1
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. Nat Commun 2024; 15:8394. [PMID: 39333139 PMCID: PMC11437049 DOI: 10.1038/s41467-024-52803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Zhou Z, Qi Q, Wang WH, Dong J, Xu JJ, Feng YM, Zou ZC, Chen L, Ma JZ, Yao B. A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility. Asian J Androl 2024:00129336-990000000-00243. [PMID: 39254424 DOI: 10.4103/aja202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/11/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 (CFAP300) resulting in a stop codon (p.Glu156 *) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Collapse
Affiliation(s)
- Zheng Zhou
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qi Qi
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Hua Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jie Dong
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan-Juan Xu
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yu-Ming Feng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi-Chuan Zou
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Li Chen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Jin-Zhao Ma
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| |
Collapse
|
3
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Horani A, Mill P. Not all are the same: the power of registries in defining genotype-phenotype relationships in primary ciliary dyskinesia. Eur Respir J 2024; 64:2401026. [PMID: 39117425 PMCID: PMC7616396 DOI: 10.1183/13993003.01026-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Amjad Horani
- Washington University School of Medicine, Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, St Louis, MO, USA
- Both authors contributed equally to the manuscript
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Both authors contributed equally to the manuscript
| |
Collapse
|
5
|
Koenitzer JR, Gupta DK, Twan WK, Xu H, Hadas N, Hawkins FJ, Beermann ML, Penny GM, Wamsley NT, Berical A, Major MB, Dutcher SK, Brody SL, Horani A. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024; 9:e180198. [PMID: 39042459 PMCID: PMC11385084 DOI: 10.1172/jci.insight.180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Collapse
Affiliation(s)
| | - Deepesh Kumar Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang Kyaw Twan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Hadas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Berical
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer J, Brennan SK, Nanjundappa R, Saba TG, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Loss of an extensive ciliary connectome induces proteostasis and cell fate switching in a severe motile ciliopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585965. [PMID: 38562900 PMCID: PMC10983967 DOI: 10.1101/2024.03.20.585965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.
Collapse
Affiliation(s)
- Steven L Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K Dutcher
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
7
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Cui M, Dutcher S, Bayly P, Meacham J. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Proc Natl Acad Sci U S A 2023; 120:e2218951120. [PMID: 37307440 PMCID: PMC10290211 DOI: 10.1073/pnas.2218951120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/18/2023] [Indexed: 06/14/2023] Open
Abstract
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
Collapse
Affiliation(s)
- Mingyang Cui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - J. Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
10
|
Horani A, Gupta DK, Xu J, Xu H, del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennan SK, Pan J, Koenitzer JR, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. JCI Insight 2023; 8:e168836. [PMID: 37104040 PMCID: PMC10393236 DOI: 10.1172/jci.insight.168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics
- Department of Cell Biology and Physiology
| | | | | | | | | | | | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pleasantine Mill
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Moe R. Mahjoub
- Department of Cell Biology and Physiology
- Department of Medicine
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
11
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
12
|
Horani A, Gupta DK, Xu J, Xu H, Del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennen SK, Pan J, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523966. [PMID: 36712068 PMCID: PMC9882222 DOI: 10.1101/2023.01.13.523966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift null deletion in Dnaaf5 . Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partial preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. While transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. Together, these findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies. Brief Summary A mouse model of human DNAAF5 primary ciliary dyskinesia variants reveals gene dosage effects of mutant alleles and tissue-specific molecular requirements for cilia motor assembly.
Collapse
|
13
|
Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, Tan YQ, Nie H, Zhang Q, Lu G, Lin G, Li H, Zhang H, Tu C. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet 2023; 40:41-51. [PMID: 36515799 PMCID: PMC9840726 DOI: 10.1007/s10815-022-02681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The aim of this study is to identify the genetic cause of primary ciliary dyskinesia (PCD) and male infertility in two unrelated Han Chinese families. METHODS We performed whole-exome sequencing in two unrelated male Han Chinese patients suffering from infertility and PCD to identify the pathogenic variants. Ultrastructural and immunostaining analyses of patient's spermatozoa were performed to characterize the effect of the variants. The pathogenicity of the variants was validated using patient's spermatozoa by western blotting and immunostaining analysis. Intracytoplasmic sperm injection (ICSI) was conducted in the affected families. RESULTS Three variants in leucine-rich repeat containing 6 (LRRC6) [patient 1(compound heterozygote): NM_012472: c.538C > T, (p.R180*) and c.64dupT, (p.S22Ffs*19); patient 2 (homozygote): c.863C > A, (p.P288H)] were identified in two unrelated patients with PCD and male infertility. These variants were predicated deleterious and were absent or rare in human population genome data. LRRC6-mutant spermatozoa showed a highly aberrant morphology and ultrastructure with lacked inner and outer dynein arms. The LRRC6 protein was present along the normal sperm flagella, and was significantly decreased in the mutated spermatozoa. Interestingly, both patients were able to conceive through ICSI and birthed a healthy baby. CONCLUSION Our results extend the LRRC6 variant spectrum and provide reproductive guidance to families suffering from PCD-linked infertility caused by LRRC6 variants.
Collapse
Affiliation(s)
- Yunhao Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yue-Qiu Tan
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Huanzhu Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| |
Collapse
|
14
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Wang Y, Wu Q, Ren B, Muskhelishvili L, Davis K, Wynne R, Rua D, Cao X. Subacute Pulmonary Toxicity of Glutaraldehyde Aerosols in a Human In Vitro Airway Tissue Model. Int J Mol Sci 2022; 23:12118. [PMID: 36292975 PMCID: PMC9603730 DOI: 10.3390/ijms232012118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Glutaraldehyde (GA) has been cleared by the Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) as a high-level disinfectant for disinfecting heat-sensitive medical equipment in hospitals and healthcare facilities. Inhalation exposure to GA is known to cause respiratory irritation and sensitization in animals and humans. To reproduce some of the known in vivo effects elicited by GA, we used a liquid aerosol exposure system and evaluated the tissue responses in a human in vitro airway epithelial tissue model. The cultures were treated at the air interface with various concentrations of GA aerosols on five consecutive days and changes in tissue function and structure were evaluated at select timepoints during the treatment phase and after a 7-day recovery period. Exposure to GA aerosols caused oxidative stress, inhibition of ciliary beating frequency, aberrant mucin production, and disturbance of cytokine and matrix metalloproteinase secretion, as well as morphological transformation. Some effects, such as those on goblet cells and ciliated cells, persisted following the 7-day recovery period. Of note, the functional and structural disturbances observed in GA-treated cultures resemble those found in ortho-phthaldehyde (OPA)-treated cultures. Furthermore, our in vitro findings on GA toxicity partially and qualitatively mimicked those reported in the animal and human survey studies. Taken together, observations from this study demonstrate that the human air-liquid-interface (ALI) airway tissue model, integrated with an in vitro exposure system that simulates human inhalation exposure, could be used for in vitro-based human hazard identification and the risk characterization of aerosolized chemicals.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Rebecca Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Diego Rua
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
16
|
Liu Y, Wu Q, Sun T, Huang J, Han G, Han H. DNAAF5 promotes hepatocellular carcinoma malignant progression by recruiting USP39 to improve PFKL protein stability. Front Oncol 2022; 12:1032579. [PMID: 36276075 PMCID: PMC9582515 DOI: 10.3389/fonc.2022.1032579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
PurposesDynein axonemal assembly factor 5 (DNAAF5) is the transcription factor of regulating the cytoskeleton and hydrodynamic protein complex assembly, however, it was not well elucidated in the malignant progression of hepatocellular carcinoma (HCC).MethodsWe investigated the role of DNAAF5 in hepatocellular carcinoma by using multiple groups of clinical tissues combined with data from the TCGA database. Then we overexpressed DNAAF5 in hepatocellular carcinoma tumor tissues, which correlates with poor patient survival outcomes. Furthermore, we constructed stable cell lines of HCC cells to confirm the cancer-promoting effects of DNAAF5 in hepatocellular carcinoma. To explore the mechanisms of DNAAF5, transcriptome sequencing combined with mass spectrometry was also performed, which showed that DNAAF5 affects its downstream signaling pathway by interacting with PFKL and that DNAAF5 regulates PFKL protein stability by recruiting the deubiquitination protein, USP39. To corroborate these findings, the same series of tissue microarrays were used to confirm correlations between DNAAF5 and PFKL expressions. In animal experiments, DNAAF5 also promoted the proliferation of HCC cells.ResultsWe found that DNAAF5 expressions were markedly higher in HCC tissues, compared to the adjacent normal tissues. Increased levels of DNAAF5 were associated with significantly worse prognostic outcomes for HCC patients. Cell function experiments showed that HCC cells of overexpressing DNAAF5 exhibited faster proliferation rates, stronger clone formation abilities and higher drug resistance rates. However, tumor cell proliferation rates and colony formation were significantly decreased after DNAAF5 knockout, accompanied by an increase in sensitivity to sorafenib. In addition, the results of our study showed that DNAAF5 accelerates PFKL protein deubiquitination by recruiting USP39 in HCC cells. Furthermore, The overexpression of DNAAF5 could promote HCC cell proliferation in vivo and in vitro, whereas USP39 knockdown inhibited this effect. Overall, DNAAF5 serves as a scaffold protein to recruit USP39 to form a ternary complex by directly binding the PFKL protein, thereby improving the stability of the latter, which promotes the malignant process of hepatocellular carcinoma.ConclusionsThese findings revealed DNAAF5 was negatively correlated with the prognosis of patients with hepatocellular carcinoma. It underlying mechanism showed that DNAAF5 directly binds PFKL and recruits the deubiquitinated protein (USP39) to improve the stability of the PFKL protein, thus enhancing abnormal glycolysis in HCC cells.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Qiong Wu
- Department of Geriatrics, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Tiantian Sun
- Medical Department, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Junxing Huang
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| | - Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| |
Collapse
|
17
|
Schultz R, Elenius V, Fassad MR, Freke G, Rogers A, Shoemark A, Koistinen T, Mohamed MA, Lim JSY, Mitchison HM, Sironen AI. CFAP300 mutation causing primary ciliary dyskinesia in Finland. Front Genet 2022; 13:985227. [PMID: 36246608 PMCID: PMC9561811 DOI: 10.3389/fgene.2022.985227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by chronic respiratory tract infections and in some cases laterality defects and infertility. The symptoms of PCD are caused by malfunction of motile cilia, hair-like organelles protruding out of the cell that are responsible for removal of mucus from the airways and organizing internal organ positioning during embryonic development. PCD is caused by mutations in genes coding for structural or assembly proteins in motile cilia. Thus far mutations in over 50 genes have been identified and these variants explain around 70% of all known cases. Population specific genetics underlying PCD has been reported, thus highlighting the importance of characterizing gene variants in different populations for development of gene-based diagnostics. In this study, we identified a recurrent loss-of-function mutation c.198_200delinsCC in CFAP300 causing lack of the protein product. PCD patients homozygous for the identified CFAP300 mutation have immotile airway epithelial cilia associated with missing dynein arms in their ciliary axonemes. Furthermore, using super resolution microscopy we demonstrate that CFAP300 is transported along cilia in normal human airway epithelial cells suggesting a role for CFAP300 in dynein complex transport in addition to preassembly in the cytoplasm. Our results highlight the importance of CFAP300 in dynein arm assembly and improve diagnostics of PCD in Finland.
Collapse
Affiliation(s)
- Rüdiger Schultz
- Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Varpu Elenius
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Mahmoud R. Fassad
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Grace Freke
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew Rogers
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tiina Koistinen
- Department of Otorhinolaryngology, Head and Neck Surgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Mai A. Mohamed
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jacqueline S. Y. Lim
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Hannah M. Mitchison
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anu I. Sironen
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
18
|
Lennon J, zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022; 13:943197. [PMID: 35873488 PMCID: PMC9298768 DOI: 10.3389/fgene.2022.943197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Axonemal dynein motors are large multi-subunit complexes that drive ciliary movement. Cytoplasmic assembly of these motor complexes involves several co-chaperones, some of which are related to the R2TP co-chaperone complex. Mutations of these genes in humans cause the motile ciliopathy, Primary Ciliary Dyskinesia (PCD), but their different roles are not completely known. Two such dynein (axonemal) assembly factors (DNAAFs) that are thought to function together in an R2TP-like complex are DNAAF4 (DYX1C1) and DNAAF6 (PIH1D3). Here we investigate the Drosophila homologues, CG14921/Dnaaf4 and CG5048/Dnaaf6. Surprisingly, Drosophila Dnaaf4 is truncated such that it completely lacks a TPR domain, which in human DNAAF4 is likely required to recruit HSP90. Despite this, we provide evidence that Drosophila Dnaaf4 and Dnaaf6 proteins can associate in an R2TP-like complex that has a conserved role in dynein assembly. Both are specifically expressed and required during the development of the two Drosophila cell types with motile cilia: mechanosensory chordotonal neurons and sperm. Flies that lack Dnaaf4 or Dnaaf6 genes are viable but with impaired chordotonal neuron function and lack motile sperm. We provide molecular evidence that Dnaaf4 and Dnaaf6 are required for assembly of outer dynein arms (ODAs) and a subset of inner dynein arms (IDAs).
Collapse
Affiliation(s)
- Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. mBio 2022; 13:e0081522. [PMID: 35604092 PMCID: PMC9239271 DOI: 10.1128/mbio.00815-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James B. Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven L. Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
21
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Son J, Huang S, Zeng Q, Bricker TL, Case JB, Zhou J, Zang R, Liu Z, Chang X, Darling TL, Xu J, Harastani HH, Chen L, Gomez Castro MF, Zhao Y, Kohio HP, Hou G, Fan B, Niu B, Guo R, Rothlauf PW, Bailey AL, Wang X, Shi PY, Martinez ED, Brody SL, Whelan SPJ, Diamond MS, Boon ACM, Li B, Ding S. JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. mBio 2022; 13:e0337721. [PMID: 35038906 PMCID: PMC8764536 DOI: 10.1128/mbio.03377-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.
Collapse
Affiliation(s)
- Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Molecular Cell Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Tamarand L. Darling
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
24
|
Bukowy-Bieryłło Z, Daca-Roszak P, Jurczak J, Przystałowska-Macioła H, Jaksik R, Witt M, Ziętkiewicz E. In vitro differentiation of ciliated cells in ALI-cultured human airway epithelium - The framework for functional studies on airway differentiation in ciliopathies. Eur J Cell Biol 2021; 101:151189. [PMID: 34896770 DOI: 10.1016/j.ejcb.2021.151189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cultures of the human airway epithelium (AE) cells are an indispensable tool in studies of pathophysiology of genetic and environmental pulmonary diseases, including cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and chronic obstructive pulmonary disease (COPD). Air-liquid interface (ALI) culture is the best method to follow the differentiation of ciliated cells, whose dysfunction forms the basis of PCD. Here, we used custom-designed Taqman Low Density Array (TLDA), qRT-PCR-based assay, to analyze expression of 14 AE genes in cells from healthy donors, cultured in ALI settings using Pneumacult medium, with the focus on genes involved in cilia differentiation and in PCD pathogenesis. The results of TLDA assay were compared with the bulk RNAseq analysis, and placed in the cellular context using immunofluorescent staining (IF) of ALI cultured cells. Expression analysis revealed culture time-related upregulation of the majority of cilia-related genes, followed by the appearance of respective protein signals visualized by IF. Strong correlation of TLDA with RNAseq results indicated that TLDA assay is a reliable and scalable approach to analyze expression of selected genes specific for different AE cell types. Characterization of temporal and inter-donor changes in the expression of these genes, performed in healthy donors and in well-defined ALI/Pnemacult culture conditions, provides a useful reference relevant for a broad spectrum of functional studies where the in vitro AE differentiation is in focus.
Collapse
Affiliation(s)
| | | | - Joanna Jurczak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Roman Jaksik
- Systems Biology Group, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology, Gliwice, Poland
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
25
|
Lu C, Yang D, Lei C, Wang R, Guo T, Luo H. Identification of Two Novel DNAAF2 Variants in Two Consanguineous Families with Primary Ciliary Dyskinesia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1415-1423. [PMID: 34785929 PMCID: PMC8591118 DOI: 10.2147/pgpm.s338981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023]
Abstract
Background Dynein axonemal assembly factor 2 (DNAAF2) is involved in the early preassembly of dynein in the cytoplasm, which is essential for motile cilia function. Primary ciliary dyskinesia (PCD) associated with DNAAF2 variants has rarely been reported in females with infertility. Moreover, there is no report linking DNAAF2 to scoliosis in human. Materials and Methods We recruited patients from two consanguineous families with a clinical diagnosis of PCD and collected their clinical history, laboratory tests, and radiographic data. Sequencing and bioinformatics analysis were then performed. Immunofluorescence and high-speed microscope analysis were used to support the pathogenicity of the variant. Results Proband 1, a 26-year-old female from family I, exhibited scoliosis, bronchiectasis, sinusitis, situs inversus, and infertility. We found a novel homozygous missense variant in DNAAF2, c.491T>C, p.(Leu164Pro) in this patient. Subsequent immunofluorescence indicated the absence of outer dynein arm and inner dynein arm of cilia, and high-speed microscopy analysis showed that the most of the cilia are static, which support the pathogenicity of this variant. Proband 2, a 53-year-old female, presented with bronchiectasis, sinusitis, and infertility. In this patient, a new homozygous frameshift variant DNAAF2, c.822del, p.(Ala275Profs*10) was identified. The disease-causing variants mentioned above are not included in the current authorized genetic databases. Conclusion Our findings expand the spectrum of DNAAF2 variants and link DNAAF2 to female infertility and likely scoliosis in patients with PCD.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| |
Collapse
|
26
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
27
|
Abstract
TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.
Collapse
|
28
|
Stevanovic N, Skakic A, Minic P, Sovtic A, Stojiljkovic M, Pavlovic S, Andjelkovic M. Identification and Classification of Novel Genetic Variants: En Route to the Diagnosis of Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22168821. [PMID: 34445527 PMCID: PMC8396207 DOI: 10.3390/ijms22168821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a disease caused by impaired function of motile cilia. PCD mainly affects the lungs and reproductive organs. Inheritance is autosomal recessive and X-linked. PCD patients have diverse clinical manifestations, thus making the establishment of proper diagnosis challenging. The utility of next-generation sequencing (NGS) technology for diagnostic purposes allows for better understanding of the PCD genetic background. However, identification of specific disease-causing variants is difficult. The main aim of this study was to create a unique guideline that will enable the standardization of the assessment of novel genetic variants within PCD-associated genes. The designed pipeline consists of three main steps: (1) sequencing, detection, and identification of genes/variants; (2) classification of variants according to their effect; and (3) variant characterization using in silico structural and functional analysis. The pipeline was validated through the analysis of the variants detected in a well-known PCD disease-causing gene (DNAI1) and the novel candidate gene (SPAG16). The application of this pipeline resulted in identification of potential disease-causing variants, as well as validation of the variants pathogenicity, through their analysis on transcriptional, translational, and posttranslational levels. The application of this pipeline leads to the confirmation of PCD diagnosis and enables a shift from candidate to PCD disease-causing gene.
Collapse
Affiliation(s)
- Nina Stevanovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; (N.S.); (A.S.); (M.S.); (S.P.)
| | - Anita Skakic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; (N.S.); (A.S.); (M.S.); (S.P.)
| | - Predrag Minic
- Mother and Child Health Care Institute of Serbia Dr. VukanCupic, 11070 Belgrade, Serbia; (P.M.); (A.S.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Sovtic
- Mother and Child Health Care Institute of Serbia Dr. VukanCupic, 11070 Belgrade, Serbia; (P.M.); (A.S.)
| | - Maja Stojiljkovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; (N.S.); (A.S.); (M.S.); (S.P.)
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; (N.S.); (A.S.); (M.S.); (S.P.)
| | - Marina Andjelkovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; (N.S.); (A.S.); (M.S.); (S.P.)
- Correspondence: ; Tel.: +381-64-2202-373; Fax: +381-11-3975-808
| |
Collapse
|
29
|
Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22158272. [PMID: 34361034 PMCID: PMC8348038 DOI: 10.3390/ijms22158272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.
Collapse
Affiliation(s)
- Steven K Brennan
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
- Correspondence:
| | - Thomas W Ferkol
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
| | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC 27514, USA;
| |
Collapse
|
30
|
Sone N, Konishi S, Igura K, Tamai K, Ikeo S, Korogi Y, Kanagaki S, Namba T, Yamamoto Y, Xu Y, Takeuchi K, Adachi Y, Chen-Yoshikawa TF, Date H, Hagiwara M, Tsukita S, Hirai T, Torisawa YS, Gotoh S. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci Transl Med 2021; 13:13/601/eabb1298. [PMID: 34233948 DOI: 10.1126/scitranslmed.abb1298] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance is an essential lung function that facilitates the removal of inhaled pathogens and foreign matter unidirectionally from the airway tract and is innately achieved by coordinated ciliary beating of multiciliated cells. Should ciliary function become disturbed, mucus can accumulate in the airway causing subsequent obstruction and potentially recurrent pneumonia. However, it has been difficult to recapitulate unidirectional mucociliary flow using human-derived induced pluripotent stem cells (iPSCs) in vitro and the mechanism governing the flow has not yet been elucidated, hampering the proper humanized airway disease modeling. Here, we combine human iPSCs and airway-on-a-chip technology, to demonstrate the effectiveness of fluid shear stress (FSS) for regulating the global axis of multicellular planar cell polarity (PCP), as well as inducing ciliogenesis, thereby contributing to quantifiable unidirectional mucociliary flow. Furthermore, we applied the findings to disease modeling of primary ciliary dyskinesia (PCD), a genetic disease characterized by impaired mucociliary clearance. The application of an airway cell sheet derived from patient-derived iPSCs and their gene-edited counterparts, as well as genetic knockout iPSCs of PCD causative genes, made it possible to recapitulate the abnormal ciliary functions in organized PCP using the airway-on-a-chip. These findings suggest that the disease model of PCD developed here is a potential platform for making diagnoses and identifying therapeutic targets and that airway reconstruction therapy using mechanical stress to regulate PCP might have therapeutic value.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Konishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Ikeo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toshinori Namba
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yuki Yamamoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yifei Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Strategic Innovation and Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yu-Suke Torisawa
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8540, Japan.,Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. .,Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Belgacemi R, Diabasana Z, Hoarau A, Dubernard X, Mérol JC, Ruaux C, Polette M, Perotin JM, Deslée G, Dormoy V. Primary ciliogenesis is a crucial step for multiciliated cell determinism in the respiratory epithelium. J Cell Mol Med 2021; 25:7575-7579. [PMID: 34170075 PMCID: PMC8335676 DOI: 10.1111/jcmm.16729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
The alteration of the mucociliary clearance is a major hallmark of respiratory diseases related to structural and functional cilia abnormalities such as chronic obstructive pulmonary diseases (COPD), asthma and cystic fibrosis. Primary cilia and motile cilia are the two principal organelles involved in the control of cell fate in the airways. We tested the effect of primary cilia removal in the establishment of a fully differentiated respiratory epithelium. Epithelial barrier integrity was not altered while multiciliated cells were decreased and mucous-secreting cells were increased. Primary cilia homeostasis is therefore paramount for airway epithelial cell differentiation. Primary cilia-associated pathophysiologic implications require further investigations in the context of respiratory diseases.
Collapse
Affiliation(s)
- Randa Belgacemi
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Zania Diabasana
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Antony Hoarau
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Xavier Dubernard
- Department of otorhinolaryngology, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of otorhinolaryngology, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Christophe Ruaux
- Department of otorhinolaryngology, Clinique Mutualiste La Sagesse, Rennes, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of biopathology, CHU Reims, Hôpital Maison Blanche, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of respiratory diseases, CHU of Reims, Hôpital Maison Blanche, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of respiratory diseases, CHU of Reims, Hôpital Maison Blanche, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
32
|
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Rep 2021; 36:109364. [PMID: 34214467 PMCID: PMC8220945 DOI: 10.1016/j.celrep.2021.109364] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Collapse
|
33
|
Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Nat Med 2021; 27:806-814. [PMID: 33958799 PMCID: PMC9009537 DOI: 10.1038/s41591-021-01332-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.
Collapse
|
34
|
Dermouche S, Chagot ME, Manival X, Quinternet M. Optimizing the First TPR Domain of the Human SPAG1 Protein Provides Insight into the HSP70 and HSP90 Binding Properties. Biochemistry 2021; 60:2349-2363. [PMID: 33739091 DOI: 10.1021/acs.biochem.1c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.
Collapse
Affiliation(s)
- Sana Dermouche
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
35
|
Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, Jasuja R, Lawson DQ, Davis K, Rothlauf PW, Jo H, Lee N, Tenneti K, Eschbach JE, Mugisha CS, Vuong HR, Bailey AL, Hayes DN, Whelan SP, Horani A, Brody SL, Goldfarb D, Major MB, Kutluay SB. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.01.433431. [PMID: 33688646 PMCID: PMC7941617 DOI: 10.1101/2021.03.01.433431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Established in vitro models for SARS-CoV-2 infection are limited and include cell lines of non-human origin and those engineered to overexpress ACE2, the cognate host cell receptor. We identified human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of ACE2. Infection of H522 cells required the SARS-CoV-2 spike protein, though in contrast to ACE2-dependent models, spike alone was not sufficient for H522 infection. Temporally resolved transcriptomic and proteomic profiling revealed alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type-I interferon signaling. Focused chemical screens point to important roles for clathrin-mediated endocytosis and endosomal cathepsins in SARS-CoV-2 infection of H522 cells. These findings imply the utilization of an alternative SARS-CoV-2 host cell receptor which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Travis P. Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jennifer L. Elliott
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhaval P. Bhatt
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan J. Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Heejoon Jo
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam L. Bailey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - D. Neil Hayes
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amjad Horani
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Lead Contact
| |
Collapse
|
36
|
Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021; 230:15-22.e1. [PMID: 33242470 PMCID: PMC8690631 DOI: 10.1016/j.jpeds.2020.11.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Ciliopathies are a collection of disorders related to cilia dysfunction. Cilia are specialized organelles that project from the surface of most cells. Motile and primary (sensory) cilia are essential structures and have wide ranging functions. Our understanding of the genetics, pathophysiology, and clinical manifestations of motile ciliopathies, including primary ciliary dyskinesia (PCD), has rapidly advanced since the disease was linked to ciliary ultrastructural defects nearly five decades ago. We will provide an overview of different types of cilia, their role in child health and disease, focusing on motile ciliopathies, and describe recent advances that have led to improved diagnostics and may yield therapeutic targets to restore ciliary structure and function.
Collapse
|
37
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
38
|
Chen Q, Tan KS, Liu J, Ong HH, Zhou S, Huang H, Chen H, Ong YK, Thong M, Chow VT, Qiu Q, Wang DY. Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium. Front Cell Dev Biol 2020; 8:581340. [PMID: 33409274 PMCID: PMC7779769 DOI: 10.3389/fcell.2020.581340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory viral infections are one of the main drivers of development and exacerbation for chronic airway inflammatory diseases. Increased viral susceptibility and impaired mucociliary clearance are often associated with chronic airway inflammatory diseases and served as risk factors of exacerbations. However, the links between viral susceptibility, viral clearance, and impaired mucociliary functions are unclear. Therefore, the objective of this study is to provide the insights into the effects of improper clearance of respiratory viruses from the epithelium following infection, and their resulting persistent activation of antiviral response, on mucociliary functions. Methods In order to investigate the effects of persistent antiviral responses triggered by viral components from improper clearance on cilia formation and function, we established an in vitro air–liquid interface (ALI) culture of human nasal epithelial cells (hNECs) and used Poly(I:C) as a surrogate of viral components to simulate their effects toward re-epithelization and mucociliary functions of the nasal epithelium following damages from a viral infection. Results Through previous and current viral infection expression data, we found that respiratory viral infection of hNECs downregulated motile cilia gene expression. We then further tested the effects of antiviral response activation on the differentiation of hNECs using Poly(I:C) stimulation on differentiating human nasal epithelial stem/progenitor cells (hNESPCs). Using this model, we observed reduced ciliated cell differentiation compared to goblet cells, reduced protein and mRNA in ciliogenesis-associated markers, and increased mis-assembly and mis-localization of ciliary protein DNAH5 following treatment with 25 μg/ml Poly(I:C) in differentiating hNECs. Additionally, the cilia length and ciliary beat frequency (CBF) were also decreased, which suggest impairment of ciliary function as well. Conclusion Our results suggest that the impairments of ciliogenesis and ciliary function in hNECs may be triggered by specific expression of host antiviral response genes during re-epithelization of the nasal epithelium following viral infection. This event may in turn drive the development and exacerbation of chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Qianmin Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suizi Zhou
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongming Huang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Otolaryngology, Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Hailing Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yew Kwang Ong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Qianhui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. eLife 2020; 9:e58662. [PMID: 33263282 PMCID: PMC7785291 DOI: 10.7554/elife.58662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Rachael M Cox
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Amjad Horani
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Kevin Drew
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Steven L Brody
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
40
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
41
|
Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020; 16:e1009126. [PMID: 33141819 PMCID: PMC7608865 DOI: 10.1371/journal.pgen.1009126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows comparatively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1 displays greater reduction in motility and in dynein assembly compared to each single mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and PF13 may define different steps, and have partially overlapping functions, in a pathway required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins function in preassembly steps that are both common and unique for different ciliary dyneins. Motile cilia are hair-like organelles that protrude from many eukaryotic cells, and play vital roles in organisms including cell motility, environmental sensing and removal of infectious materials. Motile cilia are driven by gigantic motor protein complexes, called ciliary dyneins, defects in which cause abnormal ciliary motility, ultimately resulting in human diseases collectively called primary ciliary dyskinesia (PCD). Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and preassembly requires a family of potential co-chaperones, the PIH proteins. Mutations in the PIH proteins cause defective assembly of ciliary dyneins and can result in PCD. However, despite their importance, the precise functions, and functional relationships, between the PIH proteins are unclear. In this study, using Chlamydomonas reinhardtii, we assessed the functional relationship between three PIH proteins with respect to dynein preassembly and motility. We found that these PIH proteins have complicated and related roles in dynein assembly, possibly with each playing common and unique roles in dynein assembly. Our results provide new information on each conserved PIH protein for dynein assembly and provide a new understanding of PCD caused by PIH mutations.
Collapse
|
42
|
Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020; 467:108-117. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.
Collapse
Affiliation(s)
- Kevin Drew
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Chanjae Lee
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Rachael M Cox
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Vy Dang
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Caitlin C Devitt
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Claire D McWhite
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ophelia Papoulas
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ryan L Huizar
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Edward M Marcotte
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| | - John B Wallingford
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
43
|
Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020; 16:e1008691. [PMID: 32764743 PMCID: PMC7444499 DOI: 10.1371/journal.pgen.1008691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/19/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mihaela Stoyanova
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wu-Lin Charng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathieu Bottier
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Patrick R. Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei-Ning Yin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh Anne Daniels
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hailey Bowen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lawrence E. Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine and the Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
44
|
Nanavaty V, Abrash EW, Hong C, Park S, Fink EE, Li Z, Sweet TJ, Bhasin JM, Singuri S, Lee BH, Hwang TH, Ting AH. DNA Methylation Regulates Alternative Polyadenylation via CTCF and the Cohesin Complex. Mol Cell 2020; 78:752-764.e6. [PMID: 32333838 PMCID: PMC7245569 DOI: 10.1016/j.molcel.2020.03.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023]
Abstract
Dysregulation of DNA methylation and mRNA alternative cleavage and polyadenylation (APA) are both prevalent in cancer and have been studied as independent processes. We discovered a DNA methylation-regulated APA mechanism when we compared genome-wide DNA methylation and polyadenylation site usage between DNA methylation-competent and DNA methylation-deficient cells. Here, we show that removal of DNA methylation enables CTCF binding and recruitment of the cohesin complex, which, in turn, form chromatin loops that promote proximal polyadenylation site usage. In this DNA demethylated context, either deletion of the CTCF binding site or depletion of RAD21 cohesin complex protein can recover distal polyadenylation site usage. Using data from The Cancer Genome Atlas, we authenticated the relationship between DNA methylation and mRNA polyadenylation isoform expression in vivo. This DNA methylation-regulated APA mechanism demonstrates how aberrant DNA methylation impacts transcriptome diversity and highlights the potential sequelae of global DNA methylation inhibition as a cancer treatment.
Collapse
Affiliation(s)
- Vishal Nanavaty
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Elizabeth W Abrash
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Changjin Hong
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunho Park
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhuangyue Li
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas J Sweet
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for RNA Sciences and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey M Bhasin
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Srinidhi Singuri
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tae Hyun Hwang
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
45
|
Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2020; 61:440-449. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous hereditary disease from a class of ciliopathies. In spite of the recent progress, the genetic basis of PCD in one-third of patients remains unknown. In search for new genes and/or mutations, whole-exome sequencing was performed in 120 unrelated Polish patients with PCD, in whom no genetic cause of PCD was earlier identified. Among a number of pathogenic variants in PCD genes, mutations in CFAP300 (alias C11orf70) were detected. Extended screening in the whole Polish PCD cohort revealed the relatively high frequency (3.6%) of otherwise rare c.[198_200 del_insCC] variant, indicating that it should be included in population-specific genetic tests for PCD in Slavic populations. Immunofluorescence analysis of the respiratory epithelial cells from patients with CFAP300 mutations revealed the absence or aberrant localization of outer and inner dynein arm markers, consistent with transmission electron microscope images indicating the lack of both dynein arms. Interestingly, the disparate localization of DNAH5 and DNALI1 proteins in patients with CFAP300 mutations suggested differential mechanisms for the trafficking of preassembled outer and inner dynein arms to the axoneme. The profile of CFAP300 expression during ciliogenesis in suspension culture was consistent with its role in cilia assembly. Gene silencing experiments, performed in a model organism, Schmidtea mediterranea (flatworm), pointed to the conserved role of CFAP300 in ciliary function.
Collapse
Affiliation(s)
- Ewa Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Wojda
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Voelkel
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Rutkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Pogorzelski
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland; and
| | - Margarida Rasteiro
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School-Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
46
|
Cheong A, Degani R, Tremblay KD, Mager J. A null allele of Dnaaf2 displays embryonic lethality and mimics human ciliary dyskinesia. Hum Mol Genet 2020; 28:2775-2784. [PMID: 31107948 DOI: 10.1093/hmg/ddz106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 01/30/2023] Open
Abstract
The dynein axonemal assembly factor (Dnaaf) protein family is involved in preassembly and stability of dynein arms before they are transported into the cilia. In humans, mutations in DNAAF genes lead to several diseases related to cilia defects such as primary ciliary dyskinesia (PCD; OMIM: 612518). Patients with PCD experience malfunctions in cilia motility, which can result in inflammation and infection of the respiratory tract among other defects. Previous studies have identified that a mutation in DNAAF2 results in PCD and that 40% of these patients also experience laterality defects. In an outbred genetic background, Dnaaf2 homozygotes die after birth and have left/right defects among other phenotypes. Here we characterize a novel null allele of Dnaaf2 obtained from the International Mouse Phenotyping Consortium. Our data indicate that on a defined C57bl/6NJ genetic background, homozygous Dnaaf2 mouse embryos fail to progress beyond organogenesis stages with many abnormalities including left-right patterning defects. These findings support studies indicating that hypomorphic mutations of human DNAAF2 can result in ciliary dyskinesia and identify Dnaaf2 as an essential component of cilia function in vivo.
Collapse
Affiliation(s)
- Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
47
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
48
|
Horani A, Brody SL. Frequenting Sequencing: How Genetics Teaches Us Cilia Biology. Am J Respir Cell Mol Biol 2019; 61:403-404. [PMID: 30951371 PMCID: PMC6775949 DOI: 10.1165/rcmb.2019-0103ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Amjad Horani
- Department of PediatricsWashington University School of MedicineSaint Louis, Missouriand
| | - Steven L. Brody
- Department of MedicineWashington University School of MedicineSaint Louis, Missouri
| |
Collapse
|
49
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
50
|
Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. eLife 2018; 7:38497. [PMID: 30561330 PMCID: PMC6349401 DOI: 10.7554/elife.38497] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
Collapse
Affiliation(s)
- Ryan L Huizar
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, United States
| |
Collapse
|