1
|
Wei J, Xiao C, Zhang GW, Shen L, Tao HW, Zhang LI. A distributed auditory network mediated by pontine central gray underlies ultra-fast awakening in response to alerting sounds. Curr Biol 2024; 34:4597-4611.e5. [PMID: 39265569 PMCID: PMC11521200 DOI: 10.1016/j.cub.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Sleeping animals can be woken up rapidly by external threat signals, which is an essential defense mechanism for survival. However, neuronal circuits underlying the fast transmission of sensory signals for this process remain unclear. Here, we report in mice that alerting sound can induce rapid awakening within hundreds of milliseconds and that glutamatergic neurons in the pontine central gray (PCG) play an important role in this process. These neurons exhibit higher sensitivity to auditory stimuli in sleep than wakefulness. Suppressing these neurons results in reduced sound-induced awakening and increased sleep in intrinsic sleep/wake cycles, whereas their activation induces ultra-fast awakening from sleep and accelerates awakening from anesthesia. Additionally, the sound-induced awakening can be attributed to the propagation of auditory signals from the PCG to multiple arousal-related regions, including the mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area. Thus, the PCG serves as an essential distribution center to orchestrate a global auditory network to promote rapid awakening.
Collapse
Affiliation(s)
- Jinxing Wei
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cuiyu Xiao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Vidal M, Onderdijk KE, Aguilera AM, Six J, Maes PJ, Fritz TH, Leman M. Cholinergic-related pupil activity reflects level of emotionality during motor performance. Eur J Neurosci 2024; 59:2193-2207. [PMID: 37118877 DOI: 10.1111/ejn.15998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Pupil size covaries with the diffusion rate of the cholinergic and noradrenergic neurons throughout the brain, which are essential to arousal. Recent findings suggest that slow pupil fluctuations during locomotion are an index of sustained activity in cholinergic axons, whereas phasic dilations are related to the activity of noradrenergic axons. Here, we investigated movement induced arousal (i.e., by singing and swaying to music), hypothesising that actively engaging in musical behaviour will provoke stronger emotional engagement in participants and lead to different qualitative patterns of tonic and phasic pupil activity. A challenge in the analysis of pupil data is the turbulent behaviour of pupil diameter due to exogenous ocular activity commonly encountered during motor tasks and the high variability typically found between individuals. To address this, we developed an algorithm that adaptively estimates and removes pupil responses to ocular events, as well as a functional data methodology, derived from Pfaffs' generalised arousal, that provides a new statistical dimension on how pupil data can be interpreted according to putative neuromodulatory signalling. We found that actively engaging in singing enhanced slow cholinergic-related pupil dilations and having the opportunity to move your body while performing amplified the effect of singing on pupil activity. Phasic pupil oscillations during motor execution attenuated in time, which is often interpreted as a measure of sense of agency over movement.
Collapse
Affiliation(s)
- Marc Vidal
- IPEM, Ghent University, Ghent, Belgium
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Ana M Aguilera
- Department of Statistics and Operations Research, Institute of Mathematics, University of Granada, Granada, Spain
| | - Joren Six
- IPEM, Ghent University, Ghent, Belgium
| | | | - Thomas Hans Fritz
- IPEM, Ghent University, Ghent, Belgium
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | |
Collapse
|
3
|
Kaźmierczak M, Nicola SM. The Arousal-motor Hypothesis of Dopamine Function: Evidence that Dopamine Facilitates Reward Seeking in Part by Maintaining Arousal. Neuroscience 2022; 499:64-103. [PMID: 35853563 PMCID: PMC9479757 DOI: 10.1016/j.neuroscience.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Dopamine facilitates approach to reward via its actions on dopamine receptors in the nucleus accumbens. For example, blocking either D1 or D2 dopamine receptors in the accumbens reduces the proportion of reward-predictive cues to which rats respond with cued approach. Recent evidence indicates that accumbens dopamine also promotes wakefulness and arousal, but the relationship between dopamine's roles in arousal and reward seeking remains unexplored. Here, we show that the ability of systemic or intra-accumbens injections of the D1 antagonist SCH23390 to reduce cued approach to reward depends on the animal's state of arousal. Handling the animal, a manipulation known to increase arousal, was sufficient to reverse the behavioral effects of the antagonist. In addition, SCH23390 reduced spontaneous locomotion and increased time spent in sleep postures, both consistent with reduced arousal, but also increased time spent immobile in postures inconsistent with sleep. In contrast, the ability of the D2 antagonist haloperidol to reduce cued approach was not reversible by handling. Haloperidol reduced spontaneous locomotion but did not increase sleep postures, instead increasing immobility in non-sleep postures. We place these results in the context of the extensive literature on dopamine's contributions to behavior, and propose the arousal-motor hypothesis. This novel synthesis, which proposes that two main functions of dopamine are to promote arousal and facilitate motor behavior, accounts both for our findings and many previous behavioral observations that have led to disparate and conflicting conclusions.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA
| | - Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
A Bridge between the Breath and the Brain: Synchronization of Respiration, a Pupillometric Marker of the Locus Coeruleus, and an EEG Marker of Attentional Control State. Brain Sci 2021; 11:brainsci11101324. [PMID: 34679389 PMCID: PMC8534189 DOI: 10.3390/brainsci11101324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Yogic and meditative traditions have long held that the fluctuations of the breath and the mind are intimately related. While respiratory modulation of cortical activity and attentional switching are established, the extent to which electrophysiological markers of attention exhibit synchronization with respiration is unknown. To this end, we examined (1) frontal midline theta-beta ratio (TBR), an indicator of attentional control state known to correlate with mind wandering episodes and functional connectivity of the executive control network; (2) pupil diameter (PD), a known proxy measure of locus coeruleus (LC) noradrenergic activity; and (3) respiration for evidence of phase synchronization and information transfer (multivariate Granger causality) during quiet restful breathing. Our results indicate that both TBR and PD are simultaneously synchronized with the breath, suggesting an underlying oscillation of an attentionally relevant electrophysiological index that is phase-locked to the respiratory cycle which could have the potential to bias the attentional system into switching states. We highlight the LC’s pivotal role as a coupling mechanism between respiration and TBR, and elaborate on its dual functions as both a chemosensitive respiratory nucleus and a pacemaker of the attentional system. We further suggest that an appreciation of the dynamics of this weakly coupled oscillatory system could help deepen our understanding of the traditional claim of a relationship between breathing and attention.
Collapse
|
5
|
Abstract
Infant behavior, like all behavior, is the aggregate product of many nested processes operating and interacting over multiple time scales; the result of a tangle of inter-related causes and effects. Efforts in identifying the mechanisms supporting infant behavior require the development and advancement of new technologies that can accurately and densely capture behavior’s multiple branches. The present study describes an open-source, wireless autonomic vest specifically designed for use in infants 8–24 months of age in order to measure cardiac activity, respiration, and movement. The schematics of the vest, instructions for its construction, and a suite of software designed for its use are made freely available. While the use of such autonomic measures has many applications across the field of developmental psychology, the present article will present evidence for the validity of the vest in three ways: (1) by demonstrating known clinical landmarks of a heartbeat, (2) by demonstrating an infant in a period of sustained attention, a well-documented behavior in the developmental psychology literature, and (3) relating changes in accelerometer output to infant behavior.
Collapse
|
6
|
Rahman N, Bubnys A, Kandel H, Moene OL, Vaughan R, Kow LM, Tabansky I, Pfaff D. Equation representing the dark-entrained transition from inaction to action in male and female mice. Behav Brain Res 2020; 392:112673. [PMID: 32479846 DOI: 10.1016/j.bbr.2020.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The activation of behaviour in a daily rhythm governed by the light cycle is a universal phenomenon among humans, laboratory mammals and other vertebrates. For mice, the active period is during the dark. We have quantified the increase in activity when the lights shut off (Light to Dark, L to D) using a generalized CNS arousal assay with 20 ms resolution, rather than traditional running wheels. Data analysis yielded the rare demonstration of an equation which precisely tracks this behavioural transition and, surprisingly, its reverse during D to L. This behavioural dynamic survives in constant darkness (experiment 2) and is hormone-sensitive (experiment 3). Finally (experiment 4), mice on a light schedule analogous to one which proved troublesome for U.S. Navy sailors, had dysregulated activity bursts which did not conform to the transitions between D and L. These experiments show the lawfulness of a behavioural phase transition and the consequence of deviating from that dynamic pattern. And, in a new way, they bring mathematics to the realm of behavioural neuroscience.
Collapse
Affiliation(s)
- Nadera Rahman
- Laboratory of Neurobiology and Behavior, United States
| | - Adele Bubnys
- Laboratory of Neurobiology and Behavior, United States
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, United States
| | | | - Roger Vaughan
- Dept. of Biostatistics, Rockefeller University, New York, NY, United States
| | - Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, United States
| | - Inna Tabansky
- Laboratory of Neurobiology and Behavior, United States
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, United States.
| |
Collapse
|
7
|
Marmoset Monkey Vocal Communication: Common Developmental Trajectories With Humans and Possible Mechanisms. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2018. [DOI: 10.1002/9781119461746.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, Sekerovick Z. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol 2017; 47:66-85. [PMID: 28757114 DOI: 10.1016/j.yfrne.2017.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/09/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Age-related changes in sleep and circadian regulation occur as early as the middle years of life. Research also suggests that sleep and circadian rhythms are regulated differently between women and men. However, does sleep and circadian rhythms regulation age similarly in men and women? In this review, we present the mechanisms underlying age-related differences in sleep and the current state of knowledge on how they interact with sex. We also address how testosterone, estrogens, and progesterone fluctuations across adulthood interact with sleep and circadian regulation. Finally, we will propose research avenues to unravel the mechanisms underlying sex differences in age-related effects on sleep.
Collapse
Affiliation(s)
- Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada; Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada; Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lauren Drogos
- Departments of Physiology & Pharmacology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Cyr-Cronier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Catherine Lord
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Zoran Sekerovick
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017; 94:1205-1219.e8. [PMID: 28602690 DOI: 10.1016/j.neuron.2017.05.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023]
Abstract
Ventral midbrain dopamine (DA) is unambiguously involved in motivation and behavioral arousal, yet the contributions of other DA populations to these processes are poorly understood. Here, we demonstrate that the dorsal raphe nucleus DA neurons are critical modulators of behavioral arousal and sleep-wake patterning. Using simultaneous fiber photometry and polysomnography, we observed time-delineated dorsal raphe nucleus dopaminergic (DRNDA) activity upon exposure to arousal-evoking salient cues, irrespective of their hedonic valence. We also observed broader fluctuations of DRNDA activity across sleep-wake cycles with highest activity during wakefulness. Both endogenous DRNDA activity and optogenetically driven DRNDA activity were associated with waking from sleep, with DA signal strength predictive of wake duration. Conversely, chemogenetic inhibition opposed wakefulness and promoted NREM sleep, even in the face of salient stimuli. Therefore, the DRNDA population is a critical contributor to wake-promoting pathways and is capable of modulating sleep-wake states according to the outside environment, wherein the perception of salient stimuli prompts vigilance and arousal.
Collapse
Affiliation(s)
- Jounhong Ryan Cho
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay R Bremner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D. Generalized CNS arousal: An elementary force within the vertebrate nervous system. Neurosci Biobehav Rev 2016; 68:167-176. [PMID: 27216213 PMCID: PMC5003634 DOI: 10.1016/j.neubiorev.2016.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023]
Abstract
Why do animals and humans do anything at all? Arousal is the most powerful and essential function of the brain, a continuous function that accounts for the ability of animals and humans to respond to stimuli in the environment by producing muscular responses. Following decades of psychological, neurophysiological and molecular investigations, generalized CNS arousal can now be analyzed using approaches usually applied to physical systems. The concept of "criticality" is a state that illustrates an advantage for arousal systems poised near a phase transition. This property provides speed and sensitivity and facilitates the transition of the system into different brain states, especially as the brain crosses a phase transition from less aroused to more aroused states. In summary, concepts derived from applied mathematics of physical systems will now find their application in this area of neuroscience, the neurobiology of CNS arousal.
Collapse
Affiliation(s)
- D P Calderon
- Laboratory for Neurobiology and Behavior, the Rockefeller University, New York, NY 10065, United States; Department of Anaesthesiology, Weill Cornell Medical College, New York, NY 10021, United States.
| | - M Kilinc
- Laboratory for Neurobiology and Behavior, the Rockefeller University, New York, NY 10065, United States
| | - A Maritan
- Department of Physics, University of Padova, Istituto Nazionale di Fisica Nucleare and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, 35131 Padova, Italy
| | - J R Banavar
- Department of Physics, University of Maryland, College Park, MD 20742, United States
| | - D Pfaff
- Laboratory for Neurobiology and Behavior, the Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
11
|
Borjon JI, Takahashi DY, Cervantes DC, Ghazanfar AA. Arousal dynamics drive vocal production in marmoset monkeys. J Neurophysiol 2016; 116:753-64. [PMID: 27250909 PMCID: PMC6208312 DOI: 10.1152/jn.00136.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Vocal production is the result of interacting cognitive and autonomic processes. Despite claims that changes in one interoceptive state (arousal) govern primate vocalizations, we know very little about how it influences their likelihood and timing. In this study we investigated the role of arousal during naturally occurring vocal production in marmoset monkeys. Throughout each session, naturally occurring contact calls are produced more quickly, and with greater probability, during higher levels of arousal, as measured by heart rate. On average, we observed a steady increase in heart rate 23 s before the production of a call. Following call production, there is a sharp and steep cardiac deceleration lasting ∼8 s. The dynamics of cardiac fluctuations around a vocalization cannot be completely predicted by the animal's respiration or movement. Moreover, the timing of vocal production was tightly correlated to the phase of a 0.1-Hz autonomic nervous system rhythm known as the Mayer wave. Finally, a compilation of the state space of arousal dynamics during vocalization illustrated that perturbations to the resting state space increase the likelihood of a call occurring. Together, these data suggest that arousal dynamics are critical for spontaneous primate vocal production, not only as a robust predictor of the likelihood of vocal onset but also as scaffolding on which behavior can unfold.
Collapse
Affiliation(s)
- Jeremy I Borjon
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Diego C Cervantes
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| |
Collapse
|
12
|
Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016; 30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.
Collapse
Affiliation(s)
- Eric J Horstick
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Thomas Mueller
- b Division of Biology , Kansas State University , Manhattan , KS , USA
| | - Harold A Burgess
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
13
|
Perinatally Influenced Autonomic System Fluctuations Drive Infant Vocal Sequences. Curr Biol 2016; 26:1249-60. [PMID: 27068420 DOI: 10.1016/j.cub.2016.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022]
Abstract
The variable vocal behavior of human infants is the scaffolding upon which speech and social interactions develop. It is important to know what factors drive this developmentally critical behavioral output. Using marmoset monkeys as a model system, we first addressed whether the initial conditions for vocal output and its sequential structure are perinatally influenced. Using dizygotic twins and Markov analyses of their vocal sequences, we found that in the first postnatal week, twins had more similar vocal sequences to each other than to their non-twin siblings. Moreover, both twins and their siblings had more vocal sequence similarity with each other than with non-sibling infants. Using electromyography, we then investigated the physiological basis of vocal sequence structure by measuring respiration and arousal levels (via changes in heart rate). We tested the hypothesis that early-life influences on vocal output are via fluctuations of the autonomic nervous system (ANS) mediated by vocal biomechanics. We found that arousal levels fluctuate at ∼0.1 Hz (the Mayer wave) and that this slow oscillation modulates the amplitude of the faster, ∼1.0 Hz respiratory rhythm. The systematic changes in respiratory amplitude result in the different vocalizations that comprise infant vocal sequences. Among twins, the temporal structure of arousal level changes was similar and therefore indicates why their vocal sequences were similar. Our study shows that vocal sequences are tightly linked to respiratory patterns that are modulated by ANS fluctuations and that the temporal structure of ANS fluctuations is perinatally influenced.
Collapse
|
14
|
Chu X, Ågmo A. The adrenergic α2-receptor, sexual incentive motivation and copulatory behavior in the male rat. Pharmacol Biochem Behav 2016; 144:33-44. [PMID: 26906229 DOI: 10.1016/j.pbb.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
Adrenergic α2 antagonists are known to enhance sexual incentive motivation and modify copulatory behavior while agonists are consistently inhibitory. However, many of the drugs employed in earlier studies were of modest specificity for the α2 receptor, and the importance of the different subtypes of this receptor remains completely unknown. In the present series of experiments we determined the effects on sexual incentive motivation and copulatory behavior of additional, highly specific compounds, as well as of agonists selective for each of the three subtypes of the α2 receptor. Sexual incentive motivation and copulatory behavior were evaluated in male rats in well established procedures. Among the α2 antagonists, RX 821002 reliably enhanced sexual incentive motivation while fluparoxan only had a modest effect. In large doses both drugs reduced copulatory behavior. The agonist S 18616 reduced both incentive motivation and copulation. None of the subtype selective agonists (BRL 44408, ARC 239, JP 1302) had any consistent effect. A peripheral α2 antagonist, L 659,066 was also ineffective. Even though there are some differences between α2 antagonists with regard to their effects on sexual incentive motivation and copulatory behavior it seems safe to conclude that antagonism of the adrenergic α2 receptor enhances motivation without any concomitant stimulation of copulatory behavior. It appears that antagonism of a single receptor subtype is insufficient for having this effect. Perhaps non-selective α2 antagonists could be used for the treatment of male sexual dysfunction.
Collapse
Affiliation(s)
- Xi Chu
- Department of Psychology, University of Tromsø, Norway
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
15
|
Chu X, Gagnidze K, Pfaff D, Ågmo A. Estrogens, androgens and generalized behavioral arousal in gonadectomized female and male C57BL/6 mice. Physiol Behav 2015; 147:255-63. [PMID: 25936820 DOI: 10.1016/j.physbeh.2015.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
General arousal has been operationally defined as an enhanced motor activity and enhanced intensity of response to sensory stimuli. Even though the effects of gonadal hormones on mating behavior have been much studied, their potential effect on generalized arousal, as defined above, has never been evaluated. In the present study we employed a thoroughly validated assay of general arousal to determine the effects of estradiol (E) and testosterone (T) in gonadectomized female and male mice, respectively. The steroids were administered in three different ways: A fast-acting, water soluble preparation given intraperitoneally, an oil solution given subcutaneously, and an oil solution in a subcutaneous Silastic capsule. Motor activity and responses to sensory stimuli were recorded for 24h, 91h, and seven days following hormone administration, respectively. All measures of arousal varied according to the day/night cycle. The water soluble steroid preparation had no reliable effect. When the same doses of estradiol and testosterone were administered subcutaneously in an oil vehicle no effect of either treatment on arousal was observed. The subcutaneously implanted capsule containing estradiol or testosterone had a delayed effect on motor activity in females (four to seven days) but no effect in males. The long time required by the gonadal hormones for affecting arousal would be consistent with, but does not prove, a genomic action. The limited effects of E and T in our arousal assay suggest to us that the strongest actions of these hormones on arousal occur in the context of sequences of responses to sexually relevant stimuli.
Collapse
Affiliation(s)
- Xi Chu
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway.
| | - Khatuna Gagnidze
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
16
|
McDonnell A, McCreadie M, Mills R, Deveau R, Anker R, Hayden J. The role of physiological arousal in the management of challenging behaviours in individuals with autistic spectrum disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 36C:311-322. [PMID: 25462491 DOI: 10.1016/j.ridd.2014.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 05/26/2023]
Abstract
Challenging behaviours restrict opportunities and choices for people with autistic spectrum disorders (ASD) and frequently lead to inappropriate and costly service interventions. Managing challenging behaviours of people with autism is an important area of research. This paper examines some of the evidence for the role of physiological arousal influencing these behaviours. Evidence from the emerging literature about sensory differences is examined. It is proposed that sensory reactivity is associated with hyperarousal; catatonic type behaviours are associated with low levels of reactivity (hypoarousal). A low arousal approach is proposed as a generalised strategy to managing challenging behaviours with ASD. The use of non-contingent reinforcement and antecedent control strategies are recommended for use with challenging behaviours which have a sensory component. Examples are provided to illustrate the approach. The implications of arousal and the use of physical interventions are discussed. It is proposed that arousal is a construct which has significant heuristic value for researchers and practitioners.
Collapse
Affiliation(s)
| | | | - Richard Mills
- Research Autism, UK and Bond University, Gold Coast Australia
| | - Roy Deveau
- Studio3, Alcester, UK and Tizard Centre, University of Kent, UK.
| | | | | |
Collapse
|
17
|
Bastian B, Jetten J, Hornsey MJ. Gustatory pleasure and pain. The offset of acute physical pain enhances responsiveness to taste. Appetite 2014; 72:150-5. [PMID: 24416797 DOI: 10.1016/j.appet.2013.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The idea that pain may serve to produce pleasurable states has been noted by theorists and, more recently, substantiated by empirical findings. We explored the possibility that, beyond producing positive hedonic states, the offset of pain may serve to enhance the capacity for gustatory pleasure. Across three studies we examined whether pain offset may enhance responsiveness to taste. In Study 1 participants enjoyed chocolate more after the experience of pain compared to completing a similar but non-painful task. In Study 2, pain offset increased the perceived intensity of a range of tastes, both pleasant and unpleasant, indicating that the effects of pain offset are not limited to the processing of positive hedonic stimuli. In Study 3, pain offset increased sensitivity to different flavors. The findings suggest that the offset of acute pain increases awareness of, and therefore sensitivity to, gustatory input, thereby enhancing the capacity for gustatory pleasure.
Collapse
|
18
|
Hildebrandt T, Langenbucher JW, Flores A, Harty S, Berlin HA, Berlin H. The influence of age of onset and acute anabolic steroid exposure on cognitive performance, impulsivity, and aggression in men. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2014; 28:1096-104. [PMID: 24841181 DOI: 10.1037/a0036482] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The name of author Heather Berlin omitted a middle initial in the byline and author note and should appear as Heather A. Berlin.] A growing translational literature suggests that adolescent exposure to anabolic-androgenic steroids (AASs) leads to increased aggression and impulsivity. However, little is known about the cognitive effects of AASs among AAS users or the differences between adolescent- and adult-onset users. This study provides a test of the effects of acute naturalistic AAS use and age of onset (adolescent vs. adult) on measures of inhibitory control, planning and attention, and decision making. Seventy-one active adult male AAS users completed self-report measures of impulsivity and aggression, and a subsample (11 adolescent onset vs. 11 adult onset) matched on current age were administered 4 computerized tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) (Cambridge Cognition, 2002) and the Iowa Gambling Task (Stanton, Liening, & Schultheiss, 2011). Multiple regression analyses and a series of 2 (adolescent vs. adult) × 2 (on-cycle vs. off-cycle) analyses of variance (ANOVAs) were used to examine the differential effects of age of onset and acute drug use on cognition and behavior. Regression analyses revealed larger on-cycle effects for adolescent users than adult users. Subsample analyses indicated that on-cycle users performed less well on cognitive measures of inhibitory control and attention, but not on tests of planning or decision making. Adolescent onset was associated with greater impulsivity and more acute sensitivity to AAS effects on attention. These preliminary findings suggest the possibility that acute AAS use is associated with some differences in inhibitory control and impulsivity and to a lesser degree, aggression. These effects may be more potent for those initiating AAS use in adolescence.
Collapse
|
19
|
Dworatzek E, Mahmoodzadeh S, Schubert C, Westphal C, Leber J, Kusch A, Kararigas G, Fliegner D, Moulin M, Ventura-Clapier R, Gustafsson JA, Davidson MM, Dragun D, Regitz-Zagrosek V. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc Res 2014; 102:418-28. [DOI: 10.1093/cvr/cvu065] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
20
|
Woods IG, Schoppik D, Shi VJ, Zimmerman S, Coleman HA, Greenwood J, Soucy ER, Schier AF. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J Neurosci 2014; 34:3142-60. [PMID: 24573274 PMCID: PMC3935080 DOI: 10.1523/jneurosci.3529-13.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/01/2014] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal.
Collapse
Affiliation(s)
- Ian G. Woods
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
- Department of Molecular and Cellular Biology and
| | | | | | | | - Haley A. Coleman
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology and
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
21
|
Michelagnoli G, Zamidei L, Consales G. Organ failure and central nervous system. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Abstract
During waking behavior, animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states, and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However, there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. After a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context.
Collapse
|
23
|
Estrous behavior in dairy cows: identification of underlying mechanisms and gene functions. Animal 2012; 4:446-53. [PMID: 22443949 DOI: 10.1017/s1751731109991169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Selection in dairy cattle for a higher milk yield has coincided with declined fertility. One of the factors is reduced expression of estrous behavior. Changes in systems that regulate the estrous behavior could be manifested by altered gene expression. This literature review describes the current knowledge on mechanisms and genes involved in the regulation of estrous behavior. The endocrinological regulation of the estrous cycle in dairy cows is well described. Estradiol (E2) is assumed to be the key regulator that synchronizes endocrine and behavioral events. Other pivotal hormones are, for example, progesterone, gonadotropin releasing hormone and insulin-like growth factor-1. Interactions between the latter and E2 may play a role in the unfavorable effects of milk yield-related metabolic stress on fertility in high milk-producing dairy cows. However, a clear understanding of how endocrine mechanisms are tied to estrous behavior in cows is only starting to emerge. Recent studies on gene expression and signaling pathways in rodents and other animals contribute to our understanding of genes and mechanisms involved in estrous behavior. Studies in rodents, for example, show that estrogen-induced gene expression in specific brain areas such as the hypothalamus play an important role. Through these estrogen-induced gene expressions, E2 alters the functioning of neuronal networks that underlie estrous behavior, by affecting dendritic connections between cells, receptor populations and neurotransmitter releases. To improve the understanding of complex biological networks, like estrus regulation, and to deal with the increasing amount of genomic information that becomes available, mathematical models can be helpful. Systems biology combines physiological and genomic data with mathematical modeling. Possible applications of systems biology approaches in the field of female fertility and estrous behavior are discussed.
Collapse
|
24
|
siRNA silencing of estrogen receptor-α expression specifically in medial preoptic area neurons abolishes maternal care in female mice. Proc Natl Acad Sci U S A 2012; 109:16324-9. [PMID: 22988120 DOI: 10.1073/pnas.1214094109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The medial preoptic area has been shown to be intricately involved in many behaviors, including locomotion, sexual behavior, maternal care, and aggression. The gene encoding estrogen receptor-α (ERα) protein is expressed in preoptic area neurons, and a very dense immunoreactive field of ERα is found in the preoptic region. ERα knockout animals show deficits in maternal care and sexual behavior and fail to exhibit increases in these behaviors in response to systemic estradiol treatment. In the present study, we used viral-vector mediated RNA interference to silence ERα expression specifically in the preoptic area of female mice and measured a variety of behaviors, including social and sexual aggression, maternal care, and arousal activity. Suppression of ERα in the preoptic area almost completely abolished maternal care, significantly increasing the latency to pup retrieval and significantly reducing the time the moms spent nursing and licking the pups. Strikingly, maternal aggression toward a male intruder was not different between control and preoptic ERα-silenced mice, demonstrating the remarkably specific role of ERα in these neurons. Reduction of ERα expression in preoptic neurons significantly decreased sexual behavior in female mice and increased aggression toward both sexual partners and male intruders in a seminatural environment. Estrogen-dependent increases in arousal, measured by home cage activity, were not mediated by ERα expression in the preoptic neurons we targeted, as ERα-suppressed mice had increases similar to control mice. Thus, we have established that a specific gene in a specific group of neurons is required for a crucially important natural behavior.
Collapse
|
25
|
Abstract
Typically one expects that the intervals between consecutive occurrences of a particular behavior will have a characteristic time scale around which most observations are centered. Surprisingly, the timing of many diverse behaviors from human communication to animal foraging form complex self-similar temporal patterns reproduced on multiple time scales. We present a general framework for understanding how such scale invariance may arise in nonequilibrium systems, including those that regulate mammalian behaviors. We then demonstrate that the predictions of this framework are in agreement with detailed analysis of spontaneous mouse behavior observed in a simple unchanging environment. Neural systems operate on a broad range of time scales, from milliseconds to hours. We analytically show that such a separation between time scales could lead to scale-invariant dynamics without any fine tuning of parameters or other model-specific constraints. Our analyses reveal that the specifics of the distribution of resources or competition among several tasks are not essential for the expression of scale-free dynamics. Rather, we show that scale invariance observed in the dynamics of behavior can arise from the dynamics intrinsic to the brain.
Collapse
|
26
|
Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 2012; 35:468-76. [PMID: 22626543 DOI: 10.1016/j.tins.2012.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/12/2023]
Abstract
The existence of a primitive CNS function involved in the activation of all vertebrate behaviors, generalized arousal (GA), has been proposed. Here, we provide an overview of the neuroanatomical, neurophysiological and molecular properties of reticular neurons within the nucleus gigantocellularis (NGC) of the mammalian medulla, and propose that the properties of these neurons equip them to contribute powerfully to GA. We also explore the hypothesis that these neurons may have evolved from the Mauthner cell in the medulla of teleost fish, although NGC neurons have a wider range of action far beyond the specific escape network served by Mauthner cells. Understanding the neuronal circuits that control and regulate GA is central to understanding how motivated behaviors such as hunger, thirst and sexual behaviors arise.
Collapse
|
27
|
Goldfine AM, Schiff ND. Consciousness: its neurobiology and the major classes of impairment. Neurol Clin 2011; 29:723-37. [PMID: 22032656 DOI: 10.1016/j.ncl.2011.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human consciousness requires brainstem, basal forebrain, and diencephalic areas to support generalized arousal, and functioning thalamocortical networks to respond to environmental and internal stimuli. Disconnection of these interconnected systems, typically from cardiac arrest and traumatic brain injury, can result in disorders of consciousness. Brain injuries can also result in loss of motor output out of proportion to consciousness, resulting in misdiagnoses. The authors review pathology and imaging studies and derive mechanistic models for each of these conditions. Such models may guide the development of target-based treatment algorithms to enhance recovery of consciousness in many of these patients.
Collapse
Affiliation(s)
- Andrew M Goldfine
- Department of Neurology and Neuroscience, Weill Cornell Medical College, LC 803, 1300 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
28
|
Quinkert AW, Vimal V, Weil ZM, Reeke GN, Schiff ND, Banavar JR, Pfaff DW. Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15617-23. [PMID: 21555568 PMCID: PMC3176607 DOI: 10.1073/pnas.1101894108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA.
Collapse
Affiliation(s)
- Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior and Laboratory of Biological Modelling, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Schober J, Weil Z, Pfaff D. How generalized CNS arousal strengthens sexual arousal (and vice versa). Horm Behav 2011; 59:689-95. [PMID: 20950622 DOI: 10.1016/j.yhbeh.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 09/23/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022]
Abstract
Heightened states of generalized CNS arousal are proposed here to facilitate sexual arousal in both males and females. Genetic, pharmacologic and biophysical mechanisms by which this happens are reviewed. Moreover, stimulation of the genital epithelia, as triggers of sex behavior, is hypothesized to lead to a greater generalized arousal in a manner that intensifies sexual motivation. Finally, launched from histochemical studies intended to characterize cells in the genital epithelium, a surprising idea is proposed that links density of innervation with the efficiency of wound healing and with the capacity of that epithelium to stimulate generalized CNS arousal. Thus, bidirectional arousal-related mechanisms that foster sexual behaviors are envisioned as follows: from specific to generalized (as with genital stimulation) and from generalized to specific.
Collapse
Affiliation(s)
- Justine Schober
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | | | | |
Collapse
|
30
|
Harding SM, Velotta JP. Comparing the relative amount of testosterone required to restore sexual arousal, motivation, and performance in male rats. Horm Behav 2011; 59:666-73. [PMID: 20920505 DOI: 10.1016/j.yhbeh.2010.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
It is well established that male rat reproductive behaviors including sexual arousal, motivation, and performance are dependent on circulating levels of testosterone (T). The present study was designed to (1) compare the relative amount of T required to restore these different aspects of behavior in castrated rats, and (2) create an animal model for clinical populations with sexual impairments. Twenty-nine male Long-Evans rats were tested before and after castration for sexual performance (copulation), motivation (partner preference), and arousal (50 kHz ultrasonic vocalizations; measured together with scent marking). Sexual arousal was also inferred from copulation data. Rats were then assigned to one of four groups, and T was re-introduced via Silastic capsule implants varying in length and content: No T (empty capsules), Low T (2mm capsules), Medium T (5mm capsules), or High T (two 10mm capsules). The highest dose was intended to restore physiological levels. Results indicate that High T is required for 50 kHz vocalizations, while Medium T was sufficient for the restoration of copulation, partner preference, and scent marking. These data suggest that sexual arousal may be most sensitive to reductions in testosterone. The role of T levels in measures of generalized and specific (sexual) arousal is discussed in the context of other reproductive behaviors. Furthermore, because the Low T group showed impairments across all behaviors during post-implant tests, we propose that these animals may provide a good animal model for studying clinical conditions marked by reduced motivation and arousal, including Hypoactive Sexual Desire Disorder.
Collapse
Affiliation(s)
- Shannon M Harding
- Psychology Department, Fairfield University, 1073 North Benson Rd., Fairfield, CT 06824, USA.
| | | |
Collapse
|
31
|
Griskova-Bulanova I, Ruksenas O, Dapsys K, Maciulis V, Arnfred SMH. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs). Clin Neurophysiol 2011; 122:1541-8. [PMID: 21377412 DOI: 10.1016/j.clinph.2011.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 02/02/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level. METHODS 20 Hz and 40 Hz click trains were used to elicit ASSRs. Experiment 1 consisted of two runs of closed eyes and two runs of open eyes. Experiment 2 consisted of six tasks: counting 20 Hz and 40 Hz stimuli, sitting with closed and open eyes, reading an article, and performing a search task. Phase locking factor, evoked amplitude and total intensity were decomposed by non-negative multi-way factorization. RESULTS The total intensity of 40 Hz ASSR was enhanced during closed eyes condition in comparison to the open eyes condition. The evoked amplitude and phase locking factor of 40 Hz ASSR were attenuated during distraction, while there were no differences between attention to stimulation and no task. 20 Hz ASSR and 20 Hz ASSR-related 40 Hz activity were not modulated by the tasks. CONCLUSIONS The phase-locked measures of 40 Hz ASSR are attenuated when attention to the stimulation is low, i.e. the subject is effortfully focused on the competitive "distraction" task performance. Lower arousal level increases the total intensity of 40 Hz ASSRs. SIGNIFICANCE Improvements of the practical use of ASSRs are suggested: a careful monitoring for arousal fluctuations during ASSR recordings should be performed; when ASSRs are applied to investigate the ability to generate high frequency cortical activity a "distraction" task is not favorable.
Collapse
Affiliation(s)
- Inga Griskova-Bulanova
- Department of Electrophysiological Treatment and Investigation Methods, Vilnius Republican Psychiatric Hospital, Vilnius, Lithuania.
| | | | | | | | | |
Collapse
|
32
|
Walf AA, Paris JJ, Rhodes ME, Simpkins JW, Frye CA. Divergent mechanisms for trophic actions of estrogens in the brain and peripheral tissues. Brain Res 2010; 1379:119-36. [PMID: 21130078 DOI: 10.1016/j.brainres.2010.11.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023]
Abstract
17β-estradiol (E(2)) can enhance reproductive, cognitive, and affective functions; however, the mechanisms by which E(2) has these effects need to be better understood. Pleiotrophic effects of E(2) can occur via traditional and novel actions at various forms of estrogen receptors (ERs). In the central nervous system, trophic effects of E(2) may be related to beneficial effects of hormone replacement therapy (HRT). However, in peripheral reproductive tissues, E(2)'s capacity to evoke growth can increase risk of cancers. This review focuses on investigations aimed at elucidating divergent mechanisms of steroids to promote trophic effects in the brain, independent of effects on peripheral reproductive tissues. First, actions of estrogens via ERα or ERβ for peripheral growth (carcinogen-induced tumors, uterine growth) and hippocampus-dependent behaviors (affect, cognition) are described. Second, factors that influence these effects of estrogens are described (e.g. experience, timing/critical windows, non-ER mechanisms). Third, effects of estrogens at ERβ related to actions of progestogens, such as 5α-pregnan-3α-ol-20-one (3α,5α-THP) are described. In summary, effects of E(2) may occur via multiple mechanisms, which may underlie favorable effects in the brain with minimal peripheral trophic effects.
Collapse
Affiliation(s)
- Alicia A Walf
- Life Sciences Research, University at Albany, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
33
|
Boehringer A, Schwabe L, Schachinger H. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men. Stress 2010; 13:444-53. [PMID: 20666640 DOI: 10.3109/10253891003725256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.
Collapse
Affiliation(s)
- Andreas Boehringer
- Department of Clinical Physiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany.
| | | | | |
Collapse
|
34
|
Reproductive behaviors: new developments in concepts and in molecular mechanisms progress in brain research, Luciano Martini, editor, January 19, 2010. PROGRESS IN BRAIN RESEARCH 2010. [PMID: 20478431 DOI: 10.1016/s0079-6123(08)81003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
New developments in the analysis of mechanisms for reproductive behaviors are reviewed. Conceptually, the concept of generalized arousal (GA) of the central nervous system (CNS) is considered. Breeding for high and low GA, we show an impact of GA on sexual arousal of male mice, and also find that the structure of GA in the CNS of males and females is not the same. Further, we propose, theoretically, that among epithelial tissues in humans, there are correlations among their innervation densities and their ability to trigger arousal. In new technical developments, we analyze transcriptional effects of estrogens in the hypothalamic neurons that regulate lordosis behavior. The rapid effect of estradiol to increase acetylation of histones in ventromedial hypothalamic neurons could be tied into transcriptional activation, but the effect of estradiol to increase methylation of histone 3, lysine 9 (H3K9) is puzzling. This work seeks to discover the coactivator dynamics underlying transcriptional effects of estrogens on sex behavior.
Collapse
|
35
|
Shelley DN, Choleris E, Kavaliers M, Pfaff DW. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal. Soc Cogn Affect Neurosci 2010; 1:260-70. [PMID: 18985112 DOI: 10.1093/scan/nsl032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 09/17/2006] [Indexed: 11/14/2022] Open
Abstract
The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles.
Collapse
Affiliation(s)
- Deborah N Shelley
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
36
|
Hildebrandt T, Alfano L, Tricamo M, Pfaff DW. Conceptualizing the role of estrogens and serotonin in the development and maintenance of bulimia nervosa. Clin Psychol Rev 2010; 30:655-68. [PMID: 20554102 DOI: 10.1016/j.cpr.2010.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/24/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Serotonergic dysregulation is thought to underlie much of the pathology in bulimia nervosa (BN). The purpose of this review is to expand the serotonergic model by incorporating specific and nonspecific contributions of estrogens to the development and maintenance of bulimic pathology in order to guide research from molecular genetics to novel therapeutics for BN. Special emphasis is given to the organizing theory of general brain arousal which allows for integration of specific and nonspecific effects of these systems on behavioral endpoints such as binge eating or purging as well as arousal states such as fear, novelty seeking, or sex. Regulation of the serotonergic system by estrogens is explored, and genetic, epigenetic, and environmental estrogen effects on bulimic pathology and risk factors are discussed. Genetic and neuroscientific research support this two-system conceptualization of BN with both contributions to the developmental and maintenance of the disorder. Implications of an estrogenic-serotonergic model of BN are discussed as well as guidelines and suggestions for future research and novel therapeutic targets.
Collapse
Affiliation(s)
- Tom Hildebrandt
- Eating and Weight Disorders Program, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
37
|
Jing J, Gillette R, Weiss KR. Evolving concepts of arousal: insights from simple model systems. Rev Neurosci 2010; 20:405-27. [PMID: 20397622 DOI: 10.1515/revneuro.2009.20.5-6.405] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arousal states strongly influence behavioral decisions. In general, arousal promotes activity and enhances responsiveness to sensory stimuli. Earlier work has emphasized general, or nonspecific, effects of arousal on multiple classes of behaviors. However, contemporary work indicates that arousal has quite specific effects on behavior. Here we review studies of arousal-related circuitry in molluscan model systems. Neural substrates for both general and specific effects of arousal have been identified. Based on the scope of their actions, we can distinguish two major classes of arousal elements: localized versus general. Actions of localized arousal elements are often limited to one class of behavior, and may thereby mediate specific effects of arousal. In contrast, general arousal elements may influence multiple classes of behaviors, and mediate both specific and nonspecific effects of arousal. One common way in which general arousal elements influence multiple behaviors is by acting on localized arousal elements of distinct networks. Often, effects on distinct networks have different time courses that may facilitate formation of specific behavioral sequences. This review highlights prominent roles of serotonergic systems in arousal that are conserved in gastropod molluscs despite extreme diversification of body forms, diet and ecological niches. The studies also indicate that the serotonergic elements can act as either localized or general arousal elements. We discuss the implications of these findings across animals.
Collapse
Affiliation(s)
- Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
38
|
Tetel MJ, Pfaff DW. Contributions of estrogen receptor-α and estrogen receptor-ß to the regulation of behavior. Biochim Biophys Acta Gen Subj 2010; 1800:1084-9. [PMID: 20097268 DOI: 10.1016/j.bbagen.2010.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 01/02/2023]
Abstract
Studies of the mechanisms by which estrogens influence brain function and behavior have advanced from the explication of individual hormone receptors, neural circuitry and individual gene expression. Now, we can report patterns of estrogen receptor subtype contributions to patterns of behavior. Moreover, new work demonstrates important contributions of nuclear receptor coactivator expression in the central nervous system. In this paper, our current state of knowledge is reviewed.
Collapse
Affiliation(s)
- Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | |
Collapse
|
39
|
Abstract
Although there is an extensive amount known about specific sensory and motor functions of the vertebrate brain, less is understood about the regulation of global brain states. We have recently proposed that a function termed generalized arousal (Ag) serves as the most elemental driving force in the nervous system, responsible for the initial activation of all behavioral responses. An animal with increased generalized CNS arousal is characterized by greater motor activity, increased responsivity to sensory stimuli, and greater emotional lability. Implicit in this theory was the prediction that increases in generalized arousal would augment specific motivated behaviors that depend on arousal. Here, we address the idea directly by testing two lines of mice bred for high or low levels of generalized arousal and assessing their responses in tests of specific forms of behavioral arousal, sex and anxiety/exploration. We report that animals selected for differential generalized arousal exhibit marked increases in sensory, motor, and emotional reactivity in our arousal assay. Furthermore, male mice selected for high levels of generalized arousal were excitable and showed more incomplete mounts before the first intromission (IN), but having achieved that IN, they exhibited far fewer IN before ejaculating, as well as ejaculating much sooner after the first IN, thus indicating a high level of sexual arousal. Additionally, high-arousal animals of both sexes exhibited greater levels of anxiety-like behaviors and reduced exploratory behavior in the elevated plus maze and light-dark box tasks. Taken together, these data illustrate the impact of Ag on motivated behaviors.
Collapse
|
40
|
Jensen EV, Jacobson HI, Walf AA, Frye CA. Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiol Behav 2009; 99:151-62. [PMID: 19737574 DOI: 10.1016/j.physbeh.2009.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/29/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
In the 50 years since the initial reports of a cognate estrogen receptor (ER), much has been learned about the diverse effects and mechanisms of estrogens, such as 17beta-estradiol (E(2)). This expert narrative review briefly summarizes perspectives and/or recent work of the authors, who have been addressing different aspects of estrogen action, but take a common approach of using alternative considerations to gain insight into mechanisms with clinical relevance, and inform future studies, regarding estrogen action. Their "Top Ten" favorite alternatives that are discussed herein are as follows. 1 - E(2) has actions by binding to a receptor that do not require its enzymatic conversion. 2 - Using a different strategy for antibody binding could make the estrogen receptor (ER) more discernible. 3 - Blocking ERs, rather than E(2) production, may be a useful strategy for breast cancer therapy. 4 - Secretion of alpha-fetoprotein (AFP), rather than only levels of E(2) and/or progesterone, may influence breast cancer risk. 5 - A peptide derived from the active site of AFP can produce the same benefits of the entire endogenous protein in endocrine cancers. 6 - Differential distribution of ER subtypes in the body and brain may underlie specific effects of estrogens. 7 - ERbeta may be sufficient for the trophic effects of estrogen in the brain, and ERalpha may be the primary target of trophic effects in the body. 8 - ERbeta may play a role in the trophic effects of androgens, and may also be relevant in the periphery. 9 - Downstream of E(2)'s effects at ERbeta, there may be consequences for biosynthesis of progestogens and/or androgens. 10 - Changes in histones and/or other factors, which may be downstream of ERbeta, potentially underlie the divergent effects of E(2) in the brain and peripheral tissues.
Collapse
Affiliation(s)
- Elwood V Jensen
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
41
|
Helena C, Gustafsson JÅ, Korach K, Pfaff D, Anselmo-Franci JA, Ogawa S. Effects of estrogen receptor alpha and beta gene deletion on estrogenic induction of progesterone receptors in the locus coeruleus in female mice. Endocrine 2009; 36:169-77. [PMID: 19551522 PMCID: PMC4775101 DOI: 10.1007/s12020-009-9207-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/14/2009] [Accepted: 05/15/2009] [Indexed: 11/30/2022]
Abstract
Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ERalpha (alphaERKO) or ERbeta (betaERKO) knockout mice, and their wild-type (alphaWT and betaWT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ERbeta was more abundant. Estradiol benzoate (EB) decreased ERalpha-positive cells in WT and betaERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ERbeta expression. ERbeta deletion increased ERalpha while ERalpha deletion did not alter ERbeta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alphaERKO animals but to a lesser extent, suggesting that ERalpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in betaERKO mice were similar to those in the alphaERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alphaER, betaER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.
Collapse
Affiliation(s)
- Cleyde Helena
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge S-141 86, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 7720, USA
| | - Kenneth Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Janete A. Anselmo-Franci
- Laboratory of Neuroendocrinology of Reproduction, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafés/n, Ribeirão Preto, SP 14040-904, Brazil
- Department of Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sonoko Ogawa
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
- Laboratory of Behavioral Neuroendocrinology, Kansei, Behavioral and Brain Sciences Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
42
|
Carter ME, Schaich Borg J, de Lecea L. The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 2009; 9:39-45. [PMID: 19185540 DOI: 10.1016/j.coph.2008.12.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
Abstract
The hypocretins (abbreviated 'Hcrts' - also called 'orexins') are two neuropeptides secreted exclusively by a small population of neurons in the lateral hypothalamus. These peptides bind to two receptors located throughout the brain in nuclei associated with diverse cognitive and physiological functions. Initially, the brain Hcrt system was found to have a major role in the regulation of sleep/wake transitions. More recent studies indicate Hcrts may play a role in other physiological functions, including food intake, addiction, and stress. Taken together, these studies suggest a general role for Hcrts in mediating arousal, especially when an organism must respond to unexpected stressors and challenges in the environment.
Collapse
Affiliation(s)
- Matthew E Carter
- Department of Psychiatry and Behavioral Sciences, Stanford University, 701B Welch Road, Palo Alto, CA 94304, United States
| | | | | |
Collapse
|
43
|
Arrieta-Cruz I, Pfaff DW. Definition of Arousal and Mechanistic Studies in Intact and Brain-Damaged Mice. Ann N Y Acad Sci 2009; 1157:24-31. [DOI: 10.1111/j.1749-6632.2008.04118.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Fischer T, Langner R, Birbaumer N, Brocke B. Arousal and attention: self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort. J Cogn Neurosci 2008; 20:1443-53. [PMID: 18303981 DOI: 10.1162/jocn.2008.20101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cortical excitability is assumed to depend on cortical arousal level in an inverted U-shaped fashion: Largest (optimal) excitability is usually associated with medium levels of arousal. It has been proposed that under conditions of low arousal, compensatory effort is exerted if attentional demands persist. People tend to avoid this resource-consuming top-down compensation by creating or selecting environmental conditions that provide sufficient bottom-up stimulation. These assumptions were tested in an attention-demanding dual-task situation: We combined a simulated driving task to induce three different arousal levels by varying stimulation (high vs. low vs. self-chosen) with a visual two-stimulus paradigm to assess cortical excitability by the initial contingent negative variation (iCNV) component of the event-related potential. Additionally, we analyzed the oscillatory power of the beta2 band of the electroencephalogram at anterior frontal sites, which is assumed to reflect low-arousal compensatory activity. The iCNV amplitude differed in all three arousal conditions as expected: It was highest in the condition of self-chosen stimulation and lowest in the low- and high-arousal conditions. Additionally, in the low-arousal condition, anterior frontal beta2 power was found to be significantly higher than in the other two conditions and correlated positively with subjective strain. This pattern of results suggests that subjects select medium levels of stimulation which optimize cortical excitability under attentional demand conditions. The elevated fronto-central beta2 power in the low-stimulation condition may indicate the involvement of the anterior cingulate cortex in compensating for reduced arousal by top-down stimulation of the noradrenergic arousal system.
Collapse
Affiliation(s)
- Thomas Fischer
- Dresden University of Technology, Institute of Psychology II, Dresden, Germany.
| | | | | | | |
Collapse
|
45
|
Ogawa S, Choleris E, Pfaff D. Genetic influences on aggressive behaviors and arousability in animals. Ann N Y Acad Sci 2008; 1036:257-66. [PMID: 15817742 DOI: 10.1196/annals.1330.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a variety of species, strain differences in aggressive behaviors strongly indicate genetic influences. In people, as suggested, for example, by the work of Kagan, Rothbart, Cloninger, and their collaborators, long-lasting differences in temperament argue for genetic as well as environmental effects. After well-controlled experimentation in mice, we have learned five lessons about gene/behavior causal relations bearing on sociosexual and aggressive behaviors. The effect of a given gene on a given behavior depends upon: (1) exactly when and where that gene is expressed in the brain; (2) the gender of the animal in which it is expressed; (3) the age of the animal; (4) the nature of the opponent; and (5) the form of aggression (e.g., testosterone-facilitated aggression vs. maternal aggression). Moreover, in female mice, better social recognition is correlated with lower levels of aggression. We have gathered evidence for a four-gene micronet involving estrogen receptors alpha and beta, oxytocin, and the oxytocin receptor as expressed in the hypothalamus and amygdala. Normal performance of this micronet is required for social recognition and thus for control over aggression. Underlying certain genetic influences on sociosexual behaviors and aggression may be alterations in generalized brain arousal.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
46
|
Pfaff D, Ribeiro A, Matthews J, Kow LM. Concepts and Mechanisms of Generalized Central Nervous System Arousal. Ann N Y Acad Sci 2008; 1129:11-25. [DOI: 10.1196/annals.1417.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Devidze N, Zhang Q, Zhou J, Lee A, Pataky S, Kow LM, Pfaff D. Presynaptic actions of opioid receptor agonists in ventromedial hypothalamic neurons in estrogen- and oil-treated female mice. Neuroscience 2008; 152:942-9. [DOI: 10.1016/j.neuroscience.2008.01.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/18/2008] [Accepted: 02/04/2008] [Indexed: 12/14/2022]
|
48
|
Scher MS. Ontogeny of EEG-sleep from neonatal through infancy periods. Sleep Med 2007; 9:615-36. [PMID: 18024172 DOI: 10.1016/j.sleep.2007.08.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
Serial neonatal and infant electroencephalographic (EEG)-polysomnographic studies document the ontogeny of cerebral and noncerebral physiologic behaviors based on visual inspection or computer analyses. EEG patterns and their relationship to other physiologic signals serve as templates for normal brain organization and maturation, subserving multiple interconnected neuronal networks. Interpretation of serial EEG-sleep patterns also helps track the continuity of brain functions from intrauterine to extrauterine time periods. Recognition of the ontogeny of behavioral and electrographic patterns provides insight into the developmental neurophysiological expression of neural plasticity. Sleep ontogenesis from neonatal and infancy periods documents expected patterns of postnatal brain maturation, which allows for alterations from genetically programmed neuronal processes under stressful and/or pathological conditions. Automated analyses of cerebral and noncerebral signals provide time- and frequency-dependent computational phenotypes of brain organization and maturation in healthy or diseased states. Research pertaining to the developmental origins of health and disease can use these computational phenotypes to design longitudinal studies for the assessment of gene-environment interactions. Computational strategies may ultimately improve our diagnostic skills to identify special-needs children and to track the neurorehabilitative care of the high-risk fetus, neonate, and infant.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Laboratory for Computational Neuroscience, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106-6090, USA.
| |
Collapse
|
49
|
Abstract
In the centennial year of the birth of Hans Selye, this review compares his classical concepts of stress with a modern approach to mechanisms of CNS arousal. Relations between the two concepts are described. Neuroanatomical, neurophysiological, and functional genomic mechanisms underlying CNS arousal are briefly reviewed. Controls over stress responses and arousal are compared to particular concepts of control system engineering. Understanding these two systems is of crucial importance because their dysregulation is associated with large numbers of disease states.
Collapse
Affiliation(s)
- Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
50
|
Shelley DN, Dwyer E, Johnson C, Wittkowski KM, Pfaff DW. Interactions between estrogen effects and hunger effects in ovariectomized female mice. I. Measures of arousal. Horm Behav 2007; 52:546-53. [PMID: 17868674 PMCID: PMC2080855 DOI: 10.1016/j.yhbeh.2007.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 12/01/2022]
Abstract
UNLABELLED Measures of arousal were used to study effects of estradiol and food restriction, and their potential interactions, in ovariectomized female C57Bl/6 mice. It was hypothesized based on a proposed theoretical equation [Pfaff, D.W., 2006a. Brain Arousal and Information Theory. Harvard University Press, Cambridge, Pfaff, D.W., (Ed.), 2006b. Knobil and Neill's The Physiology of Reproduction, 3rd edition. Elsevier/Academic Press, San Diego] that each treatment would increase arousal-related behaviors and that their combination would further increase arousal behavior. Following baseline testing, animals (n=28) were divided into 3 groups that, in different experimental phases, received either estradiol (in subcutaneous capsules), restricted diet (a liquid diet providing 60% of daily caloric requirements) or a combination of those two. An automated arousal behavior monitoring system was used to measure home cage voluntary motor activity and sensory responsiveness, these being components of a new operational definition of 'generalized arousal'. KEY FINDINGS (1) During the light, all treatments reduced voluntary activity. (2) In the dark, estrogens increased, while estrogens in combination with restricted diet decreased, horizontal activity. (3) In the dark, restricted diet alone had little effect on voluntary activity, but reduced it when combined with estrogen treatment. (4) All treatments reduced responses to the olfactory stimulus. The dependence of results on time of day was unexpected. Further, different patterns of results for the three treatments suggest that estrogens and food restriction did not have equivalent or additive effects on arousal. While contrary to the main prediction, these findings are discussed in terms of the animals' adaptive preparations for reproduction [Schneider, J.E., 2006. Metabolic and hormonal control of the desire for food and sex: implications for obesity and eating disorders. Horm. Behav. 50, 562-571].
Collapse
Affiliation(s)
- Deborah N Shelley
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, Box 275, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|