1
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
2
|
Gaxiola-Rubio A, Jave-Suárez LF, Hernández-Silva CD, Ramírez-de-Arellano A, Villegas-Pineda JC, Lizárraga-Ledesma MDJ, Ramos-Solano M, Diaz-Palomera CD, Pereira-Suárez AL. The G-Protein-Coupled Estrogen Receptor Agonist G-1 Mediates Antitumor Effects by Activating Apoptosis Pathways and Regulating Migration and Invasion in Cervical Cancer Cells. Cancers (Basel) 2024; 16:3292. [PMID: 39409923 PMCID: PMC11475807 DOI: 10.3390/cancers16193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Estrogens and HPV are necessary for cervical cancer (CC) development. The levels of the G protein-coupled estrogen receptor (GPER) increase as CC progresses, and HPV oncoproteins promote GPER expression. The role of this receptor is controversial due to its anti- and pro-tumor effects. This study aimed to determine the effect of GPER activation, using its agonist G-1, on the transcriptome, cell migration, and invasion in SiHa cells and non-tumorigenic keratinocytes transduced with the HPV16 E6 or E7 oncogenes. METHODS Transcriptome analysis was performed to identify G-1-enriched pathways in SiHa cells. We evaluated cell migration, invasion, and the expression of associated proteins in SiHa, HaCaT-16E6, and HaCaT-16E7 cells using various assays. RESULTS Transcriptome analysis revealed pathways associated with proliferation/apoptosis (TNF-α signaling, UV radiation response, mitotic spindle formation, G2/M cell cycle, UPR, and IL-6/JAK/STAT), cellular metabolism (oxidative phosphorylation), and cell migration (angiogenesis, EMT, and TGF-α signaling) in SiHa cells. Key differentially expressed genes included PTGS2 (pro/antitumor), FOSL1, TNFRSF9, IL1B, DIO2, and PHLDA1 (antitumor), along with under-expressed genes with pro-tumor effects that may inhibit proliferation. Additionally, DKK1 overexpression suggested inhibition of cell migration. G-1 increased vimentin expression in SiHa cells and reduced it in HaCaT-16E6 and HaCaT-16E7 cells. However, G-1 did not affect α-SMA expression or cell migration in any of the cell lines but increased invasion in HaCaT-16E7 cells. CONCLUSIONS GPER is a promising prognostic marker due to its ability to activate apoptosis and inhibit proliferation without promoting migration/invasion in CC cells. G-1 could potentially be a tool in the treatment of this neoplasia.
Collapse
Affiliation(s)
- Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Marisa de Jesús Lizárraga-Ledesma
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Moisés Ramos-Solano
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| | - Carlos Daniel Diaz-Palomera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.G.-R.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (C.D.H.-S.); (J.C.V.-P.); (M.d.J.L.-L.); (M.R.-S.)
| |
Collapse
|
3
|
Mannam G, Miller JW, Johnson JS, Gullapalli K, Fazili A, Spiess PE, Chahoud J. HPV and Penile Cancer: Epidemiology, Risk Factors, and Clinical Insights. Pathogens 2024; 13:809. [PMID: 39339000 PMCID: PMC11434800 DOI: 10.3390/pathogens13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Penile cancer (PC) is a rare malignancy predominantly of squamous cell origin. Approximately 40% of penile tumors are associated with human papillomavirus (HPV) infection. Diagnosing PC remains challenging due to its rarity and variety of clinical presentations. Furthermore, the impact of HPV on the tumor immune microenvironment complicates clinical management, although recent advancements in immune checkpoint inhibitors (ICIs) have shown some efficacy in treating HPV-associated PC. Ongoing research efforts aim to develop oncologic treatments that target HPV-induced cellular modifications. Additionally, novel therapeutic vaccines and adoptive T-cell therapies targeting HPV oncoproteins represent emerging treatment modalities. Our review highlights the complex interplay between HPV and penile carcinogenesis, emphasizing its epidemiology, etiology, clinicopathological characteristics, and potential therapeutic implications.
Collapse
Affiliation(s)
- Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Keerthi Gullapalli
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| |
Collapse
|
4
|
James CD, Lewis RL, Fakunmoju AL, Witt A, Youssef AH, Wang X, Rais NM, Tadimari Prabhakar A, Machado JM, Otoa R, Bristol ML. Fibroblast Stromal Support Model for Predicting Human Papillomavirus-Associated Cancer Drug Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588680. [PMID: 38644998 PMCID: PMC11030318 DOI: 10.1101/2024.04.09.588680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERalpha) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+ specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+ specific estrogen growth responses. Continuing to monopolize on the HPV+ specific overexpression of ERalpha, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery.
Collapse
|
5
|
Spurgeon ME, Townsend EC, Blaine-Sauer S, McGregor SM, Horswill M, den Boon JA, Ahlquist P, Kalan L, Lambert PF. Key aspects of papillomavirus infection influence the host cervicovaginal microbiome in a preclinical murine papillomavirus (MmuPV1) infection model. mBio 2024; 15:e0093324. [PMID: 38742830 PMCID: PMC11237646 DOI: 10.1128/mbio.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth C. Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johan A. den Boon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Polleys CM, Singh P, Thieu HT, Genega EM, Jahanseir N, Zuckerman AL, Díaz FR, Patra A, Beheshti A, Georgakoudi I. Rapid, high-resolution, non-destructive assessments of metabolic and morphological homogeneity uniquely identify high-grade cervical precancerous lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593564. [PMID: 38798665 PMCID: PMC11118292 DOI: 10.1101/2024.05.10.593564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Purpose Two-photon microscopy (2PM) is an emerging clinical imaging modality with the potential to non-invasively assess tissue metabolism and morphology in high-resolution. This study aimed to assess the translational potential of 2PM for improved detection of high-grade cervical precancerous lesions. Experimental Design 2P images attributed to reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and oxidized flavoproteins (FP) were acquired from the full epithelial thickness of freshly excised human cervical tissue biopsies (N = 62). Fifteen biopsies harbored high-grade squamous intraepithelial lesions (HSILs), 14 biopsies harbored low-grade SILs (LSILs), and 33 biopsies were benign. Quadratic discriminant analysis (QDA) leveraged morphological and metabolic functional metrics extracted from these images to predict the presence of HSILs. We performed gene set enrichment analysis (GSEA) using datasets available on the Gene Expression Omnibus (GEO) to validate the presence of metabolic reprogramming in HSILs. Results Integrating metabolic and morphological 2P-derived metrics from finely sampled, full-thickness epithelia achieved a high 90.8 ± 6.1% sensitivity and 72.3 ± 11.3% specificity of HSIL detection. Notably, sensitivity (91.4 ± 12.0%) and specificity (77.5 ± 12.6%) were maintained when utilizing metrics from only two images at 12- and 72-μm from the tissue surface. Upregulation of glycolysis, fatty acid metabolism, and oxidative phosphorylation in HSIL tissues validated the metabolic reprogramming captured by 2P biomarkers. Conclusion Label-free 2P images from as few as two epithelial depths enable rapid and robust HSIL detection through the quantitative characterization of metabolic and morphological reprogramming, underscoring the potential of this tool for clinical evaluation of cervical precancers.
Collapse
Affiliation(s)
| | - Pramesh Singh
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Hong-Thao Thieu
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Elizabeth M. Genega
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Narges Jahanseir
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Andrea L. Zuckerman
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Francisca Rius Díaz
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Málaga, 32 Louis Pasteur Boulevard, 29071 Málaga, Spain
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
7
|
Ji HZ, Liu B, Ren M, Li S, Zheng JF, Liu TY, Yu HH, Sun Y. The CXCLs-CXCR2 axis modulates the cross-communication between tumor-associated neutrophils and tumor cells in cervical cancer. Expert Rev Clin Immunol 2024; 20:559-569. [PMID: 38224014 DOI: 10.1080/1744666x.2024.2305808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.
Collapse
Affiliation(s)
- Hai-Zhou Ji
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Bin Liu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Mi Ren
- Department of Oncological Nursing, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Sang Li
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Jian-Feng Zheng
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Tong-Yu Liu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Hui-Hui Yu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Yang Sun
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Rocha NSS, Clara BM, Luz LMM, do Rosário Oliveira Martins M. Knowledge, attitudes and practices of cervical cancer screening among female students enrolled in higher education institutions in Cabo Verde. Ecancermedicalscience 2024; 18:1689. [PMID: 38566763 PMCID: PMC10984840 DOI: 10.3332/ecancer.2024.1689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Indexed: 04/04/2024] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer among women in the world and the second in Africa. CC is the third most frequent cancer and the first cause of cancer-related death among women in Cabo Verde, with an estimated incidence of 17 cases per 100,000 women. The mortality rate is around 10.5% and represents one of the largest percentages of all types of cancer diagnosed in women in the country. The high mortality rate can be explained by the absence of a national screening programme and a lack of human and physical resources. This study aims to determine the level of knowledge, attitudes and practices on CC among undergraduate female students in Cabo Verde in 2020. Methods A descriptive cross-sectional study, using a self-administered structured questionnaire, was conducted in six higher education institutions (HEI) in Cabo Verde between November and December 2020. A total of 618 female undergraduate students were recruited using a simple random sampling technique. Descriptive statistical data analysis was used to report the results. Results The response rate was 96.6% (n = 618). Most of the participants, 90.6% (549), were single, with average age of 21.79 years (SD =±4). Although most of the participants had already heard about CC (94.6%), most students showed a low knowledge about this disease (86.2%). Moreover, only 9.1% reported having been screened for CC. Conclusion Most undergraduate female students enrolled in HEI in Cabo Verde have poor knowledge and unfavourable attitudes toward CC. The level of knowledge is quite unsatisfactory. Within this context, the implementation of health policies focused on human papillomavirus education, prevention strategies, and CC screening is crucial.
Collapse
Affiliation(s)
- Natalina Sousa Silva Rocha
- Faculdade de Ciências e Tecnologias (FCT), Universidade de Cabo Verde, Campus do Palmarejo Grande, CP 7943-010 Praia, Santiago, Cabo Verde
| | - Bicho M Clara
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina (FMUL), Universidade de Lisboa, Lisboa 1649-008, Portugal
| | | | | |
Collapse
|
9
|
Belachew EB, Desta AF, Mulu A, Deneke DB, Tefera DA, Alemu A, Anberber E, Beshah D, Girma S, Sewasew DT, Tessema TS, Howe R. High rate of high-risk human papillomavirus among benign and breast cancer patients in Ethiopia. PLoS One 2024; 19:e0298583. [PMID: 38507429 PMCID: PMC10954173 DOI: 10.1371/journal.pone.0298583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/28/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION There have been numerous studies that showed the presence of human papillomavirus (HPV) in breast cancer; nonetheless, there is ongoing debate regarding their association. Given few studies in Ethiopia, we aimed to investigate the magnitude of HPV infection in Ethiopian breast cancer patients. METHODS A total of 120 formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained, and basic demographic, clinical, and histological data were collected from medical records. DNA was extracted from archived FFPE breast tissue specimens using GeneRead DNA FFPE Kit. The AnyplexTM II HPV28 Detection Kit (Seegene, Korea) was used to detect HPV by following the manufacturer's instructions. The SPSS Version 25 was used to enter and analyze data. RESULTS Among the 120 study participants; HPV (both high-risk and low-risk) was detected in 20.6% of breast cancer and 29.6% of non-malignant breast tumors. The most common genotype was the high-risk HPV 16 genotype. The frequency of HPV was nearly 10-fold higher in estrogen receptor-positive than ER-negative breast cancer. The percentage of HPV in the luminal (luminal A and luminal B) breast cancer subtypes was also much higher than in the non-luminal subtypes (HER-2 enriched and triple-negative breast cancer). CONCLUSION This study did not find a significant difference in HPV expression between breast cancer and non-malignant breast tumors; however, the higher percentage of HPV in ER-positive compared to ER-negative breast cancer warrants further attention.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology Department, College of Natural and Computational Sciences, Mizan Tepi University, Mizan, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Ashenafi Alemu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Endale Anberber
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Beshah
- Department of Diagnostic Laboratory, Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Selfu Girma
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
El Rhabori S, El Aissouq A, Daoui O, Elkhattabi S, Chtita S, Khalil F. Design of new molecules against cervical cancer using DFT, theoretical spectroscopy, 2D/3D-QSAR, molecular docking, pharmacophore and ADMET investigations. Heliyon 2024; 10:e24551. [PMID: 38318045 PMCID: PMC10839811 DOI: 10.1016/j.heliyon.2024.e24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.
Collapse
Affiliation(s)
- Said El Rhabori
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Abdellah El Aissouq
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Khalil
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| |
Collapse
|
11
|
Santos JMO, Tavares V, Gil da Costa RM, Medeiros R. MiR-150 and miR-155 expression predicts survival of cervical cancer patients: a translational approach to novel prognostic biomarkers. Biomarkers 2023; 28:617-627. [PMID: 37942654 DOI: 10.1080/1354750x.2023.2269320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION High-risk human papillomavirus (HPV) is the aetiological agent of cervical cancer, which remains the fourth leading cause of cancer death in women worldwide. K14-HPV16 transgenic mice are a model for HPV-induced cancers, which undergo multistep squamous carcinogenesis at the skin, that is histologically and molecularly similar to carcinogenesis of the human cervix. Previous screens of differentially regulated microRNAs (miRs) using K14-HPV16 mice showed a role for miR-21, miR-155, miR-150, miR-146a, miR-125b and miR-223 during carcinogenesis. METHODS We now aim to translate these observations into the clinical setting, using data provided by The Cancer Genome Atlas (TCGA) to explore whether those microRNAs can influence the survival of cervical cancer patients. RESULTS Results showed that low miR-150, miR-155 and miR-146a expression levels in primary tumours were associated with poor overall survival. However, only miR-150 and miR-155 were found to be independent predictors, increasing the risk of death. When patients were stratified by clinical stage, low miR-150, miR-155, miR-146a and miR-125b were associated with poor survival for clinical stages I and II. Only low miR-150 expression increased the death risk. CONCLUSION We conclude that miR-150 and miR-155 may be potentially applied as prognostic biomarkers in cervical cancer patients. However, further investigation is required to determine their applicability.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS) of the University of Porto, Porto, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal, University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, PortugalPorto
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS) of the University of Porto, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal
- Research Department of the Portuguese League Against Cancer, Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Porto, Portugal
| |
Collapse
|
12
|
Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol Res Pract 2023; 251:154846. [PMID: 37837860 DOI: 10.1016/j.prp.2023.154846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
13
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
14
|
Lizcano-Meneses S, Hernández-Pando R, García-Aguirre I, Bonilla-Delgado J, Alvarado-Castro VM, Cisneros B, Gariglio P, Cortés-Malagón EM. Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer. Biomedicines 2023; 11:2280. [PMID: 37626777 PMCID: PMC10452145 DOI: 10.3390/biomedicines11082280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer.
Collapse
Affiliation(s)
- Solangy Lizcano-Meneses
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Ciudad de México, Mexico City 14380, Mexico
| | - José Bonilla-Delgado
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Toluca 50110, Mexico
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| |
Collapse
|
15
|
Lei S, Wu C, Zhong S, Liu Y, Peng K, Han X, Chen J, Li C, Gao S. Intravaginal estrogen management in postmenopausal patients with vaginal squamous intraepithelial lesions along with CO 2 laser ablation: A retrospective study. Open Life Sci 2023; 18:20220621. [PMID: 37589004 PMCID: PMC10426724 DOI: 10.1515/biol-2022-0621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 08/18/2023] Open
Abstract
This study aims to investigate the influence of topical estrogen management in postmenopausal patients who had undergone CO2 laser ablation for vaginal squamous intraepithelial lesions (SILs). The clinical data of 211 postmenopausal women with vaginal SILs were reviewed. Patients were divided into two groups by 2-month different management: Group 1 (intervention group): patients were treated with estrogen cream 0.5 g every other day and Group 2 (control group): no topical agent was used for the treatment of patients. In low-grade squamous intraepithelial lesions (LSILs), the response rates for patients in the intervention group and the control group were 49.1% (27/55) and 54.2% (16/48), respectively; human papillomavirus (HPV) status turned negative in 12 (12/38, 31.6%) patients of the intervention group and in 15 (15/35, 42.9%) patients of the control group. In high-grade squamous intraepithelial lesions (HSILs), the response rates for patients in the intervention group and the control group were 72.4% (42/58) and 78.0% (39/50), respectively, nearly 1.5 times higher than those of the LSIL patients; 22 (22/54, 40.7%) patients of the intervention groups and 12 (12/46, 26.1%) patients of the control group cleared the HPV infection. In postmenopausal patients, local use of estrogen cream improves the recognition of lesions and is conducive to precision medicine.
Collapse
Affiliation(s)
- Shengyao Lei
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Congquan Wu
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Siyi Zhong
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Yanmei Liu
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Ke Peng
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai200011, China
| | - Xiao Han
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Jialing Chen
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
| | - Chunlan Li
- Department of Gynecology, Children’s Hospital of Anhui Province, No. 39 East Wangjiang Road, Hefei230022, China
| | - Shujun Gao
- Department of Gynecology, Center of Diagnosis and Treatment for Cervical & Uterine Cavity Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai200011, China
| |
Collapse
|
16
|
Miranda-Galvis M, Carneiro Soares C, Moretto Carnielli C, Ramalho Buttura J, Sales de Sá R, Kaminagakura E, Marchi FA, Paes Leme AF, Lópes Pinto CA, Santos-Silva AR, Moraes Castilho R, Kowalski LP, Squarize CH. New Insights into the Impact of Human Papillomavirus on Oral Cancer in Young Patients: Proteomic Approach Reveals a Novel Role for S100A8. Cells 2023; 12:cells12091323. [PMID: 37174723 PMCID: PMC10177374 DOI: 10.3390/cells12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) infection has recently been linked to a subset of cancers affecting the oral cavity. However, the molecular mechanisms underlying HPV-driven oral squamous cell carcinoma (OSCC) onset and progression are poorly understood. METHODS We performed MS-based proteomics profiling based on HPV status in OSCC in young patients, following biological characterization and cell assays to explore the proteome functional landscape. RESULTS Thirty-nine proteins are differentially abundant between HPV (+) and HPV (-) OSCC. Among them, COPS3, DYHC1, and S100A8 are unfavorable for tumor recurrence and survival, in contrast to A2M and Serpine1, low levels of which show an association with better DFS. Remarkably, S100A8 is considered an independent prognostic factor for lower survival rates, and at high levels, it alters tumor-associated immune profiling, showing a lower proportion of M1 macrophages and dendritic cells. HPV (+) OSCC also displayed the pathogen-associated patterns receptor that, when activated, triggered the S100A8 and NFκB inflammatory responses. CONCLUSION HPV (+) OSCC has a peculiar microenvironment pattern distinctive from HPV (-), involving the expression of pathogen-associated pattern receptors, S100A8 overexpression, and NFκB activation and responses, which has important consequences in prognosis and may guide therapeutic decisions.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Carolina Carneiro Soares
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
- Department of Microbiology, Immune Biology, and Genetics, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Carolina Moretto Carnielli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Jaqueline Ramalho Buttura
- Laboratory of Bioinformatics and Computational Biology, A.C.Camargo Cancer Center (CIPE), São Paulo 01508-010, SP, Brazil
| | - Raisa Sales de Sá
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Science and Technology Institute, University of São Paulo State (UNESP), São José dos Campos 01049-010, SP, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo 01246-000, SP, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Clóvis A Lópes Pinto
- Department of Anatomic Pathology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo 05508-900, SP, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH. Integrative analysis of gene expression and DNA methylation to identify biomarkers of non-genital warts induced by low-risk human papillomaviruses infection. Heliyon 2023; 9:e16101. [PMID: 37215908 PMCID: PMC10196596 DOI: 10.1016/j.heliyon.2023.e16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
18
|
Wang W, Spurgeon ME, Pope A, McGregor S, Ward-Shaw E, Gronski E, Lambert PF. Stress keratin 17 and estrogen support viral persistence and modulate the immune environment during cervicovaginal murine papillomavirus infection. Proc Natl Acad Sci U S A 2023; 120:e2214225120. [PMID: 36917668 PMCID: PMC10041145 DOI: 10.1073/pnas.2214225120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
19
|
Gan Q, Mao L, Shi R, Chang L, Wang G, Cheng J, Chen R. Prognostic Value and Immune Infiltration of HPV-Related Genes in the Immune Microenvironment of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Cancers (Basel) 2023; 15:1419. [PMID: 36900213 PMCID: PMC10000937 DOI: 10.3390/cancers15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Mounting evidence has highlighted the immune environment as a critical feature in the development of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, the relationship between the clinical characteristics of the immune environment and CESC remain unclear. Therefore, the aim of this study was to further characterize the relationship between the tumor and immune microenvironment and the clinical features of CESC using a variety of bioinformatic methods. Expression profiles (303 CESCs and three control samples) and relevant clinical data were obtained from The Cancer Genome Atlas. We divided CESC cases into different subtypes and performed a differential gene expression analysis. In addition, gene ontology (GO) and gene set enrichment analysis (GSEA) were performed to identify potential molecular mechanisms. Furthermore, data from 115 CESC patients from East Hospital were used to help identify the relationship between the protein expressions of key genes and disease-free survival using tissue microarray technology. Cases of CESC (n = 303) were divided into five subtypes (C1-C5) based on their expression profiles. A total of 69 cross-validated differentially expressed immune-related genes were identified. Subtype C4 demonstrated a downregulation of the immune profile, lower tumor immune/stroma scores, and worse prognosis. In contrast, the C1 subtype showed an upregulation of the immune profile, higher tumor immune/stroma scores, and better prognosis. A GO analysis suggested that changes in CESC were primarily enriched nuclear division, chromatin binding, and condensed chromosomes. In addition, GSEA demonstrated that cellular senescence, the p53 signaling pathway, and viral carcinogenesis are critical features of CESC. Moreover, high FOXO3 and low IGF-1 protein expression were closely correlated with decreased clinical prognosis. In summary, our findings provide novel insight into the relationship between the immune microenvironment and CESC. As such, our results may provide guidance for developing potential immunotherapeutic targets and biomarkers for CESC.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Linlin Chang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Guozeng Wang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rui Chen
- Department of Gynecology, Shanghai United Family Hospital, Shanghai 200120, China
| |
Collapse
|
20
|
Balbi G, Schiattarella A, Fasulo D, Cafiero A, Mastrogiacomo A, Musone R, Carucci A, Cobellis L. Vertical transmission of Human papillomavirus: experience from a center of southern Italy. Minerva Obstet Gynecol 2023; 75:45-54. [PMID: 35107233 DOI: 10.23736/s2724-606x.22.04956-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) represents a group of DNA viruses, sexually transmitted, and widely accepted as a cause of invasive squamous cell carcinomas. The virus prevalence is critical worldwide. However, the possibility of perinatal transmission during pregnancy is not well understood as well as the risks for the newborn. METHODS Our study analyzed pregnant women referred to the obstetric outpatient room of the Department of Gynecology and Obstetrics of Sant'Anna and San Sebastiano University Hospital in Caserta, Italy. Cervicovaginal samples were achieved from patients during the first trimester and tested for HPV. The specimen was repeated during the third trimester for HPV-positive patients. After the birth, we took a placenta sample and an eye, pharyngeal, mouth, and genital samples in children from HPV positive mothers, at 36-48 hours after birth and three and six months. RESULTS We found out a high prevalence of HPV infections in the recruited patients: 71 participants were positive at the HPV test in the first trimester (45%), and 17 (14%) showed a positivity in the placental samples. However, there was a low prevalence of viral infection in newborns, and six newborns were positive for HPV at birth (9%). CONCLUSIONS HPV vertical transmission represents a critical obstetric topic, and the transplacental passage of the virus represents a possible cause. However, further studies are necessary to deepen the pathological mechanism and assess the risks for the newborn.
Collapse
Affiliation(s)
- Giancarlo Balbi
- Unit of Obstetrics and Gynecology, Sant'Anna e San Sebastiano Hospital, Caserta, Italy.,Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy -
| | - Diego Fasulo
- Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Angela Cafiero
- Unit of Obstetrics and Gynecology, Sant'Anna e San Sebastiano Hospital, Caserta, Italy
| | | | - Rosalia Musone
- Unit of Obstetrics and Gynecology, Sant'Anna e San Sebastiano Hospital, Caserta, Italy
| | - Antonio Carucci
- Unit of Obstetrics and Gynecology, Sant'Anna e San Sebastiano Hospital, Caserta, Italy
| | - Luigi Cobellis
- Unit of Obstetrics and Gynecology, Sant'Anna e San Sebastiano Hospital, Caserta, Italy.,Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
21
|
Zhi W, Wei Y, Lazare C, Meng Y, Wu P, Gao P, Lin S, Peng T, Chu T, Liu B, Ding W, Cao C, Wu P. HPV-CCDC106 integration promotes cervical cancer progression by facilitating the high expression of CCDC106 after HPV E6 splicing. J Med Virol 2023; 95:e28009. [PMID: 35854676 PMCID: PMC9796641 DOI: 10.1002/jmv.28009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Human papillomavirus (HPV) integration and high expression of HPV oncogenes (E6 and E7) are important mechanisms for HPV carcinogenesis in cervical cancer. However, the relationship between HPV integration and HPV E6 spliced transcripts, as well as the underlying mechanisms of HPV integration in carcinogenesis after HPV E6 splicing remains unclear. We analyzed HPV-coiled-coil domain containing 106 (CCDC106) integration samples to characterize the roles of HPV integration, E6 spliceosome I (E6*I), and high CCDC106 expression in cervical carcinogenesis. We found that E6 was alternatively spliced into the E6*I transcript in HPV-CCDC016 integration samples with low p53 expression, in contrast to the role of E6*I in preventing p53 degradation in cervical cancer cells. In addition, CCDC106 was highly expressed after HPV-CCDC106 integration, and interacted with p53, resulting in p53 degradation and cervical cancer cell progression in vitro and in vivo. Importantly, when E6*I was highly expressed in cervical cancer cells, overexpression of CCDC106 independently degraded p53 and promoted cervical cancer cell progression. In this study, we explored the underlying mechanisms of HPV-CCDC106 integration in HPV carcinogenesis after HPV E6 splicing, which should provide insight into host genome dysregulation in cervical carcinogenesis.
Collapse
Affiliation(s)
- Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ye Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cordelle Lazare
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yifan Meng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ting Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tian Chu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Binghan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterGuangdongChina
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
22
|
Virus Association with Gastric Inflammation and Cancer: An Updated Overview. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
23
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
24
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
25
|
Huang X, Wang B, Shen H, Huang D, Shi G. Farnesoid X receptor functions in cervical cancer via the p14 ARF-mouse double minute 2-p53 pathway. Mol Biol Rep 2022; 49:3617-3625. [PMID: 35347542 PMCID: PMC9174312 DOI: 10.1007/s11033-022-07201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cervical cancer is the second most common cancer among women living in developing countries. Farnesoid X receptor (FXR) is a member of the nuclear receptor family, which regulates the development and proliferation of cancer. However, the role of and molecular mechanism by which FXR acts in cervical cancer are still unknown. METHODS AND RESULTS The relationship between FXR and the proliferation of cervical cancer cell lines was detected by MTT and colony formation assays. Immunohistochemistry was used to detect the expression of FXR in cervical cancer tissue slides. Western blotting was used to detect the expression of p14ARF, mouse double minute 2 (MDM2) and p53 when FXR was overexpressed or siRNA was applied. Western blotting was used to detect the expression of MDM2 and p53 when pifithrin-α (PFT-α) was applied. FXR activation inhibited the proliferation of cervical cancer cell lines. FXR was significantly decreased in cervical squamous cell carcinoma, which was correlated with TNM stage, but not with metastasis. Overexpression of FXR activated the p14ARF-MDM2-p53 pathway. As a p53 inhibitor, PFT-α increased MDM2 in Lenti-vector cells, but had no effect on MDM2 in Lenti-FXR cells. CONCLUSIONS FXR inhibits cervical cancer by upregulating the p14ARF-MDM2-p53 pathway. Activation of FXR may be a potential strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Huimin Shen
- Department of Neurology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
26
|
The Chemokine System in Oncogenic Pathways Driven by Viruses: Perspectives for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14030848. [PMID: 35159113 PMCID: PMC8834488 DOI: 10.3390/cancers14030848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Oncoviruses are viruses with oncogenic potential, responsible for almost 20% of human cancers worldwide. They are from various families, some of which belong to the microbial communities that inhabit several sites in the body of healthy humans. As a result, they most often establish latent infections controlled by the arsenal of human host responses that include the chemokine system playing key roles at the interface between tissue homeostasis and immune surveillance. Yet, chemokines and their receptors also contribute to oncogenic processes as they are targeted by the virus-induced deregulations of host responses and/or directly encoded by viruses. Thus, the chemokine system offers a strong rationale for therapeutic options, some few already approved or in trials, and future ones that we are discussing in view of the pharmacological approaches targeting the different functions of chemokines operating in both cancer cells and the tumor microenvironment. Abstract Chemokines interact with glycosaminoglycans of the extracellular matrix and activate heptahelical cellular receptors that mainly consist of G Protein-Coupled Receptors and a few atypical receptors also with decoy activity. They are well-described targets of oncogenic pathways and key players in cancer development, invasiveness, and metastasis acting both at the level of cancer cells and cells of the tumor microenvironment. Hence, they can regulate cancer cell proliferation and survival and promote immune or endothelial cell migration into the tumor microenvironment. Additionally, oncogenic viruses display the potential of jeopardizing the chemokine system by encoding mimics of chemokines and receptors as well as several products such as oncogenic proteins or microRNAs that deregulate their human host transcriptome. Conversely, the chemokine system participates in the host responses that control the virus life cycle, knowing that most oncoviruses establish asymptomatic latent infections. Therefore, the deregulated expression and function of chemokines and receptors as a consequence of acquired or inherited mutations could bias oncovirus infection toward pro-oncogenic pathways. We here review these different processes and discuss the anticancer therapeutic potential of targeting chemokine availability or receptor activation, from signaling to decoy-associated functions, in combination with immunotherapies.
Collapse
|
27
|
Zhan T, Cui S, Shou H, Gao L, Lu S, Zhang C, Zhuang S. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117294. [PMID: 33971472 DOI: 10.1016/j.envpol.2021.117294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-type UV filters have been implicated in multiple adverse reproductive outcomes, yet the underlying processes and molecular targets on the female reproductive tract remain largely unknown. Herein, we investigated the effect of dioxybenzone, one of the widely used congeners, and its demethylated (M1) and hydroxylated (M2) metabolites on transcriptome profiles of ICR mice uterus and identified potential cellular targets in human endometrial stromal cells (HESCs) separated from normal endometrium tissues. Dioxybenzone, M1 and M2 (20 mg/kg bw/d) significantly induced transcriptome aberration with the induction of 683, 802, and 878 differentially expressed genes mainly involved in cancer, reproductive system disease and inflammatory disease. Compared to dioxybenzone, M1 and M2 exhibited a transcriptome profile more similar to estradiol in mice uterus, and subsequently promoted thicker endometrial columnar epithelial layer through upregulation of estrogen receptor target genes-Sprr2s. Dioxybenzone, M1 and M2 (0.1 or 1 μM) also exhibited estrogenic disrupting effect via increasing the mRNA expressions and production of the growth factors responsible for epithelial proliferation, including Fgfs and Igf-1 in HESCs. Additionally, the mRNA expressions of several inflammatory cytokines especially IL-1β in mice uterus and HESCs was significantly upregulated by dioxybenzone and its metabolites. Overall, we revealed that dioxybenzone and its metabolites triggered transcriptome perturbation dually associated with abnormal steroid hormone response and inflammation, both as key determinants to reproductive health risks.
Collapse
Affiliation(s)
- Tingjie Zhan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huafeng Shou
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston, Clear Lake, TX, 77058, USA
| | - Shulin Zhuang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Differential Incidence of Tongue Base Cancer in Male and Female HPV16-Transgenic Mice: Role of Female Sex Hormone Receptors. Pathogens 2021; 10:pathogens10101224. [PMID: 34684173 PMCID: PMC8539196 DOI: 10.3390/pathogens10101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
A growing proportion of oropharyngeal squamous cell carcinomas (OPSCC) are associated with infection by high-risk human papillomavirus (HPV). For reasons that remain largely unknown, HPV+OPSCC is significantly more common in men than in women. This study aims to determine the incidence of OPSCC in male and female HPV16-transgenic mice and to explore the role of female sex hormone receptors in the sexual predisposition for HPV+ OPSCC. The tongues of 30-weeks-old HPV16-transgenic male (n = 80) and female (n = 90) and matched wild-type male (n = 10) and female (n = 10) FVB/n mice were screened histologically for intraepithelial and invasive lesions in 2017 at the Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Portugal. Expression of estrogen receptors alpha (ERα) and beta (ERβ), progesterone receptors (PR) and matrix metalloproteinase 2 (MMP2) was studied immunohistochemically. Collagen remodeling was studied using picrosirius red. Female mice showed robust ERα and ERβ expression in intraepithelial and invasive lesions, which was accompanied by strong MMP2 expression and marked collagen remodeling. Male mice showed minimal ERα, ERβ and MMP2 expression and unaltered collagen patterns. These results confirm the association of HPV16 with tongue base cancer in both sexes. The higher cancer incidence in female versus male mice contrasts with data from OPSCC patients and is associated with enhanced ER expression via MMP2 upregulation.
Collapse
|
29
|
Drake V, Bigelow E, Fakhry C, Windon M, Rooper LM, Ha P, Miles B, Gourin C, Mandal R, Mydlarz W, London N, Vosler PS, Yavvari S, Troy T, Waterboer T, Eisele DW, D'Souza G. Biologic and behavioral associations of estrogen receptor alpha positivity in head and neck squamous cell carcinoma. Oral Oncol 2021; 121:105461. [PMID: 34304004 DOI: 10.1016/j.oraloncology.2021.105461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Tumor HPV status is an established independent prognostic marker for oropharynx cancer (OPC). Recent studies have reported that tumor estrogen receptor alpha (ERα) positivity is also associated with prognosis independent of HPV. Little is known about the biologic and behavioral predictors of ERα positivity in head and neck squamous cell cancer (HNSCC). We therefore explored this in a multicenter prospective cohort study. MATERIALS AND METHODS Participants with HNSCC completed a survey and provided a blood sample. Tumor samples were tested for ERα using immunohistochemistry. ERα positivity was defined as ≥1%, standardized by the American Society of Clinical Oncology/College of American Pathologists in breast cancer. Characteristics were compared with χ2 and Fisher's exact test. Odds ratios (OR) were calculated using logistic regression. RESULTS Of 318 patients with HNSCC, one third had ERα positive tumors (36.2%, n = 115). Odds of ERα expression were significantly increased in those with HPV-positive tumors (OR = 27.5, 95% confidence interval[CI] 12.1-62), smaller tumors (≤T2, OR = 3.6, 95% CI 1.9-7.1), male sex (OR = 2.0, 95% CI 1.1-3.6), overweight/obesity (BMI ≥ 25, OR = 1.9, 95% CI 1.1-3.3), and those married/living with a partner (OR = 1.7, 95% CI 1.0-3.0). In a multivariate model, HPV-positivity (aOR = 27.5, 95% CI 11.4-66) and small tumor size (≤T2, aOR = 2.2, 95% CI 1.0-4.8) remained independently associated with ERα status. When restricted to OPC (n = 180), tumor HPV status (aOR = 17.1, 95% CI 2.1-137) and small tumor size (≤T2, aOR = 4.0 95% CI 1.4-11.3) remained independently associated with ERα expression. CONCLUSION Tumor HPV status and small tumor size are independently associated with ERα expression in HNSCC.
Collapse
Affiliation(s)
- Virginia Drake
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Elaine Bigelow
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Melina Windon
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Lisa M Rooper
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brett Miles
- Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Health System, New York City, NY, United States
| | - Christine Gourin
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Rajarsi Mandal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Wojciech Mydlarz
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Nyall London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Peter S Vosler
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tanya Troy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W Eisele
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gypsyamber D'Souza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
30
|
Functional roles of female sex hormones and their nuclear receptors in cervical cancer. Essays Biochem 2021; 65:941-950. [PMID: 34156060 DOI: 10.1042/ebc20200175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
There has been little progress for several decades in modalities to treat cervical cancer. While the cervix is a hormone-sensitive tissue, physiologic roles of estrogen receptor α (ERα), progesterone receptor (PR), and their ligands in this tissue are poorly understood. It has hampered critical assessments of data in early epidemiologic and clinical studies for cervical cancer. Experimental evidence obtained from studies using mouse models has provided new insights into the molecular mechanism of ERα and PR in cervical cancer. In a mouse model expressing human papillomavirus (HPV) oncogenes, exogenous estrogen promotes cervical cancer through stromal ERα. In the same mouse model, genetic ablation of PR promotes cervical carcinogenesis without exogenous estrogen. Medroxyprogesterone acetate, a PR-activating drug, regresses cervical cancer in the mouse model. These results support that ERα and PR play opposite roles in cervical cancer. They further support that ERα inhibition and PR activation may be translated into valuable treatment for a subset of cervical cancers.
Collapse
|
31
|
Ramachandran B, Murhekar K, Sundersingh S. SERMs suppresses the growth of ERα positive cervical cancer xenografts through predominant inhibition of extra-nuclear ERα expression. Am J Cancer Res 2021; 11:3335-3353. [PMID: 34249466 PMCID: PMC8263693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023] Open
Abstract
The role of estrogens and estrogen receptors (ER) in cervical cancer (CC) is not well established. However, epidemiological studies and abundant evidence from genetically engineered mouse models support such hypothesis. In this study, we have addressed estrogen responsiveness in a human CC cell line xenograft mouse model. We assessed the sensitivity of Ethynyl Estradiol (EE), SERMs (fulvestrant, MPP) and a non-SERM (EGCG) to competitively modulate the growth of ERα+ve MS751 CC xenografts. We also checked the agonistic-antagonistic propensity of the above treatments to alter the histology of ovariectomised mouse uterine cervix. Chronic EE treatment encouraged the growth of ERα+ve MS751 CC xenografts, while SERMs and EGCG significantly decreased tumor formation. SERMs were found to inhibit ERα expression, localized within cytoplasmic and membrane compartments. Conversely, ERα was not inducible and EE administration suppressed the growth of ERα-ve HeLa CC xenografts. SERMs competitively induced atrophic features to uterine cervix, with MPP giving rise to mucinous metaplasia in the ectocervix. We have demonstrated that, estrogen sensitivity mediated through ERα has promoted CC tumorigenesis. This in turn was modulated by SERMs, predominantly through inhibition of extra-nuclear ERα expression. Though, induction of hyper-estrogenic status in the ectocervix, might underrate the utility of SERMs in ERα+ve CC.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A)No. 38, Sardar Patel Road, Adyar, Chennai 600 036, India
| | - Kanchan Murhekar
- Department of Oncopathology, Cancer Institute (W.I.A)No. 38, Sardar Patel Road, Adyar, Chennai 600 036, India
| | - Shirley Sundersingh
- Department of Oncopathology, Cancer Institute (W.I.A)No. 38, Sardar Patel Road, Adyar, Chennai 600 036, India
| |
Collapse
|
32
|
Ocadiz-Delgado R, Cruz-Colin JL, Alvarez-Rios E, Torres-Carrillo A, Hernandez-Mendoza K, Conde-Pérezprina JC, Dominguez-Gomez GI, Garcia-Villa E, Lambert PF, Gariglio P. Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein. J Physiol Biochem 2021; 77:547-555. [PMID: 33937961 DOI: 10.1007/s13105-021-00818-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The high-risk human papillomavirus (HR-HPV) E7 oncoprotein appears to be a major determinant for cell immortalization and transformation altering critical processes such as cell proliferation, apoptosis, and immune response. This oncoprotein plays an essential role in cervical carcinogenesis, but other cofactors such as long-term use of hormonal contraceptives are necessary to modulate the risk of cervical cancer (CC). The role of HR-HPVs in the alteration of microRNA (miRNA) levels in persistent viral infections currently remains unclear. The aim of this study was to evaluate the miR-34a and miR-15b expression levels in the murine HPV16K14E7 (K14E7) transgenic model after chronic estrogen (E2) treatment and their involvement in CC. Interestingly, results showed that, although miR-34a expression is elevated by the HPVE7 oncogene, this expression was downregulated in the presence of both the E7 oncoprotein and chronic E2 in cervical carcinoma. On the other hand, miR-15b expression was upregulated along cervical carcinogenesis mainly by the effect of E2. These different changes in the expression levels of miR-34a and miR-15b along cervical carcinogenesis conduced to low apoptosis levels, high cell proliferation and finally, to cancerous cervical tissue development. In this work, we also determined the relative mRNA expression of Cyclin E2 (Ccne2), Cyclin A2 (Ccna2), and B cell lymphoma 2 (Bcl-2) (target genes of miR-34a and miR-15b); Sirtuin 1 (Sirt1), Cmyc, and Bax (miR-34a target genes); and p21/WAF1 (mir15b target gene) and the H-ras oncogene. Given the modifications in the expression levels of miR-34a and miR-15b during the development of cervical cancer, it will be useful to carry out further investigation to confirm them as molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Jose-Luis Cruz-Colin
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Department of Genomic Diagnostic, INMEGEN, Mexico City, Mexico, Mexico
| | - Elizabeth Alvarez-Rios
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Antonio Torres-Carrillo
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Karina Hernandez-Mendoza
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Juan-Cristobal Conde-Pérezprina
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Guadalupe-Isabel Dominguez-Gomez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Subdirección de Investigación Clínica, INCan, Mexico City, Mexico, Mexico
| | - Enrique Garcia-Villa
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI, USA
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.
| |
Collapse
|
33
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
34
|
De Nola R, Loizzi V, Cicinelli E, Cormio G. Dynamic crosstalk within the tumor microenvironment of uterine cervical carcinoma: baseline network, iatrogenic alterations, and translational implications. Crit Rev Oncol Hematol 2021; 162:103343. [PMID: 33930531 DOI: 10.1016/j.critrevonc.2021.103343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine cervical cancer is the fourth most frequent gynecological tumor worldwide. The tumor microenvironment of cervical cancer is the result of persistent high-risk human papillomavirus infection together with stromal activation of estrogen receptor alpha and the pro-angiogenic and pro-inflammatory activity of immune cells, mainly T-helper 17 cells and tumor-associated macrophages. Therapeutic management (e.g., immunotherapy, especially in advanced cases) may be influenced by the translational implications of tumoral stroma crosstalk and an abundance of tumor-infiltrating lymphocytes within the tumor microenvironment. The prognosis of cervical cancer is inversely correlated with microvessel density, making anti-angiogenic strategies with agents such as bevacizumab crucial for improving both progression-free survival and overall survival in patients with advanced and recurrent tumors.
Collapse
Affiliation(s)
- Rosalba De Nola
- Department of Tissues and Organs Transplantation and Cellular Therapies, D.E.O.T., University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Gynecologic Oncology Unit, IRCCS, Istituto Tumori Giovanni Paolo II, 70142, Bari, Italy.
| | - Vera Loizzi
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy
| | - Ettore Cicinelli
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy
| | - Gennaro Cormio
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Gynecologic Oncology Unit, IRCCS, Istituto Tumori Giovanni Paolo II, 70142, Bari, Italy
| |
Collapse
|
35
|
Dholakia J, Scalise C, Arend RC. Assessing Preclinical Research Models for Immunotherapy for Gynecologic Malignancies. Cancers (Basel) 2021; 13:1694. [PMID: 33918476 PMCID: PMC8038292 DOI: 10.3390/cancers13071694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Gynecologic malignancies are increasing in incidence, with a plateau in clinical outcomes necessitating novel treatment options. Immunotherapy and modulation of the tumor microenvironment are rapidly developing fields of interest in gynecologic oncology translational research; examples include the PD-1 (programmed cell death 1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) axes and the Wnt pathway. However, clinical successes with these agents have been modest and lag behind immunotherapy successes in other malignancies. A thorough contextualization of preclinical models utilized in gynecologic oncology immunotherapy research is necessary in order to effectively and efficiently develop translational medicine. These include murine models, in vitro assays, and three-dimensional human-tissue-based systems. Here, we provide a comprehensive review of preclinical models for immunotherapy in gynecologic malignancies, including benefits and limitations of each, in order to inform study design and translational research models. Improved model design and implementation will optimize preclinical research efficiency and increase the translational value to positive findings, facilitating novel treatments that improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Rebecca C. Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.D.); (C.S.)
| |
Collapse
|
36
|
Loke ASW, Longley BJ, Lambert PF, Spurgeon ME. A Novel In Vitro Culture Model System to Study Merkel Cell Polyomavirus-Associated MCC Using Three-Dimensional Organotypic Raft Equivalents of Human Skin. Viruses 2021; 13:138. [PMID: 33478104 PMCID: PMC7835998 DOI: 10.3390/v13010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a human polyomavirus causally linked to the development of Merkel cell carcinoma (MCC), an aggressive malignancy that largely arises within the dermis of the skin. In this study, we recapitulate the histopathology of human MCC tumors in vitro using an organotypic (raft) culture system that is traditionally used to recapitulate the dermal and epidermal equivalents of skin in three dimensions (3D). In the optimal culture condition, MCPyV+ MCC cells were embedded in collagen between the epidermal equivalent comprising human keratinocytes and a dermal equivalent containing fibroblasts, resulting in MCC-like lesions arising within the dermal equivalent. The presence and organization of MCC cells within these dermal lesions were characterized through biomarker analyses. Interestingly, co-culture of MCPyV+ MCC together with keratinocytes specifically within the epidermal equivalent of the raft did not reproduce human MCC morphology, nor were any keratinocytes necessary for MCC-like lesions to develop in the dermal equivalent. This 3D tissue culture system provides a novel in vitro platform for studying the role of MCPyV T antigens in MCC oncogenesis, identifying additional factors involved in this process, and for screening potential MCPyV+ MCC therapeutic strategies.
Collapse
Affiliation(s)
- Amanda S. W. Loke
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - B. Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine & Public Health, Madison, WI 53705, USA;
| |
Collapse
|
37
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Song L, Yang X. SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer. Anticancer Agents Med Chem 2021; 21:756-765. [PMID: 32698743 DOI: 10.2174/1871520620666200721110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND SMAD3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathways. OBJECTIVE The epigenetic regulation mechanism of the positive immune factor SMAD3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on SMAD3 is investigated in this study. METHODS The methylation status of SMAD3 was detected by Methylation-Specific PCR (MS-PCR) and Quantitative Methylation-Specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-SMAD3 regulation were elucidated using cervical cancer cell lines containing siRNA or/and over-expression systems. The regulation of DNMT1 by SUV39H1 was confirmed using Chromatin Immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t-tests and one-way ANOVAs. RESULTS H3K9me3 protein regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduced expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of SMAD3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with SMAD3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibited the subsequent gene expression. CONCLUSION These results indicate that SUV39H1-DNMT1 is a crucial SMAD3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihua Song
- Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
The Potential of Immune Checkpoint Blockade in Cervical Cancer: Can Combinatorial Regimens Maximize Response? A Review of the Literature. Curr Treat Options Oncol 2020; 21:95. [PMID: 33025260 DOI: 10.1007/s11864-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT Cervical cancer (CC) is most often caused by the human papillomavirus (HPV). In principle, these ties to the virus should make HPV tumors a relatively easy target for clearance by the immune system. However, these HPV-associated tumors have evolved strategies to escape immune attack. Checkpoint inhibition immunotherapy, which has had remarkable success in cancer treatment, has the potential to overcome the immune escape in CC by harnessing the patient's own immune system and priming it to recognize and kill tumors. Recent work involving PD-1/PD-L1 inhibitors in CC lends credence to this belief, as pembrolizumab has shown evidence of clinical efficacy and consequently been granted accelerated approval by the FDA. That being said, the oncologic outcomes following monotherapy with these biologics have mostly been modest and variable, and this can be attributed to alternative resistance mechanisms to tumor response. The use of therapies that stimulate immune responses via checkpoint-independent activation will therefore augment release of T cell inhibition by checkpoint inhibitors for stronger and more sustained clinical responses. Such a combinatorial approach holds promise for weak- or non-responders to checkpoint therapies as supported by evidence from various, recent pre-clinical, and preliminary clinical studies.
Collapse
|
39
|
Semertzidou A, Brosens JJ, McNeish I, Kyrgiou M. Organoid models in gynaecological oncology research. Cancer Treat Rev 2020; 90:102103. [PMID: 32932156 DOI: 10.1016/j.ctrv.2020.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Cell culture and animal models represent experimental cornerstones for the investigation of tissue, organ and body physiology in the context of gynaecological research. However, their ability to accurately reflect human mechanisms in vivo is limited. The development of organoid technologies has begun to address this limitation by providing platforms ex vivo that resemble the phenotype and genotype of the multi-cellular tissue from which they were derived more accurately. In this review, we discuss advances in organoid derivation from endometrial, ovarian, fallopian tube and cervical tissue, both benign and malignant, the manipulation of organoid microenvironment to preserve stem cell populations and achieve long-term expansion and we explore the morphological and molecular kinship of organoids to parent tissue. Apart from providing new insight into mechanisms of carcinogenesis, gynaecological cancer-derived organoids can be utilised as tools for drug screening of chemotherapeutic and hormonal compounds where they exhibit interpatient variability consistent with states in vivo and xenografted tumours allowing for patient-tailored treatment strategies. Bridging organoid with bioengineering accomplishments is clearly the way forward to the generation of organoid-on-a-chip technologies enhancing the robustness of the model and its translational potential. Undeniably, organoids are expected to stand their ground in the years to come and revolutionize development and disease modelling studies.
Collapse
Affiliation(s)
- Anita Semertzidou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Iain McNeish
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| |
Collapse
|
40
|
Kwon S, Ahn SH, Jeong WJ, Jung YH, Bae YJ, Paik JH, Chung JH, Kim H. Estrogen receptor α as a predictive biomarker for survival in human papillomavirus-positive oropharyngeal squamous cell carcinoma. J Transl Med 2020; 18:240. [PMID: 32546279 PMCID: PMC7298756 DOI: 10.1186/s12967-020-02396-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although oropharyngeal squamous cell carcinoma (OPSCC) with human papillomavirus (HPV) infection has a good prognosis, the accurate prediction of survival and risk of treatment failure is essential to design deintensification regimens. Here, we investigated estrogen receptor α (ERα) as a prognostic biomarker with therapeutic implications in OPSCC alongside factors associated with HPV infection. METHODS We performed immunohistochemistry for ERα and p53 using formalin-fixed, paraffin-embedded tissues and assessed the HPV status using p16 immunohistochemistry and HPV DNA testing in 113 consecutive patients with OPSCC treated with surgical resection or radiotherapy/chemoradiotherapy. RESULTS ERα expression and p53 alteration was observed in 35.4% and 21.2% OPSCCs; 45.6% and 1.3% p16+/HPV+ OPSCCs; and 11.5% and 76.9% p16- OPSCCs, respectively. These data suggest that OPSCC pathogenesis varies with HPV status. Furthermore, ERα expression was associated with improved overall survival (OS) in both HPV+ (p16+/HPV+ OPSCC) and p16+ (p16+ OPSCC irrespective of HPV status) models (p = 0.005 and p = 0.006, respectively) and with improved OS adjusted for stage (p = 0.037, hazard ratio: 0.109, 95% confidence interval 0.013-0.871) in the p16+ model. CONCLUSIONS ERα is a potential predictive biomarker for improved survival in both HPV+ and p16+ OPSCC models.
Collapse
Affiliation(s)
- Soohyeon Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Gumi-ro 173-Beon-gil 82, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Ho Jung
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Gumi-ro 173-Beon-gil 82, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang Hospital, Gumi-ro 173-Beon-gil 82, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Gumi-ro 173-Beon-gil 82, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
41
|
James CD, Morgan IM, Bristol ML. The Relationship between Estrogen-Related Signaling and Human Papillomavirus Positive Cancers. Pathogens 2020; 9:E403. [PMID: 32455952 PMCID: PMC7281727 DOI: 10.3390/pathogens9050403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
High risk-human papillomaviruses (HPVs) are known carcinogens. Numerous reports have linked the steroid hormone estrogen, and the expression of estrogen receptors (ERs), to HPV-related cancers, although the exact nature of the interactions remains to be fully elucidated. Here we will focus on estrogen signaling and describe both pro and potentially anti-cancer effects of this hormone in HPV-positive cancers. This review will summarize: (1) cell culture-related evidence, (2) animal model evidence, and (3) clinical evidence demonstrating an interaction between estrogen and HPV-positive cancers. This comprehensive review provides insights into the potential relationship between estrogen and HPV. We suggest that estrogen may provide a potential therapeutic for HPV-related cancers, however additional studies are necessary.
Collapse
Affiliation(s)
- Claire D. James
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| | - Iain M. Morgan
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- VCU Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Molly L. Bristol
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| |
Collapse
|
42
|
Westrich JA, Vermeer DW, Colbert PL, Spanos WC, Pyeon D. The multifarious roles of the chemokine CXCL14 in cancer progression and immune responses. Mol Carcinog 2020; 59:794-806. [PMID: 32212206 DOI: 10.1002/mc.23188] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
The chemokine CXCL14 is a highly conserved, homeostatic chemokine that is constitutively expressed in skin epithelia. Responsible for immune cell recruitment and maturation, as well as impacting epithelial cell motility, CXCL14 contributes to the establishment of immune surveillance within normal epithelial layers. Furthermore, CXCL14 is critical to upregulating major histocompatibility complex class I expression on tumor cells. Given these important roles, CXCL14 is often dysregulated in several types of carcinomas including cervical, colorectal, endometrial, and head and neck cancers. Its disruption has been shown to limit critical antitumor immune regulation and is correlated to poor patient prognosis. However, other studies have found that in certain cancers, namely pancreatic and some breast cancers, overexpression of stromal CXCL14 correlates with poor patient survival due to increased invasiveness. Contributing to the ambiguity CXCL14 plays in cancer is that the native CXCL14 receptor remains uncharacterized, although several candidate receptors have been proposed. Despite the complexity of CXCL14 functions, it remains clear that this chemokine is a key regulatory factor in cancer and represents a potential target for future cancer immunotherapies.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
Pathak S, Wilczyński JR, Paradowska E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers (Basel) 2020; 12:E561. [PMID: 32121320 PMCID: PMC7139377 DOI: 10.3390/cancers12030561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer death in women, with high-grade serous ovarian cancer (HGSOC) being the most lethal gynecologic malignancy among women. This high fatality rate is the result of diagnosis of a high number of new cases when cancer implants have already spread. The poor prognosis is due to our inadequate understanding of the molecular mechanisms preceding ovarian malignancy. Knowledge about the site of origination has been improved recently by the discovery of tube intraepithelial cancer (TIC), but the potential risk factors are still obscure. Due to high tumoral heterogeneity in OC, the establishment of early stage biomarkers is still underway. Microbial infection may induce or result in chronic inflammatory infection and in the pathogenesis of cancers. Microbiome research has shed light on the relationships between the host and microbiota, as well as the direct roles of host pathogens in cancer development, progression, and drug efficacy. While controversial, the detection of viruses within ovarian malignancies and fallopian tube tissues suggests that these pathogens may play a role in the development of OC. Genomic and proteomic approaches have enhanced the methods for identifying candidates in early screening. This article summarizes the existing knowledge related to the molecular mechanisms that lead to tumorigenesis in the ovary, as well as the viruses detected in OC cases and how they may elevate this process.
Collapse
Affiliation(s)
- Sudipta Pathak
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
44
|
Wang W, Uberoi A, Spurgeon M, Gronski E, Majerciak V, Lobanov A, Hayes M, Loke A, Zheng ZM, Lambert PF. Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathog 2020; 16:e1008206. [PMID: 31968015 PMCID: PMC6975545 DOI: 10.1371/journal.ppat.1008206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Aayushi Uberoi
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Megan Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, MD, United States of America
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Amanda Loke
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
45
|
Zhao L, Hu H, Gustafsson JÅ, Zhou S. Nuclear Receptors in Cancer Inflammation and Immunity. Trends Immunol 2020; 41:172-185. [PMID: 31982345 DOI: 10.1016/j.it.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Members of the nuclear receptor (NR) superfamily orchestrate cellular processes that can impact on numerous cancer hallmarks. NR activity plays important roles in the tumor microenvironment by controlling inflammation and immune responses. We summarize recent insights into the diverse mechanisms by which NR activity can control tumor inflammation, the roles of different NRs in modulating tumor immunity, and the biological features of immune cells that express specific NRs in the context of cancer. NR-dependent alterations in tumor inflammation and immunity may be amenable to pharmacological manipulation and offer new clues regarding the development of novel cancer therapeutic regimens.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
46
|
Hur B, Kang D, Lee S, Moon JH, Lee G, Kim S. Venn-diaNet : venn diagram based network propagation analysis framework for comparing multiple biological experiments. BMC Bioinformatics 2019; 20:667. [PMID: 31881980 PMCID: PMC6941187 DOI: 10.1186/s12859-019-3302-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The main research topic in this paper is how to compare multiple biological experiments using transcriptome data, where each experiment is measured and designed to compare control and treated samples. Comparison of multiple biological experiments is usually performed in terms of the number of DEGs in an arbitrary combination of biological experiments. This process is usually facilitated with Venn diagram but there are several issues when Venn diagram is used to compare and analyze multiple experiments in terms of DEGs. First, current Venn diagram tools do not provide systematic analysis to prioritize genes. Because that current tools generally do not fully focus to prioritize genes, genes that are located in the segments in the Venn diagram (especially, intersection) is usually difficult to rank. Second, elucidating the phenotypic difference only with the lists of DEGs and expression values is challenging when the experimental designs have the combination of treatments. Experiment designs that aim to find the synergistic effect of the combination of treatments are very difficult to find without an informative system. RESULTS We introduce Venn-diaNet, a Venn diagram based analysis framework that uses network propagation upon protein-protein interaction network to prioritizes genes from experiments that have multiple DEG lists. We suggest that the two issues can be effectively handled by ranking or prioritizing genes with segments of a Venn diagram. The user can easily compare multiple DEG lists with gene rankings, which is easy to understand and also can be coupled with additional analysis for their purposes. Our system provides a web-based interface to select seed genes in any of areas in a Venn diagram and then perform network propagation analysis to measure the influence of the selected seed genes in terms of ranked list of DEGs. CONCLUSIONS We suggest that our system can logically guide to select seed genes without additional prior knowledge that makes us free from the seed selection of network propagation issues. We showed that Venn-diaNet can reproduce the research findings reported in the original papers that have experiments that compare two, three and eight experiments. Venn-diaNet is freely available at: http://biohealth.snu.ac.kr/software/venndianet.
Collapse
Affiliation(s)
- Benjamin Hur
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Seoul, Korea
| | - Dongwon Kang
- Department of Computer Science and Engineering, 1 Gwanak-ro, Seoul, Korea
| | - Sangseon Lee
- Department of Computer Science and Engineering, 1 Gwanak-ro, Seoul, Korea
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Seoul, Korea
| | - Gung Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Seoul, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Seoul, Korea. .,Department of Computer Science and Engineering, 1 Gwanak-ro, Seoul, Korea. .,Bioinformatics Institute, Seoul National University, 1 Gwanak-ro, Seoul, Korea.
| |
Collapse
|
47
|
Suppression of Stromal Interferon Signaling by Human Papillomavirus 16. J Virol 2019; 93:JVI.00458-19. [PMID: 31292244 DOI: 10.1128/jvi.00458-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/09/2023] Open
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and cause several important cancers. Immune evasion is critical for viral persistence. Fibroblasts in the stromal microenvironment provide growth signals and cytokines that are required for proper epithelial differentiation, maintenance, and immune responses and are critical in the development of many cancers. In this study, we examined the role of epithelial-stromal interactions in the HPV16 life cycle using organotypic (raft) cultures as a model. Rafts were created using uninfected human foreskin keratinocytes (HFKs) and HFKs containing either wild-type HPV16 or HPV16 with a stop mutation to prevent the expression of the viral oncogene E5. Microarray analysis revealed significant changes in gene expression patterns in the stroma in response to HPV16, some of which were E5 dependent. Interferon (IFN)-stimulated genes (ISGs) and extracellular matrix remodeling genes were suppressed, the most prominent pathways affected. STAT1, IFNAR1, IRF3, and IRF7 were knocked down in stromal fibroblasts using lentiviral short hairpin RNA (shRNA) transduction. HPV late gene expression and viral copy number in the epithelium were increased when the stromal IFN pathway was disrupted, indicating that the stroma helps control the late phase of the HPV life cycle in the epithelium. Increased late gene expression correlated with increased late keratinocyte differentiation but not decreased IFN signaling in the epithelium. These studies show HPV16 has a paracrine effect on stromal innate immunity, reveal a new role for E5 as a stromal innate immune suppressor, and suggest that stromal IFN signaling may influence keratinocyte differentiation.IMPORTANCE The persistence of high-risk human papillomavirus (HPV) infections is the key risk factor for developing HPV-associated cancers. The ability of HPV to evade host immunity is a critical component of its ability to persist. The environment surrounding a tumor is increasingly understood to be critical in cancer development, including immune evasion. Our studies show that HPV can suppress the expression of immune-related genes in neighboring fibroblasts in a three-dimensional (3D) model of human epithelium. This finding is significant, because it indicates that HPV can control innate immunity not only in the infected cell but also in the microenvironment. In addition, the ability of HPV to regulate stromal gene expression depends in part on the viral oncogene E5, revealing a new function for this protein as an immune evasion factor.
Collapse
|
48
|
Koenigs MB, Lefranc-Torres A, Bonilla-Velez J, Patel KB, Hayes DN, Glomski K, Busse PM, Chan AW, Clark JR, Deschler DG, Emerick KS, Hammon RJ, Wirth LJ, Lin DT, Mroz EA, Faquin WC, Rocco JW. Association of Estrogen Receptor Alpha Expression With Survival in Oropharyngeal Cancer Following Chemoradiation Therapy. J Natl Cancer Inst 2019; 111:933-942. [PMID: 30715409 PMCID: PMC6748818 DOI: 10.1093/jnci/djy224] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/23/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Oropharyngeal squamous carcinoma (OPSC) continues to increase in incidence secondary to human papillomavirus (HPV) infection. Despite the good overall prognosis for these patients, treatment with chemoradiation is associated with morbidity and treatment failure. Better predictors for disease outcome are needed to guide de-intensification regimens. We hypothesized that estrogen receptor α (ERα), a prognostic biomarker in oncology with therapeutic implications, might have similar utility in OPSC. METHODS To investigate associations among ERα and demographics, HPV status, and survival, we analyzed ERα mRNA expression of head and neck squamous carcinomas (HNSC) from The Cancer Genome Atlas (TCGA) and immunohistochemistry (IHC) of pretreatment biopsy specimens from an independent group of 215 OPSC patients subsequently treated with primary chemoradiation (OPSC-CR). Associations among variables were evaluated with Fisher exact tests and logistic regression; associations with survival were evaluated with log-rank tests and Cox proportional hazards regression. RESULTS Among 515 patients in TCGA, ERα mRNA expression was highest in HPV-positive OPSC. High ERα mRNA expression was associated with improved survival among those receiving chemoradiation (hazard ratio adjusted for HPV status = 0.44, 95% confidence interval = 0.21 to 0.92). In OPSC-CR, ERα was positive by IHC in 51.6% of tumors and was associated with improved overall, disease-specific, progression-free, and relapse-free survival (log-rank tests: P < .001, P < .001, P = .002, P = .003, respectively); statistically significant associations of ERα positivity with improved survival were maintained after adjusting for clinical risk factors including HPV status. CONCLUSION In two independent cohorts, ERα is a potential biomarker for improved survival that also may represent a therapeutic target in OPSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - James W Rocco
- Correspondence to: James W. Rocco, MD, PhD, Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Comprehensive Cancer Center – James, 818 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210 (e-mail: )
| |
Collapse
|
49
|
Banerjee S, Karunagaran D. An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 2019; 712:143961. [PMID: 31279709 DOI: 10.1016/j.gene.2019.143961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India.
| |
Collapse
|
50
|
Jackson R, Eade S, Zehbe I. An epithelial organoid model with Langerhans cells for assessing virus-host interactions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180288. [PMID: 30955491 PMCID: PMC6501905 DOI: 10.1098/rstb.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) may lead to cancer in mucosal and skin tissue. Consequently, HPV must have developed strategies to escape host immune surveillance. Nevertheless, most HPV infections are cleared by the infected host. Our laboratory investigates Langerhans cells (LCs), acting at the interface between innate and adaptive immunity. We hypothesize that this first line of defence is vital for potential HPV elimination. As an alternative to animal models, we use smaller-scale epithelial organoids grown from human primary keratinocytes derived from various anatomical sites. This approach is amenable to large sample sizes-an essential aspect for scientific rigour and statistical power. To evaluate LCs phenotypically and molecularly during the viral life cycle and onset of carcinogenesis, we have included an engineered myeloid cell line with the ability to acquire an LC phenotype. This model is accurately tailored for the crucial time-window of early virus elimination in a complex organism and will shed more light on our long-standing research question of how naturally occurring HPV variants influence disease development. It may also be applied to other microorganism-host interaction research or enquiries of epithelium immunobiology. Finally, our continuously updated pathogen-host analysis tool enables state-of-the-art bioinformatics analyses of next-generation sequencing data. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Biotechnology Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| | - Statton Eade
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| |
Collapse
|