1
|
Tang L, Zhang J, Oumata N, Mignet N, Sollogoub M, Zhang Y. Sialyl Lewis X (sLe x):Biological functions, synthetic methods and therapeutic implications. Eur J Med Chem 2025; 287:117315. [PMID: 39919437 DOI: 10.1016/j.ejmech.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Carbohydrates are shown to be crucial to several biological processes. They are essential mediators of cell-cell recognition processes. Among them, Sialyl Lewis X (sLex) is a very significant structure in the human body. It is a critical tetrasaccharide that plays a pivotal role in various biological processes, including cell adhesion, immune response, and cancer metastasis. Known as the blood group antigen, sLex is also referred to as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1). sLex is not only a prominent blood group antigen, but also involved in the attraction of sperm to the egg during fertilization, prominently displayed at the terminus of glycolipids on the cell surface. By describing the synthetic methods and biological functions of sLex, this review underscores the importance of sLex in both fundamental and applied sciences and its potential to impact clinical practice.
Collapse
Affiliation(s)
- Leyu Tang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Nassima Oumata
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Khalil RG, Mohammed DA, Hamdalla HM, Ahmed OM. The possible anti-tumor effects of regulatory T cells plasticity / IL-35 in the tumor microenvironment of the major three cancer types. Cytokine 2025; 186:156834. [PMID: 39693872 DOI: 10.1016/j.cyto.2024.156834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
T lymphocytes are among the immunological cells that make up the tumor microenvironment (TME), and they are essential in the growth of tumors and anti-tumor reactions. Regulatory T cells (Treg cells) are a subset of CD4+ T cells in the immune system that suppress the immune system. They are distinguished by their expression of the master transcription factor forkhead box protein P3 (FOXP3). Furthermore, Treg cells are essential for maintaining immunological homeostasis, inhibiting inflammation, and maintaining self-tolerance. In a variety of malignancies within the TME, Treg cells demonstrate notable flexibility and functional diversity. Highly plastic Treg cells can change into Th-like Treg cells in specific circumstances, which allow them to secrete particular pro-inflammatory cytokines. Interleukin 35 (IL-35) is a part of the immunosuppressive cytokines that belong to the IL-12 family. Treg cells release IL-35, which was elevated in the peripheral blood and TME of numerous cancer patients, implying that IL-35 in the TME may be an intriguing target for cancer therapy. In cancer, IL-35 is a two-edged sword; it promotes tumorigenicity in cancer cells while shielding them from apoptosis. Nonetheless, other investigations have mentioned its conflicting effects on cancer prevention. Herein, we provide an updated understanding of the critical mechanisms behind the anticancer immunity mediated by Treg cells plasticity, the role of IL-35, and tactics to strengthen the immune response against malignancies, outlining major clinical trials that used Treg cells/IL-35 therapies in the three main cancer types (lung, breast, and colorectal cancers).
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Dina A Mohammed
- Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hadeer M Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
5
|
Li H, Fang R, Ma R, Long Y, He R, Lyu H, Chen L, Wen Y. Amphiregulin promotes activated regulatory T cell-suppressive function via the AREG/EGFR pathway in laryngeal squamous cell carcinoma. Head Face Med 2024; 20:62. [PMID: 39456084 PMCID: PMC11515249 DOI: 10.1186/s13005-024-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Activated regulatory T cells (aTregs) play a vital role in promoting a tumor immunosuppressive microenvironment in laryngeal squamous cell carcinoma (LSCC). However, the regulatory factors that induce the generation of aTregs are not clear. Herein, we investigated the effect of amphiregulin (AREG) on the production of aTregs in the tumor microenvironment of LSCC. METHODS Immunohistochemical (IHC) analysis was conducted to examine the expression of AREG and FOXP3, and their association with clinical parameters and patient outcomes was demonstrated. The expression level of EGFRs in three functional subsets of Tregs was assessed, and the induction of CD4+ T cells into aTregs in the presence or absence of AREG or Gefitinib was analyzed using flow cytometry. RESULTS Our results showed a higher expression level of AREG was significantly related to advanced clinical stage and worse survival, particularly with increased infiltration of Tregs in LSCC tumor tissue. The in vitro study showed that AREG significantly promoted the differentiation of aTregs, and enhanced the inhibitory effect of Tregs on T cell proliferation, which could be reversed by epidermal growth factor receptor (EGFR) inhibitors. In addition, we found that EGFR was highly expressed in aTregs, but not in other subsets of Tregs. It is suggested that AREG might induce aTregs, and enhance the immunosuppressive function of Tregs via the AREG/EGFR signal pathway. CONCLUSIONS Collectively, this study revealed the role and mechanism of AREG in negative immune regulation, and targeting AREG might be a novel immunotherapy for LSCC.
Collapse
Affiliation(s)
- Hang Li
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
- Department of Allergy, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Ruihua Fang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Renqiang Ma
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Yudong Long
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Rui He
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Huanhuan Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Lin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Yihui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| |
Collapse
|
6
|
Ohishi K, Ishikura A, Nishida S, Abo H, Nakatsukasa H, Kawashima H. Sialyl Lewis X Defines an Activated and Functional Regulatory T Cell Subpopulation in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1627-1638. [PMID: 38639586 DOI: 10.4049/jimmunol.2300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Attempts have been made to elucidate the functional markers of regulatory T cells (Tregs), CD4+Foxp3+ T cells with an immunosuppressive function. Sialyl Lewis X (sLex), a tetrasaccharide Ag, is involved in leukocyte trafficking as selectin ligands and is a marker of highly differentiated Tregs in humans. However, the importance of sLex in murine Tregs remains unknown. In this study, we report that sLex defines the activated and functional subset of murine Tregs. The contact hypersensitivity model showed that murine Tregs strongly express sLex upon activation, accompanied by functional Treg marker elevation, such as Foxp3, CD25, CD103, CD39, and granzyme B. RNA sequencing analysis revealed sLex-positive (sLex+) Tregs expressed genes involved in Treg function at a higher level than sLex-negative (sLex-) Tregs. Using an in vitro suppression assay, we found that sLex+ Tregs could more efficiently suppress naive CD4+ T cell proliferation than sLex- Tregs. In the murine contact hypersensitivity elicitation model, the topical sLex+ Treg injection into the ears suppressed ear inflammation more efficiently than that of sLex- Tregs. Our results indicate that sLex could serve as a unique surface marker of activated and functional Tregs with immunosuppressive functions in mice.
Collapse
Affiliation(s)
- Kanae Ohishi
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Asaki Ishikura
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shogo Nishida
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Tsuda S, Shichino S, Tilburgs T, Shima T, Morita K, Yamaki-Ushijima A, Roskin K, Tomura M, Sameshima A, Saito S, Nakashima A. CD4 + T cell heterogeneity in gestational age and preeclampsia using single-cell RNA sequencing. Front Immunol 2024; 15:1401738. [PMID: 38774869 PMCID: PMC11106458 DOI: 10.3389/fimmu.2024.1401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
A balance between pro-inflammatory decidual CD4+ T cells and FOXP3+ regulatory T cells (FOXP3+ Tregs) is important for maintaining fetomaternal tolerance. Using single-cell RNA-sequencing and T cell receptor repertoire analysis, we determined that diversity and clonality of decidual CD4+ T cell subsets depend on gestational age. Th1/Th2 intermediate and Th1 subsets of CD4+ T cells were clonally expanded in both early and late gestation, whereas FOXP3+ Tregs were clonally expanded in late gestation. Th1/Th2 intermediate and FOXP3+ Treg subsets showed altered gene expression in preeclampsia (PE) compared to healthy late gestation. The Th1/Th2 intermediate subset exhibited elevated levels of cytotoxicity-related gene expression in PE. Moreover, increased Treg exhaustion was observed in the PE group, and FOXP3+ Treg subcluster analysis revealed that the effector Treg like subset drove the Treg exhaustion signatures in PE. The Th1/Th2 intermediate and effector Treg like subsets are possible inflammation-driving subsets in PE.
Collapse
Affiliation(s)
- Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tamara Tilburgs
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | | - Krishna Roskin
- Divisions of Biomedical Informatics & Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Azusa Sameshima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
- Ladies’ Clinic We! Toyama, Toyama, Japan
| | | | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
9
|
Spehner L, Orillard E, Falcoz A, Lepiller Q, Bouard A, Almotlak H, Kim S, Curtit E, Meynard G, Jary M, Nardin C, Asgarov K, Abdeljaoued S, Chartral U, Mougey V, Ben Khelil M, Lopez M, Loyon R, Vernerey D, Adotevi O, Borg C, Mansi L, Kroemer M. Predictive biomarkers and specific immune responses of COVID-19 mRNA vaccine in patients with cancer: prospective results from the CACOV-VAC trial. BMJ ONCOLOGY 2023; 2:e000054. [PMID: 39886486 PMCID: PMC11235023 DOI: 10.1136/bmjonc-2023-000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2025]
Abstract
Objective Vaccinated patients with cancer in follow-up studies showed a high seropositivity rate but impaired antibody titres and T cell responses following mRNA vaccine against COVID-19. Besides clinical characteristics and the type of anticancer treatment before vaccination, the identification of patients susceptible to non-response following vaccination using immunological markers is worth to be investigated. Methods and analysis All patients (n=138, solid cancers) were included in the CACOV-VAC Study comprising three cohorts ((neo)-adjuvant, metastatic and surveillance). Immune responses were assessed using, respectively, anti-receptor-binding domain (RBD) SARS-CoV-S-IgG assay and interferon-γ ELISpot assay 3 months following the prime vaccination dose. Immunophenotyping of T cells and immunosuppressive cells from peripheral blood was performed before the prime dose. The serological threshold 3563 AU/mL was used to discriminate non-responders or suboptimal responders versus responders. Results Most patients achieved seroconversion after receiving the two doses of vaccine (97.6%). The median serological level of anti-RBD SARS-CoV-S-IgG was equal to 3029 for patients at the metastatic stage. The patient's age was the main demographic characteristic that influenced vaccine efficacy. Among the immunological parameters measured at baseline, lower TIGIT (T cell immunoreceptor with Ig and ITIM domains) expression on CD8 T cells was associated with a better vaccine immunogenicity both in terms of humoral and cellular immune responses. Conclusion Despite a high seroconversion rate, median serological levels of patients with cancer, particularly elderly patients, were below the threshold equal to 3563 AU/mL considered as a humoral correlate of protection against SARS-CoV-2. Our findings suggest that the inhibitory receptor TIGIT might be an interesting predictive biomarker of COVID-19 vaccine immunogenicity and beyond in an anticancer vaccine context. Trial registration number ClinicalTrials.gov Registry (NCT04836793).
Collapse
Affiliation(s)
- Laurie Spehner
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Emeline Orillard
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Antoine Falcoz
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Methodology and Quality of Life Unit in Oncology, CHU Besançon, Besançon, France
| | | | - Adeline Bouard
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Hamadi Almotlak
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Stefano Kim
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Elsa Curtit
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | | | - Marine Jary
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Medical Oncology, Hôpital Jean Minjoz, Besançon, France
| | - Charlee Nardin
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Dermatology, CHU Besançon, Besançon, France
| | - Kamal Asgarov
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Syrine Abdeljaoued
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Ugo Chartral
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Virginie Mougey
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Myriam Ben Khelil
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Morgane Lopez
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Romain Loyon
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Dewi Vernerey
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Methodology and Quality of Life Unit in Oncology, CHU Besançon, Besançon, France
| | - Olivier Adotevi
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Christophe Borg
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Laura Mansi
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Marie Kroemer
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
- Department of Pharmacy, University Hospital Centre Besançon, Besançon, France
| |
Collapse
|
10
|
Wei F, Fang R, Lyu K, Liao J, Long Y, Yang J, Wen W, Sun W. Exosomal PD-L1 derived from head and neck squamous cell carcinoma promotes immune evasion by activating the positive feedback loop of activated regulatory T cell-M2 macrophage. Oral Oncol 2023; 145:106532. [PMID: 37499326 DOI: 10.1016/j.oraloncology.2023.106532] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The positive feedback loop of activated regulatory T cells (aTregs) and M2 macrophages (M2) play a vital role in promoting the tumor immunosuppressive microenvironment of head and neck squamous cell carcinoma (HNSCC). However, the key factors regulating the positive feedback loop remain unclear. Herein, we investigated the effect of PD-L1 carried on exosomes derived from tumor cells (TEXs) on the aTreg-M2 positive feedback loop, as well as their role in mediating immunosuppression. In our study, TEXs with or without PD-L1 (TEX-PD-L1 or TEX-PD-L1KO) were treated with CD4+CD25- T cells and M0 macrophages, and the effect on the differentiation of aTregs, M2 and the aTreg-M2 positive feedback loop was assessed. TEXs carried more PD-L1 than tumor cells and not only promoted the differentiation of aTregs and M2, but also, most importantly, enhanced the positive feedback loop of aTreg-M2, which inhibited the proliferation of CD4+CD25- T cells and in turn led to tumor immune escape. Moreover, in vivo study showed that TEX-PD-L1KO could inhibit tumor growth and significantly improve the antitumor efficacy in both the peripheral and tumor microenvironments. Collectively this study revealed the role and mechanism of TEX-PD-L1 in negative immune regulation, and targeting TEX-PD-L1 may be a new idea and strategy for immunotherapy of HNSCC.
Collapse
Affiliation(s)
- Fanqin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Ruihua Fang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Kexing Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510080, Guangdong, PR China
| | - Yudong Long
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Jinchao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China; Department of Otorhinolaryngology Head and Neck Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China.
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China.
| |
Collapse
|
11
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Yu W, Zhao X, Jalloh AS, Li Y, Zhao Y, Dinner B, Yang Y, Ouyang S, Tian T, Zhao Z, Yang R, Chen M, Lauvau G, Guo Z, Wu P, Li JP. Chemoenzymatic Measurement of LacNAc in Single-Cell Multiomics Reveals It as a Cell-Surface Indicator of Glycolytic Activity of CD8 + T Cells. J Am Chem Soc 2023; 145:12701-12716. [PMID: 37276352 PMCID: PMC10733619 DOI: 10.1021/jacs.3c02602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the rich information about the physiological state of a cell encoded in the dynamic changes of cell-surface glycans, chemical methods to capture specific glycan epitopes at the single-cell level are quite limited. Here, we report a chemoenzymatic method for the single-cell detection of N-acetyllactosamine (LacNAc) by labeling LacNAc with a specific DNA barcode. The chemoenzymatic labeling does not alter the transcriptional status of immune cells and is compatible with multiple scRNA-seq platforms. Integrated analysis of LacNAc and the transcriptome of T cells at the single-cell level reveals that the amount of cell-surface LacNAc is significantly upregulated in activated CD8+ T cells but maintained at basal levels in resting CD8+ T cells (i.e., naive and central memory T cells). Further analysis confirms that LacNAc levels are positively correlated with the glycolytic activity of CD8+ T cells during differentiation. Taken together, our study demonstrates the feasibility of the chemoenzymatic detection of cell-surface glycan in single-cell RNA sequencing-based multiomics with TCR sequence and cell-surface epitope information (i.e., scTCR and CITE-seq), and provides a new way to characterize the biological role of glycan in diverse physiological states.
Collapse
Affiliation(s)
- Wenhao Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinlu Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Abubakar S Jalloh
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yachao Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brandon Dinner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shian Ouyang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Mingkuan Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregoire Lauvau
- Department of Microbiology & Immunology, Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, New York 10461, United States
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Cole CB, Morelli MP, Fantini M, Miettinen M, Fetsch P, Peer C, Figg WD, Yin T, Houston N, McCoy A, Lipkowitz S, Zimmer A, Lee JM, Pavelova M, Villanueva EN, Trewhitt K, Solarz BB, Fergusson M, Mavroukakis SA, Zaki A, Tsang KY, Arlen PM, Annunziata CM. First-in-human phase 1 clinical trial of anti-core 1 O-glycans targeting monoclonal antibody NEO-201 in treatment-refractory solid tumors. J Exp Clin Cancer Res 2023; 42:76. [PMID: 36991390 PMCID: PMC10053355 DOI: 10.1186/s13046-023-02649-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND NEO201 is a humanized IgG1 monoclonal antibody (mAb) generated against tumor-associated antigens from patients with colorectal cancer. NEO-201 binds to core 1 or extended core 1 O-glycans expressed by its target cells. Here, we present outcomes from a phase I trial of NEO-201 in patients with advanced solid tumors that have not responded to standard treatments. METHODS This was a single site, open label 3 + 3 dose escalation clinical trial. NEO-201 was administered intravenously every two weeks in a 28-day cycle at dose level (DL) 1 (1 mg/kg), DL 1.5 (1.5 mg/kg) and DL 2 (2 mg/kg) until dose limiting toxicity (DLT), disease progression, or patient withdrawal. Disease evaluations were conducted after every 2 cycles. The primary objective was to assess the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of NEO-201. The secondary objective was to assess the antitumor activity by RECIST v1.1. The exploratory objectives assessed pharmacokinetics and the effect of NEO-201 administration on immunologic parameters and their impact on clinical response. RESULTS Seventeen patients (11 colorectal, 4 pancreatic and 2 breast cancers) were enrolled; 2 patients withdrew after the first dose and were not evaluable for DLT. Twelve of the 15 patients evaluable for safety discontinued due to disease progression and 3 patients discontinued due to DLT (grade 4 febrile neutropenia [1 patient] and prolonged neutropenia [1 patient] at DL 2, and grade 3 prolonged (> 72 h) febrile neutropenia [1 patient] at DL 1.5). A total of 69 doses of NEO-201 were administered (range 1-15, median 4). Common (> 10%) grade 3/4 toxicities occurred as follows: neutropenia (26/69 doses, 17/17 patients), white blood cell decrease (16/69 doses, 12/17 patients), lymphocyte decrease (8/69 doses, 6/17 patients). Thirteen patients were evaluable for disease response; the best response was stable disease (SD) in 4 patients with colorectal cancer. Analysis of soluble factors in serum revealed that a high level of soluble MICA at baseline was correlated with a downregulation of NK cell activation markers and progressive disease. Unexpectedly, flow cytometry showed that NEO-201 also binds to circulating regulatory T cells and reduction of the quantities of these cells was observed especially in patients with SD. CONCLUSIONS NEO-201 was safe and well tolerated at the MTD of 1.5 mg/kg, with neutropenia being the most common adverse event. Furthermore, a reduction in the percentage of regulatory T cells following NEO-201 treatment supports our ongoing phase II clinical trial evaluating the efficiency of the combination of NEO-201 with the immune checkpoint inhibitor pembrolizumab in adults with treatment-resistant solid tumors. TRIAL REGISTRATION NCT03476681 . Registered 03/26/2018.
Collapse
Affiliation(s)
- Christopher B Cole
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pia Morelli
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Yin
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Houston
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann McCoy
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Pavelova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin N Villanueva
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Trewhitt
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - B Brooke Solarz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Fergusson
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Anjum Zaki
- Precision Biologics, Inc, Bethesda, MD, USA
| | | | | | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Ozer E, Kanit N, Cevizci MC, Cagliyan E, Mifsud W. Profiling of Immunomodulatory Genes and Quantification of CD25+ Cells in Different Types of Early Pregnancy Loss. Pediatr Dev Pathol 2023:10935266231156327. [PMID: 36861642 DOI: 10.1177/10935266231156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Maternal regulatory T (Treg) cells play a pivotal role in establishing general immune homeostasis in the decidua for maintenance of pregnancy. We aimed in this study to investigate the relationship between mRNA expression of immunomodulatory genes and CD25+ Treg cells with early pregnancy losses. METHODS Our study included 3 groups of early pregnancy losses including sporadic spontaneous abortions, recurrent spontaneous abortions, sporadic spontaneous abortions post IVF treatment and the control group. We performed RT-PCR for analyzing mRNA expression levels of 6 immunomodulatory genes and CD25 immunohistochemistry for quantification of Treg cells. RESULTS Only FOXP3, CD274 (PDL1), and TGFβ1 mRNA expression levels were significantly decreased in the miscarriage groups in comparison to the control group, whereas there was no significant mRNA expression change of CD4, IL2RA, and IL10. We also found significantly lower number of CD25+ cells in the miscarriages. CONCLUSION We conclude that decreased expression of FOXP3 and PD-L1 may play a significant role in the pathogenesis of spontaneous abortion cases whereas decreased expression of TGFβ1 gene may be associated with the occurrence of early loss in IVF-treated pregnancies. Additional immunoprofiling of Treg cell population is needed to quantify Treg cells in early pregnancy losses.
Collapse
Affiliation(s)
- Erdener Ozer
- Department of Pathology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Naz Kanit
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | | | - Erkan Cagliyan
- Department of Gynecology and Obstetrics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - William Mifsud
- Division of Anatomical Pathology, Sidra Medicine and Research Center, Doha, Qatar
| |
Collapse
|
15
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Tauber PA, Kratzer B, Schatzlmaier P, Smole U, Köhler C, Rausch L, Kranich J, Trapin D, Neunkirchner A, Zabel M, Jutz S, Steinberger P, Gadermaier G, Brocker T, Stockinger H, Derdak S, Pickl WF. The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4 + T cells resembling iTreg. Front Immunol 2023; 14:1094694. [PMID: 37090735 PMCID: PMC10117943 DOI: 10.3389/fimmu.2023.1094694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peter A. Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cordula Köhler
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Rausch
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Brocker
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
- *Correspondence: Winfried F. Pickl,
| |
Collapse
|
17
|
Minskaia E, Lacerda JF. Analysis of FOXP3 DNA Methylation Patterns to Identify Functional FOXP3+ T-Cell Subpopulations. Methods Mol Biol 2023; 2559:115-136. [PMID: 36180630 DOI: 10.1007/978-1-0716-2647-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human regulatory CD4+CD25+FOXP3+ T cells (Tregs) are involved in the suppression of immune responses and play important roles in the maintenance of self-tolerance and immune homeostasis. Abnormal Treg function may result in disease states of varying severity. As FOXP3-expressing Treg cells are phenotypically and functionally heterogeneous, the success of Treg therapies depends on the ability to reliably distinguish subpopulations of T cells bearing a Treg-like phenotype. Methylation of cytosines within CpG dinucleotides is an important epigenetic mechanism involved in regulation (and suppression) of gene expression. On the other hand, demethylation of regulatory DNA sequences, such as promoters and enhancers, is essential for initiation of gene transcription. This protocol shows that bisulfite sequencing (BS) distinguishes methylated and unmethylated cytosines within DNA and reveals the methylation status of individual CpGs in cells within each population, identifying functionally different FOXP3+ subpopulations.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Infection and Immunity Division, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - João F Lacerda
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Abstract
CD4+ regulatory T (Treg) cells play an important role in maintaining immune homeostasis. Although these cells were initially studied as a homogenous cohort, we now know that they have unprecedented underlying heterogeneity. This heterogeneity is reflected in their phenotype and functions. As human Treg subpopulations are very small in numbers, it is necessary to develop novel ways of isolating and manipulating these cell populations. In this chapter, we discuss immunoassays established to this effect.
Collapse
Affiliation(s)
- Mo Atif
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Immunology Department Hôpital Pitié-Salpêtrière, Paris, France
| | - Mustapha Cherai
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Immunology Department Hôpital Pitié-Salpêtrière, Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Immunology Department Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
19
|
Scherlinger M, Pan W, Hisada R, Boulougoura A, Yoshida N, Vukelic M, Umeda M, Krishfield S, Tsokos MG, Tsokos GC. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity. SCIENCE ADVANCES 2022; 8:eadc9657. [PMID: 36449620 PMCID: PMC9710877 DOI: 10.1126/sciadv.adc9657] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 05/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by defective regulatory T (Treg) cells. Here, we demonstrate that a T cell-specific deletion of calcium/calmodulin-dependent protein kinase 4 (CaMK4) improves disease in B6.lpr lupus-prone mice and expands Treg cells. Mechanistically, CaMK4 phosphorylates the glycolysis rate-limiting enzyme 6-phosphofructokinase, platelet type (PFKP) and promotes aerobic glycolysis, while its end product fructose-1,6-biphosphate suppresses oxidative metabolism. In Treg cells, a CRISPR-Cas9-enabled Pfkp deletion recapitulated the metabolism of Camk4-/- Treg cells and improved their function and stability in vitro and in vivo. In SLE CD4+ T cells, PFKP enzymatic activity correlated with SLE disease activity and pharmacologic inhibition of CaMK4-normalized PFKP activity, leading to enhanced Treg cell function. In conclusion, we provide molecular insights in the defective metabolism and function of Treg cells in SLE and identify PFKP as a target to fine-tune Treg cell metabolism and thereby restore their function.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Rheumatology Department, Strasbourg University Hospital of Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Ryo Hisada
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Milena Vukelic
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Masataka Umeda
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Suzanne Krishfield
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
20
|
Scholz GA, Fux M, Christ L, Iype J, Banz Y, Villiger PM. Divergent regulatory T cell responses to high-dose methylprednisolone and tocilizumab in giant cell arteritis. J Autoimmun 2022; 133:102909. [PMID: 36115211 DOI: 10.1016/j.jaut.2022.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Godehard A Scholz
- University Clinic of Rheumatology and Immunology, Inselspital, University Hospital Bern, Switzerland.
| | - Michaela Fux
- Institute of Social and Preventive Medicine, University of Bern, Switzerland.
| | - Lisa Christ
- University Clinic of Rheumatology and Immunology, Inselspital, University Hospital Bern, Switzerland.
| | - Joseena Iype
- University Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Switzerland.
| | - Yara Banz
- Institute of Pathology, University of Bern, Switzerland.
| | | |
Collapse
|
21
|
Wang Y, Qu M, Qiu Z, Zhu S, Chen W, Guo K, Miao C, Zhang H. Surgical Stress and Cancer Progression: New Findings and Future Perspectives. Curr Oncol Rep 2022; 24:1501-1511. [PMID: 35763189 DOI: 10.1007/s11912-022-01298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The stress response to surgery is essential for maintaining homeostasis and exhibits anti-tumor effects; however, an ongoing and exaggerated stress response may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between surgical stress and cancer progression. RECENT FINDINGS Surgical stress exhibits both anti-tumor and cancer-promoting effects by causing changes in the neuroendocrine, circulatory, and immune systems. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although surgical stress may have anti-tumor effects, it is necessary to inhibit an excessive stress response, mostly showing cancer-promoting effects.
Collapse
Affiliation(s)
- Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Fudan University Jinshan Hospital, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
22
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
23
|
Muyayalo KP, Song S, Liu C, Gong GS, Zhang YJ, Zhou H, Shen L, Liao AH. HLA-DR + CD45RA- Tregs and CD28- Treg-like cells: Potential immunologic biomarkers for reproductive aging. Am J Reprod Immunol 2022; 89:e13591. [PMID: 35771647 DOI: 10.1111/aji.13591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM This study aimed to identify subsets of regulatory T cells (Tregs) associated with ovarian aging and determine whether they can be used as markers of reproductive aging. METHOD This prospective cohort study was conducted among women of reproductive age. Basic physiological characteristics, reproductive hormones, Treg cell subsets, and correlations between these parameters were assessed. The POSEIDON criteria was used to identify women with low reproductive potential. RESULTS The percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells significantly increased with age. Women between 40 and 49 years had significantly higher percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells than those at 20-29, 30-34, and 35-39 years old. Age positively correlated with FSH levels and the percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells, but inversely correlated with antral follicle count (AFC) and AMH levels. Interestingly, a positive correlation was found between the percentages of HLA-DR+ CD45RA- Tregs and FSH levels, whereas an inverse correlation was found between those of HLA-DR+ CD45RA- Tregs and AFC or AMH levels. Furthermore, a significant positive correlation was observed between the percentages of CD28- Treg-like cells and AFC. Based on POSEIDON criteria, women with the percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells above reference value ranges were assigned to the low prognosis groups. CONCLUSION These findings suggest that HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells can be used as immunologic markers of reproductive aging, which helps clinicians identify women with low reproductive potential and establish individualized therapeutic strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Su Song
- Wuhan Tongji Reproductive Medical Hospital, Wuhan, P.R. China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Zhou
- Wuhan Tongji Reproductive Medical Hospital, Wuhan, P.R. China
| | - Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
24
|
Szlasa W, Wilk K, Knecht-Gurwin K, Gurwin A, Froń A, Sauer N, Krajewski W, Saczko J, Szydełko T, Kulbacka J, Małkiewicz B. Prognostic and Therapeutic Role of CD15 and CD15s in Cancer. Cancers (Basel) 2022; 14:cancers14092203. [PMID: 35565333 PMCID: PMC9101515 DOI: 10.3390/cancers14092203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary CD15 (Lewis X) is a typical myeloid antigen presented in myeloid and monocytic lineages of cells. This molecule interacts with E-, L- and P-selectins, which allows for adhesion with endothelial cells. CD15 is found on various cancer cells, including renal cancer, prostate and bladder cancers, acute leukaemias, hepatocellular carcinoma, breast cancer and melanoma cells. Its high expression can serve as a prognostic marker for patients and is a potentially valuable target for immunotherapy against cancer. Blockage of the antigen’s function results in reduced metastatic potential and it may be an immunotherapeutic target. CD15s is a sialyl derivative of CD15; however, unlike the high expression of CD15, which is a prognostic factor in Hodgkin lymphoma, CD15s relates to poor prognosis for patients. CD15 is considered a marker of cancer stem cells. This review presents a comprehensive description of the prognostic role of CD15 and CD15s and their use in anticancer therapy. Abstract CD15 (Lewis X/Lex) is a fucosyl (3-fucosly-N-acetyl-lactosamine) moiety found on membrane proteins of various cancer cells. These cancers include renal cancer, prostate and bladder cancers, acute leukaemias, hepatocellular carcinoma, breast cancer and melanoma. The biological role of CD15 is interaction with E-, L- and P-selectins (adhesion molecules), allowing for adhesion with endothelial cells. In this way, cancer cells start to interact with the endothelia of blood vessels and consequently move out from the blood flow to the surrounding tissues. Blockage of the antigen’s function results in reduced metastatic potential. Moreover, the molecule may be a therapeutic target against cancer in monoclonal antibody-based therapies. CD15 may serve as a prognostic marker for patients and there are high hopes for its use in the immunotherapeutic treatment of tumours. CD15s is a sialyl derivative of CD15 that possesses its own unique characteristics. Its soluble form may act as a competitive inhibitor of the interaction of cancer cells with epithelial cells and thus disallow migration through the vessels. However, the prognostic relevance of CD15 and CD15s expression is very complex. This review presents a comprehensive description of the role of CD15 and CD15s in cancer development and metastasis and overviews its significance for clinical applications.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
- Correspondence: (W.S.); (B.M.)
| | - Karol Wilk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Klaudia Knecht-Gurwin
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Adam Gurwin
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Anita Froń
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Natalia Sauer
- Department of Drugs Form Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (J.K.)
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (J.K.)
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
- Correspondence: (W.S.); (B.M.)
| |
Collapse
|
25
|
Goda N, Sasada S, Shigematsu H, Masumoto N, Arihiro K, Nishikawa H, Sakaguchi S, Okada M, Kadoya T. The ratio of CD8 + lymphocytes to tumor-infiltrating suppressive FOXP3 + effector regulatory T cells is associated with treatment response in invasive breast cancer. Discov Oncol 2022; 13:27. [PMID: 35438346 PMCID: PMC9018954 DOI: 10.1007/s12672-022-00482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE FOXP3 + and CD8 + are recognized markers of tumor-infiltrating lymphocytes (TILs) for breast cancer. FOXP3 + TILs are composed of effector Tregs (eTregs) and other subpopulations that are classified by their differences in suppressive function. In this prospective study, we evaluated Treg subpopulations and CD8 + TILs in breast cancer. METHODS 84 patients with breast cancer were enrolled. Fresh TILs were extracted andTregs were classified into eTregs (CD4+FOXP3highCD45RA-), other FOXP3+ Treg subsets (naïve and non-Tregs), and total CD8+CD4- TILs using flow cytometry. The suppression strength of each Treg subpopulation was analyzed. The association between TIL subpopulations, clinicopathological characteristics, and response to chemotherapy was evaluated. RESULTS The mean CD8/eTreg ratio value was 7.86 (interquartile range: 4.08-12.80). The proliferation function of eTregs was significantly suppressed compared with that of the other subpopulations (proliferation rates: control: 89.3%, + naiiveTreg: 64.2%, + non-Treg: 78.2% vs eTreg 1.93%; all P < 0.05). The patients with high with a high CD8 + /eTreg ratio achieved excellent pathological complete response (pCR) rate of neoadjuvant chemotherapy (90.2%) and the CD8/eTreg ratio were independent predictive factors for pCR (odds ratio:18.7(confidence interval 1.25-279) P < 0.05). A detailed assessment of the CD8/eTreg ratio for each patient who underwent NAC revealed that high CD8/eTreg ratio showed a significantly higher pCR rate compared to patients with a low CD8/FOXP3 ratio (39.6% vs 13.3, P < 0.05) in triple negative subtype patients with stromal TILs < 50%. CONCLUSIONS A high CD8/eTreg ratio enhances pCR rate in patients with invasive breast cancer.
Collapse
Affiliation(s)
- Noriko Goda
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideo Shigematsu
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University, Hiroshima, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
26
|
Chen BJ, Zhao JW, Zhang DH, Zheng AH, Wu GQ. Immunotherapy of Cancer by Targeting Regulatory T cells. Int Immunopharmacol 2022; 104:108469. [PMID: 35008005 DOI: 10.1016/j.intimp.2021.108469] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023]
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by inhibiting abnormal/overactive immune responses to both autogenic and nonautogenic antigens. Treg cells play an important role in immune tolerance, autoimmune diseases, infectious diseases, organ transplantation, and tumor diseases. Treg cells have two functional characteristics: T cell anergy and immunosuppression. Treg cells remain immune unresponsive to high concentrations of interleukin-2 and anti-CD3 monoclonal antibodies. In addition, the activation of Treg cells after TCR-mediated signal stimulation inhibits the activation and proliferation of effector T cells. In the process of tumor development, Treg cells accumulate locally in the tumor and lead to tumor escape by inducing anergy and immunosuppression. It is believed that targeted elimination of Treg cells can activate tumor-specific effector T cells and improve the efficiency of cancer immunotherapy. Therefore, inhibition/clearance of Treg cells is a promising strategy for enhancing antitumor immunity. Here, we review studies of cancer immunotherapies targeting Treg cells.
Collapse
Affiliation(s)
- Bo-Jin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing-Wen Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Da-Hong Zhang
- Department of Urology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ai-Hong Zheng
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Guo-Qing Wu
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Dixon ML, Luo L, Ghosh S, Grimes JM, Leavenworth JD, Leavenworth JW. Remodeling of the tumor microenvironment via disrupting Blimp1 + effector Treg activity augments response to anti-PD-1 blockade. Mol Cancer 2021; 20:150. [PMID: 34798898 PMCID: PMC8605582 DOI: 10.1186/s12943-021-01450-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Accumulation of Foxp3+ regulatory T (Treg) cells in the tumor often represents an important mechanism for cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy. Many tumor-infiltrating Treg cells display an activated phenotype and express the transcription factor Blimp1. However, the specific impact of these Blimp1+ Treg cells and their follicular regulatory T (TFR) cell subset on tumor and the underlying mechanisms of action are not yet well-explored. METHODS Various transplantable tumor models were established in immunocompetent wild-type mice and mice with a Foxp3-specific ablation of Blimp1. Tumor specimens from patients with metastatic melanoma and TCGA datasets were analyzed to support the potential role of Treg and TFR cells in tumor immunity. In vitro culture assays and in vivo adoptive transfer assays were used to understand how Treg, TFR cells and antibody responses influence tumor control. RNA sequencing and NanoString analysis were performed to reveal the transcriptome of tumor-infiltrating Treg cells and tumor cells, respectively. Finally, the therapeutic effects of anti-PD-1 treatment combined with the disruption of Blimp1+ Treg activity were evaluated. RESULTS Blimp1+ Treg and TFR cells were enriched in the tumors, and higher tumoral TFR signatures indicated increased risk of melanoma metastasis. Deletion of Blimp1 in Treg cells resulted in impaired suppressive activity and a reprogramming into effector T-cells, which were largely restricted to the tumor-infiltrating Treg population. This destabilization combined with increased anti-tumor effector cellular responses, follicular helper T-cell expansion, enhanced tumoral IgE deposition and activation of macrophages secondary to dysregulated TFR cells, remodeled the tumor microenvironment and delayed tumor growth. The increased tumor immunogenicity with MHC upregulation improved response to anti-PD-1 blockade. Mechanistically, Blimp1 enforced intratumoral Treg cells with a unique transcriptional program dependent on Eomesodermin (Eomes) expression; deletion of Eomes in Blimp1-deficient Treg cells restored tumor growth and attenuated anti-tumor immunity. CONCLUSIONS These findings revealed Blimp1 as a new critical regulator of tumor-infiltrating Treg cells and a potential target for modulating Treg activity to treat cancer. Our study has also revealed two FCERIA-containing immune signatures as promising diagnostic or prognostic markers for melanoma patients.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lin Luo
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey M Grimes
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA. .,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
28
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
29
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
30
|
Hariyanto AD, Permata TBM, Gondhowiardjo SA. Role of CD4 +CD25 +FOXP3 + T Reg cells on tumor immunity. Immunol Med 2021; 45:94-107. [PMID: 34495808 DOI: 10.1080/25785826.2021.1975228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Not all T cells are effector cells of the anti-tumor immune system. One of the subpopulations of CD4+ T cells that express CD25+ and the transcription factor FOXP3, known as Regulator T cells (TReg), plays an essential role in maintaining tolerance and immune homeostasis preventing autoimmune diseases, minimalize chronic inflammatory diseases by enlisting various immunoregulatory mechanisms. The balance between effector T cells (Teff) and regulator T cells is crucial in determining the outcome of an immune response. Regarding tumors, activation or expansion of TReg cells reduces anti-tumor immunity. TReg cells inhibit the activation of CD4+ and CD8+ T cells and suppress anti-tumor activity in the tumor microenvironment. In addition, TReg cells also promote tumor angiogenesis both directly and indirectly to ensure oxygen and nutrient transport to the tumor. There is accumulating evidence showing a positive result that removing or suppressing TReg cells increases anti-tumor immune response. However, depletion of TReg cells will cause autoimmunity. One strategy to improve or restore tumor immunity is targeted therapy on the dominant effector TReg cells in tumor tissue. Various molecules such as CTLA-4, CD4, CD25, GITR, PD-1, OX40, ICOS are in clinical trials to assess their role in attenuating TReg cells' function.
Collapse
Affiliation(s)
- Agustinus Darmadi Hariyanto
- Faculty of Medicine, Department of Radiotherapy, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Faculty of Medicine, Department of Radiotherapy, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | | |
Collapse
|
31
|
Dixon ML, Leavenworth JD, Leavenworth JW. Lineage Reprogramming of Effector Regulatory T Cells in Cancer. Front Immunol 2021; 12:717421. [PMID: 34394124 PMCID: PMC8355732 DOI: 10.3389/fimmu.2021.717421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Scherlinger M, Guillotin V, Douchet I, Vacher P, Boizard-Moracchini A, Guegan JP, Garreau A, Merillon N, Vermorel A, Ribeiro E, Machelart I, Lazaro E, Couzi L, Duffau P, Barnetche T, Pellegrin JL, Viallard JF, Saleh M, Schaeverbeke T, Legembre P, Truchetet ME, Dumortier H, Contin-Bordes C, Sisirak V, Richez C, Blanco P. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med 2021; 13:13/600/eabi4994. [PMID: 34193612 DOI: 10.1126/scitranslmed.abi4994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (Treg) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with Treg cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of Treg cells and particularly follicular Treg cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on Treg cells induced a down-regulation of the transforming growth factor-β axis, altering the phenotype of Treg cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin-dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Vivien Guillotin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Isabelle Douchet
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | | | | | - Anne Garreau
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Merillon
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Agathe Vermorel
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Emmanuel Ribeiro
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Irène Machelart
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Estibaliz Lazaro
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Lionel Couzi
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Pierre Duffau
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Thomas Barnetche
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Jean-Luc Pellegrin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Jean-François Viallard
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Maya Saleh
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, UMR CNRS 7276, INSERM 1262, Limoges, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | - Cécile Contin-Bordes
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Vanja Sisirak
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Christophe Richez
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France. .,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Patrick Blanco
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France. .,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| |
Collapse
|
33
|
FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Commun Biol 2021; 4:832. [PMID: 34215830 PMCID: PMC8253766 DOI: 10.1038/s42003-021-02295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Sialyl-Lewis x (sLex, CD15s) is a tetra-saccharide on the surface of leukocytes required for E-selectin-mediated rolling, a prerequisite for leukocytes to migrate out of the blood vessels. Here we show using flow cytometry that sLex expression on basophils and mast cell progenitors depends on fucosyltransferase 6 (FUT6). Using genetic association data analysis and qPCR, the cell type-specific defect was associated with single nucleotide polymorphisms (SNPs) in the FUT6 gene region (tagged by rs17855739 and rs778798), affecting coding sequence and/or expression level of the mRNA. Heterozygous individuals with one functional FUT6 gene harbor a mixed population of sLex+ and sLex- basophils, a phenomenon caused by random monoallelic expression (RME). Microfluidic assay demonstrated FUT6-deficient basophils rolling on E-selectin is severely impaired. FUT6 null alleles carriers exhibit elevated blood basophil counts and a reduced itch sensitivity against insect bites. FUT6-deficiency thus dampens the basophil-mediated allergic response in the periphery, evident also in lower IgE titers and reduced eosinophil counts. Puan and San Luis et al. find that FUT6, encoding a fucosyltransferase, is required for the “rolling” behavior of certain white blood cells that enables them to move from blood vessels to tissues. They show that FUT6 deficiency leads to a loss of the tetrasaccharide sLex on the surface of basophils, resulting in cells that are less sticky and therefore less able to form the necessary adhesions for exiting the blood vessel to drive the allergic reaction.
Collapse
|
34
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Choudhury SD. Nano-Medicines a Hope for Chagas Disease! Front Mol Biosci 2021; 8:655435. [PMID: 34141721 PMCID: PMC8204082 DOI: 10.3389/fmolb.2021.655435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease, is a vector-mediated tropical disease whose causative agent is a parasitic protozoan named Trypanosoma cruzi. It is a very severe health issue in South America and Mexico infecting millions of people every year. Protozoan T. cruzi gets transmitted to human through Triatominae, a subfamily of the Reduviidae, and do not have any effective treatment or preventative available. The lack of economic gains from this tropical parasitic infection, has always been the reason behind its negligence by researchers and drug manufacturers for many decades. Hence there is an enormous requirement for more efficient and novel strategies to reduce the fatality associated with these diseases. Even, available diagnosis protocols are outdated and inefficient and there is an urgent need for rapid high throughput diagnostics as well as management protocol. The current advancement of nanotechnology in the field of healthcare has generated hope for better management of many tropical diseases including Chagas disease. Nanoparticulate systems for drug delivery like poloxamer coated nanosuspension of benzimidazole have shown promising results in reducing toxicity, elevating efficacy and bioavailability of the active compound against the pathogen, by prolonging release, thereby increasing the therapeutic index. Moreover, nanoparticle-based drug delivery has shown promising results in inducing the host’s immune response against the pathogen with very few side effects. Besides, advances in diagnostic assays, such as nanosensors, aided in the accurate detection of the parasite. In this review, we provide an insight into the life cycle stages of the pathogen in both vertebrate host and the insect vector, along with an overview of the current therapy for Chagas disease and its limitations; nano carrier-based delivery systems for antichagasic agents, we also address the advancement of nano vaccines and nano-diagnostic techniques, for treatment of Chagas disease, majorly focusing on the novel perspectives in combating the disease.
Collapse
|
36
|
Song Y, Sun H, Wu K, Lyu J, Zhang J, Gu F, Ma Y, Shen B, Wang C, Chen X, Xu J, Li W, Liu F, Fu L. sLe x expression in invasive micropapillary breast carcinoma is associated with poor prognosis and can be combined with MUC1/EMA as a supplementary diagnostic indicator. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0422. [PMID: 33893728 PMCID: PMC8185870 DOI: 10.20892/j.issn.2095-3941.2020.0422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Mucin 1 (MUC1/EMA) and sialyl Lewis X (sLex) indicate polarity reversal in invasive micropapillary carcinoma (IMPC). The purpose of this study was to evaluate the expression of MUC1/EMA and sLex and to assess their diagnostic and prognostic value in patients with IMPC. METHODS The expression of sLex and MUC1/EMA in 100 patients with IMPC and a control group of 89 patients with invasive ductal carcinoma not otherwise specified (IDC-NOS) were analyzed with IHC. Fresh tumor tissues were collected from patients with IMPC or IDC-NOS for primary culture and immunofluorescence analysis. RESULTS The rate of nodal metastasis was higher in patients with IMPC than those with IDC-NOS, and IMPC cells tended to express more sLex and MUC1/EMA in the cytomembranes (the stroma-facing surfaces of the micropapillary clusters) than IDC-NOS cells. In IMPC, high cytomembrane expression of sLex, but not MUC1/EMA, indicated poor prognosis. In addition, among the 100 patients with IMPC, 10 patients had sLex+/EMA- expression patterns, and 8 patients had sLex-/EMA+ expression patterns. The primary IMPC cells were suspended, non-adherent tumor cell clusters, whereas the primary IDC cells were adherent tumor cells. Immunofluorescence analysis showed that MUC1/EMA and sLex were co-expressed on the cytomembranes in IMPC cell clusters and in the cytoplasm in IDC-NOS cells. CONCLUSIONS sLex can be used as a prognostic indicator and can be combined with MUC1/EMA as a complementary diagnostic indicator to avoid missed IMPC diagnosis.
Collapse
Affiliation(s)
- Yawen Song
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jianke Lyu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jingyue Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Yongjie Ma
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Beibei Shen
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Chijuan Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Xiaojiao Chen
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jing Xu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| |
Collapse
|
37
|
Filleron A, Tran TA, Hubert A, Letierce A, Churlaud G, Koné-Paut I, Saadoun D, Cezar R, Corbeau P, Rosenzwajg M. Regulatory T cell/Th17 balance in the pathogenesis of pediatric Behçet disease. Rheumatology (Oxford) 2021; 61:422-429. [PMID: 33734346 DOI: 10.1093/rheumatology/keab253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Behçet disease (BD) is a chronic systemic inflammatory disorder of unknown aetiology. The aim of this study was to determine the orientation of T cell subpopulations in pediatric BD and more precisely to look for a regulatory T lymphocytes (Tregs)/Th17 imbalance. METHODS T cell subpopulations were analyzed by flow cytometry in the peripheral blood of pediatric patients with acute (aBD, n = 24), remitting (rBD, n = 12) BD, and in healthy controls (HC, n = 24). Tregs (CD4+CD25hiCD127-/loFoxp3+), activated Tregs (GITR, LAP, CTLA-4, and HLA-DR expression), CD4+ and CD8+ T cells producing interferon-g (Th1 and Tc1) or interleukin (IL)-17 (Th17 and Tc17) under polyclonal (OKT3/IL-2) or antigenic (Streptococcus sanguis KTH-1 peptides and HSP-60) stimulation, were numerated. RESULTS Th17 (1.9 and 5.1 fold) and Tc17 (4.0 and 2.0 fold) frequency under mitogenic stimulation was significantly increased in aBD and rBD patients as compared with HC. Th17 frequency under antigenic stimulation was also higher in patients than in HC. The percentage and number of Tregs and activated Tregs in patients and in HC were similar. However, when Tregs were removed, antigen-driven differentiation into Th1 and Th17 was significantly boosted in BD but not in HC CD4+T cells. CONCLUSION There is a bias toward a Th17 polarization in acute and remitting BD children. Although we did not observe an increase in the number of Tregs in these patients, their Tregs limit CD4+T cell differentiation into Th1 and Th17 cells. Thus, in pediatric BD, Tregs seem to incompletely counterbalance a Th17 orientation of the helper T cell response.
Collapse
Affiliation(s)
- Anne Filleron
- INSERM U 1183, Université Montpellier-Nîmes, France.,Service de pédiatrie, Centre hospitalier universitaire de Nîmes, Université Montpellier-Nîmes, France
| | - Tu Anh Tran
- INSERM U 1183, Université Montpellier-Nîmes, France.,Service de pédiatrie, Centre hospitalier universitaire de Nîmes, Université Montpellier-Nîmes, France
| | - Audrey Hubert
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| | - Alexia Letierce
- Unité de Recherche Clinique Paris Sud. Hôpital Bicêtre. Le Kremlin Bicêtre, France
| | - Guillaume Churlaud
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| | - Isabelle Koné-Paut
- Service de Rhumatologie pédiatrique. Centre Hospitalier Universitaire Bicêtre, université Paris Sud. Le Kremlin Bicêtre, . France
| | - David Saadoun
- Service de Médecine interne. Centre Hospitalier Universitaire La Pitié Salpêtrière. AP-HP. Paris, France
| | - Renaud Cezar
- Laboratoire d'immunologie, Centre hospitalier universitaire de Nîmes, Nîmes, France
| | - Pierre Corbeau
- Laboratoire d'immunologie, Centre hospitalier universitaire de Nîmes, Nîmes, France.,Institut de génétique humaine, CNRS UPR1142, Université de Montpellier, Montpellier
| | - Michelle Rosenzwajg
- Département de Biothérapies (CIC-BTi) et Inflammation-Immunopathologie-Biothérapie (I2B), AP-HP, Hôpital La Pitié-Salpêtrière, Paris, F-75651, France.,Sorbonne Université, INSERM, UMR_S 959, Immunologie-Immunopathologie- Immunothérapie (I3); F-75561, Paris, France
| |
Collapse
|
38
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
39
|
Wiese T, Dennstädt F, Hollmann C, Stonawski S, Wurst C, Fink J, Gorte E, Mandasari P, Domschke K, Hommers L, Vanhove B, Schumacher F, Kleuser B, Seibel J, Rohr J, Buttmann M, Menke A, Schneider-Schaulies J, Beyersdorf N. Inhibition of acid sphingomyelinase increases regulatory T cells in humans. Brain Commun 2021; 3:fcab020. [PMID: 33898989 PMCID: PMC8054263 DOI: 10.1093/braincomms/fcab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3+ regulatory T-cell frequencies among CD4+ T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4+ Foxp3+ regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3+ regulatory T cell among human CD4+ T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4+ Foxp3+ regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA− CD25high effector CD4+ Foxp3+ regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4+ Foxp3+ regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4+ T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4+ T cells in humans both in vivo and in vitro.
Collapse
Affiliation(s)
- Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Fabio Dennstädt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Erika Gorte
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany.,Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg 97080, Germany.,Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg 97080, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,OSE Immunotherapeutics S.A., Nantes, France
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Jan Rohr
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg 79106, Germany
| | - Mathias Buttmann
- Department of Neurology, Caritas Hospital, Bad Mergentheim 97980, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany.,Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg 97080, Germany.,Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg 97080, Germany.,Medical Park Chiemseeblick, Bernau-Felden 83233, Germany
| | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| |
Collapse
|
40
|
Opstelten R, Amsen D. Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy. Immunol Lett 2021; 239:96-112. [PMID: 33676975 DOI: 10.1016/j.imlet.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells are essential for immunological tolerance and can be used to suppress unwanted or excessive immune responses through adoptive cellular therapy. It is increasingly clear that many subsets of Treg cells exist, which have different functions and reside in different locations. Treg cell therapies may benefit from tailoring the selected subset to the tissue that must be protected as well as to characteristics of the immune response that must be suppressed, but little attention is given to this topic in current therapies. Here, we will discuss how three major axes of heterogeneity can be discerned among the Treg cell population, which determine function and lineage fidelity. A first axis relates to the developmental route, as Treg cells can be generated from immature T cells in the thymus or from already mature Tconv cells in the immunological periphery. Heterogeneity furthermore stems from activation history (naïve or effector) and location (lymphoid or peripheral tissues). Each of these axes bestows specific properties on Treg cells, which are further refined by additional processes leading to yet further variation. A critical aspect impacting on Treg cell heterogeneity is TCR specificity, which determines when and where Treg cells are generated as well as where they exhibit their effector functions. We will discuss the implications of this heterogeneity and the role of the TCR for the design of next generation adoptive cellular therapy with Treg cells.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Ocadlikova D, Lecciso M, Broto JM, Scotlandi K, Cavo M, Curti A, Palmerini E. Sunitinib Exerts In Vitro Immunomodulatory Activity on Sarcomas via Dendritic Cells and Synergizes With PD-1 Blockade. Front Immunol 2021; 12:577766. [PMID: 33717062 PMCID: PMC7952316 DOI: 10.3389/fimmu.2021.577766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background High-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma. Methods The human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed. Results Along with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells. Conclusions Taken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.
Collapse
Affiliation(s)
- Darina Ocadlikova
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Mariangela Lecciso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Javier Martin Broto
- Virgen del Rocio University Hospital, Institute of Biomedicine Research (IBIS), Seville, Spain
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Emanuela Palmerini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
42
|
Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, Miyara M, Scottà C. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol 2020; 51:39-55. [PMID: 33275279 DOI: 10.1002/eji.201948131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.
Collapse
Affiliation(s)
- Giulio Giganti
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Yasmin Mohseni
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Daniela Mastronicola
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Nathali Grageda
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Giovanni Am Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristiano Scottà
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| |
Collapse
|
43
|
Wu Y, Luo J, Garden OA. Immunoregulatory Cells in Myasthenia Gravis. Front Neurol 2020; 11:593431. [PMID: 33384654 PMCID: PMC7769807 DOI: 10.3389/fneur.2020.593431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B-cell mediated autoimmune disease caused by antibodies against the nicotinic acetylcholine receptor or other components of the post-synaptic muscle endplate at the neuromuscular junction. These specific antibodies serve as excellent biomarkers for diagnosis, but do not adequately substitute for clinical evaluations to predict disease severity or treatment response. Several immunoregulatory cell populations are implicated in the pathogenesis of MG. The immunophenotype of these populations has been well-characterized in human peripheral blood. CD4+FoxP3+ regulatory T cells (Tregs) are functionally defective in MG, but there is a lack of consensus on whether they show numerical perturbations. Myeloid-derived suppressor cells (MDSCs) have also been explored in the context of MG. Adoptive transfer of CD4+FoxP3+ Tregs or MDSCs suppresses ongoing experimental autoimmune MG (EAMG), a rodent model of MG, suggesting a protective role of both populations in this disease. An imbalance between follicular Tregs and follicular T helper cells is found in untreated MG patients, correlating with disease manifestations. There is an inverse correlation between the frequency of circulating IL-10–producing B cells and clinical status in MG patients. Taken together, both functional and numerical defects in various populations of immunoregulatory cells in EAMG and human MG have been demonstrated, but how they relate to pathogenesis and whether these cells can serve as biomarkers of disease activity in humans deserve further exploration.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
45
|
Wang P, Jiang Z, Wang C, Liu X, Li H, Xu D, Zhong L. Immune Tolerance Induction Using Cell-Based Strategies in Liver Transplantation: Clinical Perspectives. Front Immunol 2020; 11:1723. [PMID: 33013824 PMCID: PMC7461870 DOI: 10.3389/fimmu.2020.01723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation (LT) has become the best chance and a routine practice for patients with end-stage liver disease and small hepatocellular carcinoma. However, life-long immunosuppressive regimens could lead to many post-LT complications, including cancer recurrence, infections, dysmetabolic syndrome, and renal injury. Impeccable management of immunosuppressive regimens is indispensable to ensure the best long-term prognosis for LT recipients. This is challenging for these patients, who probably have a post-LT graft survival of more than 10 or even 20 years. Approximately 20% of patients after LT could develop spontaneous operational tolerance. They could maintain normal graft function and histology without any immunosuppressive regimens. Operational tolerance after transplantation has been an attractive and ultimate goal in transplant immunology. The liver, as an immunoregulatory organ, generates an immune hyporesponsive microenvironment under physiological conditions. In this regard, LT recipients may be ideal candidates for studies focusing on operative tolerance. Cell-based strategies are one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory T cells, regulatory dendritic cells, regulatory macrophages, regulatory B cells, and mesenchymal stromal cells. The safety and the efficacy of many cell products have been evaluated by prospective clinical trials. In this review, we will summarize the latest perspectives on the clinical application of cell-based strategies in LT and will address a number of concerns and future directions regarding these cell products.
Collapse
Affiliation(s)
- Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyin Xu
- Department of Hepatobiliary Surgery, Ruian People's Hospital, Ruian, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Silva M, Martin KC, Mondal N, Sackstein R. sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1920-1932. [PMID: 32868410 PMCID: PMC10636707 DOI: 10.4049/jimmunol.1900679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Sialyl Lewis X (sLeX) regulates T cell trafficking from the vasculature into skin and sites of inflammation, thereby playing a critical role in immunity. In healthy persons, only a small proportion of human blood T cells express sLeX, and their function is not fully defined. Using a combination of biochemical and functional studies, we find that human blood sLeX+CD4+T cells comprise a subpopulation expressing high levels of Th2 and Th17 cytokines, chemokine receptors CCR4 and CCR6, and the transcription factors GATA-3 and RORγT. Additionally, sLeX+CD4+T cells exclusively contain the regulatory T cell population (CD127lowCD25high and FOXP3+) and characteristically display immune-suppressive molecules, including the coinhibitor receptors PD-1 and CTLA-4. Among CD8+T cells, sLeX expression distinguishes a subset displaying low expression of cytotoxic effector molecules, perforin and granzyme β, with reduced degranulation and CD57 expression and, consistently, marginal cytolytic capacity after TCR engagement. Furthermore, sLeX+CD8+T cells present a pattern of features consistent with Th cell-like phenotype, including release of pertinent Tc2 cytokines and elevated expression of CD40L. Together, these findings reveal that sLeX display is associated with unique functional specialization of both CD4+ and CD8+T cells and indicate that circulating T cells that are primed to migrate to lesional sites at onset of inflammation are not poised for cytotoxic function.
Collapse
Affiliation(s)
- Mariana Silva
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Kyle C Martin
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
| | - Nandini Mondal
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Robert Sackstein
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115;
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
47
|
Ohkura N, Yasumizu Y, Kitagawa Y, Tanaka A, Nakamura Y, Motooka D, Nakamura S, Okada Y, Sakaguchi S. Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 2020; 52:1119-1132.e4. [DOI: 10.1016/j.immuni.2020.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
|
48
|
Azevedo RI, Minskaia E, Fernandes-Platzgummer A, Vieira AIS, da Silva CL, Cabral JMS, Lacerda JF. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells 2020; 38:1007-1019. [PMID: 32352186 PMCID: PMC7497276 DOI: 10.1002/stem.3185] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow‐derived MSCs expanded under xenogeneic‐free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4‐ and 6‐fold, respectively) after a 14‐day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg‐like phenotype proliferate. These MSC‐induced Treg‐like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC‐induced Treg‐like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD‐1 is higher in Treg‐like cells than in Tcon, whereas the frequency of PDL‐1 increases in MSCs after coculture. TGF‐β levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg‐like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF‐β and/or PD‐1/PDL‐1 expression. This MSC‐induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.
Collapse
Affiliation(s)
- Rita I Azevedo
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ekaterina Minskaia
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana I S Vieira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Shigeta N, Kumasawa K, Tanaka A, Badger Wing J, Nakamura H, Sakaguchi S, Kimura T. Dynamics of effector and naïve Regulatory T cells throughout pregnancy. J Reprod Immunol 2020; 140:103135. [PMID: 32339846 DOI: 10.1016/j.jri.2020.103135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023]
Abstract
Regulatory T (Treg) cells are a specialized subset of T cells possessing immunosuppressive functions indispensable for the maintenance of self-tolerance and pregnancy. However, how functional Treg cells dynamically change and are engaged in feto-maternal tolerance during human pregnancy is still unclear. Recent studies have shown that functionally distinct and immunosuppressive subsets of Treg cells, i.e., effector Treg (eTreg) and naïve Treg (nTreg) cells, can be delineated by combinations of molecular markers and that their proportions differ in normal and disease states. In this study, we examined how the proportion of eTreg and nTreg cells in peripheral blood changes in the 1st, 2nd, and 3rd trimesters of pregnancy and the postpartum period. During the 2nd trimester the proportion of eTreg cells was reduced while nTreg cells was increased. This pattern was maintained throughout the 3rd trimester of pregnancy. The kinetics of eTreg reduction highly correlated with migration of eTreg cells into feto-maternal interface while stable nTreg proportion paralleled with their expression of the anti-apoptotic molecule Bcl-2 and production of thymic emigrant naïve Treg cells. These results suggest that further studies on divergence of functional Treg proportions will be helpful for predicting instability of pregnancy.
Collapse
Affiliation(s)
- Naoya Shigeta
- Department of obstetrics and gynecology, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Immunology frontier research center, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Kumasawa
- Department of obstetrics and gynecology, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of obstetrics and gynecology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Atsushi Tanaka
- Immunology frontier research center, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - James Badger Wing
- Immunology frontier research center, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitomi Nakamura
- Department of obstetrics and gynecology, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Immunology frontier research center, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Kimura
- Department of obstetrics and gynecology, Osaka university, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Mohr A, Trésallet C, Monot N, Bauvois A, Abiven D, Atif M, Claër L, Malhotra R, Mayer G, Balderas R, Vaarala O, Deniziaut G, Brocheriou I, Buffet C, Leenhardt L, Gorochov G, Miyara M. Tissue Infiltrating LTi-Like Group 3 Innate Lymphoid Cells and T Follicular Helper Cells in Graves' and Hashimoto's Thyroiditis. Front Immunol 2020; 11:601. [PMID: 32328068 PMCID: PMC7160246 DOI: 10.3389/fimmu.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Hashimoto's thyroiditis (HT) and Graves' disease (GD) are autoimmune thyroid disorders (AITDs). These conditions have been associated to abnormalities in circulating regulatory T cells (Tregs). We postulated that immune perturbations could be more pronounced at the thyroid tissue level. Methods: The phenotype of PBMCs and immune cells infiltrating thyroid tissue from 19 patients with HT, 21 patients with GD, and 30 controls has been analyzed by flow cytometry. Results: We report that blood and thyroid Treg cell subsets are similarly represented in all AITDs patients and controls. Increased Lymphoid tissue inducer (LTi)-like ILC3 and CXCR5+ PD-1hi CD4+ T follicular helper cells (Tfh) tissue-infiltrating cells, together with the prevalence of tertiary lymphoid structures (TLS) and germinal centers (GCs) represented a typical immune signature in all HT and 60% of GD patients. In the remaining group of GD patients, the absence of the aforementioned abnormalities was associated with a higher prevalence of ophthalmopathy. Conclusion: Tissue infiltrating Lymphoid Tissue inducer—like group 3 Innate Lymphoid cells and T follicular helper cells are increased in most thyroid autoimmune disease.
Collapse
Affiliation(s)
- Audrey Mohr
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), Paris, France
| | - Christophe Trésallet
- Service de Chirurgie Digestive, Bariatrique et Endocrinienne, Hôpital Avicenne, Bobigny, France.,Université Paris Nord Seine St Denis Paris 13, Laboratoire d'imagerie Biomédicale (LIB) INSERM CNRS U678, CHU Pitié-Salpêtriẽre, Paris, France
| | - Natacha Monot
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), Paris, France
| | - Adeline Bauvois
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), Paris, France
| | - Delphine Abiven
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), Paris, France
| | - Laetitia Claër
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Rajneesh Malhotra
- Translational Science and Experimental Medicine, Early RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gaëll Mayer
- Clinical Development-Respiratory Inhalation and Oral Development, Global Medicines Development, AstraZeneca, Gothenburg, Sweden
| | | | - Outi Vaarala
- Respiratory, Inflammation, and Autoimmunity, Medimmune, Gaithersburg, MD, United States
| | - Gabrielle Deniziaut
- Sorbonne Université, Service d'Anatomie Pathologique, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Brocheriou
- Sorbonne Université, Service d'Anatomie Pathologique, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Camille Buffet
- Sorbonne Université, Unité Thyroïde Tumeurs Endocrines, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurence Leenhardt
- Sorbonne Université, Unité Thyroïde Tumeurs Endocrines, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|