1
|
Liu Z, Liang X, Li L, Liu N, Wang Z, Wei F. Pathogenicity of tick-derived lymphocytic choriomeningitis virus in BALB/c mice. BMC Vet Res 2025; 21:3. [PMID: 39762895 PMCID: PMC11702202 DOI: 10.1186/s12917-024-04451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Lymphocytic choriomeningitis virus (LCMV) is a zoonotic pathogen primarily transmitted by rodents. Recently, LCMV has been detected in ticks from northeastern China; however, the pathogenicity of this virus in murine models remains to be elucidated. RESULTS Here, we examined the tick-derived LCMV strain JX14 by inoculating BALB/c mice with 3.5 × 105 pfu of virus. The mice infected with LCMV displayed clinical manifestations including unkempt fur, anorexia, depression, and oliguria, which subsequently resolved by 10 days post infection (dpi) leading to survival of the infection. During the early phase of infection, low viral titers were detected in throat and anal swabs. The excreted virions demonstrated proliferation in Vero cells and were capable of inducing infection in mock-infected mice. Viral RNA was detected in the blood and organs, with detectable levels persisting for up to six months specifically in the heart. A total of 16 amino acid substitutions were identified in the L, Z, and GPC proteins between the original JX14 strain and the strain obtained after six months of infection in BALB/c mice. Pathological lesions were identified in most organs within 5 dpi except for the kidneys and testicles. Interferon gamma (IFN-γ) level was significantly elevated during the early stage of infection and returned to baseline levels within 10 days. CONCLUSIONS This study furnishes significant insights into the pathogenic traits of the tick-derived LCMV strain JX14, thereby potentially providing a valuable in vivo research model for examining the immunological responses elicited by chronic viral infections.
Collapse
Affiliation(s)
- Ziyan Liu
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, Jilin Province, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Ning Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Shaabani N, Zak J, Johnson JL, Huang Z, Nguyen N, Lazar DC, Vartabedian VF, Honke N, Jardine JG, Woehl J, Prinz M, Knobeloch KP, Arimoto KI, Zhang DE, Catz SD, Teijaro JR. ISG15 Drives Immune Pathology and Respiratory Failure during Systemic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1811-1824. [PMID: 39495004 PMCID: PMC11784630 DOI: 10.4049/jimmunol.2400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
ISG15, an IFN-stimulated gene, plays a crucial role in modulating immune responses during viral infections. Its upregulation is part of the host's defense mechanism against viruses, contributing to the antiviral state of cells. However, altered ISG15 expression can also lead to immune dysregulation and pathological outcomes, particularly during persistent viral infections. Understanding the balance of ISG15 in promoting antiviral immunity while avoiding immune-mediated pathology is essential for developing targeted therapeutic interventions against viral diseases. In this article, using Usp18-deficient, USP18 enzymatic-inactive and Isg15-deficient mouse models, we report that a lack of USP18 enzymatic function during persistent viral infection leads to severe immune pathology characterized by hematological disruptions described by reductions in platelets, total WBCs, and lymphocyte counts; pulmonary cytokine amplification; lung vascular leakage; and death. The lack of Usp18 in myeloid cells mimicked the pathological manifestations observed in Usp18-/- mice and required Isg15. Mechanistically, interrupting the enzymes that conjugate/deconjugate ISG15, using Uba7-/- or Usp18C61A mice, respectively, led to accumulation of ISG15 that was accompanied by inflammatory neutrophil accumulation, lung pathology, and death similar to that observed in Usp18-deficient mice. Moreover, myeloid cell depletion reversed pathological manifestations, morbidity, and mortality in Usp18C61A mice. Our results suggest that dysregulated ISG15 production and signaling during persistent lymphocytic choriomeningitis virus infection can produce lethal immune pathology and could serve as a therapeutic target during severe viral infections with pulmonary pathological manifestations.
Collapse
Affiliation(s)
- Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Daniel C Lazar
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joseph G Jardine
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jordan Woehl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pathology, University of California San Diego, La Jolla, CA
- Division of Biological Science, University of California San Diego, La Jolla, CA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
3
|
Baker CN, Duso D, Kothapalli N, Hart T, Casey S, Cookenham T, Kummer L, Hvizdos J, Lanzer K, Vats P, Shanbhag P, Bell I, Tighe M, Travis K, Szaba F, Harder JM, Bedard O, Oberding N, Ward JM, Adams MD, Lutz C, Bradrick SS, Reiley WW, Rosenthal NA. Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19. Sci Rep 2024; 14:25147. [PMID: 39448712 PMCID: PMC11502910 DOI: 10.1038/s41598-024-77087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a few other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad spectrum of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.
Collapse
Affiliation(s)
| | - Debra Duso
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | - Sean Casey
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | | | | | - Purva Vats
- The Jackson Laboratory, Farmington, CT, USA
| | | | - Isaac Bell
- The Jackson Laboratory, Farmington, CT, USA
| | - Mike Tighe
- Trudeau Institute, Saranac Lake, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
4
|
Baker CN, Duso D, Kothapalli N, Hart T, Casey S, Cookenham T, Kummer L, Hvizdos J, Lanzer K, Vats P, Shanbhag P, Bell I, Tighe M, Travis K, Szaba F, Bedard O, Oberding N, Ward JM, Adams MD, Lutz C, Bradrick SS, Reiley WW, Rosenthal N. Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19. RESEARCH SQUARE 2024:rs.3.rs-4675061. [PMID: 39149485 PMCID: PMC11326417 DOI: 10.21203/rs.3.rs-4675061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a limited range of other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad range of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.
Collapse
|
5
|
Hashizume M, Takashima A, Iwasaki M. An mRNA-LNP-based Lassa virus vaccine induces protective immunity in mice. J Virol 2024; 98:e0057824. [PMID: 38767352 PMCID: PMC11237644 DOI: 10.1128/jvi.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Cooper L, Xu H, Polmear J, Kealy L, Szeto C, Pang ES, Gupta M, Kirn A, Taylor JJ, Jackson KJL, Broomfield BJ, Nguyen A, Gago da Graça C, La Gruta N, Utzschneider DT, Groom JR, Martelotto L, Parish IA, O'Keeffe M, Scharer CD, Gras S, Good-Jacobson KL. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024; 57:1037-1055.e6. [PMID: 38593796 PMCID: PMC11096045 DOI: 10.1016/j.immuni.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mansi Gupta
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alana Kirn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Benjamin J Broomfield
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia; Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
7
|
Zhang Y, Chen Y, Cao J, Liu H, Li Z. Dynamical Modeling and Qualitative Analysis of a Delayed Model for CD8 T Cells in Response to Viral Antigens. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7138-7149. [PMID: 36279328 DOI: 10.1109/tnnls.2022.3214076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although the immune effector CD8 T cells play a crucial role in clearance of viruses, the mechanisms underlying the dynamics of how CD8 T cells respond to viral infection remain largely unexplored. Here, we develop a delayed model that incorporates CD8 T cells and infected cells to investigate the functional role of CD8 T cells in persistent virus infection. Bifurcation analysis reveals that the model has four steady states that can finely divide the progressions of viral infection into four states, and endows the model with bistability that has ability to achieve the switch from one state to another. Furthermore, analytical and numerical methods find that the time delay resulting from incubation period of virus can induce a stable low-infection steady state to be oscillatory, coexisting with a stable high-infection steady state in phase space. In particular, a novel mechanism to achieve the switch between two stable steady states, time-delay-based switch, is proposed, where the initial conditions and other parameters of the model remain unchanged. Moreover, our model predicts that, for a certain range of initial antigen load: 1) under a longer incubation period, the lower the initial antigen load, the easier the virus infection will evolve into severe state; while the higher the initial antigen load, the easier it is for the virus infection to be effectively controlled and 2) only when the incubation period is small, the lower the initial antigen load, the easier it is to effectively control the infection progression. Our results are consistent with multiple experimental observations, which may facilitate the understanding of the dynamical and physiological mechanisms of CD8 T cells in response to viral infections.
Collapse
|
8
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Tibbs TN, Donoghue LJ, Buzzelli AA, Misumi I, DeMonia M, Ferris MT, Kelada SN, Whitmire JK. Mice with FVB-derived sequence on chromosome 17 succumb to disseminated virus infection due to aberrant NK cell and T cell responses. iScience 2023; 26:108348. [PMID: 38026197 PMCID: PMC10665959 DOI: 10.1016/j.isci.2023.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Lauren J. Donoghue
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ashlyn A. Buzzelli
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Maggie DeMonia
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samir N.P. Kelada
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K. Whitmire
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Kudek MR, Xin G, Alson D(T, Holzhauer S, Shen J, Kasmani MY, Riese M, Cui W. Lymphocytic Choriomeningitis Virus Clone 13 Infection Results in CD8 T Cell-Mediated Host Mortality in Diacylglycerol Kinase α-Deficient Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1281-1291. [PMID: 36920384 PMCID: PMC10121876 DOI: 10.4049/jimmunol.2101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Diacylglycerol is a potent element of intracellular secondary signaling cascades whose production is enhanced by cell-surface receptor agonism and function is regulated by enzymatic degradation by diacylglycerol kinases (DGKs). In T cells, stringent regulation of the activity of this second messenger maintains an appropriate balance between effector function and anergy. In this article, we demonstrate that DGKα is an indispensable regulator of TCR-mediated activation of CD8 T cells in lymphocytic choriomeningitis virus Clone 13 viral infection. In the absence of DGKα, Clone 13 infection in a murine model results in a pathologic, proinflammatory state and a multicellular immunopathologic host death that is predominantly driven by CD8 effector T cells.
Collapse
Affiliation(s)
- Matthew R. Kudek
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and BMT. Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Gang Xin
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Current address: Department of Microbial Infection and Immunity. Ohio State University, Columbus, OH, USA
| | | | | | - Jian Shen
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Moujtaba Y. Kasmani
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Matthew Riese
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Medicine, Division of Oncology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
11
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
12
|
Morodomi Y, Kanaji S, Sullivan BM, Zarpellon A, Orje JN, Won E, Shapiro R, Yang XL, Ruf W, Schimmel P, Ruggeri ZM, Kanaji T. Inflammatory platelet production stimulated by tyrosyl-tRNA synthetase mimicking viral infection. Proc Natl Acad Sci U S A 2022; 119:e2212659119. [PMID: 36409883 PMCID: PMC9860251 DOI: 10.1073/pnas.2212659119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.
Collapse
Affiliation(s)
- Yosuke Morodomi
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Sachiko Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Brian M. Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | | | - Jennifer N. Orje
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- MERU-VasImmune, Inc., San Diego, CA92121
| | - Eric Won
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Hematology and Oncology, University of California, San Diego, CA92093
- Rady Children’s Hospital, San Diego, CA92123
| | - Ryan Shapiro
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Xiang-Lei Yang
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, 55128Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Paul Schimmel
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Zaverio M. Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- MERU-VasImmune, Inc., San Diego, CA92121
| | - Taisuke Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA92037
- The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
13
|
Guijas C, Horton LE, Hoang L, Domingo-Almenara X, Billings EM, Ware BC, Sullivan B, Siuzdak G. Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression. Metabolites 2022; 12:metabo12070645. [PMID: 35888769 PMCID: PMC9317520 DOI: 10.3390/metabo12070645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The microbial-derived metabolite, 3-indolepropionic acid (3-IPA), has been intensely studied since its origins were discovered in 2009; however, 3-IPA's role in immunosuppression has had limited attention. Untargeted metabolomic analyses of T-cell exhaustion and immunosuppression, represented by dysfunctional under-responsive CD8+ T cells, reveal a potential role of 3-IPA in these responses. T-cell exhaustion was examined via infection of two genetically related mouse strains, DBA/1J and DBA/2J, with lymphocytic choriomeningitis virus (LCMV) Clone 13 (Cl13). The different mouse strains produced disparate outcomes driven by their T-cell responses. Infected DBA/2J presented with exhausted T cells and persistent infection, and DBA/1J mice died one week after infection from cytotoxic T lymphocytes (CTLs)-mediated pulmonary failure. Metabolomics revealed over 70 metabolites were altered between the DBA/1J and DBA/2J models over the course of the infection, most of them in mice with a fatal outcome. Cognitive-driven prioritization combined with statistical significance and fold change were used to prioritize the metabolites. 3-IPA, a tryptophan-derived metabolite, was identified as a high-priority candidate for testing. To test its activity 3-IPA was added to the drinking water of the mouse models during LCMV Cl13 infection, with the results showing that 3-IPA allowed the mice to survive longer. This negative immune-modulation effect might be of interest for the modulation of CTL responses in events such as autoimmune diseases, type I diabetes or even COVID-19. Moreover, 3-IPA's bacterial origin raises the possibility of targeting the microbiome to enhance CTL responses in diseases such as cancer and chronic infection.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Lucy E. Horton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Linh Hoang
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Xavier Domingo-Almenara
- Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat—Technology Centre of Catalonia, 08005 Barcelona, Catalonia, Spain;
| | - Elizabeth M. Billings
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Brian C. Ware
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Brian Sullivan
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
- Departments of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| |
Collapse
|
14
|
Swainson LA, Sharma AA, Ghneim K, Ribeiro SP, Wilkinson P, Dunham RM, Albright RG, Wong S, Estes JD, Piatak M, Deeks SG, Hunt PW, Sekaly RP, McCune JM. IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight 2022; 7:153046. [PMID: 35104248 PMCID: PMC8983135 DOI: 10.1172/jci.insight.153046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Type I IFNs (TI-IFNs) drive immune effector functions during acute viral infections and regulate cell cycling and systemic metabolism. That said, chronic TI-IFN signaling in the context of HIV infection treated with antiretroviral therapy (ART) also facilitates viral persistence, in part by promoting immunosuppressive responses and CD8+ T cell exhaustion. To determine whether inhibition of IFN-α might provide benefit in the setting of chronic, ART-treated SIV infection of rhesus macaques, we administered an anti-IFN-α antibody followed by an analytical treatment interruption (ATI). IFN-α blockade was well-tolerated and associated with lower expression of TI-IFN-inducible genes (including those that are antiviral) and reduced tissue viral DNA (vDNA). The reduction in vDNA was further accompanied by higher innate proinflammatory plasma cytokines, expression of monocyte activation genes, IL-12-induced effector CD8+ T cell genes, increased heme/metabolic activity, and lower plasma TGF-β levels. Upon ATI, SIV-infected, ART-suppressed nonhuman primates treated with anti-IFN-α displayed lower levels of weight loss and improved erythroid function relative to untreated controls. Overall, these data demonstrated that IFN-α blockade during ART-treated SIV infection was safe and associated with the induction of immune/erythroid pathways that reduced viral persistence during ART while mitigating the weight loss and anemia that typically ensue after ART interruption.
Collapse
Affiliation(s)
- Louise A. Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Khader Ghneim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard M. Dunham
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,ViiV Healthcare, Research Triangle, North Carolina, USA
| | - Rebecca G. Albright
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA.,Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Steven G. Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,HIV Frontiers/Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
15
|
Restriction of viral replication, rather than T cell immunopathology, drives lethality in MNV CR6-infected STAT1-deficient mice. J Virol 2022; 96:e0206521. [PMID: 35107369 DOI: 10.1128/jvi.02065-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent evidence indicates that viral components of the microbiota can contribute to intestinal homeostasis and protection from local inflammatory or infectious insults. However, host-derived mechanisms that regulate the virome remain largely unknown. Here, we use colonization with the model commensal murine norovirus (MNV CR6) to interrogate host-directed mechanisms of viral regulation, and show that STAT1 is a central coordinator of both viral replication and antiviral T cell responses. In addition to restricting CR6 replication to the intestinal tract, we show that STAT1 regulates antiviral CD4+ and CD8+ T cell responses, and prevents systemic viral-induced tissue damage and disease. Despite altered T cell responses that resemble those that mediate lethal immunopathology in systemic viral infections in STAT1-deficient mice, depletion of adaptive immune cells and their associated effector functions had no effect on CR6-induced disease. However, therapeutic administration of an antiviral compound limited viral replication, preventing viral-induced tissue damage and death without impacting the generation of inflammatory antiviral T cell responses. Collectively, our data show that STAT1 restricts MNV CR6 replication within the intestinal mucosa, and that uncontrolled viral replication mediates disease rather than the concomitant development of dysregulated antiviral T cell responses in STAT1-deficient mice. Importance The intestinal microbiota is a collection of bacteria, archaea, fungi and viruses that colonize the mammalian gut. Co-evolution of the host and microbiota has required development of immunological tolerance to prevent ongoing inflammatory responses against intestinal microbes. Breakdown of tolerance to bacterial components of the microbiota can contribute to immune activation and inflammatory disease. However, the mechanisms that are necessary to maintain tolerance to viral components of the microbiome, and the consequences of loss of tolerance, are less well understood. Here, we show that STAT1 is integral for preventing escape of a commensal-like virus, murine norovirus CR6 (MNV CR6) from the gut, and that in the absence of STAT1, mice succumb to infection-induced disease. In contrast to other systemic viral infections, mortality of STAT1-deficient mice is not driven by immune-mediated pathology. Our data demonstrates the importance of host-mediated geographical restriction of commensal-like viruses.
Collapse
|
16
|
Freed SM, Baldi DS, Snow JA, Athen SR, Guinn ZP, Pinkerton TS, Petro TM, Moore TC. MEK/ERK MAP kinase limits poly I:C-induced antiviral gene expression in RAW264.7 macrophages by reducing interferon-beta expression. FEBS Lett 2021; 595:2665-2674. [PMID: 34591979 DOI: 10.1002/1873-3468.14200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA (or the synthetic dsRNA analog poly I:C) and induces a signal transduction pathway that results in activation of transcription factors that induce expression of antiviral genes including type I interferon (IFN-I). Secreted IFN-I positively feeds back to amplify antiviral gene expression. In this report, we study the role of MEK/ERK MAP kinase in modulating antiviral gene expression downstream of TLR3. We find MEK/ERK is a negative regulator of antiviral gene expression by limiting expression of IFN-β. However, MEK/ERK does not limit antiviral responses downstream of the type I interferon receptor. These findings provide insights into regulatory mechanisms of antiviral gene expression and reveal potential targets for modulating antiviral immunity.
Collapse
Affiliation(s)
- Shawn M Freed
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| | - Danielle S Baldi
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| | - Jason A Snow
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| | - Sierra R Athen
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| | - Zachary P Guinn
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA
| | - T Scott Pinkerton
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| | - Thomas M Petro
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Tyler C Moore
- Department of Biology, College of Science and Technology, Bellevue University, NE, USA
| |
Collapse
|
17
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
18
|
Lan S, Shieh WJ, Huang Q, Zaki SR, Liang Y, Ly H. Virulent infection of outbred Hartley guinea pigs with recombinant Pichinde virus as a surrogate small animal model for human Lassa fever. Virulence 2021; 11:1131-1141. [PMID: 32799623 PMCID: PMC7549944 DOI: 10.1080/21505594.2020.1809328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Arenaviruses, such as Lassa virus (LASV), can cause severe and fatal hemorrhagic fevers (e.g., Lassa fever, LF) in humans with no vaccines or therapeutics. Research on arenavirus-induced hemorrhagic fevers (AHFs) has been hampered by the highly virulent nature of these viral pathogens, which require high biocontainment laboratory, and the lack of an immune-competent small animal model that can recapitulate AHF disease and pathological features. Guinea pig infected with Pichinde virus (PICV), an arenavirus that does not cause disease in humans, has been established as a convenient surrogate animal model for AHFs as it can be handled in a conventional laboratory. The PICV strain P18, derived from sequential passaging of the virus 18 times in strain 13 inbred guinea pigs, causes severe febrile illness in guinea pigs that is reminiscent of lethal LF in humans. As inbred guinea pigs are not readily available and are difficult to maintain, outbred Hartley guinea pigs have been used but they show a high degree of disease heterogeneity upon virulent P18 PICV infection. Here, we describe an improved outbred guinea-pig infection model using recombinant rP18 PICV generated by reverse genetics technique followed by plaque purification, which consistently shows >90% mortality and virulent infection. Comprehensive virological, histopathological, and immunohistochemical analyses of the rP18-virus infected animals show similar features of human LASV infection. Our data demonstrate that this improved animal model can serve as a safe, affordable, and convenient surrogate small animal model for studying human LF pathogenesis and for evaluating efficacy of preventative or therapeutic approaches.
Collapse
Affiliation(s)
- Shuiyun Lan
- Department of Pathology and Laboratory Medicine, Emory University , Atlanta, GA, USA
| | - Wun-Ju Shieh
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| | - Sherif R Zaki
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| |
Collapse
|
19
|
Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins. Viruses 2021; 13:v13061180. [PMID: 34205512 PMCID: PMC8234142 DOI: 10.3390/v13061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Mature male mice produce a particularly high concentration of major urinary proteins (MUPs) in their scent marks that provide identity and status information to conspecifics. Darcin (MUP20) is inherently attractive to females and, by inducing rapid associative learning, leads to specific attraction to the individual male’s odour and location. Other polymorphic central MUPs, produced at much higher abundance, bind volatile ligands that are slowly released from a male’s scent marks, forming the male’s individual odour that females learn. Here, we show that infection of C57BL/6 males with LCMV WE variants (v2.2 or v54) alters MUP expression according to a male’s infection status and ability to clear the virus. MUP output is substantially reduced during acute adult infection with LCMV WE v2.2 and when males are persistently infected with LCMV WE v2.2 or v54. Infection differentially alters expression of darcin and, particularly, suppresses expression of a male’s central MUP signature. However, following clearance of acute v2.2 infection through a robust virus-specific CD8 cytotoxic T cell response that leads to immunity to the virus, males regain their normal mature male MUP pattern and exhibit enhanced MUP output by 30 days post-infection relative to uninfected controls. We discuss the likely impact of these changes in male MUP signals on female attraction and mate selection. As LCMV infection during pregnancy can substantially reduce embryo survival and lead to lifelong infection in surviving offspring, we speculate that females use LCMV-induced changes in MUP expression both to avoid direct infection from a male and to select mates able to develop immunity to local variants that will be inherited by their offspring.
Collapse
|
20
|
Walker FC, Hassan E, Peterson ST, Rodgers R, Schriefer LA, Thompson CE, Li Y, Kalugotla G, Blum-Johnston C, Lawrence D, McCune BT, Graziano VR, Lushniak L, Lee S, Roth AN, Karst SM, Nice TJ, Miner JJ, Wilen CB, Baldridge MT. Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathog 2021; 17:e1009402. [PMID: 33705489 PMCID: PMC7987144 DOI: 10.1371/journal.ppat.1009402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/23/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.
Collapse
Affiliation(s)
- Forrest C. Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan T. Peterson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cassandra E. Thompson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carla Blum-Johnston
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dylan Lawrence
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Broc T. McCune
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vincent R. Graziano
- Departments of Laboratory Medicine & Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Larissa Lushniak
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sanghyun Lee
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexa N. Roth
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Stephanie M. Karst
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan J. Miner
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine & Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Xie M, Yunis J, Yao Y, Shi J, Yang Y, Zhou P, Liang K, Wan Y, Mehdi A, Chen Z, Wang N, Xu S, Zhou M, Yu M, Wang K, Tao Y, Zhou Y, Li X, Liu X, Yu X, Wei Y, Liu Z, Sprent J, Yu D. High levels of soluble CD25 in COVID-19 severity suggest a divergence between anti-viral and pro-inflammatory T-cell responses. Clin Transl Immunology 2021; 10:e1251. [PMID: 33614032 PMCID: PMC7883478 DOI: 10.1002/cti2.1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives We aimed to gain an understanding of the paradox of the immunity in COVID-19 patients with T cells showing both functional defects and hyperactivation and enhanced proliferation. Methods A total of 280 hospitalised patients with COVID-19 were evaluated for cytokine profiles and clinical features including viral shedding. A mouse model of acute infection by lymphocytic choriomeningitis virus (LCMV) was applied to dissect the relationship between immunological, virological and pathological features. The results from the mouse model were validated by published data set of single-cell RNA sequencing (scRNA-seq) of immune cells in bronchoalveolar lavage fluid (BALF) of COVID-19 patients. Results The levels of soluble CD25 (sCD25), IL-6, IL-8, IL-10 and TNF-α were higher in severe COVID-19 patients than non-severe cases, but only sCD25 was identified as an independent risk factor for disease severity by multivariable binary logistic regression analysis and showed a positive association with the duration of viral shedding. In agreement with the clinical observation, LCMV-infected mice with high levels of sCD25 demonstrated insufficient anti-viral response and delayed viral clearance. The elevation of sCD25 in mice was mainly contributed by the expansion of CD25+CD8+ T cells that also expressed the highest level of PD-1 with pro-inflammatory potential. The counterpart human CD25+PD-1+ T cells were expanded in BALF of COVID-19 patients with severe disease compared to those with modest disease. Conclusion These results suggest that high levels of sCD25 in COVID-19 patients probably result from insufficient anti-viral immunity and indicate an expansion of pro-inflammatory T cells that contribute to disease severity.
Collapse
Affiliation(s)
- Min Xie
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Joseph Yunis
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Yin Yao
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Department of Otolaryngology-Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jing Shi
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Yang Yang
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Pengcheng Zhou
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Kaili Liang
- China-Australia Centre for Personalised Immunology Shanghai Renji Hospital Shanghai Jiaotong University School of Medicine Shanghai
| | - Yanmin Wan
- Department of Infectious Diseases Huashan Hospital Fudan University Shanghai China.,Department of Radiology Shanghai Public Health Clinical Center Fudan University Shanghai China
| | - Ahmed Mehdi
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Zhian Chen
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Naiqi Wang
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Muqing Yu
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Yu Tao
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Xiaochen Li
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Respiratory Diseases National Ministry of Health of the People's Republic of China National Clinical Research Center for Respiratory Disease Wuhan China
| | - Xiao Yu
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yunbo Wei
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jonathan Sprent
- Immunology Division Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School University of New South Wales Sydney NSW Australia
| | - Di Yu
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China.,Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia.,China-Australia Centre for Personalised Immunology Shanghai Renji Hospital Shanghai Jiaotong University School of Medicine Shanghai
| |
Collapse
|
22
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
23
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
24
|
Horton LE, Cross RW, Hartnett JN, Engel EJ, Sakabe S, Goba A, Momoh M, Sandi JD, Geisbert TW, Garry RF, Schieffelin JS, Grant DS, Sullivan BM. Endotheliopathy and Platelet Dysfunction as Hallmarks of Fatal Lassa Fever. Emerg Infect Dis 2020; 26:2625-2637. [PMID: 33079033 PMCID: PMC7588510 DOI: 10.3201/eid2611.191694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lassa fever (LF) causes multisystem disease and has a fatality rate <70%. Severe cases exhibit abnormal coagulation, endothelial barrier disruption, and dysfunctional platelet aggregation but the underlying mechanisms remain poorly understood. In Sierra Leone during 2015-2018, we assessed LF patients' day-of-admission plasma samples for levels of proteins necessary for coagulation, fibrinolysis, and platelet function. P-selectin, soluble endothelial protein C receptor, soluble thrombomodulin, plasminogen activator inhibitor 1, ADAMTS-13, von Willebrand factor, tissue factor, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were more elevated in LF patients than in controls. Endothelial protein C receptor, thrombomodulin, intercellular adhesion molecule 1, plasminogen activator inhibitor 1, D-dimer, and hepatocyte growth factor were higher in fatal than nonfatal LF cases. Platelet disaggregation occurred only in samples from fatal LF cases. The impaired homeostasis and platelet dysfunction implicate alterations in the protein C pathway, which might contribute to the loss of endothelial barrier function in fatal infections.
Collapse
|
25
|
Raju S, Verbaro DJ, Egawa T. PD-1 Signaling Promotes Control of Chronic Viral Infection by Restricting Type-I-Interferon-Mediated Tissue Damage. Cell Rep 2020; 29:2556-2564.e3. [PMID: 31775026 PMCID: PMC6894421 DOI: 10.1016/j.celrep.2019.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023] Open
Abstract
Immune responses are essential for pathogen elimination but also cause tissue damage, leading to disease or death. However, it is unclear how the host immune system balances control of infection and protection from the collateral tissue damage. Here, we show that PD-1-mediated restriction of immune responses is essential for durable control of chronic LCMV infection in mice. In contrast to responses in the chronic phase, PD-1 blockade in the subacute phase of infection paradoxically results in viral persistence. This effect is associated with damage to lymphoid architecture and subsequently decreases adaptive immune responses. Moreover, this tissue damage is type I interferon dependent, as sequential blockade of the interferon receptor and PD-1 pathways prevents immunopathology and enhances control of infection. We conclude that PD-1-mediated suppression is required as an immunoregulatory mechanism for sustained responses to chronic viral infection by antagonizing type-I interferon-dependent immunopathology. Using stage-specific PD-1 blockade in LCMV-infected mice, Raju et al. uncover the requirement for PD-1-mediated suppression of CD8 T cells for durable immune response to chronic viral infection, as well as the requirement for IFNAR signaling in programming of CD8 T cells toward effectors that cause immunopathology.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
26
|
Labarta-Bajo L, Gramalla-Schmitz A, Gerner RR, Kazane KR, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Raffatellu M, Zúñiga EI. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc Natl Acad Sci U S A 2020; 117:24998-25007. [PMID: 32958643 PMCID: PMC7547153 DOI: 10.1073/pnas.2003656117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Anna Gramalla-Schmitz
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Romana R Gerner
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
| | - Katelynn R Kazane
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Tara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA 92093
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-University of California San Diego, La Jolla, CA 92093
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093;
| |
Collapse
|
27
|
Misumi I, Cook KD, Mitchell JE, Lund MM, Vick SC, Lee RH, Uchimura T, Bergmeier W, Mieczkowski P, Pardo-Manuel de Villena F, Ting JPY, Whitmire JK. Identification of a Locus in Mice that Regulates the Collateral Damage and Lethality of Virus Infection. Cell Rep 2020; 27:1387-1396.e5. [PMID: 31042467 DOI: 10.1016/j.celrep.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 10/26/2022] Open
Abstract
Arenaviruses can cause severe hemorrhagic disease in humans, which can progress to organ failure and death. The underlying mechanisms causing lethality and person-to-person variation in outcome remain incompletely explained. Herein, we characterize a mouse model that recapitulates many features of pathogenesis observed in humans with arenavirus-induced hemorrhagic disease, including thrombocytopenia, severe vascular leakage, lung edema, and lethality. The susceptibility of congenic B6.PL mice to lymphocytic choriomeningitis virus (LCMV) infection is associated with increased antiviral T cell responses in B6.PL mice compared with C57BL/6 mice and is T cell dependent. Pathogenesis imparted by the causative locus is inherited in a semi-dominant manner in F1 crosses. The locus includes PL-derived sequence variants in both poorly annotated genes and genes known to contribute to immune responses. This model can be used to further interrogate how limited genetic differences in the host can remarkably alter the disease course of viral infection.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin D Cook
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph E Mitchell
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Makayla M Lund
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert H Lee
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Toru Uchimura
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Piotr Mieczkowski
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny P Y Ting
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Hickerson BT, Sefing EJ, Bailey KW, Van Wettere AJ, Penichet ML, Gowen BB. Type I interferon underlies severe disease associated with Junín virus infection in mice. eLife 2020; 9:55352. [PMID: 32452770 PMCID: PMC7297529 DOI: 10.7554/elife.55352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Junín virus (JUNV) is one of five New World mammarenaviruses (NWMs) that causes fatal hemorrhagic disease in humans and is the etiological agent of Argentine hemorrhagic fever (AHF). The pathogenesis underlying AHF is poorly understood; however, a prolonged, elevated interferon-α (IFN-α) response is associated with a negative disease outcome. A feature of all NWMs that cause viral hemorrhagic fever is the use of human transferrin receptor 1 (hTfR1) for cellular entry. Here, we show that mice expressing hTfR1 develop a lethal disease course marked by an increase in serum IFN-α concentration when challenged with JUNV. Further, we provide evidence that the type I IFN response is central to the development of severe JUNV disease in hTfR1 mice. Our findings identify hTfR1-mediated entry and the type I IFN response as key factors in the pathogenesis of JUNV infection in mice.
Collapse
Affiliation(s)
- Brady T Hickerson
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Eric J Sefing
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Kevin W Bailey
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
- Utah Veterinary Diagnostic Laboratory, Utah State UniversityLoganUnited States
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA)Los AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLALos AngelesUnited States
- UCLA Molecular Biology InstituteLos AngelesUnited States
- UCLA Jonsson Comprehensive Cancer CenterLos AngelesUnited States
- UCLA AIDS InstituteLos AngelesUnited States
| | - Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| |
Collapse
|
29
|
Liang Y, Yi P, Wang X, Zhang B, Jie Z, Soong L, Sun J. Retinoic Acid Modulates Hyperactive T Cell Responses and Protects Vitamin A-Deficient Mice against Persistent Lymphocytic Choriomeningitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:2984-2994. [PMID: 32284332 DOI: 10.4049/jimmunol.1901091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Vitamin A deficiency (VAD) is a major public health problem and is associated with increased host susceptibility to infection; however, how VAD influences viral infection remains unclear. Using a persistent lymphocytic choriomeningitis virus infection model, we showed in this study that although VAD did not alter innate type I IFN production, infected VAD mice had hyperactive, virus-specific T cell responses at both the acute and contraction stages, showing significantly decreased PD-1 but increased cytokine (IFN-γ, TNF-α, and IL-2) expression by T cells. Compared with control mice, VAD mice displayed excessive inflammation and more severe liver pathology, with increased death during persistent infection. Of note, supplements of all-trans retinoic acid (RA), one of the important metabolites of vitamin A, downregulated hyperactive T cell responses and rescued the persistently infected VAD mice. By using adoptive transfer of splenocytes, we found that the environmental vitamin A or its metabolites acted as rheostats modulating antiviral T cells. The analyses of T cell transcriptional factors and signaling pathways revealed the possible mechanisms of RA, as its supplements inhibited the abundance of NFATc1 (NFAT 1), a key regulator for T cell activation. Also, following CD3/CD28 cross-linking stimulation, RA negatively regulated the TCR-proximal signaling in T cells, via decreased phosphorylation of Zap70 and its downstream signals, including phosphorylated AKT, p38, ERK, and S6, respectively. Together, our data reveal VAD-mediated alterations in antiviral T cell responses and highlight the potential utility of RA for modulating excessive immune responses and tissue injury in infectious diseases.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555;
| | - Panpan Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Zuliang Jie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; and.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; and.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
30
|
High crossreactivity of human T cell responses between Lassa virus lineages. PLoS Pathog 2020; 16:e1008352. [PMID: 32142546 PMCID: PMC7080273 DOI: 10.1371/journal.ppat.1008352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/18/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages. Lassa virus (LASV), the causative agent of the hemorrhagic illness Lassa fever (LF), is found throughout West Africa. Humans are usually infected after contact with infected rodent excreta or aerosolized virus. The mortality rate among hospitalized LF cases is high and no effective treatments or vaccines exist. A vaccine effective against the four main lineages of LASV is needed to protect susceptible individuals across West Africa. To understand how this protection could occur, we examined the immune responses of LF survivors from two different regions of West Africa. As previous infection with Lassa virus protects from disease after subsequent exposure, the immune response of LF survivors provides a model of protective immunity that could be induced after vaccination. We found that LASV strains from lineages different from those that infected the LF survivors efficiently activated memory CD8+ T cell responses. We identified regions within LASV proteins that elicit memory responses in the majority of individuals. From these data, we propose that an effective vaccine that protects against lineages across West Africa should be designed to elicit memory CD8+ T cell responses in addition to antibody responses.
Collapse
|
31
|
Endogenous n-3 Polyunsaturated Fatty Acids Are Beneficial to Dampen CD8 + T Cell-Mediated Inflammatory Response upon the Viral Infection in Mice. Int J Mol Sci 2019; 20:ijms20184510. [PMID: 31547227 PMCID: PMC6770599 DOI: 10.3390/ijms20184510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) have been known to exert anti-inflammatory effects on various disease states. However, its effect on CD8+ T cell-mediated immunopathology upon viral infection has not been well elucidated yet. In this study, we investigated the possible implication of n-3 PUFAs in CD8+ T cell responses against an acute viral infection. Infection of FAT-1 transgenic mice that are capable of synthesizing n-3 PUFAs from n-6 PUFAs with lymphocytic choriomeningitis virus (LCMV) resulted in significant reduction of anti-viral CD8+ T cell responses. Interestingly, expansion of adoptively transferred wild-type (WT) LCMV-specific T cell receptor (TCR) transgenic CD8+ (P14) T cells into FAT-1 mice was significantly decreased. Also, activation of anti-viral CD4+ helper T cells was reduced in FAT-1 mice. Importantly, P14 cells carrying the fat-1 gene that were adoptively transferred into WT mice exhibited a substantially decreased ability to proliferate and produce cytokines against LCMV infection. Together, n-3 PUFAs attenuated anti-viral CD8+ T cell responses against an acute viral infection and thus could be used to alleviate immunopathology mediated by the viral infection.
Collapse
|
32
|
A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc Natl Acad Sci U S A 2019; 116:17393-17398. [PMID: 31413198 PMCID: PMC6717250 DOI: 10.1073/pnas.1902178116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Some viral infections culminate in very different outcomes in different individuals. They can be rapidly cleared in some, cause persistent infection in others, and cause mortality from immunopathology in yet others. The conventional view is that the different outcomes arise as a consequence of the complex interactions between a large number of different factors (virus, different immune cells, and cytokines). Here, we identify a simple dynamical motif comprising the essential interactions between antigens and CD8 T cells and posit it as predominantly determining the outcomes. Viral antigen can activate CD8 T cells, which in turn, can kill infected cells. Sustained antigen stimulation, however, can cause CD8 T-cell exhaustion, compromising effector function. Using mathematical modeling, we show that the motif comprising these interactions recapitulates all of the outcomes observed. The motif presents a conceptual framework to understand the variable outcomes of infection. It also explains a number of confounding experimental observations, including the variation in outcomes with the viral inoculum size, the evolutionary advantage of exhaustion in preventing lethal pathology, the ability of natural killer (NK) cells to act as rheostats tuning outcomes, and the role of the innate immune response in the spontaneous clearance of hepatitis C. Interventions that modulate the interactions in the motif may present routes to clear persistent infections or limit immunopathology.
Collapse
|
33
|
Straub T, Pircher H. Enhancing immunity prevents virus-induced T-cell-mediated immunopathology in B cell-deficient mice. Eur J Immunol 2019; 49:782-789. [PMID: 30793761 PMCID: PMC6593698 DOI: 10.1002/eji.201847962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023]
Abstract
Hyper-activated or deviated immune responses can result in immunopathological diseases. Paradoxically, immunodeficiency represents a frequent cause of such immune-mediated pathologies. Immunopathological manifestations are commonly treated by immunosuppression, but in situations in which immunodeficiency is the basis of disease development, enhancing immunity may represent an alternative treatment option. Here, we tested this counterintuitive concept in a preclinical model using infection of mice with lymphocytic choriomeningitis virus (LCMV). Firstly, we demonstrate that infection of B-cell-deficient (B-/- ) but not of wild-type (WT) mice with the LCMV strain Docile induced a rapid and fatal CD8+ T-cell-mediated immunopathological disease. Similar to WT mice, LCMV-infected B-/- mice generated a potent, functional LCMV-specific CD8+ T-cell response but exhibited prolonged viral antigen presentation and increased vascular leakage in liver and lungs. Secondly, we were able to prevent this virus-induced immunopathology in B-/- mice by active or passive T-cell immunizations or by treatment with LCMV-specific virus neutralizing or non-neutralizing monoclonal antibodies (mAb). Thus, boosting antiviral immunity did not aggravate immunopathology in this model, but prevented it by decreasing the formation of target structures for damage-causing CD8+ T cells.
Collapse
Affiliation(s)
- Tobias Straub
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
34
|
Suprunenko T, Hofer MJ. Complexities of Type I Interferon Biology: Lessons from LCMV. Viruses 2019; 11:v11020172. [PMID: 30791575 PMCID: PMC6409748 DOI: 10.3390/v11020172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, infection of mice with lymphocytic choriomeningitis virus (LCMV) has provided an invaluable insight into our understanding of immune responses to viruses. In particular, this model has clarified the central roles that type I interferons play in initiating and regulating host responses. The use of different strains of LCMV and routes of infection has allowed us to understand how type I interferons are critical in controlling virus replication and fostering effective antiviral immunity, but also how they promote virus persistence and functional exhaustion of the immune response. Accordingly, these discoveries have formed the foundation for the development of novel treatments for acute and chronic viral infections and even extend into the management of malignant tumors. Here we review the fundamental insights into type I interferon biology gained using LCMV as a model and how the diversity of LCMV strains, dose, and route of administration have been used to dissect the molecular mechanisms underpinning acute versus persistent infection. We also identify gaps in the knowledge regarding LCMV regulation of antiviral immunity. Due to its unique properties, LCMV will continue to remain a vital part of the immunologists' toolbox.
Collapse
Affiliation(s)
- Tamara Suprunenko
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Markus J Hofer
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|