1
|
Fraga OT, Silva LAC, Silva JCF, Bevitori R, Silva FDA, Pereira WA, Reis PAB, Fontes EPB. Expansion and diversification of the Glycine max (Gm) ERD15-like subfamily of the PAM2-like superfamily. PLANTA 2024; 260:108. [PMID: 39333439 DOI: 10.1007/s00425-024-04538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
MAIN CONCLUSION Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Collapse
Affiliation(s)
- Otto T Fraga
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Lucas A C Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - José Cleydson F Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Rosângela Bevitori
- Biotechnology Laboratory, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Fredy D A Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Welison A Pereira
- Department of Biology, Universidade Federal de Lavras, Lavras, 37200-900, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| |
Collapse
|
2
|
Hu Q, Zhang H, Song Y, Song L, Zhu L, Kuang H, Larkin RM. REDUCED CHLOROPLAST COVERAGE proteins are required for plastid proliferation and carotenoid accumulation in tomato. PLANT PHYSIOLOGY 2024; 196:511-534. [PMID: 38748600 DOI: 10.1093/plphys/kiae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/22/2024] [Indexed: 09/03/2024]
Abstract
Increasing the amount of cellular space allocated to plastids will lead to increases in the quality and yield of crop plants. However, mechanisms that allocate cellular space to plastids remain poorly understood. To test whether the tomato (Solanum lycopersicum L.) REDUCED CHLOROPLAST COVERAGE (SlREC) gene products serve as central components of the mechanism that allocates cellular space to plastids and contribute to the quality of tomato fruit, we knocked out the 4-member SlREC gene family. We found that slrec mutants accumulated lower levels of chlorophyll in leaves and fruits, accumulated lower levels of carotenoids in flowers and fruits, allocated less cellular space to plastids in leaf mesophyll and fruit pericarp cells, and developed abnormal plastids in flowers and fruits. Fruits produced by slrec mutants initiated ripening later than wild type and produced abnormal levels of ethylene and abscisic acid (ABA). Metabolome and transcriptome analyses of slrec mutant fruits indicated that the SlREC gene products markedly influence plastid-related gene expression, primary and specialized metabolism, and the response to biotic stress. Our findings and previous work with distinct species indicate that REC proteins help allocate cellular space to plastids in diverse species and cell types and, thus, play a central role in allocating cellular space to plastids. Moreover, the SlREC proteins are required for the high-level accumulation of chlorophyll and carotenoids in diverse organs, including fruits, promote the development of plastids and influence fruit ripening by acting both upstream and downstream of ABA biosynthesis in a complex network.
Collapse
Affiliation(s)
- Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yuman Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lijuan Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lingling Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
3
|
Larkin RM. Recent progress on mechanisms that allocate cellular space to plastids. FUNDAMENTAL RESEARCH 2024; 4:1167-1170. [PMID: 39431144 PMCID: PMC11489472 DOI: 10.1016/j.fmre.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that allocate cellular space to organelles are of fundamental importance to biology but remain poorly understood. A detailed understanding of mechanisms that allocate cellular space to plastids, such as chloroplasts, will lead to high-yielding crops with enhanced nutritional value. The HIGH PIGMENT (HP) genes in tomato contribute to regulated proteolysis and abscisic acid metabolism. The HP1 gene was the first gene reported to influence the amount of cellular space occupied by chloroplasts and chromoplasts almost 20 years ago. Recently, our knowledge of mechanisms that allocate cellular space to plastids was enhanced by new information on the influence of cell type on the amount of cellular space occupied by plastids and the identification of new genes that help to allocate cellular space to plastids. These genes encode proteins with unknown and diverse biochemical functions. Several transcription factors were recently reported to regulate the numbers and sizes of chloroplasts in fleshy fruit. If these transcription factors do not induce compensating effects on cell size, they should affect the amount of cellular space occupied by plastids. Although we can now propose more detailed models for the network that allocates cellular space to plastids, many gaps remain in our knowledge of this network and the genes targeted by this network. Nonetheless, these recent breakthroughs provide optimism for future progress in this field.
Collapse
Affiliation(s)
- Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Ni H, Song R, Liu B, Hu H, Liu J, Wang Q, Wang R, Mao P, Jia S. Temporal dynamics of chloroplast biogenesis revealed initiation of photosynthesis-related gene expression and protein complexes during alfalfa seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108868. [PMID: 38917738 DOI: 10.1016/j.plaphy.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The chloroplast biogenesis occurs in cotyledon during alfalfa seed germination before true leaf formation, and is extremely important for the followed plant development and growth. In this study, we conducted a simulation of alfalfa seed germination in the soil by using tin foil and focused on 10 pivotal time points of chloroplast biogenesis in cotyledons before and after light exposure, which showed significant differences in multispectral images, and covered the whole process of chloroplast biogenesis from proplastid, etioplast to mature chloroplast. We revealed three phases that referred to the programmed involvements of photosynthesis promotion, ultrastructure maturity, transcriptomic expression, and protein complex construction, and observed distinct transcriptional expressions of genes from nuclear and chloroplast genomes. In phase I at dark germination before light exposure, chloroplast-encoded genes showed up-regulated expressions together with the importation of chloroplast proteins. In phase II for the first day after light exposure, nuclear-encoded genes' expressions were initiated at 2 h after light exposure (E2h), followed by swift assembly of chloroplast thylakoid membrane protein complexes, and roaring Fv/Fm and contents of chlorophyll a, chlorophyll b and carotenoid. The initiation at E2h was pronounced by the observation of gradual accumulation of single lamella, and facilitated the formation of granum stacks (thylakoid) at E8h in phase II. In phase III from the second day after light exposure, chloroplast became gradually complete with the fully established photosynthetic capacity. Altogether, our results layed a theoretical foundation for enhancing potential photosynthetic efficiency in alfalfa and related species.
Collapse
Affiliation(s)
- Haoran Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Song
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junze Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qing Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Run Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Coe K, Bostan H, Rolling W, Turner-Hissong S, Macko-Podgórni A, Senalik D, Liu S, Seth R, Curaba J, Mengist MF, Grzebelus D, Van Deynze A, Dawson J, Ellison S, Simon P, Iorizzo M. Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. NATURE PLANTS 2023; 9:1643-1658. [PMID: 37770615 PMCID: PMC10581907 DOI: 10.1038/s41477-023-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Here an improved carrot reference genome and resequencing of 630 carrot accessions were used to investigate carrot domestication and improvement. The study demonstrated that carrot was domesticated during the Early Middle Ages in the region spanning western Asia to central Asia, and orange carrot was selected during the Renaissance period, probably in western Europe. A progressive reduction of genetic diversity accompanied this process. Genes controlling circadian clock/flowering and carotenoid accumulation were under selection during domestication and improvement. Three recessive genes, at the REC, Or and Y2 quantitative trait loci, were essential to select for the high α- and β-carotene orange phenotype. All three genes control high α- and β-carotene accumulation through molecular mechanisms that regulate the interactions between the carotenoid biosynthetic pathway, the photosynthetic system and chloroplast biogenesis. Overall, this study elucidated carrot domestication and breeding history and carotenoid genetics at a molecular level.
Collapse
Affiliation(s)
- Kevin Coe
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - William Rolling
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA
| | | | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Douglas Senalik
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA
| | - Su Liu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Romit Seth
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Julie Dawson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Shelby Ellison
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Philipp Simon
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Zhang Y, Peng Y, Liu J, Yan J, Zhu K, Sun X, Bu X, Wang X, Ahammed GJ, Liu Y, Sun Z, Qi M, Wang F, Li T. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. PLANT PHYSIOLOGY 2023; 192:648-665. [PMID: 36760172 PMCID: PMC10152682 DOI: 10.1093/plphys/kiad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress. ABA deficiency in the notabilis (not) mutant, which carries a mutation in 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (SlNCED1), strongly inhibited the cold tolerance of SlREC2-silenced plants and empty vector control plants and resulted in a similar phenotype. In addition, foliar application of ABA rescued the cold tolerance of SlREC2-silenced plants, which confirms that SlNCED1-mediated ABA accumulation is required for SlREC2-regulated cold tolerance. Strikingly, SlREC2 physically interacted with β-RING CAROTENE HYDROXYLASE 1b (SlBCH1b), a key regulatory enzyme in the xanthophyll cycle. Disruption of SlBCH1b severely impaired photoprotection, ABA accumulation, and CBF-pathway gene expression in tomato plants under cold stress. Taken together, this study reveals that SlREC2 interacts with SlBCH1b to enhance cold tolerance in tomato via integration of SlNCED1-mediated ABA accumulation, photoprotection, and the CBF-pathway, thus providing further genetic knowledge for breeding cold-resistant tomato varieties.
Collapse
Affiliation(s)
- Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinxia Peng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Juan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Kangyou Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang 471023, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
9
|
Yi L, Zhou W, Zhang Y, Chen Z, Wu N, Wang Y, Dai Z. Genetic mapping of a single nuclear locus determines the white flesh color in watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1090009. [PMID: 36824206 PMCID: PMC9941332 DOI: 10.3389/fpls.2023.1090009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Flesh color is an important trait in watermelon (Citrullus lanatus L.). Several flesh color genes have been identified in watermelon; however, the inheritance of and the molecular basis underlying the white flesh trait remain largely unknown. METHODS In this study, segregation populations were constructed by crossing the canary yellow flesh line HSH-F with the white flesh line Sanbai to fine-map the white flesh gene in watermelon. RESULTS Genetic analysis indicated that the white flesh trait is controlled by a single recessive locus, termed Clwf2. Map-based cloning delimited the Clwf2 locus to a 132.3-kb region on chromosome 6. The candidate region contains 13 putative genes, and four of them-Cla97C06G121860, Cla97C06G121880, Cla97C06G121890, and Cla97C06G121900-were significantly downregulated in the white flesh compared to the canary yellow flesh watermelon fruits. The Cla97C06G121890 gene, which encodes a tetratricopeptide repeat protein, showed almost no expression in the white flesh fruit before maturity, whereas it had a very high expression in the canary yellow flesh fruit at 18 days after pollination. Transmission electron microscopy revealed rounded and regularly shaped chromoplasts in both the canary yellow and white flesh fruits. Further quantitative real-time PCR analysis showed that the expression levels of several key plastid division genes and almost the entire carotenoid biosynthesis pathway genes were downregulated in the white flesh compared to the canary yellow flesh fruits. DISCUSSION This study suggests that the proliferation inhibition of chromoplasts and downregulation of the CBP genes block the accumulation of carotenoids in watermelon and lead to white flesh. These findings advance and extend the understanding of the molecular mechanisms underlying white flesh trait formation and carotenoid biosynthesis in watermelon.
Collapse
Affiliation(s)
- Licong Yi
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Zhou
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yi Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, China
| | - Zibiao Chen
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Na Wu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yunqiang Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhaoyi Dai
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
10
|
Luklová M, Novák J, Kopecká R, Kameniarová M, Gibasová V, Brzobohatý B, Černý M. Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome. Int J Mol Sci 2022; 23:14134. [PMID: 36430613 PMCID: PMC9695588 DOI: 10.3390/ijms232214134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
11
|
An G, Qi Y, Zhang W, Gao H, Qian J, Larkin RM, Chen J, Kuang H. LsNRL4 enhances photosynthesis and decreases leaf angles in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1956-1967. [PMID: 35748307 PMCID: PMC9491448 DOI: 10.1111/pbi.13878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most important vegetables worldwide and an ideal plant for producing protein drugs. Both well-functioning chloroplasts that perform robust photosynthesis and small leaf angles that enable dense planting are essential for high yields. In this study, we used an F2 population derived from a cross between a lettuce cultivar with pale-green leaves and large leaf angles to a cultivar with dark-green leaves and small leaf angles to clone LsNRL4, which encodes an NPH3/RPT2-Like (NRL) protein. Unlike other NRL proteins in lettuce, the LsNRL4 lacks the BTB domain. Knockout mutants engineered using CRISPR/Cas9 and transgenic lines overexpressing LsNRL4 verified that LsNRL4 contributes to chloroplast development, photosynthesis and leaf angle. The LsNRL4 gene was not present in the parent with pale-green leaves and enlarged leaf angles. Loss of LsNRL4 results in the enlargement of chloroplasts, decreases in the amount of cellular space allocated to chloroplasts and defects in secondary cell wall biosynthesis in lamina joints. Overexpressing LsNRL4 significantly improved photosynthesis and decreased leaf angles. Indeed, the plant architecture of the overexpressing lines is ideal for dense planting. In summary, we identified a novel NRL gene that enhances photosynthesis and influences plant architecture. Our study provides new approaches for the breeding of lettuce that can be grown in dense planting in the open field or in modern plant factories. LsNRL4 homologues may also be used in other crops to increase photosynthesis and improve plant architecture.
Collapse
Affiliation(s)
- Guanghui An
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Hairong Gao
- Biomass & Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Jinlong Qian
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Neumann M, Xu X, Smaczniak C, Schumacher J, Yan W, Blüthgen N, Greb T, Jönsson H, Traas J, Kaufmann K, Muino JM. A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nat Commun 2022; 13:2838. [PMID: 35595749 PMCID: PMC9122980 DOI: 10.1038/s41467-022-30177-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com. Single-cell transcriptomics allows gene expression heterogeneity to be assessed at cellular resolution but the original location of each cell is unknown. Here the authors combine single nuclei RNA-seq with 3D spatial reconstruction of floral meristems to link gene activities with morphology.
Collapse
Affiliation(s)
- Manuel Neumann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Julia Schumacher
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Wenhao Yan
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364, Lyon, France
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Jose M Muino
- Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| |
Collapse
|
13
|
Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. THE NEW PHYTOLOGIST 2022; 233:2000-2016. [PMID: 34729790 DOI: 10.1111/nph.17839] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/09/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Leonie H Luginbuehl
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Enrique Lopez-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
14
|
Zhang L, Qian J, Han Y, Jia Y, Kuang H, Chen J. Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:182-195. [PMID: 34724596 DOI: 10.1111/tpj.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most important vegetable crops in the world. As a leafy vegetable, the polymorphism of lettuce leaves from dark to pale green is an important trait. However, the genetic and molecular mechanisms underlying such variations remain poorly understood. In this study, one major locus controlling the polymorphism of dark- and pale-green leaves in lettuce was identified using genome-wide association studies (GWAS). This locus was then fine mapped to an interval of 5375 bp on chromosome 4 using a segregating population containing 2480 progeny. Only one gene, homologous to the GLK genes in Arabidopsis and other plants, is present in the candidate region. A complementation test confirmed that the candidate gene, LsGLK, contributes to the variation of dark- and pale-green leaves. Sequence analysis showed that a CACTA transposon of 7434 bp was inserted 10 bp downstream of the stop codon of LsGLK, followed by a duplication of a 1826-bp fragment covering exons 3-6 of the LsGLK gene. The transposon insertion did not change the expression level of the LsGLK gene. However, because of alternative splicing, only 6% of the transcripts produced from the transposon insertion were wild-type transcripts, which led to the production of pale-green leaves. An evolutionary analysis revealed that the insertion of the CACTA transposon occurred in cultivated lettuce and might have been selected in particular cultivars to satisfy the diverse demands of consumers. In this study, we demonstrated that a transposon insertion near a gene may affect its splicing and consequently generate phenotypic variations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jinlong Qian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yuting Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
15
|
Loudya N, Mishra P, Takahagi K, Uehara-Yamaguchi Y, Inoue K, Bogre L, Mochida K, López-Juez E. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol 2021; 22:151. [PMID: 33975629 PMCID: PMC8111775 DOI: 10.1186/s13059-021-02366-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. RESULTS Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. CONCLUSIONS Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Priyanka Mishra
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Kotaro Takahagi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | | | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Laszlo Bogre
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan.
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama, Japan.
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
16
|
Wang H, Li Z, Yuan L, Zhou H, Hou X, Liu T. Cold acclimation can specifically inhibit chlorophyll biosynthesis in young leaves of Pakchoi. BMC PLANT BIOLOGY 2021; 21:172. [PMID: 33838654 PMCID: PMC8035748 DOI: 10.1186/s12870-021-02954-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Leaf color is an important trait in breeding of leafy vegetables. Y-05, a pakchoi (Brassica rapa ssp. chinensis) cultivar, displays yellow inner (YIN) and green outer leaves (GOU) after cold acclimation. However, the mechanism of this special phenotype remains elusive. RESULTS We assumed that the yellow leaf phenotype of Y-05 maybe caused by low chlorophyll content. Pigments measurements and transmission electron microscopy (TEM) analysis showed that the yellow phenotype is closely related with decreased chlorophyll content and undeveloped thylakoids in chloroplast. Transcriptomes and metabolomes sequencing were next performed on YIN and GOU. The transcriptomes data showed that 4887 differentially expressed genes (DEGs) between the YIN and GOU leaves were mostly enriched in the chloroplast- and chlorophyll-related categories, indicating that the chlorophyll biosynthesis is mainly affected during cold acclimation. Together with metabolomes data, the inhibition of chlorophyll biosynthesis is contributed by blocked 5-aminolevulinic acid (ALA) synthesis in yellow inner leaves, which is further verified by complementary and inhibitory experiments of ALA. Furthermore, we found that the blocked ALA is closely associated with increased BrFLU expression, which is indirectly altered by cold acclimation. In BrFLU-silenced pakchoi Y-05, cold-acclimated leaves still showed green phenotype and higher chlorophyll content compared with control, meaning silencing of BrFLU can rescue the leaf yellowing induced by cold acclimation. CONCLUSIONS Our findings suggested that cold acclimation can indirectly promote the expression of BrFLU in inner leaves of Y-05 to block ALA synthesis, resulting in decreased chlorophyll content and leaf yellowing. This study revealed the underlying mechanisms of leaves color change in cold-acclimated Y-05.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, 230036 China
| | - Hefang Zhou
- Huainan Agricultural Science Institute, Huainan, 232001 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
17
|
Ayabe H, Kawai N, Shibamura M, Fukao Y, Fujimoto M, Tsutsumi N, Arimura SI. FMT, a protein that affects mitochondrial distribution, interacts with translation-related proteins in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:327-337. [PMID: 33385240 DOI: 10.1007/s00299-020-02634-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Two translation-related proteins are identified as FMT-interacting proteins. However, FMT, unlike mutants of other CLU genes in fly and human, has no clear impact on the accumulation of mitochondrial proteins. Organelle distribution is critical for effective metabolism and stress response and is controlled by various environmental factors. Clustered mitochondria (CLU) superfamily genes affect mitochondrial distribution and their disruptions cause mitochondria to cluster within a cell in various species including yeast, fly, mammals and Arabidopsis. In Arabidopsis thaliana, Friendly mitochondria (FMT) is a CLU gene that is required for normal mitochondrial distribution, but its molecular function is unclear. Here, we demonstrate that FMT interacts with some translation-related proteins (translation initiation factor eIFiso4G1 and glutamyl-tRNA synthetase OVA9), as well as itself. We also show FMT forms dynamic particles in the cytosol that sometimes move with mitochondria, and their movements are mainly controlled by actin filaments but also by microtubules. Similar results have been reported for animal CLU orthologs. However, an fmt mutant, unlike animal clu mutants, did not show any clear decrease of nuclear-encoded mitochondrial protein levels. This difference may reflect a functional divergence of FMT from other CLU superfamily genes.
Collapse
Affiliation(s)
- Hiroki Ayabe
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan
| | - Narumi Kawai
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Shibamura
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Shiga, Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural & Life Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Sato N, Kihira M, Matsushita R, Kaneko C, Ishii Y, Yin YG, Kawachi N, Teramura H, Kusano H, Shimada H. AtFLL2, a member of the FLO2 gene family, affects the enlargement of leaves at the vegetative stage and facilitates the regulation of carbon metabolism and flow. Biosci Biotechnol Biochem 2020; 84:2466-2475. [PMID: 32897834 DOI: 10.1080/09168451.2020.1812374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Arabidopsis thaliana FLL2, a member of the FLO2 gene family, is expressed specifically in green leaves. The fll2 mutant showed significantly large rosette leaves and reduced the chlorophyll content. The sucrose content was significantly reduced. The glucose content was higher during the vegetative growth stage but decreased during the early reproductive growth stage. The amount of assimilated starch was lower than that in the wild type plant. The expression levels of genes involved in biosynthesis of sucrose and starch were largely altered. These results suggest that, in the fll2 mutant, a small amount of photosynthetic products was used for the biosynthesis of starch, and the products were supplied to promote intracellular growth of the source organs or for transport to the sink organs. These findings suggest that FLL2 is a factor affecting the expression level of genes involved in sugar metabolism, whose mutation caused a change in the assimilated products. Abbreviations : DAS: days after sowing.
Collapse
Affiliation(s)
- Nonoka Sato
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Miho Kihira
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Division of Biological Science, Nara Institute of Science and Technology , Ikoma, Japan
| | - Ryoko Matsushita
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Chihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Yohei Ishii
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| |
Collapse
|
19
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
20
|
Stanley LE, Ding B, Sun W, Mou F, Hill C, Chen S, Yuan YW. A Tetratricopeptide Repeat Protein Regulates Carotenoid Biosynthesis and Chromoplast Development in Monkeyflowers ( Mimulus). THE PLANT CELL 2020; 32:1536-1555. [PMID: 32132132 PMCID: PMC7203930 DOI: 10.1105/tpc.19.00755] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 05/09/2023]
Abstract
Little is known about the factors regulating carotenoid biosynthesis in flowers. Here, we characterized the REDUCED CAROTENOID PIGMENTATION2 (RCP2) locus from two monkeyflower (Mimulus) species, the bumblebee-pollinated species Mimulus lewisii and the hummingbird-pollinated species Mimulus verbenaceus We show that loss-of-function mutations of RCP2 cause drastic down-regulation of the entire carotenoid biosynthetic pathway. The causal gene underlying RCP2 encodes a tetratricopeptide repeat protein that is closely related to the Arabidopsis (Arabidopsis thaliana) REDUCED CHLOROPLAST COVERAGE proteins. RCP2 appears to regulate carotenoid biosynthesis independently of RCP1, a previously identified R2R3-MYB master regulator of carotenoid biosynthesis. We show that RCP2 is necessary and sufficient for chromoplast development and carotenoid accumulation in floral tissues. Simultaneous down-regulation of RCP2 and two closely related paralogs, RCP2-L1 and RCP2-L2, yielded plants with pale leaves deficient in chlorophyll and carotenoids and with reduced chloroplast compartment size. Finally, we demonstrate that M. verbenaceus is just as amenable to chemical mutagenesis and in planta transformation as the more extensively studied M. lewisii, making these two species an excellent platform for comparative developmental genetics studies of closely related species with dramatic phenotypic divergence.
Collapse
Affiliation(s)
- Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengjuan Mou
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Faculty of Forestry, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Connor Hill
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
21
|
Kofsky J, Zhang H, Song BH. Genetic Architecture of Early Vigor Traits in Wild Soybean. Int J Mol Sci 2020; 21:E3105. [PMID: 32354037 PMCID: PMC7247153 DOI: 10.3390/ijms21093105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
A worldwide food shortage has been projected as a result of the current increase in global population and climate change. In order to provide sufficient food to feed more people, we must develop crops that can produce higher yields. Plant early vigor traits, early growth rate (EGR), early plant height (EPH), inter-node length, and node count are important traits that are related to crop yield. Glycine soja, the wild counterpart to cultivated soybean, Glycine max, harbors much higher genetic diversity and can grow in diverse environments. It can also cross easily with cultivated soybean. Thus, it holds a great potential in developing soybean cultivars with beneficial agronomic traits. In this study, we used 225 wild soybean accessions originally from diverse environments across its geographic distribution in East Asia. We quantified the natural variation of several early vigor traits, investigated the relationships among them, and dissected the genetic basis of these traits by applying a Genome-Wide Association Study (GWAS) with genome-wide single nucleotide polymorphism (SNP) data. Our results showed positive correlation between all early vigor traits studied. A total of 12 SNPs significantly associated with EPH were identified with 4 shared with EGR. We also identified two candidate genes, Glyma.07G055800.1 and Glyma.07G055900.1, playing important roles in influencing trait variation in both EGR and EPH in G. soja.
Collapse
Affiliation(s)
| | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.K.); (H.Z.)
| |
Collapse
|
22
|
Gemperline DC, Marshall RS, Lee KH, Zhao Q, Hu W, McLoughlin F, Scalf M, Smith LM, Vierstra RD. Proteomic analysis of affinity-purified 26S proteasomes identifies a suite of assembly chaperones in Arabidopsis. J Biol Chem 2019; 294:17570-17592. [PMID: 31562246 PMCID: PMC6873196 DOI: 10.1074/jbc.ra119.010219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
The 26S proteasome is an essential protease that selectively eliminates dysfunctional and short-lived regulatory proteins in eukaryotes. To define the composition of this proteolytic machine in plants, we tagged either the core protease (CP) or the regulatory particle (RP) sub-complexes in Arabidopsis to enable rapid affinity purification followed by mass spectrometric analysis. Studies on proteasomes enriched from whole seedlings, with or without ATP needed to maintain the holo-proteasome complex, identified all known proteasome subunits but failed to detect isoform preferences, suggesting that Arabidopsis does not construct distinct proteasome sub-types. We also detected a suite of proteasome-interacting proteins, including likely orthologs of the yeast and mammalian chaperones Pba1, Pba2, Pba3, and Pba4 that assist in CP assembly; Ump1 that helps connect CP half-barrels; Nas2, Nas6, and Hsm3 that assist in RP assembly; and Ecm29 that promotes CP-RP association. Proteasomes from seedlings exposed to the proteasome inhibitor MG132 accumulated assembly intermediates, reflecting partially built proteasome sub-complexes associated with assembly chaperones, and the CP capped with the PA200/Blm10 regulator. Genetic analyses of Arabidopsis UMP1 revealed that, unlike in yeast, this chaperone is essential, with mutants lacking the major UMP1a and UMP1b isoforms displaying a strong gametophytic defect. Single ump1 mutants were hypersensitive to conditions that induce proteotoxic, salt and osmotic stress, and also accumulated several proteasome assembly intermediates, consistent with its importance for CP construction. Insights into the chaperones reported here should enable study of the assembly events that generate the 26S holo-proteasome in Arabidopsis from the collection of 64 or more subunits.
Collapse
Affiliation(s)
- David C Gemperline
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard S Marshall
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Kwang-Hee Lee
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Qingzhen Zhao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
23
|
Ren T, Weraduwage SM, Sharkey TD. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1153-1165. [PMID: 30590670 DOI: 10.1093/jxb/ery448] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Leaves are beautifully specialized organs designed to maximize the use of light and CO2 for photosynthesis. Engineering leaf anatomy therefore holds great potential to enhance photosynthetic capacity. Here we review the effect of the dominant leaf anatomical traits on leaf photosynthesis and confirm that a high chloroplast surface area exposed to intercellular airspace per unit leaf area (Sc) is critical for efficient photosynthesis. The possibility of improving Sc through appropriately increasing mesophyll cell density is further analyzed. The potential influences of modifying mesophyll cell morphology on CO2 diffusion, light distribution within the leaf, and other physiological processes are also discussed. Some potential target genes regulating leaf mesophyll cell proliferation and expansion are explored. Indeed, more comprehensive research is needed to understand how manipulating mesophyll cell morphology through editing the potential target genes impacts leaf photosynthetic capacity and related physiological processes. This will pinpoint the targets for engineering leaf anatomy to maximize photosynthetic capacity.
Collapse
Affiliation(s)
- Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Sarathi M Weraduwage
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| |
Collapse
|
24
|
Völz R, Kim SK, Mi J, Rawat AA, Veluchamy A, Mariappan KG, Rayapuram N, Daviere JM, Achard P, Blilou I, Al-Babili S, Benhamed M, Hirt H. INDETERMINATE-DOMAIN 4 (IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PLoS Pathog 2019; 15:e1007499. [PMID: 30677094 PMCID: PMC6345439 DOI: 10.1371/journal.ppat.1007499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD)/ BIRD proteins are a highly conserved plant-specific family of transcription factors which play multiple roles in plant development and physiology. Here, we show that mutation in IDD4/IMPERIAL EAGLE increases resistance to the hemi-biotrophic pathogen Pseudomonas syringae, indicating that IDD4 may act as a repressor of basal immune response and PAMP-triggered immunity. Furthermore, the idd4 mutant exhibits enhanced plant-growth indicating IDD4 as suppressor of growth and development. Transcriptome comparison of idd4 mutants and IDD4ox lines aligned to genome-wide IDD4 DNA-binding studies revealed major target genes related to defense and developmental-biological processes. IDD4 is a phospho-protein that interacts and becomes phosphorylated on two conserved sites by the MAP kinase MPK6. DNA-binding studies of IDD4 after flg22 treatment and with IDD4 phosphosite mutants show enhanced binding affinity to ID1 motif-containing promoters and its function as a transcriptional regulator. In contrast to the IDD4-phospho-dead mutant, the IDD4 phospho-mimicking mutant shows altered susceptibility to PstDC3000, salicylic acid levels and transcriptome reprogramming. In summary, we found that IDD4 regulates various hormonal pathways thereby coordinating growth and development with basal immunity.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anamika A Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Michel Daviere
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d'Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Creating Leaf Cell Suspensions for Characterization of Mesophyll and Bundle Sheath Cellular Features. Methods Mol Biol 2018. [PMID: 29978407 DOI: 10.1007/978-1-4939-7786-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Imaging of mesophyll cell suspensions prepared from Arabidopsis has been pivotal for forming our current understanding of the molecular control of chloroplast division over the past 25 years. In this chapter, we provide a method for the preparation of leaf cell suspensions that improves upon a previous method by optimizing cellular preservation and cell separation. This technique is accessible to all researchers and amenable for use with all plant species. The leaf suspensions can be used for imaging chloroplast features within a cell that are important for photosynthesis such as size, number, and distribution. However, we also provide examples to illustrate how the cells in the suspensions can be easily stained to image other features, for example pit fields where plasmodesmata are located and organelles such as mitochondria, to improve our understanding of traits that are important for photosynthetic physiology.
Collapse
|
26
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Abstract
The availability of more specific dyes for a subset of endomembrane compartments, combined with the development of genetically encoded probes and advanced microscopy technologies, makes live cell imaging an approach that goes beyond the microscopically observation of cell structure. Here we describe the latest improved techniques to investigate protein-protein interaction, protein topology, and protein dynamics.Furthermore, we depict new technical approaches to identify mutants for chloroplast morphology and distribution through the tracking of chlorophyll fluorescence, as well as mutants for chloroplast movement.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
28
|
Chen C, MacCready JS, Ducat DC, Osteryoung KW. The Molecular Machinery of Chloroplast Division. PLANT PHYSIOLOGY 2018; 176:138-151. [PMID: 29079653 PMCID: PMC5761817 DOI: 10.1104/pp.17.01272] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/17/2023]
Abstract
Recent studies advance understanding of the mechanisms, spatial control, and regulation of chloroplast division, but many questions remain.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
29
|
Salesse C, Sharwood R, Sakamoto W, Stern D. The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells. PLANT PHYSIOLOGY 2017; 175:1624-1633. [PMID: 29089394 PMCID: PMC5717744 DOI: 10.1104/pp.17.01346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 05/04/2023]
Abstract
In maize (Zea mays), Bundle Sheath Defective2 (BSD2) plays an essential role in Rubisco biogenesis and is required for correct bundle sheath (BS) cell differentiation. Yet, BSD2 RNA and protein levels are similar in mesophyll (M) and BS chloroplasts, although Rubisco accumulates only in BS chloroplasts. This raises the possibility of additional BSD2 roles in cell development. To test this hypothesis, transgenic lines were created that overexpress and underexpress BSD2 in both BS and M cells, driven by the cell type-specific Rubisco Small Subunit (RBCS) or Phosphoenolpyruvate Carboxylase (PEPC) promoters or the ubiquitin promoter. Genetic crosses showed that each of the transgenes could complement Rubisco deficiency and seedling lethality conferred by the bsd2 mutation. This was unexpected, as RBCS-BSD2 lines lacked BSD2 in M chloroplasts and PEPC-BSD2 lines expressed half the wild-type BSD2 level in BS chloroplasts. We conclude that BSD2 does not play a vital role in M cells and that BS BSD2 is in excess of requirements for Rubisco accumulation. BSD2 levels did affect chloroplast coverage in BS cells. In PEPC-BSD2 lines, chloroplast coverage decreased 30% to 50%, whereas lines with increased BSD2 content exhibited a 25% increase. This suggests that BSD2 has an ancillary role in BS cells related to chloroplast size. Gas exchange showed decreased photosynthetic rates in PEPC-BSD2 lines despite restored Rubisco function, correlating with reduced chloroplast coverage and pointing to CO2 diffusion changes. Conversely, increased chloroplast coverage did not result in increased Rubisco abundance or photosynthetic rates. This suggests another limitation beyond chloroplast volume, most likely Rubisco biogenesis and/or turnover rates.
Collapse
Affiliation(s)
- Coralie Salesse
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - Robert Sharwood
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - David Stern
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Salesse C, Sharwood R, Sakamoto W, Stern D. The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells. PLANT PHYSIOLOGY 2017. [PMID: 29089394 DOI: 10.1104/pp.17.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In maize (Zea mays), Bundle Sheath Defective2 (BSD2) plays an essential role in Rubisco biogenesis and is required for correct bundle sheath (BS) cell differentiation. Yet, BSD2 RNA and protein levels are similar in mesophyll (M) and BS chloroplasts, although Rubisco accumulates only in BS chloroplasts. This raises the possibility of additional BSD2 roles in cell development. To test this hypothesis, transgenic lines were created that overexpress and underexpress BSD2 in both BS and M cells, driven by the cell type-specific Rubisco Small Subunit (RBCS) or Phosphoenolpyruvate Carboxylase (PEPC) promoters or the ubiquitin promoter. Genetic crosses showed that each of the transgenes could complement Rubisco deficiency and seedling lethality conferred by the bsd2 mutation. This was unexpected, as RBCS-BSD2 lines lacked BSD2 in M chloroplasts and PEPC-BSD2 lines expressed half the wild-type BSD2 level in BS chloroplasts. We conclude that BSD2 does not play a vital role in M cells and that BS BSD2 is in excess of requirements for Rubisco accumulation. BSD2 levels did affect chloroplast coverage in BS cells. In PEPC-BSD2 lines, chloroplast coverage decreased 30% to 50%, whereas lines with increased BSD2 content exhibited a 25% increase. This suggests that BSD2 has an ancillary role in BS cells related to chloroplast size. Gas exchange showed decreased photosynthetic rates in PEPC-BSD2 lines despite restored Rubisco function, correlating with reduced chloroplast coverage and pointing to CO2 diffusion changes. Conversely, increased chloroplast coverage did not result in increased Rubisco abundance or photosynthetic rates. This suggests another limitation beyond chloroplast volume, most likely Rubisco biogenesis and/or turnover rates.
Collapse
Affiliation(s)
- Coralie Salesse
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - Robert Sharwood
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - David Stern
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
31
|
Kihira M, Taniguchi K, Kaneko C, Ishii Y, Aoki H, Koyanagi A, Kusano H, Suzui N, Yin YG, Kawachi N, Fujimaki S, Shimada H. Arabidopsis thaliana FLO2 is Involved in Efficiency of Photoassimilate Translocation, Which is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality. PLANT & CELL PHYSIOLOGY 2017; 58:440-450. [PMID: 28158741 DOI: 10.1093/pcp/pcw217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
FLO2, FLOURY ENDOSPERM 2, is highly conserved in higher plants, and rice FLO2 has been predicted to be involved in regulation of accumulation of storage compounds. We analyzed the function of Arabidopsis thaliana FLO2 (AtFLO2) because A. thaliana set structurally different seeds from those of rice. Although the flo2 mutant of A. thaliana showed normal germination, inflorescence and morphogenesis of flowers, peculiar phenotypes on leaves and siliques were observed, suggesting that this gene played important roles during both the vegetative and reproductive stages. The mutant leaves showed a decrease in chloroplast numbers, and increased total biomass with faster growth. When grown in high light intensity conditions, it was observed that aging events were induced. The flo2 mutant showed depressed transportation of photoassimilates into the sink organs. In the reproductive stage, the flo2 mutant had significantly smaller size siliques, causing a reduced yield of seeds. These seeds were structurally weak, and the quality of seeds was significantly lowered, with reduction of accumulation of storage compounds by seeds. A positron-emitting tracer imaging system (PETIS) analysis detected a decreased amount of photoassimilate transport in the flo2 mutant. Therefore, it was presumed that the phenotypes of the flo2 mutant were caused by reduced performance of translocation or transportation of the photoassimilates. Our observation suggests that AtFLO2 is strongly involved in regulation of translocation and transport of assimilates, and contributes greatly to quality control of the various processes involving substance supply or transfer, such as photoassimilation, leaf enlargement, yield of seeds in a silique and accumulation of seed storage compounds.
Collapse
Affiliation(s)
- Miho Kihira
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Kazushi Taniguchi
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Chihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Yohei Ishii
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Hiromi Aoki
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Atsushi Koyanagi
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Ugi, 6110011, Japan
| | - Nobuo Suzui
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, 370-1292 Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, 370-1292 Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, 370-1292 Japan
| | - Shu Fujimaki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, 370-1292 Japan
- Department of Management and Planning, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555 Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585 Japan
| |
Collapse
|
32
|
Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:177-189. [PMID: 28062590 PMCID: PMC5853325 DOI: 10.1093/jxb/erw488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 05/08/2023]
Abstract
Most terrestrial plants use C3 photosynthesis to fix carbon. In multiple plant lineages a modified system known as C4 photosynthesis has evolved. To better understand the molecular patterns associated with induction of C4 photosynthesis, the genus Flaveria that contains C3 and C4 species was used. A base to tip maturation gradient of leaf anatomy was defined, and RNA sequencing was undertaken along this gradient for two C3 and two C4 Flaveria species. Key C4 traits including vein density, mesophyll and bundle sheath cross-sectional area, chloroplast ultrastructure, and abundance of transcripts encoding proteins of C4 photosynthesis were quantified. Candidate genes underlying each of these C4 characteristics were identified. Principal components analysis indicated that leaf maturation and the photosynthetic pathway were responsible for the greatest amount of variation in transcript abundance. Photosynthesis genes were over-represented for a prolonged period in the C4 species. Through comparison with publicly available data sets, we identify a small number of transcriptional regulators that have been up-regulated in diverse C4 species. The analysis identifies similar patterns of expression in independent C4 lineages and so indicates that the complex C4 pathway is associated with parallel as well as convergent evolution.
Collapse
Affiliation(s)
- Britta M C Kümpers
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Richard Smith-Unna
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Chris Boursnell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
33
|
Pedroza-Garcia JA, Domenichini S, Bergounioux C, Benhamed M, Raynaud C. Chloroplasts around the plant cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:107-113. [PMID: 27816816 DOI: 10.1016/j.pbi.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Plastids arose from an endosymbiosis between a host cell and free-living bacteria. One key step during this evolutionary process has been the establishment of coordinated cell and symbiont division to allow the maintenance of organelles during proliferation of the host. However, surprisingly little is known about the underlying mechanisms. In addition, due to their central role in the cell's energetic metabolism and to their sensitivity to various environmental cues such as light or temperature, plastids are ideally fitted to be the source of signals allowing plants to adapt their development according to external conditions. Consistently, there is accumulating evidence that plastid-derived signals can impinge on cell cycle regulation. In this review, we summarize current knowledge of the dialogue between chloroplasts and the nucleus in the context of the cell cycle.
Collapse
Affiliation(s)
- José-Antonio Pedroza-Garcia
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Séverine Domenichini
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
34
|
Larkin RM. Tetrapyrrole Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1586. [PMID: 27807442 PMCID: PMC5069423 DOI: 10.3389/fpls.2016.01586] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.
Collapse
|