1
|
Faienza MF, Meliota G, Mentino D, Ficarella R, Gentile M, Vairo U, D’amato G. Cardiac Phenotype and Gene Mutations in RASopathies. Genes (Basel) 2024; 15:1015. [PMID: 39202376 PMCID: PMC11353738 DOI: 10.3390/genes15081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiac involvement is a major feature of RASopathies, a group of phenotypically overlapping syndromes caused by germline mutations in genes encoding components of the RAS/MAPK (mitogen-activated protein kinase) signaling pathway. In particular, Noonan syndrome (NS) is associated with a wide spectrum of cardiac pathologies ranging from congenital heart disease (CHD), present in approximately 80% of patients, to hypertrophic cardiomyopathy (HCM), observed in approximately 20% of patients. Genotype-cardiac phenotype correlations are frequently described, and they are useful indicators in predicting the prognosis concerning cardiac disease over the lifetime. The aim of this review is to clarify the molecular mechanisms underlying the development of cardiac diseases associated particularly with NS, and to discuss the main morphological and clinical characteristics of the two most frequent cardiac disorders, namely pulmonary valve stenosis (PVS) and HCM. We will also report the genotype-phenotype correlation and its implications for prognosis and treatment. Knowing the molecular mechanisms responsible for the genotype-phenotype correlation is key to developing possible targeted therapies. We will briefly address the first experiences of targeted HCM treatment using RAS/MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Romina Ficarella
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Ugo Vairo
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Gabriele D’amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| |
Collapse
|
2
|
Sakashita K, Komori K, Morokawa H, Kurata T. Screening and interventional strategies for the late effects and toxicities of hematological malignancy treatments in pediatric survivors. Expert Rev Hematol 2024; 17:313-327. [PMID: 38899398 DOI: 10.1080/17474086.2024.2370559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Advancements in pediatric cancer treatment have increased patient survival rates; however, childhood cancer survivors may face long-term health challenges due to treatment-related effects on organs. Regular post-treatment surveillance and early intervention are crucial for improving the survivors' quality of life and long-term health outcomes. The present paper highlights the significance of late effects in childhood cancer survivors, particularly those with hematologic malignancies, stressing the importance of a vigilant follow-up approach to ensure better overall well-being. AREAS COVERED This article provides an overview of the treatment history of childhood leukemia and lymphoma as well as outlines the emerging late effects of treatments. We discuss the various types of these complications and their corresponding risk factors. EXPERT OPINION Standardizing survivorship care in pediatric cancer aims to improve patient well-being by optimizing their health outcomes and quality of life. This involves early identification and intervention of late effects, requiring collaboration among specialists, nurses, and advocates, and emphasizing data sharing and international cooperation.
Collapse
Affiliation(s)
- Kazuo Sakashita
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Kazutoshi Komori
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Hirokazu Morokawa
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Takashi Kurata
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
3
|
Fuentes-Mateos R, García-Navas R, Fernández-Infante C, Hernández-Cano L, Calzada-Nieto N, Juan AOS, Guerrero C, Santos E, Fernández-Medarde A. Combined HRAS and NRAS ablation induces a RASopathy phenotype in mice. Cell Commun Signal 2024; 22:332. [PMID: 38886790 PMCID: PMC11184836 DOI: 10.1186/s12964-024-01717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND HRASKO/NRASKO double knockout mice exhibit exceedingly high rates of perinatal lethality due to respiratory failure caused by a significant lung maturation delay. The few animals that reach adulthood have a normal lifespan, but present areas of atelectasis mixed with patches of emphysema and normal tissue in the lung. METHODS Eight double knockout and eight control mice were analyzed using micro-X-ray computerized tomography and a Small Animal Physiological Monitoring system. Tissues and samples from these mice were analyzed using standard histological and Molecular Biology methods and the significance of the results analyzed using a Student´s T-test. RESULTS The very few double knockout mice surviving up to adulthood display clear craniofacial abnormalities reminiscent of those seen in RASopathy mouse models, as well as thrombocytopenia, bleeding anomalies, and reduced platelet activation induced by thrombin. These surviving mice also present heart and spleen hyperplasia, and elevated numbers of myeloid-derived suppressor cells in the spleen. Mechanistically, we observed that these phenotypic alterations are accompanied by increased KRAS-GTP levels in heart, platelets and primary mouse embryonic fibroblasts from these animals. CONCLUSIONS Our data uncovers a new, previously unidentified mechanism capable of triggering a RASopathy phenotype in mice as a result of the combined removal of HRAS and NRAS.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Present address: Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Present address: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Nuria Calzada-Nieto
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Weiss EM, Guhathakurta D, Petrušková A, Hundrup V, Zenker M, Fejtová A. Developmental effect of RASopathy mutations on neuronal network activity on a chip. Front Cell Neurosci 2024; 18:1388409. [PMID: 38910965 PMCID: PMC11190344 DOI: 10.3389/fncel.2024.1388409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
RASopathies are a group of genetic disorders caused by mutations in genes encoding components and regulators of the RAS/MAPK signaling pathway, resulting in overactivation of signaling. RASopathy patients exhibit distinctive facial features, cardiopathies, growth and skeletal abnormalities, and varying degrees of neurocognitive impairments including neurodevelopmental delay, intellectual disabilities, or attention deficits. At present, it is unclear how RASopathy mutations cause neurocognitive impairment and what their neuron-specific cellular and network phenotypes are. Here, we investigated the effect of RASopathy mutations on the establishment and functional maturation of neuronal networks. We isolated cortical neurons from RASopathy mouse models, cultured them on multielectrode arrays and performed longitudinal recordings of spontaneous activity in developing networks as well as recordings of evoked responses in mature neurons. To facilitate the analysis of large and complex data sets resulting from long-term multielectrode recordings, we developed MATLAB-based tools for data processing, analysis, and statistical evaluation. Longitudinal analysis of spontaneous network activity revealed a convergent developmental phenotype in neurons carrying the gain-of-function Noonan syndrome-related mutations Ptpn11 D61Y and Kras V14l. The phenotype was more pronounced at the earlier time points and faded out over time, suggesting the emergence of compensatory mechanisms during network maturation. Nevertheless, persistent differences in excitatory/inhibitory balance and network excitability were observed in mature networks. This study improves the understanding of the complex relationship between genetic mutations and clinical manifestations in RASopathies by adding insights into functional network processes as an additional piece of the puzzle.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Third Faculty of Medicine, Charles University, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| | - Verena Hundrup
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Zenker
- Medical Faculty, Institute of Human Genetics, University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Gazzin A, Fornari F, Cardaropoli S, Carli D, Tartaglia M, Ferrero GB, Mussa A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life (Basel) 2024; 14:731. [PMID: 38929714 PMCID: PMC11204468 DOI: 10.3390/life14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Simona Cardaropoli
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Alessandro Mussa
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Chaput D, Andelfinger G. MEK Inhibition for RASopathy-Associated Hypertrophic Cardiomyopathy: Clinical Application of a Basic Concept. Can J Cardiol 2024; 40:789-799. [PMID: 38432396 DOI: 10.1016/j.cjca.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.
Collapse
Affiliation(s)
- Dominic Chaput
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
7
|
Fasano G, Petrini S, Bonavolontà V, Paradisi G, Pedalino C, Tartaglia M, Lauri A. Assessment of the FRET-based Teen sensor to monitor ERK activation changes preceding morphological defects in a RASopathy zebrafish model and phenotypic rescue by MEK inhibitor. Mol Med 2024; 30:47. [PMID: 38594640 PMCID: PMC11005195 DOI: 10.1186/s10020-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.
Collapse
Affiliation(s)
- Giulia Fasano
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Stefania Petrini
- Microscopy facility, Research laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Valeria Bonavolontà
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Graziamaria Paradisi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, 01100, Italy
| | - Catia Pedalino
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| | - Antonella Lauri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| |
Collapse
|
8
|
Saint-Laurent C, Mazeyrie L, Yart A, Edouard T. Novel therapeutic perspectives in Noonan syndrome and RASopathies. Eur J Pediatr 2024; 183:1011-1019. [PMID: 37863846 PMCID: PMC10951041 DOI: 10.1007/s00431-023-05263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia). Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.
Collapse
Affiliation(s)
- Céline Saint-Laurent
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France
| | - Laurène Mazeyrie
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Armelle Yart
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Thomas Edouard
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France.
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
9
|
Cherra SJ, Lamb R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front Mol Neurosci 2024; 17:1352731. [PMID: 38463630 PMCID: PMC10920261 DOI: 10.3389/fnmol.2024.1352731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | | |
Collapse
|
10
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Edwards W, Greco TM, Miner GE, Barker NK, Herring L, Cohen S, Cristea IM, Conlon FL. Quantitative proteomic profiling identifies global protein network dynamics in murine embryonic heart development. Dev Cell 2023; 58:1087-1105.e4. [PMID: 37148880 PMCID: PMC10330608 DOI: 10.1016/j.devcel.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Defining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways. Using this integrated dataset, we identified and demonstrated a functional role for the mevalonate pathway in regulating the cell cycle of embryonic cardiomyocytes. Overall, our proteomic datasets are a resource for studying events that regulate embryonic heart development and contribute to congenital heart disease.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory E Miner
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K Barker
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
12
|
Clavaín L, Fernández-Pisonero I, Movilla N, Lorenzo-Martín LF, Nieto B, Abad A, García-Navas R, Llorente-González C, Sánchez-Martín M, Vicente-Manzanares M, Santos E, Alarcón B, García-Aznar JM, Dosil M, Bustelo XR. Characterization of mutant versions of the R-RAS2/TC21 GTPase found in tumors. Oncogene 2023; 42:389-405. [PMID: 36476833 PMCID: PMC9883167 DOI: 10.1038/s41388-022-02563-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.
Collapse
Affiliation(s)
- Laura Clavaín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Isabel Fernández-Pisonero
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Nieves Movilla
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - L. Francisco Lorenzo-Martín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Blanca Nieto
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Antonio Abad
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Rósula García-Navas
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Clara Llorente-González
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenesis Facility and Nucleus Platform for Research Services, University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Eugenio Santos
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- grid.5515.40000000119578126Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. García-Aznar
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Mercedes Dosil
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Nelson ND, Xu F, Chandrasekaran P, Litzky LA, Peranteau WH, Frank DB, Li M, Pogoriler J. Defining the spatial landscape of KRAS mutated congenital pulmonary airway malformations: a distinct entity with a spectrum of histopathologic features. Mod Pathol 2022; 35:1870-1881. [PMID: 35794233 PMCID: PMC10462420 DOI: 10.1038/s41379-022-01129-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The potential pathogenetic mechanisms underlying the varied morphology of congenital pulmonary airway malformations (CPAMs) have not been molecularly determined, but a subset have been shown to contain clusters of mucinous cells (MCC). These clusters are believed to serve as precursors for potential invasive mucinous adenocarcinoma, and they are associated with KRAS codon 12 mutations. To assess the universality of KRAS mutations in MCCs, we sequenced exon 2 of KRAS in 61 MCCs from 18 patients, and we found a KRAS codon 12 mutation in all 61 MCCs. Furthermore, all MCCs from a single patient always had the same KRAS mutation, and the same KRAS mutation was also found in non-mucinous lesional tissue. Next generation sequencing of seven MCCs showed no other mutations or copy number variations. Sequencing of 46 additional CPAMs with MCCs revealed KRAS mutations in non-mucinous lesional tissue in all cases. RNA in situ hybridization confirmed widespread distribution of cells with mutant KRAS RNA, even extending outside of the bronchiolar type epithelium. We identified 25 additional CPAMs with overall histologic architecture similar to CPAMs with KRAS mutations but without identifiable MCCs, and we found KRAS mutations in 17 (68%). The histologic features of these KRAS mutated CPAMs included type 1 and type 3 morphology, as well as lesions with an intermediate histologic appearance, and analysis revealed a strong correlation between the specific amino acid substitution and histomorphology. These findings, together with previously published model organism data, suggests that the formation of type 1 and 3 CPAMs is driven by mosaic KRAS mutations arising in the lung epithelium early in development and places them within the growing field of mosaic RASopathies. The presence of widespread epithelial mutation explains late metastatic disease in incompletely resected patients and reinforces the recommendation for complete resection of these lesions.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - William H Peranteau
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marilyn Li
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Gelb BD, Yohe ME, Wolf C, Andelfinger G. New prospectives on treatment opportunities in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:541-560. [PMID: 36533679 PMCID: PMC10150944 DOI: 10.1002/ajmg.c.32024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The RASopathies are a group of clinically defined developmental syndromes caused by germline variants of the RAS/mitogen-activated protein (MAPK) cascade. The prototypic RASopathy is Noonan syndrome, which has phenotypic overlap with related disorders such as cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome with multiple lentigines, and others. In this state-of-the-art review, we summarize current knowledge on unmet therapeutic needs in these diseases and novel treatment approaches informed by insights from RAS/MAPK-associated cancer therapies, in particular through inhibition of MEK1/2 and mTOR in patients with severe disease manifestations. We explore the possibilities of integrating a larger arsenal of molecules currently under development into future care plans. Lastly, we describe both medical and ethical challenges and opportunities for future clinical trials in the field.
Collapse
Affiliation(s)
- Bruce D. Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gregor Andelfinger
- CHU Sainte Justine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Nandi S, Chennappan S, Andrasch Y, Fidan M, Engler M, Ahmad M, Tuckermann JP, Zenker M, Cirstea IC. Increased osteoclastogenesis contributes to bone loss in the Costello syndrome Hras G12V mouse model. Front Cell Dev Biol 2022; 10:1000575. [PMID: 36330334 PMCID: PMC9624175 DOI: 10.3389/fcell.2022.1000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
RAS GTPases are ubiquitous GDP/GTP-binding proteins that function as molecular switches in cellular signalling and control numerous signalling pathways and biological processes. Pathogenic mutations in RAS genes severely affect cellular homeostasis, leading to cancer when occurring in somatic cells and developmental disorders when the germline is affected. These disorders are generally termed as RASopathies and among them Costello syndrome (CS) is a distinctive entity that is caused by specific HRAS germline mutations. The majority of these mutations affect residues 12 and 13, the same sites as somatic oncogenic HRAS mutations. The hallmarks of the disease include congenital cardiac anomalies, impaired thriving and growth, neurocognitive impairments, distinctive craniofacial anomalies, and susceptibility to cancer. Adult patients often present signs of premature aging including reduced bone mineral density and osteoporosis. Using a CS mouse model harbouring a Hras G12V germline mutation, we aimed at determining whether this model recapitulates the patients’ bone phenotype and which bone cells are driving the phenotype when mutated. Our data revealed that Hras G12V mutation induces bone loss in mice at certain ages. In addition, we identified that bone loss correlated with an increased number of osteoclasts in vivo and Hras G12V mutations increased osteoclastogenesis in vitro. Last, but not least, mutant osteoclast differentiation was reduced by treatment in vitro with MEK and PI3K inhibitors, respectively. These results indicate that Hras is a novel regulator of bone homeostasis and an increased osteoclastogenesis due to Hras G12V mutation contributes to bone loss in the Costello syndrome.
Collapse
Affiliation(s)
- Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | - Yannik Andrasch
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- *Correspondence: Ion Cristian Cirstea,
| |
Collapse
|
16
|
Leegaard A, Gregersen PA, Nielsen TØ, Bjerre JV, Handrup MM. Succesful MEK-inhibition of severe hypertrophic cardiomyopathy in RIT1-related Noonan Syndrome. Eur J Med Genet 2022; 65:104630. [DOI: 10.1016/j.ejmg.2022.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
|
17
|
Cuevas-Navarro A, Rodriguez-Muñoz L, Grego-Bessa J, Cheng A, Rauen KA, Urisman A, McCormick F, Jimenez G, Castel P. Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs. eLife 2022; 11:e76495. [PMID: 35467524 PMCID: PMC9068208 DOI: 10.7554/elife.76495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Rodriguez-Muñoz
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
| | | | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine A Rauen
- UC Davis MIND Institute, University of California DavisSacramentoUnited States
- Department of Pediatrics, University of California DavisSacramentoUnited States
| | - Anatoly Urisman
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gerardo Jimenez
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
18
|
Johnson C, Burkhart DL, Haigis KM. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. Cancer Discov 2022; 12:913-923. [PMID: 35373279 PMCID: PMC8988514 DOI: 10.1158/2159-8290.cd-22-0035] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Members of the family of RAS proto-oncogenes, discovered just over 40 years ago, were among the first cancer-initiating genes to be discovered. Of the three RAS family members, KRAS is the most frequently mutated in human cancers. Despite intensive biological and biochemical study of RAS proteins over the past four decades, we are only now starting to devise therapeutic strategies to target their oncogenic properties. Here, we highlight the distinct biochemical properties of common and rare KRAS alleles, enabling their classification into functional subtypes. We also discuss the implications of this functional classification for potential therapeutic avenues targeting mutant subtypes. SIGNIFICANCE Efforts in the recent past to inhibit KRAS oncogenicity have focused on kinases that function in downstream signal transduction cascades, although preclinical successes have not translated to patients with KRAS-mutant cancer. Recently, clinically effective covalent inhibitors of KRASG12C have been developed, establishing two principles that form a foundation for future efforts. First, KRAS is druggable. Second, each mutant form of KRAS is likely to have properties that make it uniquely druggable.
Collapse
Affiliation(s)
- Christian Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Rep 2022; 38:110522. [PMID: 35294890 DOI: 10.1016/j.celrep.2022.110522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 12/20/2022] Open
Abstract
A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.
Collapse
|
20
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Gordon K, Moore M, Van Zanten M, Pearce J, Itkin M, Madden B, Ratnam L, Mortimer PS, Nagaraja R, Mansour S. Case Report: Progressive central conducting lymphatic abnormalities in the RASopathies. Two case reports, including successful treatment by MEK inhibition. Front Genet 2022; 13:1001105. [PMID: 36238151 PMCID: PMC9550924 DOI: 10.3389/fgene.2022.1001105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The RASopathies are a group of genetic conditions resulting from mutations within the RAS/mitogen-activated protein kinase (RAS-MAPK) pathway. Lymphatic abnormalities are commonly associated with these conditions, however central conducting lymphatic abnormalities (CCLA) have only recently been described. CCLAs may be progressive and can result in devastating systemic sequelae, such as recurrent chylothoraces, chylopericardium and chylous ascites which can cause significant morbidity and even mortality. Improvements in imaging modalities of the central lymphatics have enhanced our understanding of these complex abnormalities. Management is challenging and have mainly consisted of diuretics and invasive mechanical drainages. We describe two adult males with Noonan syndrome with a severe and progressive CCLA. In one patient we report the therapeutic role of targeted molecular therapy with the MEK inhibitor 'Trametinib', which has resulted in dramatic, and sustained, clinical improvement. The successful use of MEK inhibition highlights the importance of understanding the molecular cause of lymphatic abnormalities and utilising targeted therapies to improve quality of life and potentially life expectancy.
Collapse
Affiliation(s)
- Kristiana Gordon
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom.,Lymphovascular Clinic, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Matthew Moore
- Cardiovascular Department, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Malou Van Zanten
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom
| | - Julian Pearce
- Lymphovascular Clinic, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Maxim Itkin
- Division of Interventional Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Brendan Madden
- Cardiovascular Department, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Lakshmi Ratnam
- Department of Interventional Radiology, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Peter S Mortimer
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom.,Lymphovascular Clinic, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rani Nagaraja
- Gastroenterology Department, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sahar Mansour
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom.,SW Thames Regional Genetics Service, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Sparks TN. The Current State and Future of Fetal Therapies. Clin Obstet Gynecol 2021; 64:926-932. [PMID: 34560766 PMCID: PMC8530888 DOI: 10.1097/grf.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Through next-generation sequencing, we can now detect a myriad of rare genetic diseases in utero that were previously not diagnosed until after birth. Fetal therapies hold strong promise for transforming prenatal management of genetic diseases, preventing adverse effects from organ damage in utero, and improving the grim perinatal outcomes of numerous genetic diseases. Many novel, in utero therapies are under investigation for genetic diseases using hematopoietic stem cells, cellular pathway inhibitors, viral vectors, and other biotechnologies. This article reviews emerging fetal therapies, as well as existing guidance for their development, considerations for their safety, and ethical and societal implications.
Collapse
Affiliation(s)
- Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
24
|
Motta M, Fasano G, Gredy S, Brinkmann J, Bonnard AA, Simsek-Kiper PO, Gulec EY, Essaddam L, Utine GE, Guarnetti Prandi I, Venditti M, Pantaleoni F, Radio FC, Ciolfi A, Petrini S, Consoli F, Vignal C, Hepbasli D, Ullrich M, de Boer E, Vissers LELM, Gritli S, Rossi C, De Luca A, Ben Becher S, Gelb BD, Dallapiccola B, Lauri A, Chillemi G, Schuh K, Cavé H, Zenker M, Tartaglia M. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet 2021; 108:2112-2129. [PMID: 34626534 DOI: 10.1016/j.ajhg.2021.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sina Gredy
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Adeline Alice Bonnard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Health Sciences University, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Leila Essaddam
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Ingrid Guarnetti Prandi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Federica Consoli
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Cédric Vignal
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
| | - Denis Hepbasli
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Melanie Ullrich
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Sami Gritli
- Department of Immunology, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Cesare Rossi
- Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Saayda Ben Becher
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy; Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Centro Nazionale Delle Ricerche, 70126 Bari, Italy
| | - Kai Schuh
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
25
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
26
|
Peusner KD, Bell NM, Hirsch JC, Beraneck M, Popratiloff A. Understanding the Pathophysiology of Congenital Vestibular Disorders: Current Challenges and Future Directions. Front Neurol 2021; 12:708395. [PMID: 34589045 PMCID: PMC8475631 DOI: 10.3389/fneur.2021.708395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
In congenital vestibular disorders (CVDs), children develop an abnormal inner ear before birth and face postnatal challenges to maintain posture, balance, walking, eye-hand coordination, eye tracking, or reading. Only limited information on inner ear pathology is acquired from clinical imaging of the temporal bone or studying histological slides of the temporal bone. A more comprehensive and precise assessment and determination of the underlying mechanisms necessitate analyses of the disorders at the cellular level, which can be achieved using animal models. Two main criteria for a suitable animal model are first, a pathology that mirrors the human disorder, and second, a reproducible experimental outcome leading to statistical power. With over 40 genes that affect inner ear development, the phenotypic abnormalities resulting from congenital vestibular disorders (CVDs) are highly variable. Nonetheless, there is a large subset of CVDs that form a common phenotype of a sac-like inner ear with the semicircular canals missing or dysplastic, and discrete abnormalities in the vestibular sensory organs. We have focused the review on this subset, but to advance research on CVDs we have added other CVDs not forming a sac-like inner ear. We have included examples of animal models used to study these CVDs. Presently, little is known about the central pathology resulting from CVDs at the cellular level in the central vestibular neural network, except for preliminary studies on a chick model that show significant loss of second-order, vestibular reflex projection neurons.
Collapse
Affiliation(s)
- Kenna D Peusner
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Nina M Bell
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - June C Hirsch
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mathieu Beraneck
- Université de Paris, Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Paris, France
| | - Anastas Popratiloff
- The George Washington University Nanofabrication and Imaging Center, Washington, DC, United States
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW An early understanding of the role of the Ras/Raf/MEK/ERK signalling pathway in regulating cell proliferation has set the stage for the development of several potent and selective MEK inhibitors (MEKi). MEKi represent promising therapies for RAS-driven neoplasias and RASopathies associated with increased Ras/MAPK activity. RECENT FINDINGS Neurofibromatosis 1 (NF1) is a prototypic RASopathy in which early-phase clinical trials with MEKi have been successful in the treatment of plexiform neurofibromas (pNF) and low-grade gliomas (LGGs). The phase 2 trial (SPRINT) of selumetinib in pNF resulted in at least 20% reduction in the size of pNF from baseline in 71% of patients and was associated with clinically meaningful improvements. On the basis of this trial, selumetinib (Koselugo) received FDA approval for children 2 years of age and older with inoperable, symptomatic pNF. The phase 2 trial of selumetinib in LGG resulted in 40% partial response and 96% of patients had 2 years of progression-free survival. SUMMARY Given the potential of MEK inhibition as an effective and overall well tolerated medical treatment, the use of targeted agents in the NF1 population is likely to increase considerably. Future work on non-NF1 RASopathies should focus on developing preclinical models and defining endpoints for measurement of efficacy in order to conduct clinical trials.
Collapse
|
28
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L, Chemaly ER. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res 2021; 54:23. [PMID: 34344467 PMCID: PMC8330049 DOI: 10.1186/s40659-021-00342-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract ![]()
The Ras (Rat Sarcoma) gene family is a group of small G proteins Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy Ras directly affects cardiomyocyte physiological and pathological hypertrophy Genetic alterations of Ras and its pathways result in various cardiac phenotypes Ras and its pathway are differentially regulated in acquired heart disease Ras modulation is a promising therapeutic target in various cardiac conditions.
Collapse
Affiliation(s)
- Manuel Ramos-Kuri
- Instituto Nacional de Cancerología, Unidad de Investigación Biomédica en Cáncer, Secretarìa de Salud/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.,Researcher of the Facultad de Bioética, Cátedra de Infertilidad, Universidad Anáhuac, Mexico City, México.,Centro de Investigación en Bioética y Genética, Querétaro, México
| | - Sri Harika Meka
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA
| | - Fabio Salamanca-Buentello
- University of Toronto Institute of Medical Science, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, ON, M5S 1A8, Canada
| | | | - Larissa Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, and Université Paris-Est Créteil (UPEC), 94010, Créteil, France
| | - Elie R Chemaly
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA.
| |
Collapse
|
29
|
Chen J, Wang L, Wang W, Sun H, Pang L, Bao H. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Comput Biol Med 2021; 135:104639. [PMID: 34247129 DOI: 10.1016/j.compbiomed.2021.104639] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Mutations in K-Ras are involved in a large number of all human cancers, thus, K-Ras is regarded as a promising target for anticancer drug design. Understanding the target roles of K-Ras is important for providing insights on the molecular mechanism underlying the conformational transformation of the switch domains in K-Ras due to mutations. In this study, multiple replica Gaussian accelerated molecular (MR-GaMD) simulations and principal component analysis (PCA) were applied to probe the effect of G13A, G13D and G13I mutations on conformational transformations of the switch domains in GDP-associated K-Ras. The results suggest that G13A, G13D and G13I enhance the structural flexibility of the switch domains, change the correlated motion modes of the switch domains and strengthen the total motion strength of K-Ras compared with the wild-type (WT) K-Ras. Free energy landscape analyses not only show that the switch domains of the GDP-bound inactive K-Ras mainly exist as a closed state but also indicate that mutations evidently alter the free energy profile of K-Ras and affect the conformational transformation of the switch domains between the closed and open states. Analyses of hydrophobic interaction contacts and hydrogen bonding interactions show that the mutations scarcely change the interaction network of GDP with K-Ras and only disturb the interaction of GDP with the switch (SW1). In summary, two newly introduced mutations, G13A and G13I, play similar adjustment roles in the conformational transformations of two switch domains to G13D and are possibly utilized to tune the activity of K-Ras and the binding of guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
30
|
Montero-Bullón JF, González-Velasco Ó, Isidoro-García M, Lacal J. Integrated in silico MS-based phosphoproteomics and network enrichment analysis of RASopathy proteins. Orphanet J Rare Dis 2021; 16:303. [PMID: 34229750 PMCID: PMC8258961 DOI: 10.1186/s13023-021-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background RASopathies are a group of syndromes showing clinical overlap caused by mutations in genes affecting the RAS-MAPK pathway. Consequent disruption on cellular signaling leads and is driven by phosphoproteome remodeling. However, we still lack a comprehensive picture of the different key players and altered downstream effectors. Methods An in silico interactome of RASopathy proteins was generated using pathway enrichment analysis/STRING tool, including identification of main hub proteins. We also integrated phosphoproteomic and immunoblotting studies using previous published information on RASopathy proteins and their neighbors in the context of RASopathy syndromes. Data from Phosphosite database (www.phosphosite.org) was collected in order to obtain the potential phosphosites subjected to regulation in the 27 causative RASopathy proteins. We compiled a dataset of dysregulated phosphosites in RASopathies, searched for commonalities between syndromes in harmonized data, and analyzed the role of phosphorylation in the syndromes by the identification of key players between the causative RASopathy proteins and the associated interactome. Results In this study, we provide a curated data set of 27 causative RASopathy genes, identify up to 511 protein–protein associations using pathway enrichment analysis/STRING tool, and identify 12 nodes as main hub proteins. We found that a large group of proteins contain tyrosine residues and their biological processes include but are not limited to the nervous system. Harmonizing published RASopathy phosphoproteomic and immunoblotting studies we identified a total of 147 phosphosites with increased phosphorylation, whereas 47 have reduced phosphorylation. The PKB signaling pathway is the most represented among the dysregulated phosphoproteins within the RASopathy proteins and their neighbors, followed by phosphoproteins implicated in the regulation of cell proliferation and the MAPK pathway. Conclusions This work illustrates the complex network underlying the RASopathies and the potential of phosphoproteomics for dissecting the molecular mechanisms in these syndromes. A combined study of associated genes, their interactome and phosphorylation events in RASopathies, elucidates key players and mechanisms to direct future research, diagnosis and therapeutic windows. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01934-x.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain
| | - Óscar González-Velasco
- Bioinformatics and Functional Genomics Group, IBMCC Cancer Research Center, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.,Network for Cooperative Research in Health-RETICS ARADyAL, 37007, Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, 37007, Salamanca, Spain.,Department of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Jesus Lacal
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain. .,Molecular Genetics of Human Diseases Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
31
|
Rodríguez F, Gaete X, Cassorla F. Etiology and Treatment of Growth Delay in Noonan Syndrome. Front Endocrinol (Lausanne) 2021; 12:691240. [PMID: 34149626 PMCID: PMC8212989 DOI: 10.3389/fendo.2021.691240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Noonan syndrome is characterized by multiple phenotypic features, including growth retardation, which represents the main cause of consultation to the clinician. Longitudinal growth during childhood and adolescence depends on several factors, among them an intact somatotrophic axis, which is characterized by an adequate growth hormone (GH) secretion by the pituitary, subsequent binding to its receptor, proper function of the post-receptor signaling pathway for this hormone (JAK-STAT5b and RAS/MAPK), and ultimately by the production of its main effector, insulin like growth factor 1 (IGF-1). Several studies regarding the function of the somatotrophic axis in patients with Noonan syndrome and data from murine models, suggest that partial GH insensitivity at a post-receptor level, as well as possible derangements in the RAS/MAPK pathway, are the most likely causes for the growth failure in these patients. Treatment with recombinant human growth hormone (rhGH) has been used extensively to promote linear growth in these patients. Numerous treatment protocols have been employed so far, but the published studies are quite heterogeneous regarding patient selection, length of treatment, and dose of rhGH utilized, so the true benefit of GH therapy is somewhat difficult to establish. This review will discuss the possible etiologies for the growth delay, as well as the outcomes following rhGH treatment in patients with Noonan syndrome.
Collapse
Affiliation(s)
- Fernando Rodríguez
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Ximena Gaete
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
- Pediatrics Department, Hospital Clínico San Borja – Arriarán, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Engler M, Fidan M, Nandi S, Cirstea IC. Senescence in RASopathies, a possible novel contributor to a complex pathophenoype. Mech Ageing Dev 2020; 194:111411. [PMID: 33309600 DOI: 10.1016/j.mad.2020.111411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies. Here, we consider that in these disorders, senescence induction may result in opposing outcomes, a tumour protective effect and a possible contributor to a premature ageing phenotype identified in Costello syndrome, which belongs to the RASopathy group. In this review, we will highlight the role of senescence in organismal homeostasis and we will describe the current knowledge about senescence in RASopathies. Additionally, we provide a perspective on examples of experimentally characterised RASopathy mutations that, alone or in combination with various stressors, may also trigger an age-dependent chronic senescence, possibly contributing to the age-dependent worsening of RASopathy pathophenotype and the reduction of lifespan.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
33
|
Wong JC, Perez-Mancera PA, Huang TQ, Kim J, Grego-Bessa J, Del Pilar Alzamora M, Kogan SC, Sharir A, Keefe SH, Morales CE, Schanze D, Castel P, Hirose K, Huang GN, Zenker M, Sheppard D, Klein OD, Tuveson DA, Braun BS, Shannon K. KrasP34R and KrasT58I mutations induce distinct RASopathy phenotypes in mice. JCI Insight 2020; 5:140495. [PMID: 32990679 PMCID: PMC7710308 DOI: 10.1172/jci.insight.140495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023] Open
Abstract
Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre–mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials. Mouse models are developed to accurately recapitulate multiple features of RASopathy disorders caused by germline KRASP34R and KRAST581 mutations.
Collapse
Affiliation(s)
- Jasmine C Wong
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tannie Q Huang
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Jangkyung Kim
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Maria Del Pilar Alzamora
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | | | - Amnon Sharir
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - Susan H Keefe
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - Carolina E Morales
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center
| | - Kentaro Hirose
- Cardiovascular Research Institute.,Department of Physiology, and
| | - Guo N Huang
- Cardiovascular Research Institute.,Department of Physiology, and
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Dean Sheppard
- Cardiovascular Research Institute.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ophir D Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| | - Benjamin S Braun
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Van R, Cuevas-Navarro A, Castel P, McCormick F. The molecular functions of RIT1 and its contribution to human disease. Biochem J 2020; 477:2755-2770. [PMID: 32766847 PMCID: PMC7787054 DOI: 10.1042/bcj20200442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
RIT1 is a member of the Ras family of GTPases that direct broad cellular physiological responses through tightly controlled signaling networks. The canonical Ras GTPases are well-defined regulators of the RAF/MEK/ERK pathway and mutations in these are pathogenic in cancer and a class of developmental disorders termed RASopathies. Emerging clinical evidences have now demonstrated a role for RIT1 in RASopathies, namely Noonan syndrome, and various cancers including lung adenocarcinoma and myeloid malignancies. While RIT1 has been mostly described in the context of neuronal differentiation and survival, the mechanisms underlying aberrant RIT1-mediated signaling remain elusive. Here, we will review efforts undertaken to characterize the biochemical and functional properties of the RIT1 GTPase at the molecular, cellular, and organismal level, as well as provide a phenotypic overview of different human conditions caused by RIT1 mutations. Deeper understanding of RIT1 biological function and insight to its pathogenic mechanisms are imperative to developing effective therapeutic interventions for patients with RIT1-mutant Noonan syndrome and cancer.
Collapse
Affiliation(s)
- Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
35
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Vatansever S, Erman B, Gümüş ZH. Comparative effects of oncogenic mutations G12C, G12V, G13D, and Q61H on local conformations and dynamics of K-Ras. Comput Struct Biotechnol J 2020; 18:1000-1011. [PMID: 32373288 PMCID: PMC7191603 DOI: 10.1016/j.csbj.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/05/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
K-Ras is the most frequently mutated protein in human cancers. However, until very recently, its oncogenic mutants were viewed as undruggable. To develop inhibitors that directly target oncogenic K-Ras mutants, we need to understand both their mutant-specific and pan-mutant dynamics and conformations. Recently, we have investigated how the most frequently observed K-Ras mutation in cancer patients, G12D, changes its local dynamics and conformations (Vatansever et al., 2019). Here, we extend our analysis to study and compare the local effects of other frequently observed oncogenic mutations, G12C, G12V, G13D and Q61H. For this purpose, we have performed Molecular Dynamics (MD) simulations of each mutant when active (GTP-bound) and inactive (GDP-bound), analyzed their trajectories, and compared how each mutant changes local residue conformations, inter-protein distance distributions, local flexibility and residue pair correlated motions. Our results reveal that in the four active oncogenic mutants we have studied, the α2 helix moves closer to the C-terminal of the α3 helix. However, P-loop mutations cause α3 helix to move away from Loop7, and only G12 mutations change the local conformational state populations of the protein. Furthermore, the motions of coupled residues are mutant-specific: G12 mutations lead to new negative correlations between residue motions, while Q61H destroys them. Overall, our findings on the local conformational states and protein dynamics of oncogenic K-Ras mutants can provide insights for both mutant-selective and pan-mutant targeted inhibition efforts.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, New York, NY, United States
| | - Burak Erman
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Zeynep H. Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, New York, NY, United States
| |
Collapse
|
37
|
Andelfinger G, Marquis C, Raboisson MJ, Théoret Y, Waldmüller S, Wiegand G, Gelb BD, Zenker M, Delrue MA, Hofbeck M. Hypertrophic Cardiomyopathy in Noonan Syndrome Treated by MEK-Inhibition. J Am Coll Cardiol 2020; 73:2237-2239. [PMID: 31047013 DOI: 10.1016/j.jacc.2019.01.066] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 10/26/2022]
|
38
|
Morè L, Lauterborn JC, Papaleo F, Brambilla R. Enhancing cognition through pharmacological and environmental interventions: Examples from preclinical models of neurodevelopmental disorders. Neurosci Biobehav Rev 2020; 110:28-45. [PMID: 30981451 DOI: 10.1016/j.neubiorev.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2XT, Preston, UK.
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92617, USA.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy.
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff University, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
39
|
Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, Stronach B, Biesecker LG, Esposito D, Hernandez ER, Legius E, Loh ML, Martin S, Morrison DK, Rauen KA, Wolters PL, Zand D, McCormick F, Savage SA, Stewart DR, Widemann BC, Yohe ME. Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am J Med Genet A 2020; 182:866-876. [PMID: 31913576 DOI: 10.1002/ajmg.a.61485] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
RASopathies caused by germline pathogenic variants in genes that encode RAS pathway proteins. These disorders include neurofibromatosis type 1 (NF1), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), and Costello syndrome (CS), and others. RASopathies are characterized by heterogenous manifestations, including congenital heart disease, failure to thrive, and increased risk of cancers. Previous work led by the NCI Pediatric Oncology Branch has altered the natural course of one of the key manifestations of the RASopathy NF1. Through the conduct of a longitudinal cohort study and early phase clinical trials, the MEK inhibitor selumetinib was identified as the first active therapy for the NF1-related peripheral nerve sheath tumors called plexiform neurofibromas (PNs). As a result, selumetinib was granted breakthrough therapy designation by the FDA for the treatment of PN. Other RASopathy manifestations may also benefit from RAS targeted therapies. The overall goal of Advancing RAS/RASopathy Therapies (ART), a new NCI initiative, is to develop effective therapies and prevention strategies for the clinical manifestations of the non-NF1 RASopathies and for tumors characterized by somatic RAS mutations. This report reflects discussions from a February 2019 initiation meeting for this project, which had broad international collaboration from basic and clinical researchers and patient advocates.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Karen W Gripp
- Department of Genetics, Division of Pediatrics, Al duPont Hospital for Children, Wilmington, Delaware
| | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Eric Legius
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, KU Leuven University Hospital, Leuven, Belgium
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dina Zand
- Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | - Frank McCormick
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
40
|
Ibarra BA, Atit R. What Do Animal Models Teach Us About Congenital Craniofacial Defects? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:137-155. [PMID: 32304072 PMCID: PMC7394376 DOI: 10.1007/978-981-15-2389-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation of the head and face is a complex process which involves many different signaling cues regulating the migration, differentiation, and proliferation of the neural crest. This highly complex process is very error-prone, resulting in craniofacial defects in nearly 10,000 births in the United States annually. Due to the highly conserved mechanisms of craniofacial development, animal models are widely used to understand the pathogenesis of various human diseases and assist in the diagnosis and generation of preventative therapies and treatments. Here, we provide a brief background of craniofacial development and discuss several rare diseases affecting craniofacial bone development. We focus on rare congenital diseases of the cranial bone, facial jaw bones, and two classes of diseases, ciliopathies and RASopathies. Studying the animal models of these rare diseases sheds light not only on the etiology and pathology of each disease, but also provides meaningful insights towards the mechanisms which regulate normal development of the head and face.
Collapse
Affiliation(s)
- Beatriz A Ibarra
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
41
|
Kang M, Lee YS. The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 2019; 12:96. [PMID: 31752929 PMCID: PMC6873535 DOI: 10.1186/s13041-019-0517-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
The RAS signaling pathway is involved in the regulation of developmental processes, including cell growth, proliferation, and differentiation, in the central nervous system (CNS). Germline mutations in the RAS signaling pathway genes are associated with a group of neurodevelopmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathies increase the activity of the RAS-ERK signaling pathway, and therefore, most individuals with RASopathies share common phenotypes, such as a short stature, heart defects, facial abnormalities, and cognitive impairments, which are often accompanied by abnormal CNS development. Recent studies using mouse models of RASopathies demonstrated that particular mutations associated with each disorder disrupt CNS development in a mutation-specific manner. Here, we reviewed the recent literatures that investigated the developmental role of RASopathy-associated mutations using mutant mice, which provided insights into the specific contribution of RAS-ERK signaling molecules to CNS development and the subsequent impact on cognitive function in adult mice.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
| |
Collapse
|
42
|
Bera AK, Lu J, Wales TE, Gondi S, Gurbani D, Nelson A, Engen JR, Westover KD. Structural basis of the atypical activation mechanism of KRAS V14I. J Biol Chem 2019; 294:13964-13972. [PMID: 31341022 PMCID: PMC6755796 DOI: 10.1074/jbc.ra119.009131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
RAS regulation and signaling are largely accomplished by direct protein-protein interactions, making RAS protein dynamics a critical determinant of RAS function. Here, we report a crystal structure of GDP-bound KRASV14I, a mutated KRAS variant associated with the developmental RASopathy disorder Noonan syndrome (NS), at 1.5-1.6 Å resolution. The structure is notable for revealing a marked extension of switch 1 away from the G-domain and nucleotide-binding site of the KRAS protein. We found that this extension is associated with a loss of the magnesium ion and a tilt in the position of the guanine base because of the additional carbon introduced by the isoleucine substitution. Hydrogen-deuterium exchange MS analysis confirmed that this conformation occurs in solution, but also disclosed a difference in kinetics when compared with KRASA146T, another RAS mutant that displays a nearly identical conformation in previously reported crystal structures. This conformational change contributed to a high rate of guanine nucleotide-exchange factor (GEF)-dependent and -independent nucleotide exchange and to an increase in affinity for SOS Ras/Rac GEF 1 (SOS1), which appears to be the major mode of activation for this RAS variant. These results highlight a mechanistic connection between KRASA146T and KRASV14I that may have implications for the regulation of these variants and for the development of therapeutic strategies to manage KRAS variant-associated disorders.
Collapse
Affiliation(s)
- Asim K Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jia Lu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Masachusetts 02115
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Andrew Nelson
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Masachusetts 02115
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
43
|
Nissim S, Leshchiner I, Mancias JD, Greenblatt MB, Maertens O, Cassa CA, Rosenfeld JA, Cox AG, Hedgepeth J, Wucherpfennig JI, Kim AJ, Henderson JE, Gonyo P, Brandt A, Lorimer E, Unger B, Prokop JW, Heidel JR, Wang XX, Ukaegbu CI, Jennings BC, Paulo JA, Gableske S, Fierke CA, Getz G, Sunyaev SR, Wade Harper J, Cichowski K, Kimmelman AC, Houvras Y, Syngal S, Williams C, Goessling W. Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nat Genet 2019; 51:1308-1314. [PMID: 31406347 DOI: 10.1038/s41588-019-0475-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.
Collapse
Affiliation(s)
- Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Ignaty Leshchiner
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph D Mancias
- Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine and the Hospital for Special Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ophélia Maertens
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill A Rosenfeld
- The Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Andrew G Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - John Hedgepeth
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia I Wucherpfennig
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Kim
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jake E Henderson
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Gonyo
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony Brandt
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen Lorimer
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bethany Unger
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry R Heidel
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | | | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gad Getz
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cancer Center and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shamil R Sunyaev
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Sapna Syngal
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carol Williams
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA. .,The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA. .,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Takahara S, Inoue SI, Miyagawa-Tomita S, Matsuura K, Nakashima Y, Niihori T, Matsubara Y, Saiki Y, Aoki Y. New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosis. EBioMedicine 2019; 42:43-53. [PMID: 30898653 PMCID: PMC6491386 DOI: 10.1016/j.ebiom.2019.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. METHODS To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. FINDINGS Rit1A57G/+ embryos exhibited decreased viability, edema, subcutaneous hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. INTERPRETATION The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. FUND: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.
Collapse
Affiliation(s)
- Shingo Takahara
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Cardiovascular Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan; Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan; Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasumi Nakashima
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan; National Center for Child Health and Development, Tokyo, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
45
|
Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, Tankka A, Galeas J, Urisman A, McCormick F. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science 2019; 363:1226-1230. [PMID: 30872527 PMCID: PMC6986682 DOI: 10.1126/science.aav1444] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
RIT1 oncoproteins have emerged as an etiologic factor in Noonan syndrome and cancer. Despite the resemblance of RIT1 to other members of the Ras small guanosine triphosphatases (GTPases), mutations affecting RIT1 are not found in the classic hotspots but rather in a region near the switch II domain of the protein. We used an isogenic germline knock-in mouse model to study the effects of RIT1 mutation at the organismal level, which resulted in a phenotype resembling Noonan syndrome. By mass spectrometry, we detected a RIT1 interactor, leucine zipper-like transcription regulator 1 (LZTR1), that acts as an adaptor for protein degradation. Pathogenic mutations affecting either RIT1 or LZTR1 resulted in incomplete degradation of RIT1. This led to RIT1 accumulation and dysregulated growth factor signaling responses. Our results highlight a mechanism of pathogenesis that relies on impaired protein degradation of the Ras GTPase RIT1.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Alex G Papageorge
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Alexandra Tankka
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Galeas
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
47
|
Grant AR, Cushman BJ, Cavé H, Dillon MW, Gelb BD, Gripp KW, Lee JA, Mason-Suares H, Rauen KA, Tartaglia M, Vincent LM, Zenker M. Assessing the gene-disease association of 19 genes with the RASopathies using the ClinGen gene curation framework. Hum Mutat 2018; 39:1485-1493. [PMID: 30311384 PMCID: PMC6326381 DOI: 10.1002/humu.23624] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 08/23/2018] [Indexed: 11/10/2022]
Abstract
The RASopathies are a complex group of conditions regarding phenotype and genetic etiology. The ClinGen RASopathy Expert Panel (RAS EP) assessed published and other publicly available evidence supporting the association of 19 genes with RASopathy conditions. Using the semiquantitative literature curation method developed by the ClinGen Gene Curation Working Group, evidence for each gene was curated and scored for Noonan syndrome (NS), Costello syndrome, cardiofaciocutaneous syndrome, NS with multiple lentigines, and Noonan-like syndrome with loose anagen hair. The curated evidence supporting each gene-disease relationship was then discussed and approved by the ClinGen RASopathy Expert Panel. Each association's strength was classified as definitive, strong, moderate, limited, disputed, or no evidence. Eleven genes were classified as definitively associated with at least one RASopathy condition. Two genes classified as strong for association with at least one RASopathy condition while one gene was moderate and three were limited. The RAS EP also disputed the association of two genes for all RASopathy conditions. Overall, our results provide a greater understanding of the different gene-disease relationships within the RASopathies and can help in guiding and directing clinicians, patients, and researchers who are identifying variants in individuals with a suspected RASopathy.
Collapse
Affiliation(s)
- Andrew R. Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J. Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Hélène Cavé
- Département de Génétique, Hôpital Robert Debré and Institut Universitaire d’Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France
| | - Mitchell W. Dillon
- Molecular Genetic Testing Laboratory, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Bruce D. Gelb
- Departments of Pediatrics and Genetic and Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Karen W. Gripp
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer A. Lee
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Katherine A. Rauen
- Department of Pediatrics, UC Davis Children’s Hospital, Sacramento, California
| | | | | | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
48
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
49
|
Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, Poso A. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLoS Comput Biol 2018; 14:e1006458. [PMID: 30199525 PMCID: PMC6147662 DOI: 10.1371/journal.pcbi.1006458] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
A mutated KRAS protein is frequently observed in human cancers. Traditionally, the oncogenic properties of KRAS missense mutants at position 12 (G12X) have been considered as equal. Here, by assessing the probabilities of occurrence of all KRAS G12X mutations and KRAS dynamics we show that this assumption does not hold true. Instead, our findings revealed an outstanding mutational bias. We conducted a thorough mutational analysis of KRAS G12X mutations and assessed to what extent the observed mutation frequencies follow a random distribution. Unique tissue-specific frequencies are displayed with specific mutations, especially with G12R, which cannot be explained by random probabilities. To clarify the underlying causes for the nonrandom probabilities, we conducted extensive atomistic molecular dynamics simulations (170 μs) to study the differences of G12X mutations on a molecular level. The simulations revealed an allosteric hydrophobic signaling network in KRAS, and that protein dynamics is altered among the G12X mutants and as such differs from the wild-type and is mutation-specific. The shift in long-timescale conformational dynamics was confirmed with Markov state modeling. A G12X mutation was found to modify KRAS dynamics in an allosteric way, which is especially manifested in the switch regions that are responsible for the effector protein binding. The findings provide a basis to understand better the oncogenic properties of KRAS G12X mutants and the consequences of the observed nonrandom frequencies of specific G12X mutations. The oncogene KRAS is frequently mutated in various cancers. When the amino acid glycine 12 is mutated, KRAS protein acquires oncogenic properties that result in tumor cell-growth and cancer progression. These mutations prevail especially in the pancreatic ductal adenocarcinoma, which is a cancer with an exceptionally dismal prognosis. To date, there is a limited understanding of the different mutations at the position 12, also regarding whether the different mutations would have different consequences. These discrepancies could have major implications for the future drug therapies targeting KRAS mutant harboring tumors. In this study, we made a critical assessment of the observed frequency of KRAS G12X mutations and the underlying causes for these frequencies. We also assessed KRAS G12X mutant discrepancies on an atomistic level by utilizing state-of-the-art molecular dynamics simulations. We found that the dynamics of the mutants does not only differ from the wild-type protein, but there is also a profound difference among the different mutants. These results emphasize that the different KRAS G12X mutations are not equal, and thereby they suggest that the future research related to mutant KRAS biology should account for these observations.
Collapse
Affiliation(s)
- Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- * E-mail: (TP); (AP)
| | - Sami Rissanen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
| | - Daniel Dauch
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
- MEMPHYS-Center for Biomembrane Physics, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany
- * E-mail: (TP); (AP)
| |
Collapse
|
50
|
Inoue SI, Takahara S, Yoshikawa T, Niihori T, Yanai K, Matsubara Y, Aoki Y. Activated Braf induces esophageal dilation and gastric epithelial hyperplasia in mice. Hum Mol Genet 2018; 26:4715-4727. [PMID: 28973166 DOI: 10.1093/hmg/ddx354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome.
Collapse
Affiliation(s)
| | - Shingo Takahara
- Department of Medical Genetics.,Department of Cardiovascular Surgery
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | | | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics.,National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|