20) and on the 3rd, 8th, 14th and 21st days of lactation (L3, L8, L14 and L21, respectively). Pancreatic islets from CTL rats exhibited transitory increases in cellular proliferation and pancreatic β-cell mass at P20, which were reversed at L3, when a transitory increase in apoptosis was observed. This was followed by the appearance of morphological features of pancreatic islet neogenesis at L8. Islets from DEX rats did not demonstrate an increase in apoptosis at L3, which coincided with an increase in the expression of M2 macrophage markers relative to M1 macrophage and T lymphocyte markers. Islets from DEX rats also did not exhibit the morphological characteristics of pancreatic islet neogenesis at L8. Our data demonstrate that maternal pancreatic islets undergo a renewal process during lactation that is impaired by exposure to DEX during pregnancy.
Collapse
Affiliation(s)
- Caio Jordão Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gabriel Forato Anhe
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Correspondence should be addressed to S Bordin:
| |
Collapse
|
14
|
Tao J, Zhang M, Wen Z, Wang B, Zhang L, Ou Y, Tang X, Yu X, Jiang Q. Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomed Pharmacother 2018; 106:1727-1733. [DOI: 10.1016/j.biopha.2018.07.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
|
15
|
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, García-Cuesta EM, Rodríguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, Garin MI, Gomariz RP, Mellado M. Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis. Front Immunol 2018; 9:1165. [PMID: 29887869 PMCID: PMC5980961 DOI: 10.3389/fimmu.2018.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response.
Collapse
Affiliation(s)
- Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Gabriel Criado
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José M Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José Luis Pablos
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
16
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|
17
|
Wang S, Wu J, Wang N, Zeng L, Wu Y. The role of growth hormone receptor in β cell function. Growth Horm IGF Res 2017; 36:30-35. [PMID: 28915386 DOI: 10.1016/j.ghir.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Growth hormone (GH) exerts numerous effects on tissues through binding to its receptor, GHR, which resides on cell membranes in many different organs and tissues. Endocrine pancreatic β cells are the only source of insulin secretion in response to metabolic demand, thereby regulating blood glucose and maintaining metabolic homeostasis. β cell dysfunction is the main composition of diabetes mellitus. Numerous studies have provided strong evidence that GHR signaling plays an independent role in β cell function. In this review, we focus on the role of GHR signaling in β cell actions and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Jin Wu
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Ning Wang
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Li Zeng
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China.
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
18
|
Alkharusi A, Mirecki-Garrido M, Ma Z, Zadjali F, Flores-Morales A, Nyström T, Castrillo A, Bjorklund A, Norstedt G, Fernandez-Pérez L. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice. Horm Mol Biol Clin Investig 2017; 26:67-76. [PMID: 26562042 DOI: 10.1515/hmbci-2015-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetes type 1 is characterized by the failure of beta cells to produce insulin. Suppressor of cytokine signaling (SOCS) proteins are important regulators of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Previous studies have shown that GH can prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. METHODOLOGY The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes in SOCS2-/- mice. RESULTS We show that 6-month-old SOCS2-/- mice, but not 2-month-old mice, were less sensitive to MLDSTZ-induced diabetes, compared to controls. MLDSTZ treatment induced glucose intolerance in both SOCS2+/+ and SOCS2-/- mice, as shown by glucose tolerance tests, with SOCS2+/+ mice showing a more marked intolerance, compared to SOCS2-/- mice. Furthermore, insulin tolerance tests showed that the SOCS2-/- mice have an improved hypoglycemic response to exogenous insulin, compared to SOCS2+/+ mice. Moreover, in isolated islets, lipotoxic effects on insulin release could partly be overcome by ligands, which bind to GH or PRL receptors. CONCLUSION Knockdown of SOCS2 makes mice less sensitive to MLDSTZ. These results are consistent with the proposal that elimination of SOCS2 in pancreatic islets creates a state of β-cell hypersensitivity to GH/PRL that mimics events in pregnancy, and which is protective against MLDSTZ-induced type I diabetes in mice. SOCS2-dependent control of β-cell survival may be of relevance to islet regeneration and survival in transplantation.
Collapse
|
19
|
Liu TE, Wang S, Zhang L, Guo L, Yu Z, Chen C, Zheng J. Growth hormone treatment of premature ovarian failure in a mouse model via stimulation of the Notch-1 signaling pathway. Exp Ther Med 2016; 12:215-221. [PMID: 27347041 PMCID: PMC4906989 DOI: 10.3892/etm.2016.3326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Premature ovarian failure (POF) is a condition affecting 1% of women in the general population, causing amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40. Currently, POF cannot be reversed and, although treatments are available, there is an urgent need for improved treatment strategies. Growth hormone (GH) is a pleiotropic hormone that affects a broad spectrum of physiological functions, from carbohydrate and lipid metabolism to the immune response. GH has previously been used to treat POF in non-transgenic preclinical trials, but the biochemical mechanism underlying these effects are unclear. In the present study, a mouse model of POF was generated using cyclophosphamide. Treatment of POF mice with recombinant mouse growth hormone (rmGH) was revealed to markedly reduce POF histopathology in ovarian tissue, relieve ovarian granulosa cell injury, reduce the number of atretic follicles and significantly increase the number of mature oocytes. Furthermore, an enzyme-linked immunosorbent assay revealed that plasma estradiol levels increased and plasma follicle stimulating hormone levels decreased with time in a group of mice treated with a medium dose of rmGH (0.8 mg/kg) when compared with the POF model group (P<0.05). In addition, reverse transcription-quantitative polymerase chain reaction and immunohistochemical analysis demonstrated elevated levels of Notch-1 signaling pathway factors (Notch1, CBF1, and HES1) in wild-type mice and those treated with medium and high doses of rmGH, but not in those treated with low doses of rmGH. In conclusion, GH may promote ovarian tissue repair, estrogen release and oocyte maturation via activation of the Notch-1 signaling pathway in ovarian tissue.
Collapse
Affiliation(s)
- T E Liu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China; Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Suwei Wang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Lina Zhang
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Jin Zheng
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
20
|
Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice. Proc Natl Acad Sci U S A 2015; 112:13651-6. [PMID: 26474831 DOI: 10.1073/pnas.1518540112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus.
Collapse
|
21
|
Assar S, Riahi K, Bashirnezhad S, Yazdanpanah L, Latifi SM. The Relationship between Metabolic Control and Growth in Children with Type I Diabetes Mellitus in Southwest of Iran. SCIENTIFICA 2015; 2015:917542. [PMID: 26457227 PMCID: PMC4592738 DOI: 10.1155/2015/917542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Background. Metabolic control is an important factor in growth of children with type I diabetes. This study assessed the relationship between growth and metabolic control in such children. Materials and Methods. 83 children with diabetes were studied. They were examined for weight and height gain and HbA1C was quantified every 3 months for one year. The growth process was studied in patients who were divided into 3 groups according to their HbA1C amounts, consisting of good, intermediate, and poor metabolic control. Results. Mean age of cases was 7.6 ± 2. The presenting sign at the onset of disease was diabetic ketoacidosis in 44.6%. The average HbA1C amount was 8.89%. The average weight SDS at diagnosis was -0.18 and at the end of the study was 0.45 (P<0.001). The average height SDS at diagnosis was -0.04 and at the end of the study was -0.07 (P=0.64). A significant difference in weight SDS changes was only seen between patients with good and poor metabolic control (P=0.04). Conclusion. Poor metabolic control can decrease height growth but has minimal influence on weight. Metabolic control was not the only predictive factor of physical growth in children with diabetes.
Collapse
Affiliation(s)
- Shide Assar
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Koroush Riahi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shiva Bashirnezhad
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Yazdanpanah
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mahmoud Latifi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Scheinman EJ, Damouni R, Caspi A, Shen-Orr Z, Tiosano D, LeRoith D. The beneficial effect of growth hormone treatment on islet mass in streptozotocin-treated mice. Diabetes Metab Res Rev 2015; 31:492-9. [PMID: 25529355 DOI: 10.1002/dmrr.2631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease, characterized by a loss of pancreatic β-cell mass and function, which results in dramatic reductions in insulin secretion and circulating insulin levels. Patients with type 1 diabetes are traditionally treated with insulin injections and insulin pumps ex vivo or undergo transplantation. Growth hormone (GH) has been shown to be involved in β-cell function and survival in culture. METHODS Twelve-week-old female C57BL/6 mice were treated with streptozotocin and monitored for their weight and blood glucose levels. Fourteen days post-initial injection, these mice were separated into two groups at random. One group was treated with GH while the other treated with vehicle for up to 3 weeks. These mice were compared with mice not treated with streptozotocin. RESULTS Under our experimental conditions, we observed that mice treated with GH had larger islets and higher serum insulin levels than streptozotocin-treated mice treated with saline (0.288 vs. 0.073 ng/mL, p < 0.01). CONCLUSIONS Our data demonstrate that GH may rescue islets and therefore may possess therapeutic potential in the treatment of type 1 diabetes, although consideration should be made regarding GH's effect on insulin resistance.
Collapse
Affiliation(s)
- Eyal J Scheinman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawan Damouni
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avishay Caspi
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Zila Shen-Orr
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Dov Tiosano
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Endocrinology Unit, Meyer Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Derek LeRoith
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
23
|
Labonte AC, Tosello-Trampont AC, Hahn YS. The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 2014; 37:275-85. [PMID: 24625576 PMCID: PMC4012075 DOI: 10.14348/molcells.2014.2374] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 02/08/2023] Open
Abstract
Macrophages, found in circulating blood as well as integrated into several tissues and organs throughout the body, represent an important first line of defense against disease and a necessary component of healthy tissue homeostasis. Additionally, macrophages that arise from the differentiation of monocytes recruited from the blood to inflamed tissues play a central role in regulating local inflammation. Studies of macrophage activation in the last decade or so have revealed that these cells adopt a staggering range of phenotypes that are finely tuned responses to a variety of different stimuli, and that the resulting subsets of activated macrophages play critical roles in both progression and resolution of disease. This review summarizes the current understanding of the contributions of differentially polarized macrophages to various infectious and inflammatory diseases and the ongoing effort to develop novel therapies that target this key aspect of macrophage biology.
Collapse
Affiliation(s)
- Adam C. Labonte
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia,
USA
| | | | - Young S. Hahn
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia,
USA
| |
Collapse
|