1
|
Yang JX, Wang H, Li X, Tan Y, Ma Y, Zeng M. A control measure for epidemic spread based on the susceptible-infectious-susceptible (SIS) model. Biosystems 2024; 246:105341. [PMID: 39332804 DOI: 10.1016/j.biosystems.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
When an epidemic occurs in a network, finding the important links and cutting them off is an effective measure for preventing the spread of the epidemic. Traditional methods that remove important links easily lead to a disconnected network, inevitably incurring high costs arising from quarantining individuals or communities in a real-world network. In this study, we combine the clustering coefficient and the eigenvector to identify the important links using the susceptible-infectious-susceptible (SIS) model. The results show that our approach can improve the epidemic threshold while maintaining the connectivity of the network to control the spread of the epidemic. Experiments on multiple real-world and synthetic networks of varying sizes, demonstrate the effectiveness and scalability of our approach.
Collapse
Affiliation(s)
- Jin-Xuan Yang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China.
| | - Haiyan Wang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China
| | - Xin Li
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China
| | - Ying Tan
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China
| | - Yongjuan Ma
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China
| | - Min Zeng
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, PR China
| |
Collapse
|
2
|
Tomomasa D, Suzuki T, Takeuchi I, Goto K, Hagiwara SI, Keino D, Saida S, Ishige T, Kudo T, Eguchi K, Ishimura M, Matsuda Y, Wada T, Ito Y, Kato M, Sasahara Y, Morio T, Arai K, Uhlig HH, Kanegane H. Successful Allogeneic Hematopoietic Cell Transplantation for Patients with IL10RA Deficiency in Japan. J Clin Immunol 2024; 45:6. [PMID: 39264505 DOI: 10.1007/s10875-024-01795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND IL10RA (IL10 receptor subunit alpha) deficiency is an autosomal recessive disease that causes inflammatory bowel disease during early infancy. Its clinical course is often fatal and the only curative treatment is allogeneic hematopoietic cell transplantation (HCT). In Japan, only case reports are available, and there are no comprehensive reports of treatment outcomes. METHODS We retrospectively analyzed patients with IL10RA deficiency in Japan. RESULTS Two newly identified and five previously reported patients were included in this study. Five patients underwent HCT; one untransplanted patient survived to age 14, and one died of influenza encephalopathy before transplantation. All five HCT recipients underwent HCT at the age before 2 years. They all were conditioned with fludarabine/busulfan- or fludarabine /melphalan-based regimens. The donor source was human leukocyte antigen haploidentical donor bone marrow (BM) for two patients and unrelated umbilical cord blood (CB) for two patients. One patient experienced graft failure with unrelated CB and required a second transplant with unrelated BM. All patients who underwent HCT survived and demonstrated an improved performance status. CONCLUSION In cases of IL10RA deficiency, the need for transplantation should be promptly assessed, and early transplantation should be considered. (190/250).
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tasuku Suzuki
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Goto
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shin-Ichiro Hagiwara
- Department of Pediatric Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satoshi Saida
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Takashi Ishige
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Matsuda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiya Ito
- Division of Clinical Medicine, The Japanese Red Cross Hokkaido College of Nursing, Hokkaido, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Pediatrics, University of Oxford, Oxford, UK
- Biomedical Research Center, University of Oxford, Oxford, UK
| | - Hirokazu Kanegane
- Deparment of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
3
|
Forray FL, Dumitru OA, Atlas ZD, Onac BP. Past anthropogenic impacts revealed by trace elements in cave guano. CHEMOSPHERE 2024; 360:142447. [PMID: 38801901 DOI: 10.1016/j.chemosphere.2024.142447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Natural and human-induced toxic elements can accumulate in the environment, posing significant risks to human health and ecosystems. This study explores cave bat guano, an unconventional and relatively under-researched environmental repository, to reveal historical pollution trends and sources. Through trace elements analysis of a 1.5-m-thick guano deposit from Zidită Cave (Romania), we track changes in mining and metallurgy from 1000 CE-2012. We identified substantial pollution primarily from porphyry copper and Au-Ag-Te mines, but also impacts from usage of leaded gasoline and agricultural practices. Our record shows disruptions caused by the Bubonic plague around 1250 CE and a major surge ∼ 1500 CE. After the decline triggered by the European silver market collapse in 1525 CE, our study reveals a brief mining revival. This resurgence was followed by a continuous decline lasting until the early 1800s, driven by socio-economic upheavals and recurrent outbreaks of the bubonic plagues. The Industrial Revolution sparked prolonged growth that lasted until 1989 CE, only briefly interrupted by the Great Depression and World War II. Consequently, cave bat guano proves to be a critical resource for understanding spatial pollution patterns, both locally and regionally, and for identifying specific pollution sources.
Collapse
Affiliation(s)
- Ferenc L Forray
- Department of Geology, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania
| | - Oana A Dumitru
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary D Atlas
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
| | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, 33620, USA; Emil G. Racoviţă Institute, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania.
| |
Collapse
|
4
|
Friant S. Human behaviors driving disease emergence. Evol Anthropol 2024; 33:e22015. [PMID: 38130075 DOI: 10.1002/evan.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Interactions between humans, animals, and the environment facilitate zoonotic spillover-the transmission of pathogens from animals to humans. Narratives that cast modern humans as exogenous and disruptive forces that encroach upon "natural" disease systems limit our understanding of human drivers of disease. This review leverages theory from evolutionary anthropology that situates humans as functional components of disease ecologies, to argue that human adaptive strategies to resource acquisition shape predictable patterns of high-risk human-animal interactions, (2) humans construct ecological processes that facilitate spillover, and (3) contemporary patterns of epidemiological risk are emergent properties of interactions between human foraging ecology and niche construction. In turn, disease ecology serves as an important vehicle to link what some cast as opposing bodies of theory in human ecology. Disease control measures should consider human drivers of disease as rational, adaptive, and dynamic and capitalize on our capacity to influence ecological processes to mitigate risk.
Collapse
Affiliation(s)
- Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Duan Q, Zheng X, Gan Z, Lyu D, Sha H, Lu X, Zhao X, Bukai A, Duan R, Qin S, Wang L, Xi J, Wu D, Zhang P, Tang D, He Z, Jing H, Kan B, Wang X. Relationship Between Climate Change and Marmot Plague of Marmota himalayana Plague Focus - the Altun Mountains of the Qinghai-Xizang Plateau, China, 2000-2022. China CDC Wkly 2024; 6:69-74. [PMID: 38313817 PMCID: PMC10832154 DOI: 10.46234/ccdcw2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Plague is a zoonotic disease that occurs naturally in specific geographic areas. Climate change can influence the populations of the plague host or vector, leading to variations in the occurrence and epidemiology of plague in animals. Methods In this study, we collected meteorological and plague epidemiological data from the Marmota himalayana plague focus in the Altun Mountains of the Qinghai-Xizang Plateau. The data spanned from 2000 to 2022. We describe the climatic factors and plague epidemic conditions and we describe their analysis by Pearson's correlation. Results During the period from 2000 to 2022, the isolation rates of Yersinia pestis (Y.pestis) from marmots and fleas were 9.27% (451/4,864) and 7.17% (118/1,646), respectively. Additionally, we observed a positive rate of F1 antibody of 11.25% (443/3,937) in marmots and 18.16% (142/782) in dogs. With regards to climate, there was little variation, and a decreasing trend in blowing-sand days was observed. The temperature in the previous year showed a negative correlation with the Y. pestis isolation rate in marmots (r=-0.555, P=0.011) and the positive rate of F1 antibody in marmots (r=-0.552, P=0.012) in the current year. The average annual precipitation in the previous two years showed a positive correlation with marmot density (r=0.514, P=0.024), while blowing-sand days showed a negative correlation with marmot density (r=-0.701, P=0.001). Furthermore, the average annual precipitation in the previous three years showed a positive correlation with the isolation rate of Y. pestis from marmots (r=0.666, P=0.003), and blowing-sand days showed a negative correlation with marmot density (r=-0.597, P=0.009). Conclusions The findings of this study indicate that there is a hysteresis effect of climate change on the prevalence of plague. Therefore, monitoring climate conditions can offer significant insights for implementing timely preventive and control measures to combat plague epidemics.
Collapse
Affiliation(s)
- Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Zhiqiang Gan
- Jiuquan Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinmin Lu
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Xiaoling Zhao
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Asaiti Bukai
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Wang
- Jiuquan Center for Disease Control and Prevention, Jiuquan City, Gansu Province, China
| | - Jinxiao Xi
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou City, Gansu Province, China
| | - Di Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Deming Tang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Olano JM, García-López MA, Sangüesa-Barreda G, Coca ME, García-Hidalgo M, Houdas H, Rozas V, Hernández-Alonso H. Forgotten giants: Robust climate signal in pollarded trees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166591. [PMID: 37634721 DOI: 10.1016/j.scitotenv.2023.166591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Tree ring records are among the most valuable resources to create high-resolution climate reconstructions. Most climate reconstructions are based on old trees growing in inaccessible mountainous areas with low human activity. Therefore, reconstruction of climate conditions in lowlands is usually based on data from distant mountains. Albeit old trees can be common in humanized areas, they are not used for climate reconstructions. Pollarding was a common traditional management in Europe that enabled trees to maintain great vitality for periods exceeding the longevity of unmanaged trees. We evaluate the potential of pollarded deciduous oaks to record past climate signal. We sampled four pollarded woodlands in Central Spain under continental Mediterranean climate. We hypothesized that pollarded trees have a strong response to water availability during current period without pollarding management, but also in the period under traditional management if pruning was asynchronous among trees. Moreover, we hypothesized that if climate is a regional driver of oak secondary growth, chronologies from different woodlands will be correlated. Pollard oaks age exceeded 500 years with a strong response to Standardized Precipitation-Evapotranspiration Index (SPEI) from 9 to 11 months. Climate signal was exceptionally high in three of the sites (r2 = 0.443-0.655) during low management period (1962-2022). The largest fraction of this climate signal (≈70 %) could be retrieved during the traditional management period (1902-1961) in the three sites where pollarding was asynchronous. Chronologies were significantly correlated since the 19th century for all the studied period, highlighting a shared climate forcing. We identified critical points to optimize pollard tree sampling schema. Our results show the enormous potential of pollarded woodlands to reconstruct hydroclimate conditions in the Mediterranean with a fine spatial grain. Studying pollarded trees is an urgent task, since the temporal window to retrieve the valuable information in pollarded trees is closing as these giants collapse and their wood rots.
Collapse
Affiliation(s)
- J M Olano
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain.
| | - M A García-López
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - G Sangüesa-Barreda
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - M E Coca
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - M García-Hidalgo
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - H Houdas
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - V Rozas
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain
| | - H Hernández-Alonso
- iuFOR, EiFAB, Campus de Soria, Universidad de Valladolid, E-42004 Soria, Spain; Area of Ecology, Faculty of Biology, University of Salamanca, E-37007 Salamanca, Spain
| |
Collapse
|
8
|
Topluoglu S, Taylan-Ozkan A, Alp E. Impact of wars and natural disasters on emerging and re-emerging infectious diseases. Front Public Health 2023; 11:1215929. [PMID: 37727613 PMCID: PMC10505936 DOI: 10.3389/fpubh.2023.1215929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Emerging Infectious Diseases (EIDs) and Re-Emerging Infectious Diseases (REIDs) constitute significant health problems and are becoming of major importance. Up to 75% of EIDs and REIDs have zoonotic origin. Several factors such as the destruction of natural habitats leading humans and animals to live in close proximity, ecological changes due to natural disasters, population migration resulting from war or conflict, interruption or decrease in disease prevention programs, and insufficient vector control applications and sanitation are involved in disease emergence and distribution. War and natural disasters have a great impact on the emergence/re-emergence of diseases in the population. According to a World Bank estimation, two billion people are living in poverty and fragility situations. Wars destroy health systems and infrastructure, curtail existing disease control programs, and cause population movement leading to an increase in exposure to health risks and favor the emergence of infectious diseases. A total of 432 catastrophic cases associated with natural disasters were recorded globally in 2021. Natural disasters increase the risk of EID and REID outbreaks by damaging infrastructure and leading to displacement of populations. A Generic National Action Plan covering risk assessment, mechanism for action, determination of roles and responsibilities of each sector, the establishment of a coordination mechanism, etc. should be developed.
Collapse
Affiliation(s)
- Seher Topluoglu
- Provincial Health Directorate of Ankara, Republic of Türkiye Ministry of Health, Ankara, Türkiye
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Medical Faculty, TOBB University of Economics and Technology, Ankara, Türkiye
| | - Emine Alp
- Department of Clinical Microbiology and Infectious Diseases, Medical Faculty, Ankara Yildirim Beyazit University, Ankara, Türkiye
| |
Collapse
|
9
|
Qin J, Wu Y, Shi L, Zuo X, Zhang X, Qian X, Fan H, Guo Y, Cui M, Zhang H, Yang F, Kong J, Song Y, Yang R, Wang P, Cui Y. Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics. Commun Biol 2023; 6:847. [PMID: 37582843 PMCID: PMC10427647 DOI: 10.1038/s42003-023-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
10
|
Parker CE, Hiss AN, Spyrou MA, Neumann GU, Slavin P, Nelson EA, Nagel S, Dalidowski X, Friederich S, Krause J, Herbig A, Haak W, Bos KI. 14th century Yersinia pestis genomes support emergence of pestis secunda within Europe. PLoS Pathog 2023; 19:e1011404. [PMID: 37463152 PMCID: PMC10414589 DOI: 10.1371/journal.ppat.1011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/10/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023] Open
Abstract
Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.
Collapse
Affiliation(s)
- Cody E. Parker
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alina N. Hiss
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria A. Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Achaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Gunnar U. Neumann
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, Scotland, United Kingdom
| | | | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Xandra Dalidowski
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kirsten I. Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
Fell HG, Jones M, Atkinson S, Stenseth NC, Algar AC. The role of reservoir species in mediating plague's dynamic response to climate. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230021. [PMID: 37206964 PMCID: PMC10189594 DOI: 10.1098/rsos.230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
The distribution and transmission of Yersinia pestis, the bacterial agent of plague, responds dynamically to climate, both within wildlife reservoirs and human populations. The exact mechanisms mediating plague's response to climate are still poorly understood, particularly across large environmentally heterogeneous regions encompassing several reservoir species. A heterogeneous response to precipitation was observed in plague intensity across northern and southern China during the Third Pandemic. This has been attributed to the response of reservoir species in each region. We use environmental niche modelling and hindcasting methods to test the response of a broad range of reservoir species to precipitation. We find little support for the hypothesis that the response of reservoir species to precipitation mediated the impact of precipitation on plague intensity. We instead observed that precipitation variables were of limited importance in defining species niches and rarely showed the expected response to precipitation across northern and southern China. These findings do not suggest that precipitation-reservoir species dynamics never influence plague intensity but that instead, the response of reservoir species to precipitation across a single biome cannot be assumed and that limited numbers of reservoir species may have a disproportional impact upon plague intensity.
Collapse
Affiliation(s)
| | - Matthew Jones
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
| | - Steve Atkinson
- Centre for Biomolecular Sciences, Nottingham University, Nottingham NG7 2JE, UK
| | - Nils Christian Stenseth
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo 0316, Norway
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing 100084, China
| | - Adam C. Algar
- Department of Biology, Lakehead University, Ontario P7B 5E1, Canada
| |
Collapse
|
12
|
Plagued by a cryptic clock: insight and issues from the global phylogeny of Yersinia pestis. Commun Biol 2023; 6:23. [PMID: 36658311 PMCID: PMC9852431 DOI: 10.1038/s42003-022-04394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
Plague has an enigmatic history as a zoonotic pathogen. This infectious disease will unexpectedly appear in human populations and disappear just as suddenly. As a result, a long-standing line of inquiry has been to estimate when and where plague appeared in the past. However, there have been significant disparities between phylogenetic studies of the causative bacterium, Yersinia pestis, regarding the timing and geographic origins of its reemergence. Here, we curate and contextualize an updated phylogeny of Y. pestis using 601 genome sequences sampled globally. Through a detailed Bayesian evaluation of temporal signal in subsets of these data we demonstrate that a Y. pestis-wide molecular clock is unstable. To resolve this, we developed a new approach in which each Y. pestis population was assessed independently, enabling us to recover substantial temporal signal in five populations, including the ancient pandemic lineages which we now estimate may have emerged decades, or even centuries, before a pandemic was historically documented from European sources. Despite this methodological advancement, we only obtain robust divergence dates from populations sampled over a period of at least 90 years, indicating that genetic evidence alone is insufficient for accurately reconstructing the timing and spread of short-term plague epidemics.
Collapse
|
13
|
No evidence for persistent natural plague reservoirs in historical and modern Europe. Proc Natl Acad Sci U S A 2022; 119:e2209816119. [PMID: 36508668 PMCID: PMC9907128 DOI: 10.1073/pnas.2209816119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caused by Yersinia pestis, plague ravaged the world through three known pandemics: the First or the Justinianic (6th-8th century); the Second (beginning with the Black Death during c.1338-1353 and lasting until the 19th century); and the Third (which became global in 1894). It is debatable whether Y. pestis persisted in European wildlife reservoirs or was repeatedly introduced from outside Europe (as covered by European Union and the British Isles). Here, we analyze environmental data (soil characteristics and climate) from active Chinese plague reservoirs to assess whether such environmental conditions in Europe had ever supported "natural plague reservoirs". We have used new statistical methods which are validated through predicting the presence of modern plague reservoirs in the western United States. We find no support for persistent natural plague reservoirs in either historical or modern Europe. Two factors make Europe unfavorable for long-term plague reservoirs: 1) Soil texture and biochemistry and 2) low rodent diversity. By comparing rodent communities in Europe with those in China and the United States, we conclude that a lack of suitable host species might be the main reason for the absence of plague reservoirs in Europe today. These findings support the hypothesis that long-term plague reservoirs did not exist in Europe and therefore question the importance of wildlife rodent species as the primary plague hosts in Europe.
Collapse
|
14
|
Krauer F, Schmid BV. Mapping the plague through natural language processing. Epidemics 2022; 41:100656. [PMID: 36410316 DOI: 10.1016/j.epidem.2022.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Pandemic diseases such as plague have produced a vast amount of literature providing information about the spatiotemporal extent, transmission, or countermeasures. However, the manual extraction of such information from running text is a tedious process, and much of this information remains locked into a narrative format. Natural Language processing (NLP) is a promising tool for the automated extraction of epidemiological data, and can facilitate the establishment of datasets. In this paper, we explore the utility of NLP to assist in the creation of a plague outbreak dataset. We produced a gold standard list of toponyms by manual annotation of a German plague treatise published by Sticker in 1908. We investigated the performance of five pre-trained NLP libraries (Google, Stanford CoreNLP, spaCy, germaNER and Geoparser) for the automated extraction of location data compared to the gold standard. Of all tested algorithms, spaCy performed best (sensitivity 0.92, F1 score 0.83), followed closely by Stanford CoreNLP (sensitivity 0.81, F1 score 0.87). Google NLP had a slightly lower performance (F1 score 0.72, sensitivity 0.78). Geoparser and germaNER had a poor sensitivity (0.41 and 0.61). We then evaluated how well automated geocoding services such as Google geocoding, Geonames and Geoparser located these outbreaks correctly. All geocoding services performed poorly - particularly for historical regions - and returned the correct GIS information only in 60.4%, 52.7% and 33.8% of all cases. Finally, we compared our newly digitized plague dataset to a re-digitized version of the plague treatise by Biraben and provide an update of the spatio-temporal extent of the second pandemic plague outbreaks. We conclude that NLP tools have their limitations, but they are potentially useful to accelerate the collection of data and the generation of a global plague outbreak database.
Collapse
Affiliation(s)
- Fabienne Krauer
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
15
|
Abstract
Natural and human-made disasters can cause tremendous physical damage, societal change, and suffering. In addition to their effects on people, disasters have been shown to alter the microbial population in the area affected. Alterations for microbial populations can lead to new ecological interactions, with additional potentially adverse consequences for many species, including humans. Disaster-related stressors can be powerful forces for microbial selection. Studying microbial adaptation in disaster sites can reveal new biological processes, including mechanisms by which some microbes could become pathogenic and others could become beneficial (e.g., used for bioremediation). Here we survey examples of how disasters have affected microbiology and suggest that the topic of "disaster microbiology" is itself a new field of study. Given the accelerating pace of human-caused climate change and the increasing encroachment of the natural word by human activities, it is likely that this area of research will become increasingly relevant to the broader field of microbiology. Since disaster microbiology is a broad term open to interpretation, we propose criteria for what phenomena fall under its scope. The basic premise is that there must be a disaster that causes a change in the environment, which then causes an alteration to microbes (either a physical or biological adaptation), and that this adaptation must have additional ramifications.
Collapse
|
16
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Spyrou MA, Musralina L, Gnecchi Ruscone GA, Kocher A, Borbone PG, Khartanovich VI, Buzhilova A, Djansugurova L, Bos KI, Kühnert D, Haak W, Slavin P, Krause J. The source of the Black Death in fourteenth-century central Eurasia. Nature 2022; 606:718-724. [PMID: 35705810 PMCID: PMC9217749 DOI: 10.1038/s41586-022-04800-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.
Collapse
Affiliation(s)
- Maria A Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, Almaty, Kazakhstan
| | - Guido A Gnecchi Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Pier-Giorgio Borbone
- Department of Civilisations and Forms of Knowledge, University of Pisa, Pisa, Italy
| | - Valeri I Khartanovich
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Leyla Djansugurova
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, UK.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
18
|
Plunkett G, Swindles GT. Bucking the trend: Population resilience in a marginal environment. PLoS One 2022; 17:e0266680. [PMID: 35476782 PMCID: PMC9045639 DOI: 10.1371/journal.pone.0266680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Evaluating the impact of environmental changes on past societies is frequently confounded by the difficulty of establishing cause-and-effect at relevant scales of analysis. Commonly, paleoenvironmental records lack the temporal and spatial resolution to link them with historic events, yet there remains a tendency to correlate climate change and cultural transformations on the basis of their seeming synchronicity. Here, we challenge perceptions of societal vulnerability to past environmental change using an integrated paleoenvironmental and land-use history of a remote upland site in the north of Ireland. We present a high-resolution, multi-proxy record that illustrates extended occupation of this marginal locality throughout the climate oscillations of the last millennium. Importantly, historically-dated volcanic ash markers enable us to pinpoint precisely in our record the timing of major national demographic crises such as the Black Death and the European, Irish and Great (Potato) Famines. We find no evidence that climate downturns or demographic collapses had an enduring impact on the use of the uplands: either the community escaped the effects of these events, or population levels recovered rapidly enough (within a generation) to leave no appreciable mark on the palaeoenvironmental record. Our findings serve to illustrate the spatial complexity of human activity that can enable communities to withstand or quickly bounce back from largescale calamities. In neglecting to consider such local-scale variability in social and economic organization, generalized models of societal collapse risk overplaying the vulnerability of populations to long- and short-term ecological stressors to the detriment of identifying the social constraints that influence a population’s response to change.
Collapse
Affiliation(s)
- Gill Plunkett
- Archaeology & Palaeoecology: School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| | - Graeme T. Swindles
- Geography: School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Ottawa‐Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Aydemir E, Yalcinkaya MA, Barua PD, Baygin M, Faust O, Dogan S, Chakraborty S, Tuncer T, Acharya UR. Hybrid Deep Feature Generation for Appropriate Face Mask Use Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1939. [PMID: 35206124 PMCID: PMC8871993 DOI: 10.3390/ijerph19041939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022]
Abstract
Mask usage is one of the most important precautions to limit the spread of COVID-19. Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classification might be used to improve compliance monitoring. This study deals with the problem of inappropriate mask use. To address that problem, 2075 face mask usage images were collected. The individual images were labeled as either mask, no masked, or improper mask. Based on these labels, the following three cases were created: Case 1: mask versus no mask versus improper mask, Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was used to train and test a hybrid deep feature-based masked face classification model. The presented method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used as feature generators; each of these generators extracted 1000 features from an image; (ii) the most discriminative features were selected using an improved RelieF selector; and (iii) the chosen features were used to train and test a support vector machine classifier. That resulting model attained 95.95%, 97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having achieved these high accuracy values indicates that the proposed model is fit for a practical trial to detect appropriate face mask use in real time.
Collapse
Affiliation(s)
- Emrah Aydemir
- Department of Management Information, College of Management, Sakarya University, Sakarya 54050, Turkey;
| | - Mehmet Ali Yalcinkaya
- Department of Computer Engineering, Engineering Faculty, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey;
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Mehmet Baygin
- Department of Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan 75000, Turkey;
| | - Oliver Faust
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23119, Turkey; (S.D.); (T.T.)
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia;
- Centre for Advanced Modelling and Geospatial lnformation Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23119, Turkey; (S.D.); (T.T.)
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
20
|
Carlson CJ, Bevins SN, Schmid BV. Plague risk in the western United States over seven decades of environmental change. GLOBAL CHANGE BIOLOGY 2022; 28:753-769. [PMID: 34796590 PMCID: PMC9299200 DOI: 10.1111/gcb.15966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 05/02/2023]
Abstract
After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs-with suitability increasing up to 40% in some places-and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Sarah N. Bevins
- US Department of Agriculture Animal and Plant Health Inspection Service–Wildlife Services National Wildlife Research CenterFort CollinsColoradoUSA
| | - Boris V. Schmid
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
21
|
Kolpa HJ, Creamer KM, Hall LL, Lawrence JB. SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome 2021; 33:366-381. [PMID: 34859278 PMCID: PMC9114059 DOI: 10.1007/s00335-021-09935-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Here we provide a brief review of relevant background before presenting results of our investigation into the interplay between scaffold attachment factor A (SAF-A), chromatin-associated RNAs, and DNA condensation. SAF-A, also termed heterogenous nuclear protein U (hnRNP U), is a ubiquitous nuclear scaffold protein that was implicated in XIST RNA localization to the inactive X-chromosome (Xi) but also reported to maintain open DNA packaging in euchromatin. Here we use several means to perturb SAF-A and examine potential impacts on the broad association of RNAs on euchromatin, and on chromatin compaction. SAF-A has an N-terminal DNA binding domain and C-terminal RNA binding domain, and a prominent model has been that the protein provides a single-molecule bridge between XIST RNA and chromatin. Here analysis of the impact of SAF-A on broad RNA-chromatin interactions indicate greater biological complexity. We focus on SAF-A's role with repeat-rich C0T-1 hnRNA (repeat-rich heterogeneous nuclear RNA), shown recently to comprise mostly intronic sequences of pre-mRNAs and diverse long non-coding RNAs (lncRNAs). Our results show that SAF-A mutants cause dramatic changes to cytological chromatin condensation through dominant negative effects on C0T-1 RNA's association with euchromatin, and likely other nuclear scaffold factors. In contrast, depletion of SAF-A by RNA interference (RNAi) had no discernible impact on C0T-1 RNA, nor did it cause similarly marked chromatin changes as did three different SAF-A mutations. Overall results support the concept that repeat-rich, chromatin-associated RNAs interact with multiple RNA binding proteins (RBPs) in a complex dynamic meshwork that is integral to larger-scale chromatin architecture and collectively influences cytological-scale DNA condensation.
Collapse
Affiliation(s)
- Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Ashfield MedComms, Lyndhurst, NJ, 07071, USA
| | - Kevin M Creamer
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
22
|
Jedwab R, Khan AM, Russ J, Zaveri ED. Epidemics, pandemics, and social conflict: Lessons from the past and possible scenarios for COVID-19. WORLD DEVELOPMENT 2021; 147:105629. [PMID: 34866756 PMCID: PMC8633882 DOI: 10.1016/j.worlddev.2021.105629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 06/02/2023]
Abstract
Since COVID-19 broke out, there has been renewed interest in understanding the economic and social dynamics of historical and more recent epidemics and pandemics, from the plagues of Antiquity to modern-day outbreaks like Ebola. These events can have significant impacts on the interplay between poverty and social cohesion, i.e. how different groups in society interact and cooperate to survive and prosper. To that effect, this paper provides a theory-driven overview of how social responses to past epidemics and pandemics were determined by the epidemiological and non-epidemiological characteristics of these outbreaks, with a particular focus on the conditions giving rise to scapegoating and persecution of minority groups, including migrants. We discuss existing theories as well as historical and quantitative studies, and highlight the cases where epidemics and pandemics may lead to milder or more severe forms of scapegoating. Finally, we conclude with a summary of priorities for future research on epidemics, pandemics and social conflict and discuss the possible effects and policy implications of COVID-19.
Collapse
Affiliation(s)
- Remi Jedwab
- George Washington University, Elliott School of International Affairs, 603 North Henry St, Alexandria, VA 22314, USA
| | - Amjad M Khan
- George Washington University, Elliott School of International Affairs, 603 North Henry St, Alexandria, VA 22314, USA
| | - Jason Russ
- George Washington University, Elliott School of International Affairs, 603 North Henry St, Alexandria, VA 22314, USA
| | - Esha D Zaveri
- George Washington University, Elliott School of International Affairs, 603 North Henry St, Alexandria, VA 22314, USA
| |
Collapse
|
23
|
The role of Medieval road operation on cultural landscape transformation. Sci Rep 2021; 11:20876. [PMID: 34686702 PMCID: PMC8536699 DOI: 10.1038/s41598-021-00090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
Connecting pathways are essential for cultural and economic exchange. Commonly, historians investigate the role of routes for cultural development, whereas the environmental impacts of historical routes attract less attention. Here, we present a high-resolution reconstruction of the impact of the major trade route via Marchionis in the southern Baltic lowlands on landscape evolution since more than 800 years. We combine precisely dated annually laminated sediments from Lake Czechowskie alongside via Marchionis and pollen data at 5-year resolution together with historical data. The transformation from a quasi-natural to a cultural landscape occurred in three phases (1) an early phase until the mid-fourteenth century with slowly increasing human impact. (2) an intensification of environmental disturbance until (3) the mid-nineteenth century when via Marchionis became a modern traffic route with strong environmental impacts. Superimposed on the long-term development were repeated interruptions by short-term downturns related to societal crisis and political decisions.
Collapse
|
24
|
Lee HF. Did Hydro-climatic Extremes, Positive Checks, and Economic Fluctuations Modulate the Epidemics Outbreaks in Late Imperial China? HUMAN ECOLOGY: AN INTERDISCIPLINARY JOURNAL 2021; 50:113-123. [PMID: 34697513 PMCID: PMC8527977 DOI: 10.1007/s10745-021-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Empirical research has shown that climate-related variables, the decline in economic well-being, and the mutual reinforcement of positive checks are the primary drivers of epidemic outbreaks in recent human history. However, their relative importance in causing the outbreak of epidemics is rarely examined quantitatively in a single study. I sought to address this issue by analyzing the 1402 epidemic incidents in China between 1841 and 1911, which partially overlaps partly with the Third Pandemic period. Fine-grained historical big data, multiple regression, and wavelet coherence analysis were employed. Statistical results show that economic fluctuations drove the country-wide epidemics outbreaks in China in inter-annual and decadal time scales. Economic fluctuations could cause short-term hardship and long-term impoverishment to the underprivileged social groups since a large portion of the Chinese population lived at the subsistence level in the past. The fluctuations might have sustained the repeated waves of epidemic outbreaks during the Third Pandemic period. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10745-021-00272-7.
Collapse
Affiliation(s)
- Harry F. Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories Hong Kong
| |
Collapse
|
25
|
Srivastava P, Dhyani S, Emmanuel MA, Khan AS. COVID-19 and environment: a poignant reminder of sustainability in the new normal. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:649-670. [PMID: 38624923 PMCID: PMC8475439 DOI: 10.1007/s42398-021-00207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022]
Abstract
The nexus of COVID-19 and environment is conspicuously deep-rooted. The roles of environmental factors in the origin, transmission and spread of COVID-19 and the mutual impact of the pandemic on the global environment have been the two perspectives to view this nexus. The present paper attempts to systematically review the existing literature to understand and explore the linkages of COVID-19 with environment and proposes conceptual frameworks to underline this nexus. Our study indicates a critical role of meteorological factors, ambient air pollutants and wastewater in severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) transmission-spread dynamics. The study also focuses on the direct and indirect impacts of COVID-19 on the regional and global environment. Most of the indirect environmental effects of COVID-19 were attributed to global human confinement that resulted from the implementation of the pandemic containment measures. This worldwide anthropogenic 'pause' sent ripples to all environmental compartments and presented a unique test bed to identify anthropogenic impacts on the earth's natural systems. The review further addresses emerging sustainability challenges in the new normal and their potential solutions. The situation warrants critical attention to the environment-COVID-19 nexus and innovative sustainable practices to address the ramifications of short- and long-term environmental impacts of the COVID-19 pandemic. Graphical abstract
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Botany, C.M.P College, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| | - Shalini Dhyani
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020 Maharashtra India
| | | | - Ambrina Sardar Khan
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
26
|
Bramanti B, Wu Y, Yang R, Cui Y, Stenseth NC. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc Natl Acad Sci U S A 2021; 118:e2101940118. [PMID: 34465619 PMCID: PMC8433512 DOI: 10.1073/pnas.2101940118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Bevins SN, Chandler JC, Barrett N, Schmit BS, Wiscomb GW, Shriner SA. Plague Exposure in Mammalian Wildlife Across the Western United States. Vector Borne Zoonotic Dis 2021; 21:667-674. [PMID: 34191632 PMCID: PMC8563452 DOI: 10.1089/vbz.2020.2765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plague is caused by a bacterial pathogen (Yersinia pestis) that can infect a wide range of mammal species, but its presence in wildlife is often underappreciated. Using a large-scale data set (n = 44,857) that details the extent of Y. pestis exposure in wildlife, we document exposure in 18 wildlife species, including coyotes (Canis latrans), bobcats (Lynx rufus), and black bears (Ursus americanus). Evidence of plague activity is widespread, with seropositive animals detected in every western state in the contiguous United States. Pathogen monitoring systems in wildlife that are both large scale and long-term are rare, yet they open the door for analyses on potential shifts in distribution that have occurred over time because of climate or land use changes. The data generated by these long-term monitoring programs, combined with recent advances in our understanding of pathogen ecology, offer a clearer picture of zoonotic pathogens and the risks they pose.
Collapse
Affiliation(s)
- Sarah N. Bevins
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Jeffrey C. Chandler
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Nicole Barrett
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Brandon S. Schmit
- USDA APHIS WS National Wildlife Disease Program, Fort Collins, Colorado, USA
| | | | - Susan A. Shriner
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| |
Collapse
|
28
|
Wu X, Ning C, Key FM, Andrades Valtueña A, Lankapalli AK, Gao S, Yang X, Zhang F, Liu L, Nie Z, Ma J, Krause J, Herbig A, Cui Y. A 3,000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathog 2021; 17:e1009886. [PMID: 34547027 PMCID: PMC8486138 DOI: 10.1371/journal.ppat.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/01/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica (S. enterica) has infected humans for a long time, but its evolutionary history and geographic spread across Eurasia is still poorly understood. Here, we screened for pathogen DNA in 14 ancient individuals from the Bronze Age Quanergou cemetery (XBQ), Xinjiang, China. In 6 individuals we detected S. enterica. We reconstructed S. enterica genomes from those individuals, which form a previously undetected phylogenetic branch basal to Paratyphi C, Typhisuis and Choleraesuis-the so-called Para C lineage. Based on pseudogene frequency, our analysis suggests that the ancient S. enterica strains were not host adapted. One genome, however, harbors the Salmonella pathogenicity island 7 (SPI-7), which is thought to be involved in (para)typhoid disease in humans. This offers first evidence that SPI-7 was acquired prior to the emergence of human-adapted Paratyphi C around 1,000 years ago. Altogether, our results show that Salmonella enterica infected humans in Eastern Eurasia at least 3,000 years ago, and provide the first ancient DNA evidence for the spread of a pathogen along the Proto-Silk Road.
Collapse
Affiliation(s)
- Xiyan Wu
- School of Life Sciences, Jilin University, Changchun, China
- School of History and Culture, Henan University, Kaifeng, China
| | - Chao Ning
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Felix M. Key
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aida Andrades Valtueña
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Shizhu Gao
- College of Pharmacia Sciences, Jilin University, Changchun, China
| | - Xuan Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Zhongzhi Nie
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Jian Ma
- School of Cultural Heritage, Northwest University, Xi’an, China
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia (Jilin University), Ministry of Education, Changchun, China
| |
Collapse
|
29
|
Krauer F, Viljugrein H, Dean KR. The influence of temperature on the seasonality of historical plague outbreaks. Proc Biol Sci 2021; 288:20202725. [PMID: 34255997 PMCID: PMC8277479 DOI: 10.1098/rspb.2020.2725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Modern plague outbreaks exhibit a distinct seasonal pattern. By contrast, the seasonality of historical outbreaks and its drivers has not been studied systematically. Here, we investigate the seasonal pattern, the epidemic peak timing and growth rates, and the association with latitude, temperature, and precipitation using a large, novel dataset of plague- and all-cause mortality during the Second Pandemic in Europe and the Mediterranean. We show that epidemic peak timing followed a latitudinal gradient, with mean annual temperature negatively associated with peak timing. Based on modern temperature data, the predicted epidemic growth of all outbreaks was positive between 11.7°C and 21.5°C with a maximum around 17.3°C. Hence, our study provides evidence that the growth of plague epidemics across the whole study region depended on similar absolute temperature thresholds. Here, we present a systematic analysis of the seasonality of historical plague in the Northern Hemisphere, and we show consistent evidence for a temperature-related process influencing the epidemic peak timing and growth rates of plague epidemics.
Collapse
Affiliation(s)
- Fabienne Krauer
- Centre for Ecological and Evolutionary Synthesis CEES, University of Oslo, Norway
- Centre for Mathematical Modelling of Infectious Diseases CMMID, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis CEES, University of Oslo, Norway
- Norwegian Veterinary Institute, Ås, Norway
| | | |
Collapse
|
30
|
Yue RPH, Lee HF. The delayed effect of cooling reinforced the NAO-plague connection in pre-industrial Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143122. [PMID: 33129517 DOI: 10.1016/j.scitotenv.2020.143122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Previous studies on the connection between climate and plague were mostly conducted without considering the influence of large-scale atmospheric circulations and long-term historical observations. The current study seeks to reveal the sophisticated role of climatic control on plague by investigating the combined effect of North Atlantic Oscillation (NAO) and temperature on plague outbreaks in Europe from 1347 to 1760 CE. Moving correlation analysis is applied to explore the non-linear relationship between NAO and plague transmission over time. Also, we apply the cross-correlation function to identify the role of temperature in mediating the NAO-plague connection and the lead-lag relationship in between. Our statistical results show that the pathway from climate change to plague incidence is distinctive in its spatial, temporal, and non-linear patterns. The multi-decadal temperature change exerted a 15-22 years lagged impact on the NAO-plague correlation in different European regions. The NAO-plague correlation in Atlantic-Central Europe primarily remained positive, while the correlation in Mediterranean Europe switched between positive and negative alternately. The modulating effect of temperature over the NAO-plague correlation increases exponentially with the magnitude of the temperature anomaly, but the effect is negligible between 0.3 and -0.3 °C anomaly. Our findings show that a lagged influence from the temperature extremes dominantly controls the correlation between NAO and plague incidence. A forecast from our study suggests that large-scale plague outbreaks are unlikely to happen in Europe if NAO remains at its current positive phase during the earth's future warming.
Collapse
Affiliation(s)
- Ricci P H Yue
- Department of Public Policy, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong.
| | - Harry F Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
31
|
Abstract
The emergence and spread of infectious diseases with pandemic potential occurred regularly throughout history. Major pandemics and epidemics such as plague, cholera, flu, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have already afflicted humanity. The world is now facing the new coronavirus disease 2019 (COVID-19) pandemic. Many infectious diseases leading to pandemics are caused by zoonotic pathogens that were transmitted to humans due to increased contacts with animals through breeding, hunting and global trade activities. The understanding of the mechanisms of transmission of pathogens to humans allowed the establishment of methods to prevent and control infections. During centuries, implementation of public health measures such as isolation, quarantine and border control helped to contain the spread of infectious diseases and maintain the structure of the society. In the absence of pharmaceutical interventions, these containment methods have still been used nowadays to control COVID-19 pandemic. Global surveillance programs of water-borne pathogens, vector-borne diseases and zoonotic spillovers at the animal-human interface are of prime importance to rapidly detect the emergence of infectious threats. Novel technologies for rapid diagnostic testing, contact tracing, drug repurposing, biomarkers of disease severity as well as new platforms for the development and production of vaccines are needed for an effective response in case of pandemics.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec - Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- CHU de Québec - Laval University, Quebec City, QC, Canada
| |
Collapse
|
32
|
Yang JX. A SIRD epidemic model with community structure. CHAOS (WOODBURY, N.Y.) 2021; 31:013102. [PMID: 33754780 DOI: 10.1063/5.0019995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The study of epidemics spreading with community structure has become a hot topic. The classic SIR epidemic model does not distinguish between dead and recovered individuals. It is inappropriate to classify dead individuals as recovered individuals because the real-world epidemic spread processes show different recovery rates and death rates in different communities. In the present work, a SIRD epidemic model with different recovery rates is proposed. We pay more attention to the changes in the number of dead individuals. The basic reproductive number is obtained. The stationary solutions of a disease-free state and an endemic state are given. We show that quarantining communities can decrease the basic reproductive number, and the total number of dead individuals decreases in a disease-free steady state with an increase in the number of quarantined communities. The most effective quarantining strategy is to preferentially quarantine some communities/cities with a greater population size and a fraction of initially infected individuals. Furthermore, we show that the population flows from a low recovery rate and high population density community/city/country to some high recovery rate and low population density communities/cities/countries, which helps to reduce the total number of dead individuals and prevent the prevalence of epidemics. The numerical simulations on the real-world network and the synthetic network further support our conclusions.
Collapse
Affiliation(s)
- Jin-Xuan Yang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, People's Republic of China
| |
Collapse
|
33
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
34
|
Morozova I, Kasianov A, Bruskin S, Neukamm J, Molak M, Batieva E, Pudło A, Rühli FJ, Schuenemann VJ. New ancient Eastern European Yersinia pestis genomes illuminate the dispersal of plague in Europe. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190569. [PMID: 33012225 PMCID: PMC7702796 DOI: 10.1098/rstb.2019.0569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, has been prevalent among humans for at least 5000 years, being accountable for several devastating epidemics in history, including the Black Death. Analyses of the genetic diversity of ancient strains of Y. pestis have shed light on the mechanisms of evolution and the spread of plague in Europe. However, many questions regarding the origins of the pathogen and its long persistence in Europe are still unresolved, especially during the late medieval time period. To address this, we present four newly assembled Y. pestis genomes from Eastern Europe (Poland and Southern Russia), dating from the fifteenth to eighteenth century AD. The analysis of polymorphisms in these genomes and their phylogenetic relationships with other ancient and modern Y. pestis strains may suggest several independent introductions of plague into Eastern Europe or its persistence in different reservoirs. Furthermore, with the reconstruction of a partial Y. pestis genome from rat skeletal remains found in a Polish ossuary, we were able to identify a potential animal reservoir in late medieval Europe. Overall, our results add new information concerning Y. pestis transmission and its evolutionary history in Eastern Europe. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, Moscow 119991, Russia
- Laboratory of Plant Genomics, The Institute for Information Transmission Problems RAS, Moscow 127051, Russia
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, Moscow 119991, Russia
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warsaw 00-679, Poland
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw 02-097, Poland
| | - Elena Batieva
- Azov History, Archeology and Paleontology Museum-Reserve, Moskovskaya Street 38/40, Azov 346780, Russia
| | - Aleksandra Pudło
- Archaeological Museum in Gdańsk, Mariacka Street 25/26, Gdańsk 80-833, Poland
| | - Frank J. Rühli
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Verena J. Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Abstract
Plague continued to afflict Europe for more than five centuries after the Black Death. Yet, by the 17th century, the dynamics of plague had changed, leading to its slow decline in Western Europe over the subsequent 200 y, a period for which only one genome was previously available. Using a multidisciplinary approach, combining genomic and historical data, we assembled Y. pestis genomes from nine individuals covering four Eurasian sites and placed them into an historical context within the established phylogeny. CHE1 (Chechnya, Russia, 18th century) is now the latest Second Plague Pandemic genome and the first non-European sample in the post-Black Death lineage. Its placement in the phylogeny and our synthesis point toward the existence of an extra-European reservoir feeding plague into Western Europe in multiple waves. By considering socioeconomic, ecological, and climatic factors we highlight the importance of a noneurocentric approach for the discussion on Second Plague Pandemic dynamics in Europe.
Collapse
|
36
|
Lazzari G, Colavizza G, Bortoluzzi F, Drago D, Erboso A, Zugno F, Kaplan F, Salathé M. A digital reconstruction of the 1630-1631 large plague outbreak in Venice. Sci Rep 2020; 10:17849. [PMID: 33082432 PMCID: PMC7576796 DOI: 10.1038/s41598-020-74775-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
The plague, an infectious disease caused by the bacterium Yersinia pestis, is widely considered to be responsible for the most devastating and deadly pandemics in human history. Starting with the infamous Black Death, plague outbreaks are estimated to have killed around 100 million people over multiple centuries, with local mortality rates as high as 60%. However, detailed pictures of the disease dynamics of these outbreaks centuries ago remain scarce, mainly due to the lack of high-quality historical data in digital form. Here, we present an analysis of the 1630-1631 plague outbreak in the city of Venice, using newly collected daily death records. We identify the presence of a two-peak pattern, for which we present two possible explanations based on computational models of disease dynamics. Systematically digitized historical records like the ones presented here promise to enrich our understanding of historical phenomena of enduring importance. This work contributes to the recently renewed interdisciplinary foray into the epidemiological and societal impact of pre-modern epidemics.
Collapse
Affiliation(s)
- Gianrocco Lazzari
- Digital Epidemiology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Giovanni Colavizza
- Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands.
| | - Fabio Bortoluzzi
- Digital Humanities Laboratory, College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Davide Drago
- Digital Humanities Laboratory, College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Erboso
- Digital Humanities Laboratory, College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesca Zugno
- Digital Humanities Laboratory, College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Kaplan
- Digital Humanities Laboratory, College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marcel Salathé
- Digital Epidemiology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
37
|
Barbieri R, Drancourt M, Raoult D. The role of louse-transmitted diseases in historical plague pandemics. THE LANCET. INFECTIOUS DISEASES 2020; 21:e17-e25. [PMID: 33035476 DOI: 10.1016/s1473-3099(20)30487-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
The rodent-murine ectoparasite-human model of plague transmission does not correspond with historical details around plague pandemics in Europe. New analysis of ancient genomes reveal that Yersinia pestis was unable to be transmitted by rat fleas until around 4000 Before Present, which challenges the rodent-murine ectoparasite-human model of plague transmission and historical details around plague pandemics in Europe. In this Review, we summarise data regarding Y pestis transmission by human lice in the context of genomic evolution and co-transmission of other major epidemic deadly pathogens throughout human history, with the aim of broadening our view of plague transmission. Experimental models support the efficiency of human lice as plague vectors through infected faeces, which suggest that Y pestis could be a louse-borne disease, similar to Borrelia recurrentis, Rickettsia prowazekii, and Bartonella quintana. Studies have shown that louse-borne outbreaks often involve multiple pathogens, and several cases of co-transmission of Y pestis and B quintana have been reported. Furthermore, an exclusive louse-borne bacterium, namely B recurrentis, was found to be circulating in northern Europe during the second plague pandemic (14th-18th century). Current data make it possible to attribute large historical pandemics to multiple bacteria, and suggests that human lice probably played a preponderant role in the interhuman transmission of plague and pathogen co-transmission during previous large epidemics, including plague pandemics.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie Bio-culturelle, Droit, Éthique et Santé, Marseille, France; Fondation Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Fondation Méditerranée Infection, Marseille, France.
| |
Collapse
|
38
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
39
|
Luterbacher J, Newfield TP, Xoplaki E, Nowatzki E, Luther N, Zhang M, Khelifi N. Past pandemics and climate variability across the Mediterranean. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2020; 5:46. [PMID: 32984502 PMCID: PMC7500992 DOI: 10.1007/s41207-020-00197-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence that meteorological, climatological and environmental factors had on historical disease outbreaks is often speculated upon, but little investigated. Here, we explore potential associations between pandemic disease and climate over the last 2,500 years in Mediterranean history, focusing on ancient disease outbreaks and the Justinianic plague in particular. We underscore variation in the quality, quantity and interpretation of written evidence and proxy information from natural archives, the comlexity of identifying and disentangling past climatological and environmental drivers, and the need to integrate diverse methodologies to discern past climate-disease linkages and leverage historical experiences to prepare for the rapid expansion of novel pathogenic diseases. Although the difficulties entailed in establishing historical climate-pandemic linkages persist to the present, this is a research area as urgent as it is complex and historical perspectives are desperately needed.
Collapse
Affiliation(s)
- J. Luterbacher
- Science and Innovation Department, World Meteorological Organization (WMO), 7bis Avenue de la Paix, 1211 Geneva, Switzerland
| | - T. P. Newfield
- Department of History, Georgetown University, 37th and O Streets NW, ICC, Washington, DC USA
- Department of Biology, Georgetown University, 37th and O Streets NW, ICC, Washington, DC USA
| | - E. Xoplaki
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
- Centre of International Development and Environmental Research, Justus Liebig University of Giessen, Senckenbergstrasse 3, 35390 Giessen, Germany
| | - E. Nowatzki
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - N. Luther
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - M. Zhang
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - N. Khelifi
- Earth and Environmental Sciences Editorial Department, Springer, a Part of Springer Nature, Tiergartenstrasse 17, 69121 Heidelberg, Germany
| |
Collapse
|
40
|
Büntgen U, González‐Rouco JF, Luterbacher J, Stenseth NC, Johnson DM. Extending the climatological concept of
‘
Detection and Attribution’ to global change ecology in the Anthropocene. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulf Büntgen
- Department of Geography University of Cambridge Cambridge UK
- Swiss Federal Research Institute (WSL) Birmensdorf Switzerland
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe) Brno Czech Republic
- Department of Geography, Faculty of Science Masaryk University Brno Czech Republic
| | - J. Fidel González‐Rouco
- Department of Physics of the Earth & Astrophysics University Complutense Madrid Spain
- Institute of Geosciences IGEO (UCM‐CSIC) Madrid Spain
| | - Jürg Luterbacher
- Science and Innovation Department World Meteorological Organization (WMO) Geneva Switzerland
- Geography Department & Centre for International Development & Environmental Research Giessen Germany
| | | | - Derek M. Johnson
- Department of Biology Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
41
|
Abstract
Emerging infectious diseases (EIDs) are a growing global health threat. The Stockholm Paradigm suggests that their toll will grow tragically in the face of climate change, in particular. The best research protocol for predicting and preventing infectious disease emergence states that an urgent search must commence to identify unknown human and animal pathogens. This short communication proposes that the ethnobiological knowledge of indigenous and impoverished communities can be a source of information about some of those unknown pathogens. I present the ecological and anthropological theory behind this proposal, followed by a few case studies that serve as a limited proof of concept. This paper also serves as a call to action for the medical anthropology community. It gives a brief primer on the EID crisis and how anthropology research may be vital to limiting its havoc on global health. Local knowledge is not likely to play a major role in EID research initiatives, but the incorporation of an awareness of EIDs into standard medical anthropological practice would have myriad other benefits.
Collapse
Affiliation(s)
- Hampton Gray Gaddy
- Institute of Human Sciences, University of Oxford, 58a Banbury Rd, Oxford, OX2 6QS, United Kingdom.
| |
Collapse
|
42
|
Chen FY, Yuan R. Reconsideration of the plague transmission in perspective of multi-host zoonotic disease model with interspecific interaction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:4422-4442. [PMID: 33120511 DOI: 10.3934/mbe.2020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The human-animal interface plays a vital role in the spread of zoonotic diseases, such as plague, which led to the "Black Death", the most serious human disaster in medieval Europe. It is reported that more than 200 mammalian species including human beings are naturally infected with plague. Different species acting as different roles construct the transmission net for Yersinia pestis (plague pathogen), in which rodents are the main natural reservoirs. In previous studies, it focused on individual infection of human or animal, rather than cross-species infection. It is worth noting that rodent competition and human-rodent commensalism are rarely considered in the spread of plague. In order to describe it in more detail, we establish a new multi-host mathematical model to reflect the transmission dynamics of plague with wild rodents, commensal rodents and human beings, in which the roles of different species will no longer be at the same level. Mathematical models in epidemiology can clarify the interaction mechanism between plague hosts and provide a method to reflect the dynamic process of plague transmission more quickly and easily. According to our plague model, we redefine the environmental capacity K with interspecific interaction and obtain the reproduction number of zoonotic diseases RZ0, which is an important threshold value to determine the zoonotic disease to break out or not. At the same time, we analyze the biological implications of zoonotic model, and then study some biological hypotheses that had never been proposed or verified before.
Collapse
Affiliation(s)
- Fang Yuan Chen
- School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China
| | - Rong Yuan
- School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
43
|
Tennant WSD, Tildesley MJ, Spencer SEF, Keeling MJ. Climate drivers of plague epidemiology in British India, 1898-1949. Proc Biol Sci 2020; 287:20200538. [PMID: 32517609 PMCID: PMC7341932 DOI: 10.1098/rspb.2020.0538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.
Collapse
Affiliation(s)
- Warren S. D. Tennant
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Mike J. Tildesley
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Simon E. F. Spencer
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Matt J. Keeling
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
44
|
Untapped potential: The utility of drylands for testing eco-evolutionary relationships between hosts and parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:291-299. [PMID: 32426218 PMCID: PMC7229972 DOI: 10.1016/j.ijppaw.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/30/2023]
Abstract
Drylands comprise over 41% of all terrestrial surface area and are home to approximately 35.5% of the world's population; however, both free-living and parasitic fauna of these regions remain relatively understudied. Yet, the very conditions that make these regions challenging to study – extreme environmental conditions and low population density for various organisms – also make them potentially untapped natural laboratories for examining eco-evolutionary relationships between hosts and parasites. Adaptations and ecological patterns illustrated by desert parasite communities can serve as exemplars within the extremes regarding the evolution of virulence, breadth of host spectra, and lifecycle strategies. This review provides relevant examples for each of these three topics using parasites from dryland regions in order to encourage future empirical tests of hypotheses regarding parasite ecology and evolution within dryland ecosystems and stimulate wider investigation into the parasitofauna of arid regions in general. As global climate changes and anthropogenic disturbance increases, desertification is a growing problem which has been labeled as a threat to global health. Thus, deserts not only provide useful natural laboratories in which to study parasite transmission but understanding parasite transmission within these habitats becomes increasingly important as larger, likely highly resource insecure, populations are projected to live on the margins of desert regions in the future. Drylands comprise over 41% of Earth's surface but their parasites are understudied. Desert parasite communities are exemplars within the extremes of parasite ecology. Can test hypotheses of virulence evolution, host spectra, and lifecycle strategies. Drylands can provide increasingly important insight into parasite transmission. Larger human populations are projected to live in arid regions as climate changes.
Collapse
|
45
|
Barbieri R, Texier G, Keller C, Drancourt M. Soil salinity and aridity specify plague foci in the United States of America. Sci Rep 2020; 10:6186. [PMID: 32277139 PMCID: PMC7148359 DOI: 10.1038/s41598-020-63211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/26/2020] [Indexed: 11/09/2022] Open
Abstract
Plague is a deadly zoonosis that periodically reemerges as small outbreaks in geographically limited foci where the causative agent Yersinia pestis may reside in soil. We analyzed a dataset of 1.005 carefully documented plague cases that were georeferenced over 113 years in peer-reviewed literature in the contiguous United States. Plotting outbreaks by counties defined as plague foci on geographical maps, we observed a significant co-localization of plague outbreaks with high soil salinity measured by an electric conductivity of >4 dS/ m-1 and aridity measured by an aridity index <0.5. Thus, we identified aridity and soil salinity as significantly associated with ecological risk factors for relapsing plague in the contiguous United States. These results reveal two evolutive parameters that are partially associated with anthropic activities, complicating the epidemiology of plague in the contiguous United States. Exploiting aridity and soil salinity data may help in the surveillance of evolving plague foci in the contiguous United States.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,Aix Marseille Univ., CNRS, EFS, ADES, Marseille, France
| | - Gaëtan Texier
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, dIHU-Méditerranée Infection, Marseille, France.,Centre d'épidémiologie et de santé publique des armées [CESPA], Marseille, France
| | - Catherine Keller
- Aix Marseille Univ., CNRS, IRD, INRAE, Coll. France, CEREGE, Aix-en-Provence, France
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
46
|
van Bavel BJP, Curtis DR, Hannaford MJ, Moatsos M, Roosen J, Soens T. Climate and society in long-term perspective: Opportunities and pitfalls in the use of historical datasets. WILEY INTERDISCIPLINARY REVIEWS. CLIMATE CHANGE 2019; 10:e611. [PMID: 31762795 PMCID: PMC6852122 DOI: 10.1002/wcc.611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in paleoclimatology and the growing digital availability of large historical datasets on human activity have created new opportunities to investigate long-term interactions between climate and society. However, noncritical use of historical datasets can create pitfalls, resulting in misleading findings that may become entrenched as accepted knowledge. We demonstrate pitfalls in the content, use and interpretation of historical datasets in research into climate and society interaction through a systematic review of recent studies on the link between climate and (a) conflict incidence, (b) plague outbreaks and (c) agricultural productivity changes. We propose three sets of interventions to overcome these pitfalls, which involve a more critical and multidisciplinary collection and construction of historical datasets, increased specificity and transparency about uncertainty or biases, and replacing inductive with deductive approaches to causality. This will improve the validity and robustness of interpretations on the long-term relationship between climate and society. This article is categorized under: Climate, History, Society, Culture > Disciplinary Perspectives.
Collapse
Affiliation(s)
| | - Daniel R. Curtis
- Erasmus School of History, Culture and CommunicationErasmus University RotterdamRotterdamNetherlands
| | | | - Michail Moatsos
- Department of History and Art HistoryUtrecht UniversityUtrechtNetherlands
| | - Joris Roosen
- Department of History and Art HistoryUtrecht UniversityUtrechtNetherlands
| | - Tim Soens
- Department of HistoryUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
47
|
Spyrou MA, Keller M, Tukhbatova RI, Scheib CL, Nelson EA, Andrades Valtueña A, Neumann GU, Walker D, Alterauge A, Carty N, Cessford C, Fetz H, Gourvennec M, Hartle R, Henderson M, von Heyking K, Inskip SA, Kacki S, Key FM, Knox EL, Later C, Maheshwari-Aplin P, Peters J, Robb JE, Schreiber J, Kivisild T, Castex D, Lösch S, Harbeck M, Herbig A, Bos KI, Krause J. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat Commun 2019; 10:4470. [PMID: 31578321 PMCID: PMC6775055 DOI: 10.1038/s41467-019-12154-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541-750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events.
Collapse
Affiliation(s)
- Maria A Spyrou
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| | - Marcel Keller
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | | | - Elizabeth A Nelson
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany
| | | | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Don Walker
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Amelie Alterauge
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Niamh Carty
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Hermann Fetz
- Archaeological Service, State Archive Nidwalden, 6371, Nidwalden, Switzerland
| | - Michaël Gourvennec
- Archeodunum SAS, Agency Toulouse, 8 allée Michel de Montaigne, 31770, Colomiers, France
| | - Robert Hartle
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Sacha Kacki
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
- Department of Archaeology, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Felix M Key
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Christian Later
- Bavarian State Department of Monuments and Sites, 80539, Munich, Germany
| | | | - Joris Peters
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
- ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig Maximilian University Munich, Kaulbachstr. 37/III, 80539, Munich, Germany
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | | | - Toomas Kivisild
- Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Dominique Castex
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
| | - Sandra Lösch
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Michaela Harbeck
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| |
Collapse
|
48
|
Looking Backward To Move Forward: the Utility of Sequencing Historical Bacterial Genomes. J Clin Microbiol 2019; 57:JCM.00100-19. [PMID: 31092597 DOI: 10.1128/jcm.00100-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many pathogens that caused devastating disease throughout human history, such as Yersinia pestis, Mycobacterium tuberculosis, and Mycobacterium leprae, remain problematic today. Historical bacterial genomes represent a unique source of genetic information and advancements in sequencing technologies have allowed unprecedented insights from this previously understudied resource. This minireview brings together example studies which have utilized ancient DNA, individual historical isolates (both extant and dead) and collections of historical isolates. The studies span human history and highlight the contribution that sequencing and analysis of historical bacterial genomes have made to a wide variety of fields. From providing retrospective diagnosis, to uncovering epidemiological pathways and characterizing genetic diversity, there is clear evidence for the utility of historical isolate studies in understanding disease today. Studies utilizing historical isolate collections, such as those from the National Collection of Type Cultures, the American Type Culture Collection, and the Institut Pasteur, offer enhanced insight since they typically span a wide time period encompassing important historical events and are useful for the investigating the phylodynamics of pathogens. Furthermore, historical sequencing studies are particularly useful for looking into the evolution of antimicrobial resistance, a major public health concern. In summary, although there are limitations to working with historical bacterial isolates, especially when utilizing ancient DNA, continued improvement in molecular and sequencing technologies and the resourcefulness of investigators mean this area of study will continue to expand and contribute to the understanding of pathogens.
Collapse
|
49
|
Andreano E, D'Oro U, Rappuoli R, Finco O. Vaccine Evolution and Its Application to Fight Modern Threats. Front Immunol 2019; 10:1722. [PMID: 31404139 PMCID: PMC6669413 DOI: 10.3389/fimmu.2019.01722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Before the development of the first vaccine, infectious diseases were a major cause of death around the globe with life expectancy estimated to be <50 years. Three measures have helped to drastically reduce the burden of infectious diseases but only vaccines have proven to be able to eradicate infectious agents. Herein, we describe new methodologies that have paved the way for what is currently known as modern vaccinology and the use of vaccines to tackle antimicrobial resistance, the biggest global threat of our time.
Collapse
MESH Headings
- AIDS Vaccines
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antigens/genetics
- Antigens/immunology
- B-Lymphocytes/immunology
- Clinical Trials as Topic
- Communicable Diseases, Emerging/therapy
- Disease Outbreaks/history
- Drug Resistance, Microbial
- Genetic Engineering
- Global Health
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- History, Medieval
- Immunotherapy, Active/history
- Respiratory Syncytial Virus Vaccines
- Single-Cell Analysis
- Vaccination/history
- Vaccines/history
Collapse
Affiliation(s)
- Emanuele Andreano
- Department of Life Sciences, University of Siena, Siena, Italy
- GlaxoSmithKline, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
| | | | - Rino Rappuoli
- GlaxoSmithKline, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College, London, United Kingdom
| | | |
Collapse
|
50
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|