1
|
Cioccolo S, Barritt JD, Pollock N, Hall Z, Babuta J, Sridhar P, Just A, Morgner N, Dafforn T, Gould I, Byrne B. The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs. RSC Chem Biol 2024; 5:901-913. [PMID: 39211474 PMCID: PMC11352979 DOI: 10.1039/d4cb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.
Collapse
Affiliation(s)
- Sara Cioccolo
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| | - Naomi Pollock
- School of Biosciences, University of Birmingham Birmingham UK
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London London UK
| | - Julia Babuta
- Division of Systems Medicine, Imperial College London London UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham Birmingham UK
| | - Alicia Just
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Tim Dafforn
- School of Biosciences, University of Birmingham Birmingham UK
| | - Ian Gould
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| |
Collapse
|
2
|
Almenabawy N, Hung C, Sosova I, Mercimek-Andrews S. Importance of the biochemical investigations for the functional characterization of a NPC1 variant identified by exome sequencing. Am J Med Genet A 2024; 194:e63595. [PMID: 38549495 DOI: 10.1002/ajmg.a.63595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 07/05/2024]
Abstract
Niemann-Pick disease type C (NPC) is one of the lysosomal storage disorders. It is caused by biallelic pathogenic variants in NPC1 or NPC2, which results in a defective cholesterol trafficking inside the late endosome and lysosome. There is a high clinical variability in the age of presentation and the phenotype of this disorder making the diagnosis challenging. Here, we report a patient with an infantile onset global developmental delay, microcephaly and dysmorphic features, homozygous for c.3560C>T (p.A1187V) variant in NPC1. His plasma oxysterol levels were normal on two occasions. His lyso-sphingomyelin-509 (lyso-SM 509) and urinary bile acid levels were normal. Based on the phenotype and biochemical features, the diagnosis of NPC was excluded in this patient. We emphasize the importance of functional characterization in the classification of novel variants to prevent a misdiagnosis. Matching the phenotype and biochemical evidence with the molecular genomic tests is crucial for the confirmation of genetic diagnoses.
Collapse
Affiliation(s)
- Nihal Almenabawy
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Iveta Sosova
- Alberta Newborn Screening and Biochemical Genetics Laboratory, University of Alberta Hospital, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Lopergolo D, Bianchi S, Gallus GN, Locci S, Pucci B, Leoni V, Gasparini D, Tardelli E, Chincarini A, Sestini S, Santorelli FM, Zetterberg H, De Stefano N, Mignarri A. Familial Alzheimer's disease associated with heterozygous NPC1 mutation. J Med Genet 2024; 61:332-339. [PMID: 37989569 DOI: 10.1136/jmg-2023-109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3β,5α,6β-triol. DISCUSSION We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Barbara Pucci
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Neurofisiologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Daniele Gasparini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Tardelli
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, PO - S. Stefano, Azienda U.S.L. Toscana Centro, Prato, italy
| | | | - Stelvio Sestini
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, PO - S. Stefano, Azienda U.S.L. Toscana Centro, Prato, italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Calambrone, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, People's Republic of China
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Andrea Mignarri
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
4
|
Liang H, Zhan X, Wang Y, Maegawa GHB, Zhang H. Development and validation of a new genotype-phenotype correlation for Niemann-Pick disease type C1. J Inherit Metab Dis 2024; 47:317-326. [PMID: 38131230 DOI: 10.1002/jimd.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Hundreds of NPC1 variants cause highly heterogeneous phenotypes. This study aims to explore the genotype-phenotype correlation of NPC1, especially for missense variants. In a well-characterized cohort, phenotypes are graded into three clinical forms: mild, intermediate, and severe. Missense residue structural location was stratified into three categories: surface, partially, and fully buried. The association of phenotypes with the topography of the amino acid substitution in the protein structure was investigated in our cohort and validated in two reported cohorts. One hundred six unrelated NPC1 patients were enrolled. A significant correlation of genotype-phenotype was found in 81 classified individuals with two or one (the second was null variant) missense variant (p < 0.001): of 25 patients with at least one missense variant of surface (group A), 19 (76%) mild, six (24%) intermediate, and none severe; of 31 cases with at least one missense variant of partially buried without surface variants (group B), 11 (35%) mild, 16 (52%) intermediate, and four (13%) severe; of the remaining 25 patients with two or one buried missense variants (group C), eight (32%) mild, nine (36%) intermediate, and eight (32%) severe. Additionally, 7-ketocholesterol, the biomarker, was lower in group A than in group B (p = 0.024) and group C (p = 0.029). A model was proposed that accurately predicted phenotypes of 72 of 90 (80%), 73 of85 (86%), and 64 of 69 (93%) patients in our cohort, Italian, and UK cohort, respectively. This study proposed a novel genotype-phenotype correlation in NPC1, linking the underlying molecular pathophysiology with clinical phenotype and aiding genetic counseling and evaluation in clinical practice.
Collapse
Affiliation(s)
- Huan Liang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H B Maegawa
- Department of Pediatrics, Metabolism and Genetics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, USA
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ansell TB, Song W, Coupland CE, Carrique L, Corey RA, Duncan AL, Cassidy CK, Geurts MMG, Rasmussen T, Ward AB, Siebold C, Stansfeld PJ, Sansom MSP. LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat Commun 2023; 14:7774. [PMID: 38012131 PMCID: PMC10682427 DOI: 10.1038/s41467-023-43392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Aarhus University, Lagelsandsgade 140, 8000, Aarhus C, Denmark
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Maxwell M G Geurts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tim Rasmussen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Yaseen NR, Barnes CLK, Sun L, Takeda A, Rice JP. Genetics of vegetarianism: A genome-wide association study. PLoS One 2023; 18:e0291305. [PMID: 37792698 PMCID: PMC10550162 DOI: 10.1371/journal.pone.0291305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
A substantial body of evidence points to the heritability of dietary preferences. While vegetarianism has been practiced for millennia in various societies, its practitioners remain a small minority of people worldwide, and the role of genetics in choosing a vegetarian diet is not well understood. Dietary choices involve an interplay between the physiologic effects of dietary items, their metabolism, and taste perception, all of which are strongly influenced by genetics. In this study, we used a genome-wide association study (GWAS) to identify loci associated with strict vegetarianism in UK Biobank participants. Comparing 5,324 strict vegetarians to 329,455 controls, we identified one SNP on chromosome 18 that is associated with vegetarianism at the genome-wide significant level (rs72884519, β = -0.11, P = 4.997 x 10-8), and an additional 201 suggestively significant variants. Four genes are associated with rs72884519: TMEM241, RIOK3, NPC1, and RMC1. Using the Functional Mapping and Annotation (FUMA) platform and the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool, we identified 34 genes with a possible role in vegetarianism, 3 of which are GWAS-significant based on gene-level analysis: RIOK3, RMC1, and NPC1. Several of the genes associated with vegetarianism, including TMEM241, NPC1, and RMC1, have important functions in lipid metabolism and brain function, raising the possibility that differences in lipid metabolism and their effects on the brain may underlie the ability to subsist on a vegetarian diet. These results support a role for genetics in choosing a vegetarian diet and open the door to future studies aimed at further elucidating the physiologic pathways involved in vegetarianism.
Collapse
Affiliation(s)
- Nabeel R. Yaseen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | | | - Lingwei Sun
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Akiko Takeda
- Retired, St. Louis, MO, United States of America
| | - John P. Rice
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
7
|
Kannan P, Nanda Kumar MP, Rathinam N, Kumar DT, Ramasamy M. Elucidating the mutational impact in causing Niemann-Pick disease type C: an in silico approach. J Biomol Struct Dyn 2023; 41:8561-8570. [PMID: 36264126 DOI: 10.1080/07391102.2022.2135598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Niemann-Pick disease type C is a rare autosomal recessive of lysosomal storage disorder characterized by impaired intracellular lipid transport and has a tendency to accumulate the fatty acids and glycosphingolipids in a variety of neurovisceral tissues. This work includes computational tools to deciphere the mutational effect in NPC protein. The study initiated with the collection of 471 missense mutations from various databases, which were then analyzed using computational tools. The mutations (G549V, F703S, Q775P and L1244P) were said to be disease associated, altering the biophysical properties, in highly conserved regions and reduces the stability using several in silico methods and were subjected to molecular docking analysis. To analyze the ligand (Itraconazole: a small molecule of antifungal drug class, which is known to inhibit cholesterol export from lysosomes) activity Molecular docking study was performed for all the complex proteins. The average binding affinity was taken and found to be -10.76 kcal/mol (native) and -11.06 kcal/mol (Q775P was located in transmembrane region IV which impacts the sterol-sensing domain of the NPC1 protein and associated with a severe infantile neurological form). Finally, molecular dynamic simulation was performed in duplicate and trajectories were built for the backbone of the RMSD, RMSF, the number of intramolecular hydrogen bonds, the radius of gyration and the SSE percent for both the complex proteins. This work contributes to understand the effectiveness and may provide an insight on the stability of the drug with the complex variant structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Kannan
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Madhana Priya Nanda Kumar
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Nithya Rathinam
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - D Thirumal Kumar
- Faculty of Allied Health Science, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MS. The energetics and ion coupling of cholesterol transport through Patched1. SCIENCE ADVANCES 2023; 9:eadh1609. [PMID: 37611095 PMCID: PMC10446486 DOI: 10.1126/sciadv.adh1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between cation binding sites, transmembrane motions, and PTCH1 activity. Using complementary simulations of Dispatched1, we find that transition between "inward-open" and solvent "occluded" states is accompanied by Na+-induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion coupling stoichiometries of PTCH1 transport mechanisms, whereby one to three Na+ or two to three K+ couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol BS8 1TD, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
9
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
10
|
Quelle-Regaldie A, Gandoy-Fieiras N, Rodríguez-Villamayor P, Maceiras S, Losada AP, Folgueira M, Cabezas-Sáinz P, Barreiro-Iglesias A, Villar-López M, Quiroga-Berdeal MI, Sánchez L, Sobrido MJ. Severe neurometabolic phenotype in npc1−/− zebrafish with a C-terminal mutation. Front Mol Neurosci 2023; 16:1078634. [PMID: 37008782 PMCID: PMC10063808 DOI: 10.3389/fnmol.2023.1078634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Nerea Gandoy-Fieiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodríguez-Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Maceiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Villar-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga-Berdeal
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- *Correspondence: Laura Sánchez,
| | - María Jesús Sobrido
- Hospital Teresa Herrera, Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- María Jesús Sobrido,
| |
Collapse
|
11
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
12
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The Energetics and Ion Coupling of Cholesterol Transport Through Patched1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528445. [PMID: 36824746 PMCID: PMC9949057 DOI: 10.1101/2023.02.14.528445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol -1 for cholesterol export. In simulations we identify cation binding sites within the PTCH1 transmembrane domain (TMD) which may provide the energetic impetus for cholesterol transport. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between transmembrane motions and PTCH1 activity. Using complementary simulations of Dispatched1 (DISP1) we find that transition between 'inward-open' and solvent 'occluded' states is accompanied by Na + induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion-coupling stoichiometries of PTCH1 transport mechanisms, whereby 1-3 Na + or 2-3 K + couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
13
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
14
|
Yoon HJ, Jeong J, Kim G, Lee HH, Jang S. The point mutation of the cholesterol trafficking membrane protein NPC1 may affect its proper function in more than a single step: Molecular dynamics simulation study. Comput Biol Chem 2022; 99:107725. [PMID: 35850050 DOI: 10.1016/j.compbiolchem.2022.107725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein is one of the key players of cholesterol trafficking from the lysosome and its function is closely coupled with the Niemann-Pick type C2 (NPC2) protein. The dysfunction of one of these proteins can cause problems in the overall cholesterol homeostasis and leads to a disease, which is called the Niemann-Pick type C (NPC) disease. The parts of the cholesterol transport mechanism by NPC1 have begun to recently emerge, especially after the full-length NPC1 structure was determined from a cryo-EM study. However, many details about the overall cholesterol trafficking process by NPC1 still remain to be elucidated. Notably, the NPC1 could act as one of the target proteins for the control of infectious diseases due to its role as the virus entry point into the cells as well as for cancer treatment due to the inhibitory effect of tumor growth. A mutation of NPC1 can leads to dysfunctions and understanding this process can provide valuable insights into the mechanisms of the corresponding protein and the therapeutic strategies against the disease that are caused by the mutation. It has been found that patients with the point mutation R518W (or R518Q) on the NPC1 show the accumulation of lipids within the lysosomal lumen. In this paper, we report how the corresponding mutation can affect the cholesterol transport process by NPC1 in the different stages by the molecular dynamics simulations. The simulation results show that the point mutation intervenes at least at two different steps during the cholesterol transport by NPC1 and NPC2 in combination, which includes the association step of NPC2 with the NPC1, the cholesterol transfer step from NPC2 to NPC1-NTD while the cholesterol passage within the NPC1 via a channel is relatively unaffected by R518W mutation. The detailed analysis of the resulting simulation trajectories reveals the important structural features that are essential for the proper functioning of the NPC1 for the cholesterol transport, and it shows how the overall structure, which thereby includes the function, can be affected by a single mutation.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea
| | - Jian Jeong
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea
| | - Guun Kim
- Department of Physics, Sejong University, Seoul, the Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea.
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea.
| |
Collapse
|
15
|
Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors. Proc Natl Acad Sci U S A 2022; 119:e2200158119. [PMID: 35733257 PMCID: PMC9245660 DOI: 10.1073/pnas.2200158119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial preproteins synthesized in cytosol are imported into mitochondria by a multisubunit translocase of the outer membrane (TOM) complex. Functioned as the receptor, the TOM complex components, Tom 20, Tom22, and Tom70, recognize the presequence and further guide the protein translocation. Their deficiency has been linked with neurodegenerative diseases and cardiac pathology. Although several structures of the TOM complex have been reported by cryoelectron microscopy (cryo-EM), how Tom22 and Tom20 function as TOM receptors remains elusive. Here we determined the structure of TOM core complex at 2.53 Å and captured the structure of the TOM complex containing Tom22 and Tom20 cytosolic domains at 3.74 Å. Structural analysis indicates that Tom20 and Tom22 share a similar three-helix bundle structural feature in the cytosolic domain. Further structure-guided biochemical analysis reveals that the Tom22 cytosolic domain is responsible for binding to the presequence, and the helix H1 is critical for this binding. Altogether, our results provide insights into the functional mechanism of the TOM complex recognizing and transferring preproteins across the mitochondrial membrane.
Collapse
|
16
|
Assessment of FDA-Approved Drugs as a Therapeutic Approach for Niemann-Pick Disease Type C1 Using Patient-Specific iPSC-Based Model Systems. Cells 2022; 11:cells11030319. [PMID: 35159129 PMCID: PMC8834315 DOI: 10.3390/cells11030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Niemann-Pick type C1 (NP-C1) is a fatal, progressive neurodegenerative disease caused by mutations in the NPC1 gene. Mutations of NPC1 can result in a misfolded protein that is subsequently marked for proteasomal degradation. Such loss-of-function mutations lead to cholesterol accumulation in late endosomes and lysosomes. Pharmacological chaperones (PCs) are described to protect misfolded proteins from proteasomal degradation and are being discussed as a treatment strategy for NP-C1. Here, we used a combinatorial approach of high-throughput in silico screening of FDA-approved drugs and in vitro biochemical assays to identify potential PCs. The effects of the hit compounds identified by molecular docking were compared in vitro with 25-hydroxycholesterol (25-HC), which is known to act as a PC for NP-C1. We analyzed cholesterol accumulation, NPC1 protein content, and lysosomal localization in patient-specific fibroblasts, as well as in neural differentiated and hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSCs). One compound, namely abiraterone acetate, showed comparable results to 25-HC and restored NPC1 protein level, corrected the intracellular localization of NPC1, and consequently decreased cholesterol accumulation in NPC1-mutated fibroblasts and iPSC-derived neural differentiated and hepatocyte-like cells. The discovered PC altered not only the pathophysiological phenotype of cells carrying the I1061T mutation— known to be responsive to treatment with PCs—but an effect was also observed in cells carrying other NPC1 missense mutations. Therefore, we hypothesize that the PCs studied here may serve as an effective treatment strategy for a large group of NP-C1 patients.
Collapse
|
17
|
Wu X, Yan R, Cao P, Qian H, Yan N. Structural advances in sterol-sensing domain-containing proteins. Trends Biochem Sci 2022; 47:289-300. [PMID: 35012873 DOI: 10.1016/j.tibs.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.
Collapse
Affiliation(s)
- Xuelan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Cao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hongwu Qian
- Ministry of Education (MOE) Key Laboratory of Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Winkler MBL, Nel L, Frain KM, Dedic E, Olesen E, Pedersen BP. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective. FEBS Lett 2022; 596:160-179. [PMID: 34897668 DOI: 10.1002/1873-3468.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.
Collapse
Affiliation(s)
- Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Kelly M Frain
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
19
|
Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Hirokawa T, Nakajima S, Watashi K, Shirai T. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open Bio 2021; 12:285-294. [PMID: 34850606 PMCID: PMC8727928 DOI: 10.1002/2211-5463.13337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti‐severe acute respiratory syndrome coronavirus 2 (anti‐SARS‐CoV‐2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti‐coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS‐CoV‐2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell‐based SARS‐CoV‐2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | | | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Japan
| | - Shigehiko Kanaya
- Computational Biology Laboratory Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.,Transborder Medical Research Center, University of Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| |
Collapse
|
20
|
Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158:105469. [PMID: 34364974 DOI: 10.1016/j.nbd.2021.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.
Collapse
|
21
|
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui SF. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. SCIENCE ADVANCES 2021; 7:7/29/eabg3188. [PMID: 34272236 PMCID: PMC8284890 DOI: 10.1126/sciadv.abg3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo-electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.
Collapse
Affiliation(s)
- Miaoqing Hu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yawen Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
22
|
Luo Y, Wan G, Zhang X, Zhou X, Wang Q, Fan J, Cai H, Ma L, Wu H, Qu Q, Cong Y, Zhao Y, Li D. Cryo-EM study of patched in lipid nanodisc suggests a structural basis for its clustering in caveolae. Structure 2021; 29:1286-1294.e6. [PMID: 34174188 DOI: 10.1016/j.str.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The 12-transmembrane protein Patched (Ptc1) acts as a suppressor for Hedgehog (Hh) signaling by depleting sterols in the cytoplasmic membrane leaflet that are required for the activation of downstream regulators. The positive modulator Hh inhibits Ptc1's transporter function by binding to Ptc1 and its co-receptors, which are locally concentrated in invaginated microdomains known as caveolae. Here, we reconstitute the mouse Ptc1 into lipid nanodiscs and determine its structure using single-particle cryoelectron microscopy. The structure is overall similar to those in amphipol and detergents but displays various conformational differences in the transmembrane region. Although most particles show monomers, we observe Ptc1 dimers with distinct interaction patterns and different membrane curvatures, some of which are reminiscent of caveolae. We find that an extramembranous "hand-shake" region rich in hydrophobic and aromatic residues mediates inter-Ptc1 interactions under different membrane curvatures. Our data provide a plausible framework for Ptc1 clustering in the highly curved caveolae.
Collapse
Affiliation(s)
- Yitian Luo
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Guoyue Wan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiang Zhang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuan Zhou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuwen Wang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jialin Fan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liya Ma
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hailong Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai 200032, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yun Zhao
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
23
|
Mechanism and ultrasensitivity in Hedgehog signaling revealed by Patched1 disease mutations. Proc Natl Acad Sci U S A 2021; 118:2006800118. [PMID: 33526656 DOI: 10.1073/pnas.2006800118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.
Collapse
|
24
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
25
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
26
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
27
|
Bessières M, Plebanek E, Chatterjee P, Shrivastava-Ranjan P, Flint M, Spiropoulou CF, Warszycki D, Bojarski AJ, Roy V, Agrofoglio LA. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection. Eur J Med Chem 2021; 214:113211. [PMID: 33548632 DOI: 10.1016/j.ejmech.2021.113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
Novel 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles were designed and synthesized as Ebola virus inhibitors. The proposed structures of the new prepared benzimidazole-piperidine hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-Ebola activity. Among tested molecules, compounds 26a (EC50=0.93 μM, SI = 10) and 25a (EC50=0.64 μM, SI = 20) were as potent as and more selective than Toremifene reference drug (EC50 = 0.38 μM, SI = 7) against cell line. Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Furthermore, a docking study revealed that several of the NPC1 amino acids that participate in binding to GP are involved in the binding of the most active compounds 25a and 26a. Finally, in silico ADME prediction indicates that 26a is an idealy drug-like candidate. Our results could enable the development of small molecule drug capable of inhibiting Ebola virus, especially at the viral entry step.
Collapse
Affiliation(s)
| | | | - Payel Chatterjee
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mike Flint
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dawid Warszycki
- May Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- May Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | | |
Collapse
|
28
|
Teixeira da Costa LF. On the possible existence of a liver LDL-ostat, and its malfunctioning in familial hypercholesterolemia. Med Hypotheses 2021; 147:110500. [PMID: 33515861 DOI: 10.1016/j.mehy.2021.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
The investigation of familial hypercholesterolemia (FH) and its relationship to atherosclerosis has led to enormous scientific and medical progress, including the identification of genetic defects underlying FH, the elucidation of molecular mechanisms crucial for cellular cholesterol homeostasis and the development of current pharmaceutical tools for FH treatment (which are directed at increasing LDL uptake). These successes also led to the establishment of a model centered on cellular rather than whole organism processes, and a view of FH as resulting from a deficiency in LDL uptake. On the other hand, whole organism fluxes of cholesterol (like those of other nutrients) are centered on the liver, LDL (ultimately derived from the liver) is the main cholesterol transporter in plasma, and there is evidence of evolutionary pressure favoring mechanisms to maintain LDL plasma concentrations. Furthermore, the alterations in cellular metabolism observed in FH are consistent with a coordinated response by the liver to increase the levels of plasma LDL, suggesting that a signaling defect (rather than an uptake deficiency) is the fundamental problem underlying hypercholesterolemia - an hypothesis that explains the occurrence of hypercholesterolemia in CESD, despite normal LDL binding and uptake. I therefore propose that the liver contains a mechanism to assess and regulate plasma levels of LDL (an "LDL-ostat"), and that hypercholesterolemia is caused by defects in it. This model has implications for future research directions, and suggests alternative therapeutic approaches, particularly centered on efforts to restore LDL measurement/signaling (rather than its uptake), some of which are in stark contrast to those currently in use.
Collapse
Affiliation(s)
- Luís Filipe Teixeira da Costa
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
29
|
Völkner C, Liedtke M, Petters J, Lukas J, Murua Escobar H, Knuebel G, Bullerdiek J, Holzmann C, Hermann A, Frech MJ. Generation of an iPSC line (AKOSi004-A) from fibroblasts of a female adult NPC1 patient, carrying the compound heterozygous mutation p.Val1023Serfs*15/p.Gly992Arg and of an iPSC line (AKOSi005-A) from a female adult control individual. Stem Cell Res 2020; 50:102127. [PMID: 33360098 DOI: 10.1016/j.scr.2020.102127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
Niemann-Pick disease Type C (NPC) is a rare progressive neurodegenerative disorder with an incidence of 1:120,000 caused by mutations in the NPC1 or NPC2 gene leading to a massive cholesterol accumulation. Here, we describe the generation of induced pluripotent stem cells (iPSCs) of an affected female adult individual carrying the NPC1 mutation p.Val1023Serfs*15/p.Gly992Arg and an iPSC line from an unrelated healthy female adult control individual. Human iPSCs were derived from fibroblasts using retroviruses carrying the four reprogramming factors OCT4, SOX2, KLF4 and C-MYC. These lines provide a valuable resource for studying the pathophysiology of NPC and for pharmacological intervention.
Collapse
Affiliation(s)
- Christin Völkner
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | - Maik Liedtke
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | - Janine Petters
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | - Jan Lukas
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Gudrun Knuebel
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Jörn Bullerdiek
- Institute for Medical Genetics, University Medical Center Rostock, 18057 Rostock, Germany
| | - Carsten Holzmann
- Institute for Medical Genetics, University Medical Center Rostock, 18057 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany.
| |
Collapse
|
30
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
31
|
Cheng Y, Qi F, Li L, Qin Z, Li X, Wang X. Autophagy-related genes are potential diagnostic and prognostic biomarkers in prostate cancer. Transl Androl Urol 2020; 9:2616-2628. [PMID: 33457234 PMCID: PMC7807329 DOI: 10.21037/tau-20-498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Recently, autophagy was found related to several malignances. Methods To explore the diagnostic and prognostic values of autophagy in prostate cancer (PCa), we first identified differentially expressed autophagy-related genes (DEARGs) based on The Cancer Genome Atlas (TCGA) Prostate Adenocarcinoma (PRAD) dataset. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were applied to perform gene functional annotation. Then, multivariate logistic regression analysis was applied to construct the risk index (RI). Receiver operating characteristic (ROC), calibration and decision curve analysis (DCA) curves were performed to identify the effectiveness of RI. Next, multivariate Cox regression analyses were performed to construct the prognostic index (PI) and autophagy-clinical prognostic index (ACPI). Results We identified 16 DEARGs and functional annotation demonstrated the relevance of these genes to autophagy and revealed the association of these DEARGs with digestive system, drug resistance and apoptosis. Then, the RI was constructed based on 5 DEARGs and the area under the ROC curve (AUC) was 0.9858. Validation based on Gene Expression Omnibus (GEO) datasets suggested that the RI was effective. Next, 7 ARGs were identified associated with overall survival (OS) and the PI was developed composed of 3 ARGs. Finally, ACPI was constructed based on PI and the M stage. Conclusions This study provided potential models for predicting the risk and prognosis of PCa and indicated the molecular insights of autophagy in PCa. While no other dataset was applied to test the effectiveness of the PI and ACPI models attribute to the well prognosis of PCa.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urologic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Li
- Nanjing Medical University, Nanjing, China
| | - Zongshi Qin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Li
- Department of Urologic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinwei Wang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
32
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
33
|
Baker S, Petukh M. Effect of pH on the Ability of N-Terminal Domain of Human NPC1 to Recognize, Bind, and Transfer Cholesterol. ACS OMEGA 2020; 5:29222-29230. [PMID: 33225153 PMCID: PMC7676335 DOI: 10.1021/acsomega.0c03983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a large multidomain transmembrane protein essential for transporting cholesterol (CLR) from late endosomes and lysosomes to the endoplasmic reticulum and other cellular compartments. The lumen-facing N-terminal domain (NTD), involved in direct binding of CLR, is expected to have an optimum activity at acidic pH = 4.5. Here, we show that acidic pH is vital for the functionality of NPC1(NTD) and should be taken into account when studying the protein activity. We applied evolutionary, structural, and physicochemical analyses to decipher the consequences of a change in pH from acidic (pH = 4.5) to neutral (pH = 7.2) on the structural integrity of the NTD and its ability to bind CLR. We revealed that the change in pH from 4.5 to 7.2 increases the potential energy of the protein in both apo- and holo-states making the system less energetically favorable. At neutral pH, the flexibility of the protein in the apo-state is decreased caused by the alteration of specific interactions, which in turn might have a high impact on ligand recognition and binding. In contrast, neutral pH significantly exaggerates the flexibility of the protein with bound CLR that causes a partial exposure of the ligand to the water phase and its mislocation inside the ligand-binding pocket, which might obstruct CLR translocation through the membrane.
Collapse
|
34
|
Dubey V, Bozorg B, Wüstner D, Khandelia H. Cholesterol binding to the sterol-sensing region of Niemann Pick C1 protein confines dynamics of its N-terminal domain. PLoS Comput Biol 2020; 16:e1007554. [PMID: 33021976 PMCID: PMC7537887 DOI: 10.1371/journal.pcbi.1007554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane. Cholesterol is absorbed from LDL particles in esterified form, and is broken down to free cholesterol in the lysosomes of cells, from where cholesterol must be transported to other cellular compartments such as the plasma membrane. The Niemann Pick type C (NPC) diseases arise from deficient cholesterol transport and result from mutations in the cholesterol transport protein NPC1. Using computer simulations, we show that cholesterol, when bound to one part of NPC1, can control the structural transitions of an 8-nm distant, different part of NPC1 protein called the N-terminal domain (NTD). Such long-range control of protein conformations (allostery), controls a wide range of cellular functions mediated by proteins. Fundamental molecular insights into the function of the NPC1 protein can potentially lead to better pharmaceutical interventions for the NPC diseases.
Collapse
Affiliation(s)
- Vikas Dubey
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Behruz Bozorg
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel Wüstner
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- PhyLife Physical Life Sciences, Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department of Physics Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- MEMPHYS: Center for Biomembrane Physics, Odense M, Denmark
- * E-mail:
| |
Collapse
|
35
|
Murakami S, Okada U, van Veen HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms. FEBS Lett 2020; 594:3908-3919. [PMID: 32936941 DOI: 10.1002/1873-3468.13929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
To remove xenobiotics from the periplasmic space, Gram-negative bacteria utilise unique tripartite efflux systems in which a molecular engine in the plasma membrane connects to periplasmic and outer membrane subunits. Substrates bind to periplasmic sections of the engine or sometimes to the periplasmic subunits. Then, the tripartite machines undergo conformational changes that allow the movement of the substrates down the substrate translocation pathway to the outside of the cell. The transmembrane (TM) domains of the tripartite resistance-nodulation-drug-resistance (RND) transporters drive these conformational changes by converting proton motive force into mechanical motion. Similarly, the TM domains of tripartite ATP-binding cassette (ABC) transporters transmit mechanical movement associated with nucleotide binding and hydrolysis at the nucleotide-binding domains to the relevant subunits in the periplasm. In this way, metabolic energy is coupled to periplasmic alternating-access mechanisms to achieve substrate transport across the outer membrane.
Collapse
Affiliation(s)
- Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ui Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
36
|
Woolley SA, Tsimnadis ER, Lenghaus C, Healy PJ, Walker K, Morton A, Khatkar MS, Elliott A, Kaya E, Hoerner C, Priestman DA, Shepherd D, Platt FM, Porebski BT, Willet CE, O’Rourke BA, Tammen I. Molecular basis for a new bovine model of Niemann-Pick type C disease. PLoS One 2020; 15:e0238697. [PMID: 32970694 PMCID: PMC7514041 DOI: 10.1371/journal.pone.0238697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Niemann-Pick type C disease is a lysosomal storage disease affecting primarily the nervous system that results in premature death. Here we present the first report and investigation of Niemann-Pick type C disease in Australian Angus/Angus-cross calves. After a preliminary diagnosis of Niemann-Pick type C, samples from two affected calves and two obligate carriers were analysed using single nucleotide polymorphism genotyping and homozygosity mapping, and NPC1 was considered as a positional candidate gene. A likely causal missense variant on chromosome 24 in the NPC1 gene (NM_174758.2:c.2969C>G) was identified by Sanger sequencing of cDNA. SIFT analysis, protein alignment and protein modelling predicted the variant to be deleterious to protein function. Segregation of the variant with disease was confirmed in two additional affected calves and two obligate carrier dams. Genotyping of 403 animals from the original herd identified an estimated allele frequency of 3.5%. The Niemann-Pick type C phenotype was additionally confirmed via biochemical analysis of Lysotracker Green, cholesterol, sphingosine and glycosphingolipids in fibroblast cell cultures originating from two affected calves. The identification of a novel missense variant for Niemann-Pick type C disease in Angus/Angus-cross cattle will enable improved breeding and management of this disease in at-risk populations. The results from this study offer a unique opportunity to further the knowledge of human Niemann-Pick type C disease through the potential availability of a bovine model of disease.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Emily R. Tsimnadis
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | | | | | - Keith Walker
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | | | - Mehar S. Khatkar
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Annette Elliott
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Ecem Kaya
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Clarisse Hoerner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David A. Priestman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ben T. Porebski
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Cali E. Willet
- The University of Sydney, Sydney Informatics Hub Core Research Facilities, Darlington, NSW, Australia
| | - Brendon A. O’Rourke
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Imke Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
- * E-mail:
| |
Collapse
|
37
|
Yoon HJ, Jeong H, Lee HH, Jang S. Molecular dynamics study with mutation shows that N-terminal domain structural re-orientation in Niemann-Pick type C1 is required for proper alignment of cholesterol transport. J Neurochem 2020; 156:967-978. [PMID: 32880929 PMCID: PMC7461377 DOI: 10.1111/jnc.15150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The lysosomal membrane protein Niemann‐Pick type C1 (NPC1) and Niemann‐Pick type C2 (NPC2) are main players of cholesterol control in the lysosome and it is known that the mutation on these proteins leads to the cholesterol trafficking‐related neurodegenerative disease, which is called the NPC disease. The mutation R518W or R518Q on the NPC1 is one of the type of disease‐related mutation that causes cholesterol transports to be cut in half, which results in the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment of the cell. Even though there has been significant progress with understanding the cholesterol transport by NPC1 in combination with NPC2, especially after the structural determination of the full‐length NPC1 in 2016, many details such as the interaction of the full‐length NPC1 with the NPC2, the molecular motions responsible for the cholesterol transport during and after this interaction, and the structure and the function relations of many mutations are still not well understood. In this study, we report the extensive molecular dynamics simulations in order to gain insight into the structure and the dynamics of NPC1 lumenal domain for the cholesterol transport and the disease behind the mutation (R518W). It was found that the mutation induces a structural shift of the N‐terminal domain, toward the loop region in the middle lumenal domain, which is believed to play a central role in the interaction with NPC2 protein, so the interaction with the NPC2 protein might be less favorable compared to the wild NPC1. Also, the simulation indicates the possible re‐orientation of the N‐terminal domain with both the wild and the R518W‐mutated NPC1 after receiving the cholesterol from the NPC2 that align to form an internal tunnel, which is a possible pose for further action in cholesterol trafficking. We believe the current study can provide a better understanding of the cholesterol transport by NPC1 especially the role of NTD of NPC1 in combination with NPC2 interactions.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunah Jeong
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2. Cell 2020; 182:98-111.e18. [DOI: 10.1016/j.cell.2020.05.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 01/19/2023]
|
39
|
Li Y, Pasunooti KK, Peng H, Li RJ, Shi WQ, Liu W, Cheng Z, Head SA, Liu JO. Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors. ACS Med Chem Lett 2020; 11:1111-1117. [PMID: 32550989 DOI: 10.1021/acsmedchemlett.9b00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/08/2020] [Indexed: 11/28/2022] Open
Abstract
Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized. Among them the pyridine- and tetrazole-containing compound 24 has significantly improved solubility and reduced CYP3A4 inhibition compared to itraconazole. Similar to itraconazole, compound 24 inhibited the AMPK/mTOR signaling axis and the glycosylation of VEGFR2. It also induced cholesterol accumulation in the endolysosome and demonstrated binding to the sterol-sensing domain of NPC1 in a simulation study. These results suggested that compound 24 may serve as an attractive candidate for the development of a new generation of antiangiogenic drug.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kalyan Kumar Pasunooti
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ruo-Jing Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Q Shi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wukun Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
40
|
Huang CS, Yu X, Fordstrom P, Choi K, Chung BC, Roh SH, Chiu W, Zhou M, Min X, Wang Z. Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. SCIENCE ADVANCES 2020; 6:eabb1989. [PMID: 32596471 PMCID: PMC7304964 DOI: 10.1126/sciadv.abb1989] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/11/2020] [Indexed: 05/21/2023]
Abstract
The intestinal absorption of cholesterol is mediated by a multipass membrane protein, Niemann-Pick C1-Like 1 (NPC1L1), the molecular target of a cholesterol lowering therapy ezetimibe. While ezetimibe gained Food and Drug Administration approval in 2002, its mechanism of action has remained unclear. Here, we present two cryo-electron microscopy structures of NPC1L1, one in its apo form and the other complexed with ezetimibe. The apo form represents an open state in which the N-terminal domain (NTD) interacts loosely with the rest of NPC1L1, leaving the NTD central cavity accessible for cholesterol loading. The ezetimibe-bound form signifies a closed state in which the NTD rotates ~60°, creating a continuous tunnel enabling cholesterol movement into the plasma membrane. Ezetimibe blocks cholesterol transport by occluding the tunnel instead of competing with cholesterol binding. These findings provide insight into the molecular mechanisms of NPC1L1-mediated cholesterol transport and ezetimibe inhibition, paving the way for more effective therapeutic development.
Collapse
Affiliation(s)
- Ching-Shin Huang
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Xinchao Yu
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Preston Fordstrom
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Kaylee Choi
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Ben C. Chung
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Soung-Hun Roh
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mingyue Zhou
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Xiaoshan Min
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Zhulun Wang
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
41
|
Saha P, Shumate JL, Caldwell JG, Elghobashi-Meinhardt N, Lu A, Zhang L, Olsson NE, Elias JE, Pfeffer SR. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. eLife 2020; 9:e57089. [PMID: 32410728 PMCID: PMC7228765 DOI: 10.7554/elife.57089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023] Open
Abstract
Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Justin L Shumate
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Jenna G Caldwell
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | | | - Albert Lu
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | | | - Niclas E Olsson
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | | | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
42
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
43
|
Qi X, Li X. Mechanistic Insights into the Generation and Transduction of Hedgehog Signaling. Trends Biochem Sci 2020; 45:397-410. [PMID: 32311334 PMCID: PMC7174405 DOI: 10.1016/j.tibs.2020.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
Cell differentiation and proliferation require Hedgehog (HH) signaling and aberrant HH signaling causes birth defects or cancers. In this signaling pathway, the N-terminally palmitoylated and C-terminally cholesterylated HH ligand is secreted into the extracellular space with help of the Dispatched-1 (DISP1) and Scube2 proteins. The Patched-1 (PTCH1) protein releases its inhibition of the oncoprotein Smoothened (SMO) after binding the HH ligand, triggering downstream signaling events. In this review, we discuss the recent structural and biochemical studies on four major components of the HH pathway: the HH ligand, DISP1, PTCH1, and SMO. This research provides mechanistic insights into how HH signaling is generated and transduced from the cell surface into the intercellular space and will aid in facilitating the treatment of HH-related diseases.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:676-686. [PMID: 33715815 PMCID: PMC7193959 DOI: 10.1194/jlr.tr119000383] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael J Thomas
- Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mary G Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226. mailto:
| |
Collapse
|
45
|
Cholesterol Transport in Wild-Type NPC1 and P691S: Molecular Dynamics Simulations Reveal Changes in Dynamical Behavior. Int J Mol Sci 2020; 21:ijms21082962. [PMID: 32331453 PMCID: PMC7215871 DOI: 10.3390/ijms21082962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The Niemann–Pick C1 (NPC1) protein is the main protein involved in NPC disease, a fatal lysosomal lipid storage disease. NPC1, containing 1278 amino acids, is comprised of three lumenal domains (N-terminal, middle lumenal, C-terminal) and a transmembrane (TM) domain that contains a five helix bundle referred to as the sterol-sensing domain (SSD). The exact purpose of the SSD is not known, but it is believed that the SSD may bind cholesterol, either as a part of the lipid trafficking pathway or as part of a signaling mechanism. A recent cryo-EM structure has revealed an itraconazole binding site (IBS) in the SSD of human NPC1. Using this structural data, we constructed a model of cholesterol-bound wild-type (WT) and mutant P691S and performed molecular dynamics (MD) simulations of each cholesterol-bound protein. For WT NPC1, cholesterol migrates laterally, in the direction of the lipid bilayer. In the case of P691S, cholesterol is observed for the first time to migrate away from the SSD toward the N-terminal domain via a putative tunnel that connects the IBS with the lumenal domains. Structural features of the IBS are analyzed to identify the causes for different dynamical behavior between cholesterol-bound WT and cholesterol-bound P691S. The side chain of Ser691 in the P691S mutant introduces a hydrogen bond network that is not present in the WT protein. This change is likely responsible for the altered dynamical behavior observed in the P691S mutant and helps explain the disrupted cholesterol trafficking behavior observed in experiments.
Collapse
|
46
|
Vanharanta L, Peränen J, Pfisterer SG, Enkavi G, Vattulainen I, Ikonen E. High‐content imaging and structure‐based predictions reveal functional differences between Niemann‐Pick C1 variants. Traffic 2020; 21:386-397. [DOI: 10.1111/tra.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| | - Johan Peränen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| | - Simon G. Pfisterer
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Giray Enkavi
- Department of PhysicsUniversity of Helsinki Helsinki Finland
- Computational Physics LaboratoryTampere University of Technology Tampere Finland
| | - Ilpo Vattulainen
- Department of PhysicsUniversity of Helsinki Helsinki Finland
- Computational Physics LaboratoryTampere University of Technology Tampere Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| |
Collapse
|
47
|
Molecular Genetics of Niemann-Pick Type C Disease in Italy: An Update on 105 Patients and Description of 18 NPC1 Novel Variants. J Clin Med 2020; 9:jcm9030679. [PMID: 32138288 PMCID: PMC7141276 DOI: 10.3390/jcm9030679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient’s fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.
Collapse
|
48
|
Iron chelation by deferiprone does not rescue the Niemann-Pick Disease Type C1 mouse model. Biometals 2020; 33:87-95. [PMID: 32100150 DOI: 10.1007/s10534-020-00233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Niemann-Pick Disease Type C (NP-C) is a fatal lysosomal storage disorder with progressive neurodegeneration. In addition to the characteristic cholesterol and lipid overload phenotype, we previously found that altered metal homeostasis is also a pathological feature. Increased brain iron in the Npc1-/- mouse model of NP-C may potentially contribute to neurodegeneration, similar to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Deferiprone (DFP) is a brain penetrating iron chelator that has demonstrated effectiveness in preventing neurological deterioration in Parkinson's disease clinical trials. Therefore, we hypothesized that DFP treatment, targeting brain iron overload, may have therapeutic benefits for NP-C. Npc1-/- mice were assigned to four experimental groups: (1) pre-symptomatic (P15) + 75 mg/kg DFP; (2) pre-symptomatic (P15) + 150 mg/kg DFP; (3) symptomatic (P49) + 75 mg/kg DFP; (4) symptomatic (P49) + 150 mg/kg DFP. Our study found that in Npc1-/- mice, DFP treatment did not offer any improvement over the expected disease trajectory and median lifespan. Moreover, earlier treatment and higher dose of DFP resulted in adverse effects on body weight and onset of ataxia. The outcome of our study indicated that, despite increased brain iron, Npc1-/- mice were vulnerable to pharmacological iron depletion, especially in early life. Therefore, based on the current model, iron chelation therapy is not a suitable treatment option for NP-C.
Collapse
|
49
|
Gupta A, Rivera-Molina F, Xi Z, Toomre D, Schepartz A. Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nat Chem Biol 2020; 16:408-414. [PMID: 32094922 PMCID: PMC7176048 DOI: 10.1038/s41589-020-0479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
We report new lipid-based, high-density, environmentally sensitive (HIDE) probes that accurately and selectively image endo-lysosomes and their dynamics at super-resolution for extended times. Treatment of live cells with the small molecules DiIC16TCO or DiIC16’TCO followed by in situ tetrazine ligation reaction with the silicon-rhodamine dye SiR-Tz generates the HIDE probes DiIC16-SiR and DiIC16’-SiR in the endo-lysosomal membrane. These new probes support the acquisition of super-resolution videos of organelle dynamics in primary cells for more than 7 minutes with no detectable change in endosome structure or function. Using DiIC16-SiR and DiIC16’-SiR, we describe the first direct evidence of endosome motility defects in cells from patients with Niemann-Pick Type-C disease. In wild-type fibroblasts, the probes reveal distinct but rare inter-endosome kiss-and-run events that cannot be observed using confocal methods. Our results shed new light on the role of NPC1 in organelle motility and cholesterol trafficking.
Collapse
Affiliation(s)
- Aarushi Gupta
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
50
|
Long T, Qi X, Hassan A, Liang Q, De Brabander JK, Li X. Structural basis for itraconazole-mediated NPC1 inhibition. Nat Commun 2020; 11:152. [PMID: 31919352 PMCID: PMC6952396 DOI: 10.1038/s41467-019-13917-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023] Open
Abstract
Niemann-Pick C1 (NPC1), a lysosomal protein of 13 transmembrane helices (TMs) and three lumenal domains, exports low-density-lipoprotein (LDL)-derived cholesterol from lysosomes. TMs 3–7 of NPC1 comprise the Sterol-Sensing Domain (SSD). Previous studies suggest that mutation of the NPC1-SSD or the addition of the anti-fungal drug itraconazole abolishes NPC1 activity in cells. However, the itraconazole binding site and the mechanism of NPC1-mediated cholesterol transport remain unknown. Here, we report a cryo-EM structure of human NPC1 bound to itraconazole, which reveals how this binding site in the center of NPC1 blocks a putative lumenal tunnel linked to the SSD. Functional assays confirm that blocking this tunnel abolishes NPC1-mediated cholesterol egress. Intriguingly, the palmitate anchor of Hedgehog occupies a similar site in the homologous tunnel of Patched, suggesting a conserved mechanism for sterol transport in this family of proteins and establishing a central function of their SSDs. Niemann-Pick C1 (NPC1) exports low-density-lipoprotein (LDL)-derived cholesterol from lysosomes and comporses a Sterol-Sensing Domain (SSD). Here authors report a cryo-EM structure of human NPC1 bound to itraconazole which reveals how this binding site in the center of NPC1 blocks a putative lumenal tunnel linked to the SSD.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Abdirahman Hassan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiren Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|