1
|
Xu J, Liu S, Zhu Y, Hale ME, Wang Q, Wang X, Gao MM, Wang H, Suveg C, Han ZR. Parent emotional support alters the association between parent-child interbrain synchrony and interaction quality. Child Dev 2025; 96:301-311. [PMID: 39327782 DOI: 10.1111/cdev.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Using functional near-infrared spectroscopy (fNIRS) hyperscanning methodology, this study investigated whether parent emotional support moderated the relation between parent-child interbrain synchrony and interaction quality (via behavioral observation and child-report), controlling for individual emotional distress. Eighty-eight parent-child dyads (96.6% Han ethnicity), including a school-age child between the ages of 6 and 11 (Mage = 8.07 years, SD = 1.16 years; 58.0% boys) and their parent (Mage = 39.03 years, SD = 3.54 years; 69.3% mothers), participated in a cooperative task during which brain activity was assessed. Cluster-based permutations indicated parent-child interbrain synchrony in the left and right temporoparietal junction (TPJ). Interbrain synchrony in the left TPJ positively related to parent-child interaction quality in the context of high parent emotional support, whereas the association was weaker and negative when parents demonstrated low emotional support. Findings suggest the emotional context of an interaction is critical when assessing interbrain synchrony.
Collapse
Affiliation(s)
- Jianjie Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Sihan Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yuhao Zhu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Molly E Hale
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Qiandong Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xinni Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengyu Miranda Gao
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hui Wang
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Cynthia Suveg
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Zhuo Rachel Han
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, National Virtual Simulation Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Li J, Chen P, Pan J, Zhu C. Decision-making power enhances investors' neural processing of persuasive message in partnership investment. Neuroimage 2024; 304:120938. [PMID: 39557137 DOI: 10.1016/j.neuroimage.2024.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Partnership investment is a common form of business where investors have different levels of power and need to persuade each other to reach a consensus. This study investigated the neural mechanisms underlying the impact of decision-making power on persuasive communication in partnership investment, aiming to provide neural evidence to test two competing hypotheses: the power-responsibility hypothesis and the power-overconfidence hypothesis. Using functional near-infrared spectroscopy (fNIRS), we recorded brain activity from persuader-receiver dyads as they engaged in a partnership investment task. Behavioral results showed that receivers' decisions were more affected by persuaders' persuasive messages when receivers had dominant decision-making power. Neurally, the functional connectivity (FC) between the left and right temporo-parietal junctions (lTPJ and rTPJ) of the receiver was significantly increased by their decision-making power. Additionally, we identified four pairs of interpersonal neural synchronization (INS) that exhibited significant enhancement when persuaders used numeric persuasion rather than non-numeric persuasion: lTPJ-rTPJ, left superior temporal gyrus (lSTG)-rTPJ, left middle temporal gyrus (lMTG)-rTPJ, and medial prefrontal cortex (mPFC)-lTPJ. The decision-making power amplified the INS difference in the last three pairs. Furthermore, using a support vector machine (SVM) algorithm, the INS could accurately predict receivers' adoption of persuasive messages when they held dominant decision-making power. Finally, we found that FC at lTPJ-rTPJ and INS at lSTG-rTPJ were positively associated with receivers' adoption of persuasive messages as well. Our study clarifies how decision-making power alters the way individuals process persuasive messages in partnership investment, providing insights into the neural basis of persuasion in group decision-making contexts and supporting the power-responsibility hypothesis.
Collapse
Affiliation(s)
- Jianbiao Li
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Peikun Chen
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Jingjing Pan
- Business School, University of Jinan, Jinan, China
| | - Chengkang Zhu
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China.
| |
Collapse
|
3
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2024; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
4
|
Ferguson HJ, De Lillo M, Woodrow-Hill C, Foley R, Bradford EEF. Neural empathy mechanisms are shared for physical and social pain, and increase from adolescence to older adulthood. Soc Cogn Affect Neurosci 2024; 19:nsae080. [PMID: 39492751 PMCID: PMC11630255 DOI: 10.1093/scan/nsae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/02/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Empathy is a critical component of social interaction that enables individuals to understand and share the emotions of others. We report a preregistered experiment in which 240 participants, including adolescents, young adults, and older adults, viewed images depicting hands and feet in physically or socially painful situations (versus nonpainful). Empathy was measured using imagined pain ratings and EEG mu suppression. Imagined pain was greater for physical versus social pain, with young adults showing particular sensitivity to social pain events compared to adolescents and older adults. Mu desynchronization was greater to pain versus no-pain situations, but the physical/social context did not modulate pain responses. Brain responses to painful situations increased linearly from adolescence to young and older adulthood. These findings highlight shared activity across the core empathy network for both physical and social pain contexts, and an empathic response that develops over the lifespan with accumulating social experience.
Collapse
Affiliation(s)
- Heather J Ferguson
- School of Psychology, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom
| | - Martina De Lillo
- School of Psychology, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom
| | - Camilla Woodrow-Hill
- School of Psychology, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom
| | - Rebecca Foley
- School of Psychology, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom
| | - Elisabeth E F Bradford
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, United Kingdom
| |
Collapse
|
5
|
Feng S, Ding L, Wang M, Zhang J, Yuan Y, Zhang P, Bai X. Can similarity of autistic traits promote neural synchronization? Exp Brain Res 2024; 242:2633-2644. [PMID: 39320438 DOI: 10.1007/s00221-024-06919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
People with similar levels of autistic traits are reported to exhibit better interactions than those with larger differences in autistic traits. However, whether this "similarity effect" exists at the neural level remains unclear. To address this gap, the present study employed functional near-infrared spectroscopy (fNIRS) hyperscanning technology to assess inter-brain synchronization (IBS) during naturalistic conversations among dyads with three types of autistic trait combinations (20 high-high, 22 high-low, and 18 low-low dyads). The results revealed that the high-high dyads exhibited significantly lower IBS in the right temporoparietal junction (rTPJ) region compared to the low-low dyads, with no significant differences observed between the high-low group and the other two groups. Moreover, though dyadic differences in conversation satisfaction were positively correlated with dyadic autistic trait differences, IBS only showed a significant negative correlation with the dyadic average autistic trait scores and no significant correlation with the dyadic difference scores of autistic traits. These findings suggest that dyads with high autistic traits may have shared feelings about conversations, but cannot produce IBS through successful mutual prediction and understanding.
Collapse
Affiliation(s)
- Shuyuan Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Lin Ding
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Mingliang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Jianing Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yuqing Yuan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Peng Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China.
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Xuejun Bai
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| |
Collapse
|
6
|
Li Y, Halleck TQ, Evans L, Bassuk PB, de la Paz L, Demir-Lira ÖE. Eye of the beholder: Neural synchrony of dynamically changing relations between parent praise and child affect. Dev Sci 2024; 27:e13541. [PMID: 38958643 DOI: 10.1111/desc.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024]
Abstract
In this study, we aimed to determine the role of parental praise and child affect in the neural processes underlying parent-child interactions, utilizing functional near-infrared spectroscopy (fNIRS) hyperscanning. We characterized the dynamic changes in interpersonal neural synchrony (INS) between parents and children (4-6 years old, n = 40 dyads) during a cognitively challenging task. We then examined how changes in parent-child INS are influenced by parental feedback and child affect. Parent-child INS showed a quadratic change over time, indicating a decelerated decline during the interaction period. The relationship of parental praise, in the form of positive feedback, to change in INS was contingent upon the child's positive affect during the task. The highest levels of INS were observed when praise was present and child affect was positive. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrated the strongest INS. The dynamic change in INS during the interaction was associated with children's independent performance on a standardized test of visuospatial processing. This research, leveraging fNIRS hyperscanning, elucidates the neural dynamics underlying the interaction between parent praise and child positive affect, thereby contributing to our broader understanding of parent-child dynamics. RESEARCH HIGHLIGHTS: The level of interpersonal neural synchrony between parents and children dynamically varies during a cognitively challenging (tangram) task. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrate the strongest parent-child neural synchrony. The relationship between parental praise (positive feedback) and parent-child neural synchrony is contingent upon child positive affect during the task. Change in parent-child neural synchrony relates to children's performance on an independent visuospatial processing measure.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Talia Q Halleck
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Laura Evans
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Paras Bhagwat Bassuk
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Leiana de la Paz
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Ö Ece Demir-Lira
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Shen X, Tao L, Chen X, Song S, Liu Q, Zhang D. Contrastive learning of shared spatiotemporal EEG representations across individuals for naturalistic neuroscience. Neuroimage 2024; 301:120890. [PMID: 39419424 DOI: 10.1016/j.neuroimage.2024.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
Neural representations induced by naturalistic stimuli offer insights into how humans respond to stimuli in daily life. Understanding neural mechanisms underlying naturalistic stimuli processing hinges on the precise identification and extraction of the shared neural patterns that are consistently present across individuals. Targeting the Electroencephalogram (EEG) technique, known for its rich spatial and temporal information, this study presents a framework for Contrastive Learning of Shared SpatioTemporal EEG Representations across individuals (CL-SSTER). CL-SSTER utilizes contrastive learning to maximize the similarity of EEG representations across individuals for identical stimuli, contrasting with those for varied stimuli. The network employs spatial and temporal convolutions to simultaneously learn the spatial and temporal patterns inherent in EEG. The versatility of CL-SSTER was demonstrated on three EEG datasets, including a synthetic dataset, a natural speech comprehension EEG dataset, and an emotional video watching EEG dataset. CL-SSTER attained the highest inter-subject correlation (ISC) values compared to the state-of-the-art ISC methods. The latent representations generated by CL-SSTER exhibited reliable spatiotemporal EEG patterns, which can be explained by properties of the naturalistic stimuli. CL-SSTER serves as an interpretable and scalable framework for the identification of inter-subject shared neural representations in naturalistic neuroscience.
Collapse
Affiliation(s)
- Xinke Shen
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lingyi Tao
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xuyang Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Sen Song
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China; Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted Human-Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402493. [PMID: 39257367 PMCID: PMC11538694 DOI: 10.1002/advs.202402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Indexed: 09/12/2024]
Abstract
Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human-dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human-dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human-dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human-dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human-dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human-dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain‐inspired IntelligenceInstitute of Automation, Chinese Academy of SciencesBeijing100190China
| | - Kun Guo
- School of PsychologyUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
9
|
Deng X, Hosseini S, Miyake Y, Nozawa T. Cooperativeness as a Personality Trait and Its Impact on Cooperative Behavior in Young East Asian Adults Who Synchronized in Casual Conversations. Behav Sci (Basel) 2024; 14:987. [PMID: 39594287 PMCID: PMC11590874 DOI: 10.3390/bs14110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Cooperation is essential in social life, involving collaborative efforts for mutual benefits. Individual differences in the cooperativeness trait are pivotal in these interactions. A single-group pretest-posttest design was used in this study to determine if Duchenne smiling with gaze and inter-brain synchrony (IBS) during conversation mediates the relationship between cooperativeness and cooperative behavior. The relationships among the variables were examined using mediation analysis and path analysis. We hypothesized that Duchenne smiling with gaze would mediate cooperativeness' impact on cooperative behavior, while expecting IBS in the left prefrontal region to predict cooperative behavior. The results demonstrated that cooperativeness significantly predicted Duchenne smiling with gaze and cooperative behavior; however, Duchenne smiling with gaze did not mediate the relationship between them. Additionally, IBS during conversation did not predict successive cooperative behavior. These results suggest dispositional factors like cooperativeness may play a more decisive role than momentary expressional cues or neural synchrony in naturalistic unstructured communication in shaping cooperative behavioral outcomes after the communication. The study highlights how personality traits like cooperativeness shape nonverbal communication and social interactions, implying that interventions aimed at developing cooperativeness could lead to more effective collaboration in social settings.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Sarinasadat Hosseini
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Takayuki Nozawa
- Department of Intellectual Information Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
10
|
Du B, Zhang W, Chen L, Deng X, Li K, Lin F, Jia F, Su S, Tang W. Higher or lower? Interpersonal behavioral and neural synchronization of movement imitation in autistic children. Autism Res 2024; 17:1876-1901. [PMID: 39118396 DOI: 10.1002/aur.3205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
How well autistic children can imitate movements and how their brain activity synchronizes with the person they are imitating have been understudied. The current study adopted functional near-infrared spectroscopy (fNIRS) hyperscanning and employed a task involving real interactions involving meaningful and meaningless movement imitation to explore the fundamental nature of imitation as a dynamic and interactive process. Experiment 1 explored meaningful and meaningless gesture imitation. The results revealed that autistic children exhibited lower imitation accuracy and behavioral synchrony than non-autistic children when imitating both meaningful and meaningless gestures. Specifically, compared to non-autistic children, autistic children displayed significantly higher interpersonal neural synchronization (INS) in the right inferior parietal lobule (r-IPL) (channel 12) when imitating meaningful gestures but lower INS when imitating meaningless gestures. Experiment 2 further investigated the imitation of four types of meaningless movements (orofacial movements, transitive movements, limb movements, and gestures). The results revealed that across all four movement types, autistic children exhibited significantly lower imitation accuracy, behavioral synchrony, and INS in the r-IPL (channel 12) than non-autistic children. This study is the first to identify INS as a biomarker of movement imitation difficulties in autistic individuals. Furthermore, an intra- and interindividual imitation mechanism model was proposed to explain the underlying causes of movement imitation difficulties in autistic individuals.
Collapse
Affiliation(s)
- Bang Du
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wenjun Zhang
- School of Education and Psychology, University of Jinan, Jinan, China
- Department of Special Education, East China Normal University, Shanghai, China
| | - Liu Chen
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Xiaorui Deng
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Kaiyun Li
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Fengxun Lin
- School of Education and Psychology, University of Jinan, Jinan, China
- School of Education, Qingdao Huanghai University, Qingdao, China
| | - Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Shuhua Su
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wanzhi Tang
- Faculty of Arts, Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Zhang W, He T, Zhou N, Duan L, Chi P, Lin X. Children's oppositional defiant disorder symptoms and neural synchrony in mother-child interactions: An fNIRS study. Neuroimage 2024; 297:120736. [PMID: 39009247 DOI: 10.1016/j.neuroimage.2024.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
Interpersonal neural synchrony (INS) between mothers and children responds to the temporal similarity of brain signals in joint behavior between dyadic partners and is considered an important neural indicator of the formation of adaptive social interaction bonds. Parent-child interactions are particularly important for the development and maintenance of oppositional defiant disorder (ODD) in children, but the underlying neurocognitive mechanisms are unknown. Therefore, in the current study we measured INS between mothers and children in interactions by using simultaneous functional Near-infrared Spectroscopy (fNIRS), and explored its association with ODD symptoms in children. Seventy-two mother-child dyads were recruited to participate in the study, including 35 children with ODD and 37 healthy children to be used as a control. Each mother-child dyad was measured for neural activity in frontal, parietal, and temporal lobe regions while completing free-play as well as positive, and negative topic discussion tasks. We used Phase-locked value to calculate the synchrony strength and then used the K-means algorithm and k-space based alignment tests to confirm the specific patterns of parent-child synchrony in different brain areas. The results showed that, in free-play (right MFG and bilateral SFG), positive (left TPJ and bilateral SFGdor), and negative (bilateral SFGmed, right ANG, and left MFG) topic discussions, the mother-child pairs showed different patterns of INS. These specific INS patterns were significantly lower in the ODD group compared to the control group and were negatively associated with ODD symptoms in children. Network analyses showed that these INS patterns were connected to different nodes in the ODD symptom network. Our findings suggest that ODD mother-child dyads exhibit lower neural synchrony across a wide range of parent-child interactions. Neural synchrony in the context of interpersonal interactions provides new insights into understanding the neural mechanisms of ODD and can be used as an indicator of neural and socio-environmental factors in the network of psychological disorder symptoms.
Collapse
Affiliation(s)
- Wenrui Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ting He
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Nan Zhou
- Faculty of Education, University of Macau, Macau, China
| | - Lian Duan
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Peilian Chi
- Department of Psychology, University of Macau, Taipa 999078, Macau
| | - Xiuyun Lin
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Li Z, Hong B, Nolte G, Engel AK, Zhang D. Speaker-listener neural coupling correlates with semantic and acoustic features of naturalistic speech. Soc Cogn Affect Neurosci 2024; 19:nsae051. [PMID: 39012092 PMCID: PMC11296674 DOI: 10.1093/scan/nsae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024] Open
Abstract
Recent research has extensively reported the phenomenon of inter-brain neural coupling between speakers and listeners during speech communication. Yet, the specific speech processes underlying this neural coupling remain elusive. To bridge this gap, this study estimated the correlation between the temporal dynamics of speaker-listener neural coupling with speech features, utilizing two inter-brain datasets accounting for different noise levels and listener's language experiences (native vs. non-native). We first derived time-varying speaker-listener neural coupling, extracted acoustic feature (envelope) and semantic features (entropy and surprisal) from speech, and then explored their correlational relationship. Our findings reveal that in clear conditions, speaker-listener neural coupling correlates with semantic features. However, as noise increases, this correlation is only significant for native listeners. For non-native listeners, neural coupling correlates predominantly with acoustic feature rather than semantic features. These results revealed how speaker-listener neural coupling is associated with the acoustic and semantic features under various scenarios, enriching our understanding of the inter-brain neural mechanisms during natural speech communication. We therefore advocate for more attention on the dynamic nature of speaker-listener neural coupling and its modeling with multilevel speech features.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
14
|
Zhou X, Hong X, Wong PCM. Autistic Traits Modulate Social Synchronizations Between School-Aged Children: Insights From Three fNIRS Hyperscanning Experiments. Psychol Sci 2024; 35:840-857. [PMID: 38743614 DOI: 10.1177/09567976241237699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The current study investigated how autistic traits modulate peer interactions using functional near-infrared spectroscopy (fNIRS) hyperscanning. Across three experiments, we tested the effect of copresence, joint activity, and a tangible goal during cooperative interactions on interbrain coherence (IBC) in school-aged children between 9 and 11 years old. Twenty-three dyads of children watched a video alone or together in Experiment 1, engaged in joint or self-paced book reading in Experiment 2, and pretended to play a Jenga game or played for real in Experiment 3. We found that all three formats of social interactions increased IBC in the frontotemporoparietal networks, which have been reported to support social interaction. Further, our results revealed the shared and unique interbrain connections that were predictive of the lower and higher parent-reported autism-spectrum quotient scores, which indicated child autistic traits. Results from a convergence of three experiments provide the first evidence to date that IBC is modulated by child autistic traits.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
- National Acoustic Laboratories, Macquarie Park, Australia
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
| |
Collapse
|
15
|
Long K, Zhang X, Wang N, Lei H. Event-related prefrontal activations during online video game playing are modulated by game mechanics, physiological arousal and the amount of daily playing. Behav Brain Res 2024; 469:115038. [PMID: 38705282 DOI: 10.1016/j.bbr.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
There is a trend to study human brain functions in ecological contexts and in relation to human factors. In this study, functional near-infrared spectroscopy (fNIRS) was used to record real-time prefrontal activities in 42 male university student habitual video game players when they played a round of multiplayer online battle arena game, League of Legends. A content-based event coding approach was used to analyze regional activations in relation to event type, physiological arousal indexed by heart rate (HR) change, and individual characteristics of the player. Game events Slay and Slain were found to be associated with similar HR and prefrontal responses before the event onset, but differential responses after the event onset. Ventrolateral prefrontal cortex (VLPFC) activation preceding the Slay onset correlated positively with HR change, whereas activations in dorsolateral prefrontal cortex (DLPFC) and rostral frontal pole area (FPAr) preceding the Slain onset were predicted by self-reported hours of weekly playing (HoWP). Together, these results provide empirical evidence to support the notion that event-related regional prefrontal activations during online video game playing are shaped by game mechanics, in-game dynamics of physiological arousal and individual characteristics the players.
Collapse
Affiliation(s)
- Kehong Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xuzhe Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ningxin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
16
|
Wang H, Li L. Effects of two-person synchronized cycling exercise on interpersonal cooperation: A near-infrared spectroscopy hyperscanning study. Int J Clin Health Psychol 2024; 24:100492. [PMID: 39308780 PMCID: PMC11416475 DOI: 10.1016/j.ijchp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Although psychological research indicating the synchronous activities can promote interpersonal cooperation, thus far there is no direct evidence that two-person synchronous exercise effectively enhances interpersonal cooperative behaviors in Physical exercise field. This suggests that, although synchronization phenomenon is widespread in sports and is considered a potential tool for enhancing teamwork, its specific effects and functioning mechanisms still need to be clarified by further scientific research. This study intends to use two-person synchronized cycling exercise to investigate the synchronized exercise effect on interpersonal cooperative behavior and its underlying neural mechanisms. Methods Eighty college students without regular exercise habits will be randomly assigned to the experimental group (10 male dyads and 10 female dyads) and the control group (10 male dyads and 10 female dyads). During the experiment, dyads in the experimental group performed a 30-minute synchronized cycling exercise with synchronized pedaling movements; dyads in the control group rested sedentary in the same environment for 30 minutes. Interpersonal cooperative behavior was assessed with the Prisoner's Dilemma task, and the interpersonal neural synchronization(INS) data were collected in the prefrontal cortex using near-infrared hyperscanning. Results This study compared behavior and brain activity before and after synchronous exercise. Behavioral results revealed that, compared to pre-exercise, dyads in the post-exercise had higher average cooperation rates, higher cooperation efficiency and shorter cooperation response times. Compared to post-sedentary, dyads in the post-exercise had shorter cooperation response times and higher cooperation efficiency. Furthermore, brain data showed that,compared to pre-exercise, dyads in the post-exercise had stronger INS in the dorsolateral prefrontal cortex(DLPFC), whereas the dyads in the post-exercise had stronge INS in the DLPFC compared to post-sedentary. After controlling for dyads' anxiety and mood states, this study also found a marginally significant negative correlation between INS differences in the left DLPFC and cooperation response time differences. Conclusions This research confirms, from both behavioral and neuroscience perspectives, that one synchronization cycle can significantly enhance interpersonal cooperative behavior, and this positive effect is closely associated with increased INS in the left DLPFC. This study provides new insights into understanding how positive interactive exercises promote interpersonal cooperation through specific neural mechanisms.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
17
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
18
|
Zhao Q, Zhao W, Lu C, Du H, Chi P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci Biobehav Rev 2024; 158:105565. [PMID: 38295965 DOI: 10.1016/j.neubiorev.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
In recent years, researchers have used hyperscanning techniques to explore how brains interact during various human activities. These studies have revealed a phenomenon called interpersonal neural synchronization (INS), but little research has focused on the overall effect of INS in close relationships. To address this gap, this study aims to synthesize and analyze the existing literature on INS during social interactions in close relationships. We conducted a meta-analysis of 17 functional near-infrared spectroscopy (fNIRS) hyperscanning studies involving 1149 dyads participants, including romantic couples and parent-child dyads. The results revealed robust and consistent INS in the frontal, temporal, and parietal regions of the brain and found similar INS patterns in couples and parent-child studies, providing solid empirical evidence for the attachment theory. Moreover, the age of children and brain areas were significant predictors of the effect size in parent-child research. The developmental stage of children and the mismatched development of brain structures might be the crucial factors for the difference in neural performance in social and cognitive behaviors in parent-child dyads.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongfei Du
- Department of Psychology, Beijing Normal University at Zhuhai, Zhuhai 519087, Guangdong, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China.
| | - Peilian Chi
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China.
| |
Collapse
|
19
|
Ni J, Yang J, Ma Y. Social bonding in groups of humans selectively increases inter-status information exchange and prefrontal neural synchronization. PLoS Biol 2024; 22:e3002545. [PMID: 38502637 PMCID: PMC10950240 DOI: 10.1371/journal.pbio.3002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Social groups in various social species are organized with hierarchical structures that shape group dynamics and the nature of within-group interactions. In-group social bonding, exemplified by grooming behaviors among animals and collective rituals and team-building activities in human societies, is recognized as a practical adaptive strategy to foster group harmony and stabilize hierarchical structures in both human and nonhuman animal groups. However, the neurocognitive mechanisms underlying the effects of social bonding on hierarchical groups remain largely unexplored. Here, we conducted simultaneous neural recordings on human participants engaged in-group communications within small hierarchical groups (n = 528, organized into 176 three-person groups) to investigate how social bonding influenced hierarchical interactions and neural synchronizations. We differentiated interpersonal interactions between individuals of different (inter-status) or same (intra-status) social status and observed distinct effects of social bonding on inter-status and intra-status interactions. Specifically, social bonding selectively increased frequent and rapid information exchange and prefrontal neural synchronization for inter-status dyads but not intra-status dyads. Furthermore, social bonding facilitated unidirectional neural alignment from group leader to followers, enabling group leaders to predictively align their prefrontal activity with that of followers. These findings provide insights into how social bonding influences hierarchical dynamics and neural synchronization while highlighting the role of social status in shaping the strength and nature of social bonding experiences in human groups.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
20
|
Liu Q, Zhu S, Zhou X, Liu F, Becker B, Kendrick KM, Zhao W. Mothers and fathers show different neural synchrony with their children during shared experiences. Neuroimage 2024; 288:120529. [PMID: 38301879 DOI: 10.1016/j.neuroimage.2024.120529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Parent-child shared experiences has an important influence on social development in children although contributions of mothers and fathers may differ. Neural synchronicity occurs between mothers and fathers and their children during social interactions but it is unclear whether they differ in this respect. We used data from simultaneous fNIRS hyperscanning in mothers (n = 33) and fathers (n = 29) and their children (3-4 years) to determine different patterns and strengths of neural synchronization in the frontal cortex during co-viewing of videos or free-play. Mothers showed greater synchrony with child than fathers during passive viewing of videos and the synchronization was positively associated with video complexity and negatively associated with parental stress. During play interactions, mothers showed more controlling behaviors over their child and greater evidence for joint gaze and joint imitation play with child whereas fathers spent more time gazing at other things. In addition, different aspects of child communication promoted neural synchrony between mothers and fathers and child during active play interactions. Overall, our findings indicate greater neural and behavioral synchrony between mothers than fathers and young children during passive or active shared experiences, although for both it was weakened by parental distress and child difficulty.
Collapse
Affiliation(s)
- Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Siyu Zhu
- School of Sport Training, Chengdu Sport University, Chengdu, 610041, PR China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, PR China
| | - Fang Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, PR China.
| |
Collapse
|
21
|
Lyu 吕奕洲 Y, Su 苏紫杉 Z, Neumann D, Meidenbauer KL, Leong 梁元彰 YC. Hostile Attribution Bias Shapes Neural Synchrony in the Left Ventromedial Prefrontal Cortex during Ambiguous Social Narratives. J Neurosci 2024; 44:e1252232024. [PMID: 38316561 PMCID: PMC10904091 DOI: 10.1523/jneurosci.1252-23.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.
Collapse
Affiliation(s)
- Yizhou Lyu 吕奕洲
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Zishan Su 苏紫杉
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Dawn Neumann
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | | | - Yuan Chang Leong 梁元彰
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
- Neuroscience Institute, The University of Chicago, Chicago 60637, Illinois
| |
Collapse
|
22
|
Cheng X, Wang S, Guo B, Wang Q, Hu Y, Pan Y. How self-disclosure of negative experiences shapes prosociality? Soc Cogn Affect Neurosci 2024; 19:nsae003. [PMID: 38324732 PMCID: PMC10868127 DOI: 10.1093/scan/nsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
People frequently share their negative experiences and feelings with others. Little is known, however, about the social outcomes of sharing negative experiences and the underlying neural mechanisms. We addressed this dearth of knowledge by leveraging functional near-infrared spectroscopy (fNIRS) hyperscanning: while dyad participants took turns to share their own (self-disclosure group) or a stranger's (non-disclosure group) negative and neutral experiences, their respective brain activity was recorded simultaneously by fNIRS. We observed that sharing negative (relative to neutral) experiences enhanced greater mutual prosociality, emotional empathy and interpersonal neural synchronization (INS) at the left superior frontal cortex in the self-disclosure group compared to the non-disclosure group. Importantly, mediation analyses further revealed that in the self-disclosure (but not non-disclosure) group, the increased emotional empathy and INS elicited by sharing negative experiences relative to sharing neutral experiences promoted the enhanced prosociality through increasing interpersonal liking. These results indicate that self-disclosure of negative experiences can promote prosocial behaviors via social dynamics (defined as social affective and cognitive factors, including empathy and liking) and shared neural responses. Our findings suggest that when people express negative sentiments, they incline to follow up with positive actions.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Shuqi Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Qiao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Boukarras S, Ferri D, Borgogni L, Aglioti SM. Neurophysiological markers of asymmetric emotional contagion: implications for organizational contexts. Front Integr Neurosci 2024; 18:1321130. [PMID: 38357225 PMCID: PMC10861795 DOI: 10.3389/fnint.2024.1321130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Emotions play a vital role within organizations, impacting various crucial aspects of work such as job satisfaction, performance, and employee well-being. Understanding how emotional states spread in organizational settings is therefore essential. Recent studies have highlighted that a leader's emotional state can influence their followers, with significant consequences on job performance. Leaders thus possess the ability to influence their employees' psychological state and, consequently, their well-being. However, the biological underpinnings of emotional contagion from leaders to followers remain unexplored. The field of interpersonal (neuro)physiology, which involves recording brain and peripheral activity of multiple individuals during interactions, holds great potential for investigating this phenomenon. Analyzing the time-lagged synchronization of neurophysiological activity during interactions may serve as a measure of the leader's influence on their followers in organizational contexts. In this "mini review," we examine empirical studies that have employed interpersonal (neuro)physiology to quantify the asymmetrical contagion of emotions in different contexts. Asymmetrical contagion was operationalized as the unidirectional influence exerted by one individual (i.e., the "sender") to another one (i.e., the "receiver"), whereby the receiver's state can be predicted by the sender's one. The reviewed literature reveals that delayed synchronization of physiological states is a widespread phenomenon that may underpin the transmission of emotions. These findings have significant implications for various aspects of organizational life, including leader-to-employee communication, and could drive the development of effective leadership training programs. We propose that Organizational Neuroscience may benefit from including interpersonal neurophysiology in its methodological toolkit for laboratory and field studies of leader-follower dynamics.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ernst and Young (EY), Rome, Italy
| | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLN2S@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
24
|
Zhang Y, Ye W, Yin J, Wu Q, Huang Y, Hao N, Cui L, Zhang M, Cai D. Exploring the role of mutual prediction in inter-brain synchronization during competitive interactions: an fNIRS hyperscanning investigation. Cereb Cortex 2024; 34:bhad483. [PMID: 38100358 DOI: 10.1093/cercor/bhad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mutual prediction is crucial for understanding the mediation of bodily actions in social interactions. Despite this importance, limited studies have investigated neurobehavioral patterns under the mutual prediction hypothesis in natural competitive scenarios. To address this gap, our study employed functional near-infrared spectroscopy hyperscanning to examine the dynamics of real-time rock-paper-scissors games using a computerized paradigm with 54 participants. Firstly, our results revealed activations in the right inferior frontal gyrus, bilateral dorsolateral prefrontal cortex, and bilateral frontopolar cortex, each displaying distinct temporal profiles indicative of diverse cognitive processes during the task. Subsequently, a task-related increase in inter-brain synchrony was explicitly identified in the right dorsolateral prefrontal cortex, which supported the mutual prediction hypothesis across the two brains. Moreover, our investigation uncovered a close association between the coherence value in the right dorsolateral prefrontal cortex and the dynamic predictive performances of dyads using inter-subject representational similarity analysis. Finally, heightened inter-brain synchrony values were observed in the right dorsolateral prefrontal cortex before a draw compared to a no-draw scenario in the second block, suggesting that cross-brain signal patterns could be reflected in behavioral responses during competition. In summary, these findings provided initial support for expanding the understanding of cognitive processes underpinning natural competitive engagements.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Weihao Ye
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
- School of Psychology, Zhejiang Normal University, Zhejiang 321004, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yao Huang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Na Hao
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Liying Cui
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Mingming Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Dan Cai
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
25
|
Liu Z, Lu K, Hao N, Wang Y. Cognitive Reappraisal and Expressive Suppression Evoke Distinct Neural Connections during Interpersonal Emotion Regulation. J Neurosci 2023; 43:8456-8471. [PMID: 37852791 PMCID: PMC10711701 DOI: 10.1523/jneurosci.0954-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Collapse
Affiliation(s)
- Zixin Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Yanmei Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| |
Collapse
|
26
|
Michelson NJ, Bolaños F, Bolaños LA, Balbi M, LeDue JM, Murphy TH. Meso-Py: Dual Brain Cortical Calcium Imaging in Mice during Head-Fixed Social Stimulus Presentation. eNeuro 2023; 10:ENEURO.0096-23.2023. [PMID: 38053472 PMCID: PMC10731520 DOI: 10.1523/eneuro.0096-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
We present a cost-effective, compact foot-print, and open-source Raspberry Pi-based widefield imaging system. The compact nature allows the system to be used for close-proximity dual-brain cortical mesoscale functional-imaging to simultaneously observe activity in two head-fixed animals in a staged social touch-like interaction. We provide all schematics, code, and protocols for a rail system where head-fixed mice are brought together to a distance where the macrovibrissae of each mouse make contact. Cortical neuronal functional signals (GCaMP6s; genetically encoded Ca2+ sensor) were recorded from both mice simultaneously before, during, and after the social contact period. When the mice were together, we observed bouts of mutual whisking and cross-mouse correlated cortical activity across the cortex. Correlations were not observed in trial-shuffled mouse pairs, suggesting that correlated activity was specific to individual interactions. Whisking-related cortical signals were observed during the period where mice were together (closest contact). The effects of social stimulus presentation extend outside of regions associated with mutual touch and have global synchronizing effects on cortical activity.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Federico Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Luis A Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matilde Balbi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
27
|
Zhang H, Yang J, Ni J, De Dreu CKW, Ma Y. Leader-follower behavioural coordination and neural synchronization during intergroup conflict. Nat Hum Behav 2023; 7:2169-2181. [PMID: 37500783 DOI: 10.1038/s41562-023-01663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Leaders can launch hostile attacks on out-groups and organize in-group defence. Whether groups settle the conflict in their favour depends, however, on whether followers align with leader's initiatives. Yet how leader and followers coordinate during intergroup conflict remains unknown. Participants in small groups elected a leader and made costly contributions to intergroup conflict while dorsolateral prefrontal cortex (DLPFC) activity was simultaneously measured. Leaders were more sacrificial and their contribution influenced group survival to a greater extent during in-group defence than during out-group attacks. Leaders also had increased DLPFC activity when defending in-group, which predicted their comparatively strong contribution to conflict; followers reciprocated their leader's initiatives the more their DLPFC activity synchronized with that of their leader. When launching attacks, however, leaders and followers aligned poorly at behavioural and neural levels, which explained why out-group attacks often failed. Our results provide a neurobehavioural account of leader-follower coordination during intergroup conflict and reveal leader-follower behavioural/neural alignment as pivotal for groups settling conflicts in their favour.
Collapse
Affiliation(s)
- Hejing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Carsten K W De Dreu
- Social, Economic, and Organizational Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
- Center for Research in Experimental Economics and Political Decision Making, Amsterdam School of Economics, University of Amsterdam, Amsterdam, the Netherlands
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
28
|
Tomyta K, Saito N, Ohira H. The physiological basis of leader-follower roles in the dyadic alternating tapping task. Front Psychol 2023; 14:1232016. [PMID: 38098523 PMCID: PMC10720364 DOI: 10.3389/fpsyg.2023.1232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cooperative and collaborative behaviors are important concepts for co-creative communication. One of the key elements for these behaviors is the leader-follower roles in human communication. Leaders are those who maintain their own pace and rhythm, on the contrary, followers are those who follow the pace and rhythm of the other. Well-coordinated leader-follower roles would produce better cooperative and collaborative behaviors, which could promote co-creative communication. Methods Here, to explore the physiological basis for the leader-follower roles, we conducted the dyadic alternating tapping task with electrocardiographic and electroencephalographic recordings. The task would be stable for modeling human communication in the laboratory because it includes timing control in tens of milliseconds and turn-taking. Given that human communications are complex and constantly fluctuating, this study estimated the degree of leader-follower with the state-space model. This model allowed us to calculate two parameters independently for estimating the degree of leader-follower of each participant: αSelf (degree of one's tap(n) was explained by one's tap(n-1)) and αPair (degree of one's tap(n) was explained by one's tap (n-1) and pair's tap (n-1)). Results The result showed heart rate synchronization in the group in which both participants had high αPair. Also, the high-frequency component of heart rate variability was positively correlated with αPair. EEG analyses suggested the deactivation of the mirror neuron system (increasing φ1) in the participants with higher αSelf than lower ones. The activation of the mirror neuron system (increasing φ2) was shown in the participants with lower αPair than higher ones. Discussion These data of physiological basis for leader-follower roles could be useful for the constructivist approach to co-creative communication.
Collapse
Affiliation(s)
- Kenta Tomyta
- Department of Cognitive and Psychological Sciences, Nagoya University, Nagoya, Aichi, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Natsuki Saito
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Ohira
- Department of Cognitive and Psychological Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
29
|
Li J, Hong B, Nolte G, Engel AK, Zhang D. EEG-based speaker-listener neural coupling reflects speech-selective attentional mechanisms beyond the speech stimulus. Cereb Cortex 2023; 33:11080-11091. [PMID: 37814353 DOI: 10.1093/cercor/bhad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023] Open
Abstract
When we pay attention to someone, do we focus only on the sound they make, the word they use, or do we form a mental space shared with the speaker we want to pay attention to? Some would argue that the human language is no other than a simple signal, but others claim that human beings understand each other because they form a shared mental ground between the speaker and the listener. Our study aimed to explore the neural mechanisms of speech-selective attention by investigating the electroencephalogram-based neural coupling between the speaker and the listener in a cocktail party paradigm. The temporal response function method was employed to reveal how the listener was coupled to the speaker at the neural level. The results showed that the neural coupling between the listener and the attended speaker peaked 5 s before speech onset at the delta band over the left frontal region, and was correlated with speech comprehension performance. In contrast, the attentional processing of speech acoustics and semantics occurred primarily at a later stage after speech onset and was not significantly correlated with comprehension performance. These findings suggest a predictive mechanism to achieve speaker-listener neural coupling for successful speech comprehension.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee, Berlin 14195, Germany
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Bilek E, Gündel H. [Working in a team and mental health]. DER NERVENARZT 2023; 94:993-1000. [PMID: 37874383 DOI: 10.1007/s00115-023-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Humans have always naturally lived in groups, which has a significant impact on the well-being and mental stability of the individual. Various physiological processes are coregulated via the closeness of other persons. About one third of our adulthood is spent at work where social relationships often play an important role, because we are typically working with other individuals in groups or a team. In these situations, mutual support and successful cooperation can develop, which promotes the mental and physical health of the employees of a company ("social capital"). From various perspectives it becomes obvious that the quality of relationships at the workplace is a key factor for the satisfaction and health of individual employees as well as for the cohesion, resilience and performance of the entire team. This is confirmed by empirical findings that still need to be expanded, especially with respect to the neurobiological associations of the cooperation in teams and individual health.
Collapse
Affiliation(s)
- Edda Bilek
- Abteilung für Psychiatrie and Psychotherapie, Zentralinstitut für Psychische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland.
- Zentralinstitut für Psychische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Quadrat J5, 68159, Mannheim, Deutschland.
| | - Harald Gündel
- Abteilung für Psychosomatische Medizin, Universitätsklinikum Ulm, Ulm, Deutschland
| |
Collapse
|
31
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Chuang C, Hsu H. Pseudo-mutual gazing enhances interbrain synchrony during remote joint attention tasking. Brain Behav 2023; 13:e3181. [PMID: 37496332 PMCID: PMC10570487 DOI: 10.1002/brb3.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Mutual gaze enables people to share attention and increase engagement during social interactions through intentional and implicit messages. Although previous studies have explored gaze behaviors and neural mechanisms underlying in-person eye contact, the growing prevalence of remote communication has raised questions about how to establish mutual gaze remotely and how the brains of interacting individuals synchronize. METHODS To address these questions, we conducted a study using eye trackers to create a pseudo-mutual gaze channel that mirrors the gazes of each interacting dyad on their respective remote screens. To demonstrate fluctuations in coupling across brains, we incorporated electroencephalographic hyperscanning techniques to simultaneously record the brain activity of interacting dyads engaged in a joint attention task in player-observer, collaborative, and competitive modes. RESULTS Our results indicated that mutual gaze could improve the efficiency of joint attention activities among remote partners. Moreover, by employing the phase locking value, we could estimate interbrain synchrony (IBS) and observe low-frequency couplings in the frontal and temporal regions that varied based on the interaction mode. While dyadic gender composition significantly affected gaze patterns, it did not impact the IBS. CONCLUSION These results provide insight into the neurological mechanisms underlying remote interaction through the pseudo-mutual gaze channel and have significant implications for developing effective online communication environments.
Collapse
Affiliation(s)
- Chun‐Hsiang Chuang
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Institute of Information Systems and ApplicationsCollege of Electrical Engineering and Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hao‐Che Hsu
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
33
|
Xie E, Li K, Gu R, Zhang D, Li X. Verbal information exchange enhances collective performance through increasing group identification. Neuroimage 2023; 279:120339. [PMID: 37611814 DOI: 10.1016/j.neuroimage.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
Information exchange is a key factor in the attainment of collective outcomes and the navigation of social life. In the current study, we investigated whether and how information exchange enhanced collective performance by combining behavioral and neuroimaging approaches from the perspective of multiparticipant neuroscience. To evaluate collective performance, we measured the collaborative problem-solving abilities of triads working on a murder mystery case. We first found that verbal information exchange significantly enhanced collective performance compared to nonverbal exchange. Moreover, both group sharing and group discussion positively contributed to this effect, with group discussion being more essential. Importantly, group identification mediated the positive effect of verbal information exchange on collective performance. This mediation was supported by higher interactive frequency and enhanced within-group neural synchronization (GNS) in the dorsolateral prefrontal cortex (DLPFC). Taken together, we provided a multiparticipant theoretical model to explain how verbal information exchange enhanced collective performance. Our findings deepen the insight into the workings of group decision-making.
Collapse
Affiliation(s)
- Enhui Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Keshuang Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Institute of Wisdom in China, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
34
|
Pan Y, Vinding MC, Zhang L, Lundqvist D, Olsson A. A Brain-To-Brain Mechanism for Social Transmission of Threat Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304037. [PMID: 37544901 PMCID: PMC10558655 DOI: 10.1002/advs.202304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Survival and adaptation in environments require swift and efficacious learning about what is dangerous. Across species, much of such threat learning is acquired socially, e.g., through the observation of others' ("demonstrators'") defensive behaviors. However, the specific neural mechanisms responsible for the integration of information shared between demonstrators and observers remain largely unknown. This dearth of knowledge is addressed by performing magnetoencephalography (MEG) neuroimaging in demonstrator-observer dyads. A set of stimuli are first shown to a demonstrator whose defensive responses are filmed and later presented to an observer, while neuronal activity is recorded sequentially from both individuals who never interacted directly. These results show that brain-to-brain coupling (BtBC) in the fronto-limbic circuit (including insula, ventromedial, and dorsolateral prefrontal cortex) within demonstrator-observer dyads predict subsequent expressions of learning in the observer. Importantly, the predictive power of BtBC magnifies when a threat is imminent to the demonstrator. Furthermore, BtBC depends on how observers perceive their social status relative to the demonstrator, likely driven by shared attention and emotion, as bolstered by dyadic pupillary coupling. Taken together, this study describes a brain-to-brain mechanism for social threat learning, involving BtBC, which reflects social relationships and predicts adaptive, learned behaviors.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhou310058China
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Mikkel C. Vinding
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagen2650Denmark
| | - Lei Zhang
- Centre for Human Brain HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- Institute for Mental HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- SocialCognitive and Affective Neuroscience UnitDepartment of CognitionEmotionand Methods in PsychologyFaculty of PsychologyUniversity of ViennaVienna1010Austria
| | - Daniel Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Andreas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| |
Collapse
|
35
|
Peng XR, Bundil I, Schulreich S, Li SC. Neural correlates of valence-dependent belief and value updating during uncertainty reduction: An fNIRS study. Neuroimage 2023; 279:120327. [PMID: 37582418 DOI: 10.1016/j.neuroimage.2023.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
Selective use of new information is crucial for adaptive decision-making. Combining a gamble bidding task with assessing cortical responses using functional near-infrared spectroscopy (fNIRS), we investigated potential effects of information valence on behavioral and neural processes of belief and value updating during uncertainty reduction in young adults. By modeling changes in the participants' expressed subjective values using a Bayesian model, we dissociated processes of (i) updating beliefs about statistical properties of the gamble, (ii) updating values of a gamble based on new information about its winning probabilities, as well as (iii) expectancy violation. The results showed that participants used new information to update their beliefs and values about the gambles in a quasi-optimal manner, as reflected in the selective updating only in situations with reducible uncertainty. Furthermore, their updating was valence-dependent: information indicating an increase in winning probability was underweighted, whereas information about a decrease in winning probability was updated in good agreement with predictions of the Bayesian decision theory. Results of model-based and moderation analyses showed that this valence-dependent asymmetry was associated with a distinct contribution of expectancy violation, besides belief updating, to value updating after experiencing new positive information regarding winning probabilities. In line with the behavioral results, we replicated previous findings showing involvements of frontoparietal brain regions in the different components of updating. Furthermore, this study provided novel results suggesting a valence-dependent recruitment of brain regions. Individuals with stronger oxyhemoglobin responses during value updating was more in line with predictions of the Bayesian model while integrating new information that indicates an increase in winning probability. Taken together, this study provides first results showing expectancy violation as a contributing factor to sub-optimal valence-dependent updating during uncertainty reduction and suggests limitations of normative Bayesian decision theory.
Collapse
Affiliation(s)
- Xue-Rui Peng
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| | - Indra Bundil
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Stefan Schulreich
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Cognitive Psychology, Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
36
|
Zhai Y, Xie H, Zhao H, Wang W, Lu C. Neural synchrony underlies the positive effect of shared reading on children's language ability. Cereb Cortex 2023; 33:10426-10440. [PMID: 37562850 DOI: 10.1093/cercor/bhad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Although it is well recognized that parent-child shared reading produces positive effects on children's language ability, the underlying neurocognitive mechanisms are not well understood. Here, we addressed this issue by measuring brain activities from mother-child dyads simultaneously during a shared book reading task using functional near infrared spectroscopy hyperscanning. The behavioral results showed that the long-term experience of shared reading significantly predicted children's language ability. Interestingly, the prediction was moderated by children's age: for older children over 30 months, the more the shared reading experience, the better the language performance; for younger children below 30 months, however, no significant relationship was observed. The brain results showed significant interpersonal neural synchronization between mothers and children at the superior temporal cortex, which was closely associated with older children's language ability through the mediation of long-term experience of shared reading. Finally, the results showed that the instantaneous quality of shared reading contributed to children's language ability through enhancing interpersonal neural synchronization and increasing long-term experience. Based on these findings, we tentatively proposed a theoretical model for the relationship among interpersonal neural synchronization, shared reading and children's language ability. These findings will facilitate our understanding on the role of shared reading in children's language development.
Collapse
Affiliation(s)
- Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Huixin Xie
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Preschool Education, Beijing Institute of Education, Beijing 100009, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
37
|
Zadina JN. The Synergy Zone: Connecting the Mind, Brain, and Heart for the Ideal Classroom Learning Environment. Brain Sci 2023; 13:1314. [PMID: 37759915 PMCID: PMC10526388 DOI: 10.3390/brainsci13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
This paper proposes a new perspective on implementing neuroeducation in the classroom. The pandemic exacerbated the mental health issues of faculty and students, creating a mental health crisis that impairs learning. It is important to get our students back in "the zone", both cognitively and emotionally, by creating an ideal learning environment for capturing our students and keeping them-the Synergy Zone. Research that examines the classroom environment often focuses on the foreground-instructors' organizational and instructional aspects and content. However, the emotional climate of the classroom affects student well-being. This emotional climate would ideally exhibit the brain states of engagement, attention, connection, and enjoyment by addressing the mind, brain, and heart. This ideal learning environment would be achieved by combining proposed practices derived from three areas of research: flow theory, brain synchronization, and positive emotion with heart engagement. Each of these enhances the desired brain states in a way that the whole is greater than the sum of the individual parts. I call this the Synergy Zone. A limitation of this proposed model is that implementation of some aspects may be challenging, and professional development resources might be needed. This essay presenting this perspective provides the relevant scientific research and the educational implications of implementation.
Collapse
Affiliation(s)
- Janet N Zadina
- Brain Research and Instruction, New Orleans, LA 70002, USA
| |
Collapse
|
38
|
Liu J, Zhang R, Xie E, Lin Y, Chen D, Liu Y, Li K, Chen M, Li Y, Wang G, Li X. Shared intentionality modulates interpersonal neural synchronization at the establishment of communication system. Commun Biol 2023; 6:832. [PMID: 37563301 PMCID: PMC10415255 DOI: 10.1038/s42003-023-05197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Whether and how shared intentionality (SI) influences the establishment of a novel interpersonal communication system is poorly understood. To investigate this issue, we designed a coordinating symbolic communication game (CSCG) and applied behavioral, functional near-infrared spectroscopy (fNIRS)-based hyperscanning, and hyper-transcranial alternating current stimulation (hyper-tACS) methods. Here we show that SI is a strong contributor to communicative accuracy. Moreover, SI, communicative accuracy, and interpersonal neural synchronization (INS) in the right superior temporal gyrus (rSTG) are higher when dyads successfully establish a novel communication system. Furthermore, the SI influences communicative accuracy by increasing INS. Additionally, using time series and long short-term memory neural network analyses, we find that the INS can predict communicative accuracy at the early formation stage of the communication system. Importantly, the INS partially mediates the relationship between the SI and the communicative accuracy only at the formation stage of the communication system. In contrast, when the communication system is established, SI and INS no longer contribute to communicative accuracy. Finally, the hyper-tACS experiment confirms that INS has a causal effect on communicative accuracy. These findings suggest a behavioral and neural mechanism, subserved by the SI and INS, that underlies the establishment of a novel interpersonal communication system.
Collapse
Affiliation(s)
- Jieqiong Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Enhui Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Danni Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Keshuang Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mei Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yangzhuo Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guanghai Wang
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
39
|
Troncoso A, Soto V, Gomila A, Martínez-Pernía D. Moving beyond the lab: investigating empathy through the Empirical 5E approach. Front Psychol 2023; 14:1119469. [PMID: 37519389 PMCID: PMC10374225 DOI: 10.3389/fpsyg.2023.1119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Empathy is a complex and multifaceted phenomenon that plays a crucial role in human social interactions. Recent developments in social neuroscience have provided valuable insights into the neural underpinnings and bodily mechanisms underlying empathy. This methodology often prioritizes precision, replicability, internal validity, and confound control. However, fully understanding the complexity of empathy seems unattainable by solely relying on artificial and controlled laboratory settings, while overlooking a comprehensive view of empathy through an ecological experimental approach. In this article, we propose articulating an integrative theoretical and methodological framework based on the 5E approach (the "E"s stand for embodied, embedded, enacted, emotional, and extended perspectives of empathy), highlighting the relevance of studying empathy as an active interaction between embodied agents, embedded in a shared real-world environment. In addition, we illustrate how a novel multimodal approach including mobile brain and body imaging (MoBi) combined with phenomenological methods, and the implementation of interactive paradigms in a natural context, are adequate procedures to study empathy from the 5E approach. In doing so, we present the Empirical 5E approach (E5E) as an integrative scientific framework to bridge brain/body and phenomenological attributes in an interbody interactive setting. Progressing toward an E5E approach can be crucial to understanding empathy in accordance with the complexity of how it is experienced in the real world.
Collapse
Affiliation(s)
- Alejandro Troncoso
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | - Vicente Soto
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | - Antoni Gomila
- Department of Psychology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - David Martínez-Pernía
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| |
Collapse
|
40
|
Park J, Shin J, Lee J, Jeong J. Inter-Brain Synchrony Pattern Investigation on Triadic Board Game Play-Based Social Interaction: An fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2923-2932. [PMID: 37410649 DOI: 10.1109/tnsre.2023.3292844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Recent advances in functional neuroimaging techniques, including methodologies such as fNIRS, have enabled the evaluation of inter-brain synchrony (IBS) induced by interpersonal interactions. However, the social interactions assumed in existing dyadic hyperscanning studies do not sufficiently emulate polyadic social interactions in the real world. Therefore, we devised an experimental paradigm that incorporates the Korean folk board game "Yut-nori" to reproduce social interactions that emulate social activities in the real world. We recruited 72 participants aged 25.2 ± 3.9 years (mean ± standard deviation) and divided them into 24 triads to play Yut-nori, following the standard or modified rules. The participants either competed against an opponent (standard rule) or cooperated with an opponent (modified rule) to achieve a goal efficiently. Three different fNIRS devices were employed to record cortical hemodynamic activations in the prefrontal cortex both individually and simultaneously. Wavelet transform coherence (WTC) analyses were performed to assess prefrontal IBS within a frequency range of 0.05-0.2 Hz. Consequently, we observed that cooperative interactions increased prefrontal IBS across overall frequency bands of interest. In addition, we also found that different purposes for cooperation generated different spectral characteristics of IBS depending on the frequency bands. Moreover, IBS in the frontopolar cortex (FPC) reflected the influence of verbal interactions. The findings of our study suggest that future hyperscanning studies should consider polyadic social interactions to reveal the properties of IBS in real-world interactions.
Collapse
|
41
|
Feng Y, Liang Y, Zhang Y, Duan X, Zhang J, Yan H. Divergent interpersonal neural synchronization patterns in the first, second language and interlingual communication. Sci Rep 2023; 13:8706. [PMID: 37248270 DOI: 10.1038/s41598-023-35923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
An accumulating number of studies have highlighted the importance of interpersonal neural synchronization (INS) between interlocutors in successful verbal communications. The opportunities for communication across different language contexts are rapidly expanding, thanks to the frequent interactions among people all over the world. However, whether the INS changes in different language contexts and how language choice affects the INS remain scarcely explored. The study recruited twenty pairs of participants to communicate in the first language (L1), second language (L2) and interlingual contexts. Using functional near-infrared spectroscopy (fNIRS), we examined the neural activities of interlocutors and analyzed their wavelet transform coherence to assess the INS of dyads. Results showed that as compared to the resting state, stronger INS was observed at the left inferior temporal gyrus, middle temporal gyrus, pre-motor and supplementary motor cortex, dorsolateral prefrontal cortex, and inferior frontal gyrus in L1; at the left middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus in L2; at the left inferior temporal gyrus and inferior frontal gyrus in interlingual context. Additionally, INS at the left inferior frontal gyrus was significantly stronger in L2 than in L1. These findings reveal the differences of the INS in different language contexts and confirm the importance of language choice for the INS changes.
Collapse
Affiliation(s)
- Yanqin Feng
- School of Foreign Languages, Xidian University, Xi'an, China
| | - Yuan Liang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Yi Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Xu Duan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Jie Zhang
- Department of Radiation Medicine, Air Force Military Medical University, Xi'an, China.
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China.
| |
Collapse
|
42
|
Lu K, Pan Y. Toward an Interpersonal Neuroscience in Technologically Assisted (Virtual) Interactions. J Neurosci 2023; 43:3787-3788. [PMID: 37225427 PMCID: PMC10217989 DOI: 10.1523/jneurosci.0417-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 17165
| |
Collapse
|
43
|
Xie E, Liu M, Li K, Nastase SA, Gao X, Li X. The single- and dual-brain mechanisms underlying the adviser's confidence expression strategy switching during influence management. Neuroimage 2023; 270:119957. [PMID: 36822251 DOI: 10.1016/j.neuroimage.2023.119957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Effective influence management during advice-giving requires individuals to express confidence in the advice properly and switch timely between the 'competitive' strategy and the 'defensive' strategy. However, how advisers switch between these two strategies, and whether and why there exist individual differences during this process remain elusive. We used an advice-giving game that manipulated incentive contexts (Incentivized/Non-Incentivized) to induce the adviser's confidence expression strategy switching and measured the brain activities of adviser and advisee concurrently using functional near-infrared spectroscopy (fNIRS). Behaviorally, we observed individual differences in strategy switching. Some advisers applied the 'defensive' strategy when incentivized and the 'competitive' strategy when not incentivized, while others applied the 'competitive' strategy when incentivized and the 'defensive' strategy when not incentivized. This effect was mediated by the adviser's perceived stress in each condition and was reflected by the frequencies of advice-taking in the advisees. Neurally, brain activation in the dorsolateral prefrontal cortex (DLPFC) supported strategy switching, as well as interpersonal neural synchronization (INS) in the temporoparietal junction (TPJ) that supported influence management. This two-in-one process, i.e., confidence expression strategy switching and the corresponding influence management, was linked and modulated by the strength of DLPFC-TPJ functional connectivity in the adviser. We further developed a descriptive model that contributed to understanding the adviser's strategy switching during influence management.
Collapse
Affiliation(s)
- Enhui Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Mengdie Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Keshuang Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Samuel A Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States
| | - Xiaoxue Gao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China; Shanghai Changning Mental Health Center, Shanghai, China, 200335; Institute of Wisdom in China, East China Normal University, Shanghai, China, 200062.
| |
Collapse
|
44
|
Balters S, Miller JG, Li R, Hawthorne G, Reiss AL. Virtual (Zoom) Interactions Alter Conversational Behavior and Interbrain Coherence. J Neurosci 2023; 43:2568-2578. [PMID: 36868852 PMCID: PMC10082458 DOI: 10.1523/jneurosci.1401-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 03/05/2023] Open
Abstract
A growing number of social interactions are taking place virtually on videoconferencing platforms. Here, we explore potential effects of virtual interactions on observed behavior, subjective experience, and neural "single-brain" and "interbrain" activity via functional near-infrared spectroscopy neuroimaging. We scanned a total of 36 human dyads (72 participants, 36 males, 36 females) who engaged in three naturalistic tasks (i.e., problem-solving, creative-innovation, socio-emotional task) in either an in-person or virtual (Zoom) condition. We also coded cooperative behavior from audio recordings. We observed reduced conversational turn-taking behavior during the virtual condition. Given that conversational turn-taking was associated with other metrics of positive social interaction (e.g., subjective cooperation and task performance), this measure may be an indicator of prosocial interaction. In addition, we observed altered patterns of averaged and dynamic interbrain coherence in virtual interactions. Interbrain coherence patterns that were characteristic of the virtual condition were associated with reduced conversational turn-taking. These insights can inform the design and engineering of the next generation of videoconferencing technology.SIGNIFICANCE STATEMENT Videoconferencing has become an integral part of our lives. Whether this technology impacts behavior and neurobiology is not well understood. We explored potential effects of virtual interaction on social behavior, brain activity, and interbrain coupling. We found that virtual interactions were characterized by patterns of interbrain coupling that were negatively implicated in cooperation. Our findings are consistent with the perspective that videoconferencing technology adversely affects individuals and dyads during social interaction. As virtual interactions become even more necessary, improving the design of videoconferencing technology will be crucial for supporting effective communication.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Jonas G Miller
- Department of Psychology, Stanford University, Stanford, California 94305
| | - Rihui Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Grace Hawthorne
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
- Department of Pediatrics, Stanford University, Stanford, California 94305
- Department of Radiology, Stanford University, Stanford, California 94305
| |
Collapse
|
45
|
Feldman R. The neurobiology of hatred: Tools of Dialogue© intervention for youth reared amidst intractable conflict impacts brain, behaviour, and peacebuilding attitudes. Acta Paediatr 2023; 112:603-616. [PMID: 36655828 DOI: 10.1111/apa.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Myths, drama, and sacred texts have warned against the fragile nature of human love; the closer the affiliative bond, the quicker it can turn into hatred, suggesting similarities in the neurobiological underpinnings of love and hatred. Here, I offer a theoretical account on the neurobiology of hatred based on our model on the biology of human attachments and its three foundations; the oxytocin system, the "affiliative brain", comprising the neural network sustaining attachment, and biobehavioural synchrony, the process by which humans create a coupled biology through coordinated action. These systems mature in mammals in the context of the mother-infant bond and then transfer to support life within social groups. During this transition, they partition to support affiliation and solidarity to one's group and fear and hatred towards out-group based on minor variations in social behaviour. I present the Tools of Dialogue© intervention for outgroup members based on social synchrony. Applied to Israeli and Palestinian youth and implementing RCT, we measured social behaviour, attitudes, hormones, and social brain response before and after the 8-session intervention. Youth receiving the intervention increased reciprocity and reduced hostile behaviour towards outgroup, attenuated the neural marker of prejudice and increased neural empathic response, reduced cortisol and elevated oxytocin, and adapted attitudes of compromise. These neural changes predicted peacebuilding support 7 years later, when young adults can engage in civil responsibilities. Our intervention, the first to show long-term effects of inter-group intervention on brain and behaviour, demonstrates how social synchrony can tilt the neurobiology of hatred towards the pole of affiliation.
Collapse
Affiliation(s)
- Ruth Feldman
- Center of Developmental Social Neuroscience, Reichman University, Herzlia, Israel
| |
Collapse
|
46
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
47
|
Lotter LD, Kohl SH, Gerloff C, Bell L, Niephaus A, Kruppa JA, Dukart J, Schulte-Rüther M, Reindl V, Konrad K. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neurosci Biobehav Rev 2023; 146:105042. [PMID: 36641012 DOI: 10.1016/j.neubiorev.2023.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchronization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared spectroscopy hyperscanning experiments (740 and 3721 subjects) revealed robust brain regional correlates of INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic information with public databases, biobehavioral and brain-functional association analyses suggested that INS involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new testable hypotheses on the neurobiological basis of INS.
Collapse
Affiliation(s)
- Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | - Simon H Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Laura Bell
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Audiovisual Media Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexandra Niephaus
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana A Kruppa
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Schulte-Rüther
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, S639818, Singapore
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
48
|
Lu K, Gao Z, Wang X, Qiao X, He Y, Zhang Y, Hao N. The hyper-brain neural couplings distinguishing high-creative group dynamics: an fNIRS hyperscanning study. Cereb Cortex 2023; 33:1630-1642. [PMID: 35441220 DOI: 10.1093/cercor/bhac161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/12/2022] Open
Abstract
This hyperscanning study aimed to identify a neural coupling profile that distinguishes high-creative group dynamics through functional near infrared spectroscopy. A total of 123 dyads completed one creativity task (alternative uses task, AUT) and contrast task (objective characteristics task). A K-means clustering analysis on AUT performance grouped 31/29 dyads into high/low-creative group, respectively. In comparison with the low-creative group, the high-creative group showed: (i) higher collective flexibility and delayed perspective-taking behaviors, but lower immediate perspective-taking behaviors; (ii) enhanced interpersonal brain synchronization (IBS) between the left inferior frontal gyrus (lIFG) and right motor cortex, and nodal Eloc at the right superior temporal gyrus (rSTG); (iii) declined intrapersonal functional connectivity between the right angular gyrus (rAG) and rSTG, and IBS between the lIFG and rAG. The enhanced neural couplings positively correlated with group creative performance, whereas a reverse correlation pattern existed in the declined ones. A leave-one-out cross-validation analysis showed these neural couplings reliably predicted group creative performance within the sample. These indicate that high-creative group dynamics are characterized by utilizing partners' shared information when necessary (e.g. encountering idea exhaustion). A neural coupling profile consisting of sophisticated interplays between regions within frontal, temporal, and parietal lobes may underlie high-creative creative dynamics.
Collapse
Affiliation(s)
- Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zhenni Gao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinyue Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yu Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
49
|
Pan Y, Cheng X, Hu Y. Three heads are better than one: cooperative learning brains wire together when a consensus is reached. Cereb Cortex 2023; 33:1155-1169. [PMID: 35348653 DOI: 10.1093/cercor/bhac127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/14/2022] Open
Abstract
Theories of human learning converge on the view that individuals working together learn better than do those working independently. Little is known, however, about the neural mechanisms of learning through cooperation. We addressed this research gap by leveraging functional near-infrared spectroscopy to record the brain activity of triad members in a group simultaneously. Triads were instructed to analyze an ancient Chinese poem either cooperatively or independently. Four main findings emerged. First, we observed significant within-group neural synchronization (GNS) in the left superior temporal cortex, supramarginal gyrus, and postcentral gyrus during cooperative learning compared with independent learning. Second, the enhancement of GNS in triads was amplified when a consensus was reached (vs. elaboration or argument) during cooperative learning. Third, GNS was predictive of learning outcome at an early stage (156-170 s after learning was initiated). Fourth, social factors such as social closeness (e.g. how much learners liked one other) were reflected in GNS and co-varied with learning engagement. These results provide neuroscientific support for Piaget's theory of cognitive development and favor the notion that successful learning through cooperation involves dynamic consensus-building, which is captured in neural patterns shared across learners in a group.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310063 Hangzhou, China.,Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, 518060 Shenzhen, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, 200031 Shanghai, China
| |
Collapse
|
50
|
He Y, Wang X, Lu K, Hao N. Letting leaders spontaneously emerge yields better creative outcomes and higher leader-follower interbrain synchrony during creative group communication. Cereb Cortex 2023:7008113. [PMID: 36708018 DOI: 10.1093/cercor/bhac524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023] Open
Abstract
This study aimed to investigate how the ways leaders arise (appointed vs. emergent) affect the leader-follower interaction during creative group communication. Hyperscanning technique was adopted to reveal the underlying interpersonal neural correlates using functional near-infrared spectroscopy. Participants were assigned into 3-person groups to complete a creative problem-solving task. These groups were randomly split into conditions of appointed (condition A) and emergent (condition E) leaders. Creative group outcomes were better in condition E, accompanied by more frequent perspective-taking behaviors between leaders and followers. The interpersonal brain synchronization (IBS) increment for leader-follower pairs was significantly higher at the right angular gyrus (rAG), between the rAG and the right supramarginal gyrus (rSMG), and between the right middle temporal gyrus and the right motor cortex in condition E and positively correlated with perspective-taking behaviors between leaders and followers. The graph-based analysis showed higher nodal betweenness of the rAG and the rSMG in condition E. These results indicated the neural coupling of brain regions involved in mentalizing, semantic processing and motor imagery may underlie the dynamic information transmission between leaders and followers during creative group communication.
Collapse
Affiliation(s)
- Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Xinyue Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| |
Collapse
|