1
|
Yang M, Wei J, Xu Y, Zheng S, Yu B, Ming Y, Jin H, Xie L, Qi H, Xiao S, Huang W, Chen L. Autophagy Regulates Plant Tolerance to Submergence by Modulating Photosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:2267-2284. [PMID: 39575938 DOI: 10.1111/pce.15290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
The increase in global climate variability has increased the frequency and severity of floods, profoundly affecting agricultural production and food security worldwide. Autophagy is an intracellular catabolic pathway that is dispensable for plant responses to submergence. However, the physiological role of autophagy in plant response to submergence remains unclear. In this study, a multi-omics approach was applied by combining transcriptomics, proteomics, and lipidomics to characterize molecular changes in the Arabidopsis autophagy-defective mutant (atg5-1) responding to submergence. Our results revealed that submergence resulted in remarkable changes in the transcriptome, proteome, and lipidome of Arabidopsis. Under submerged conditions, the levels of chloroplastidic lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were lower in atg5-1 than in wild-type, suggesting that autophagy may affect photosynthesis by regulating lipid metabolism. Consistently, photosynthesis-related proteins and photosynthetic efficiency decreased in atg5-1 under submergence conditions. Phenotypic analysis revealed that inhibition of photosynthesis resulted in a decreased tolerance to submergence. Compared to wild-type plants, atg5-1 plants showed a significant decrease in starch content after submergence. Collectively, our findings reveal a novel role for autophagy in plant response to submergence via the regulation of underwater photosynthesis and starch content.
Collapse
Affiliation(s)
- Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jiaosheng Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yarou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Baiyin Yu
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Yu Ming
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
3
|
Wang F, Xi Z, Wang M, Wang L, Wang J. Genome-wide chromatin accessibility reveals transcriptional regulation of heterosis in inter-subspecific hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2331-2348. [PMID: 38976378 DOI: 10.1111/tpj.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Crop and Nuclear Technology Utilization, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Li Z, Chen J, Xu L, Zhang P, Ni H, Zhao W, Fang Z, Liu H. Quinolone Antibiotics Inhibit the Rice Photosynthesis by Targeting Photosystem II Center Protein: Generational Differences and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11280-11291. [PMID: 38898567 DOI: 10.1021/acs.est.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation. Omics analyses consistently targeted the light reaction phase of photosynthesis as the primary process impacted, emphasizing the particular vulnerability of photosystem II (PS II) to the antibiotic stress, as manifested by significant interruptions in the photon-mediated electron transport and O2 production. PS II center D2 protein (psbD) was identified as the primary target of the tested antibiotics, with the fourth-generation quinolones displaying the highest binding affinity to psbD. A predictive machine learning method was constructed to pinpoint antibiotic substructures that conferred enhanced affinity. As antibiotic generations evolve, the positive contribution of the carbonyl and carboxyl groups on the 4-quinolone core ring in the affinity interaction gradually intensified. This research illuminates the photosynthetic toxicities of antibiotics across generations, offering insights for the risk assessment of antibiotics and highlighting their potential threats to carbon fixation of agroecosystems.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| |
Collapse
|
5
|
Aguirre-Bottger C, Zolla G. The best of both worlds: photosynthesis and Solanaceae biodiversity seeking a sustainable food and cosmetic industry. FRONTIERS IN PLANT SCIENCE 2024; 15:1362814. [PMID: 38434437 PMCID: PMC10904534 DOI: 10.3389/fpls.2024.1362814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Affiliation(s)
| | - Gaston Zolla
- Grupo de Investigation en Fisiología Molecular de Plantas, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
6
|
Wang Y, Coyne KJ. Molecular Insights into the Synergistic Effects of Putrescine and Ammonium on Dinoflagellates. Int J Mol Sci 2024; 25:1306. [PMID: 38279308 PMCID: PMC10816187 DOI: 10.3390/ijms25021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Ammonium and polyamines are essential nitrogen metabolites in all living organisms. Crosstalk between ammonium and polyamines through their metabolic pathways has been demonstrated in plants and animals, while no research has been directed to explore this relationship in algae or to investigate the underlying molecular mechanisms. Previous research demonstrated that high concentrations of ammonium and putrescine were among the active substances in bacteria-derived algicide targeting dinoflagellates, suggesting that the biochemical inter-connection and/or interaction of these nitrogen compounds play an essential role in controlling these ecologically important algal species. In this research, putrescine, ammonium, or a combination of putrescine and ammonium was added to cultures of three dinoflagellate species to explore their effects. The results demonstrated the dose-dependent and species-specific synergistic effects of putrescine and ammonium on these species. To further explore the molecular mechanisms behind the synergistic effects, transcriptome analysis was conducted on dinoflagellate Karlodinium veneficum treated with putrescine or ammonium vs. a combination of putrescine and ammonium. The results suggested that the synergistic effects of putrescine and ammonium disrupted polyamine homeostasis and reduced ammonium tolerance, which may have contributed to the cell death of K. veneficum. There was also transcriptomic evidence of damage to chloroplasts and impaired photosynthesis of K. veneficum. This research illustrates the molecular mechanisms underlying the synergistic effects of the major nitrogen metabolites, ammonium and putrescine, in dinoflagellates and provides direction for future studies on polyamine biology in algal species.
Collapse
Affiliation(s)
| | - Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE 19958, USA;
| |
Collapse
|
7
|
Li W, Liu Z, Huang Y, Zheng J, Yang Y, Cao Y, Ding L, Meng Y, Shan W. Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13416. [PMID: 38279850 PMCID: PMC10777756 DOI: 10.1111/mpp.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
Collapse
Affiliation(s)
- Wanyue Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuli Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
8
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Zhang M, Zeng Y, Peng R, Dong J, Lan Y, Duan S, Chang Z, Ren J, Luo G, Liu B, Růžička K, Zhao K, Wang HB, Jin HL. N 6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants. Nat Commun 2022; 13:7441. [PMID: 36460653 PMCID: PMC9718803 DOI: 10.1038/s41467-022-35146-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
N6-methyladenosine (m6A) modification of mRNAs affects many biological processes. However, the function of m6A in plant photosynthesis remains unknown. Here, we demonstrate that m6A modification is crucial for photosynthesis during photodamage caused by high light stress in plants. The m6A modification levels of numerous photosynthesis-related transcripts are changed after high light stress. We determine that the Arabidopsis m6A writer VIRILIZER (VIR) positively regulates photosynthesis, as its genetic inactivation drastically lowers photosynthetic activity and photosystem protein abundance under high light conditions. The m6A levels of numerous photosynthesis-related transcripts decrease in vir mutants, extensively reducing their transcript and translation levels, as revealed by multi-omics analyses. We demonstrate that VIR associates with the transcripts of genes encoding proteins with functions related to photoprotection (such as HHL1, MPH1, and STN8) and their regulatory proteins (such as regulators of transcript stability and translation), promoting their m6A modification and maintaining their stability and translation efficiency. This study thus reveals an important mechanism for m6A-dependent maintenance of photosynthetic efficiency in plants under high light stress conditions.
Collapse
Affiliation(s)
- Man Zhang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China ,grid.484195.5Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640 Guangzhou, People’s Republic of China
| | - Yunping Zeng
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Rong Peng
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Jie Dong
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Yelin Lan
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Sujuan Duan
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Zhenyi Chang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Jian Ren
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Guanzheng Luo
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Kamil Růžička
- grid.418095.10000 0001 1015 3316Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - Kewei Zhao
- grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.263, Longxi Avenue, Guangzhou, People’s Republic of China
| | - Hong-Bin Wang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China ,grid.411866.c0000 0000 8848 7685State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hong-Lei Jin
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.263, Longxi Avenue, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Alp FN, Arikan B, Ozfidan-Konakci C, Balci M, Yildiztugay E, Cavusoglu H. Multiwalled Carbon Nanotubes Alter the PSII Photochemistry, Photosystem-Related Gene Expressions, and Chloroplastic Antioxidant System in Zea mays under Copper Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11154-11168. [PMID: 36048567 DOI: 10.1021/acs.jafc.2c02608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A critical approach against copper (Cu) toxicity is the use of carbon nanomaterials (CNMs). However, the effect of CNMs on Cu toxicity-exposed chloroplasts is not clear. The photosynthetic, genetic, and biochemical effects of multiwalled carbon nanotubes (50-100-250 mg L-1 CNT) were investigated under Cu stress (50-100 μM CuSO4) in Zea mays chloroplasts. Fv/Fm and Fv/Fo were suppressed under stress. Stress altered the antioxidant system and the expression of psaA, psaB, psbA, and psbD. The chloroplastic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione S-transferase (GST), and glutathione peroxidase (GPX) increased under CNT + stress, and those of hydrogen peroxide (H2O2) and lipid peroxidation decreased. CNTs were promoted to the maintenance of the redox state by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. Furthermore, CNTs inverted the negative effects of Cu by upregulating the transcriptions of photosystem-related genes. However, the high CNT concentration had adverse effects on the antioxidant capacity. CNT has great potential to confer tolerance by reducing Cu-induced damage and protecting the biochemical reactions of photosynthesis.
Collapse
Affiliation(s)
- Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090 Konya, Turkey
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| |
Collapse
|
11
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Ji D, Li Q, Guo Y, An W, Manavski N, Meurer J, Chi W. NADP+ supply adjusts the synthesis of photosystem I in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2022; 189:2128-2143. [PMID: 35385122 PMCID: PMC9343004 DOI: 10.1093/plphys/kiac161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In oxygenic photosynthesis, NADP+ acts as the final acceptor of the photosynthetic electron transport chain and receives electrons via the thylakoid membrane complex photosystem I (PSI) to synthesize NAPDH by the enzyme ferredoxin:NADP+ oxidoreductase. The NADP+/NADPH redox couple is essential for cellular metabolism and redox homeostasis. However, how the homeostasis of these two dinucleotides is integrated into chloroplast biogenesis remains largely unknown. Here, we demonstrate the important role of NADP+ supply for the biogenesis of PSI by examining the nad kinase 2 (nadk2) mutant in Arabidopsis (Arabidopsis thaliana), which demonstrates disrupted synthesis of NADP+ from NAD+ in chloroplasts. Although the nadk2 mutant is highly sensitive to light, the reaction center of photosystem II (PSII) is only mildly and likely only secondarily affected compared to the wild-type. Our studies revealed that the primary limitation of photosynthetic electron transport, even at low light intensities, occurs at PSI rather than at PSII in the nadk2 mutant. Remarkably, this primarily impairs the de novo synthesis of the two PSI core subunits PsaA and PsaB, leading to the deficiency of the PSI complex in the nadk2 mutant. This study reveals an unexpected molecular link between NADK activity and mRNA translation of psaA/B in chloroplasts that may mediate a feedback mechanism to adjust de novo biosynthesis of the PSI complex in response to a variable NADPH demand. This adjustment may be important to protect PSI from photoinhibition under conditions that favor acceptor side limitation.
Collapse
Affiliation(s)
- Daili Ji
- Author for correspondence: (W.C.) and (D.J.)
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing An
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, Munich, D-82152, Germany
| | - Jörg Meurer
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, Munich, D-82152, Germany
| | - Wei Chi
- Author for correspondence: (W.C.) and (D.J.)
| |
Collapse
|
13
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. Plants response to light stress. J Genet Genomics 2022; 49:735-747. [DOI: 10.1016/j.jgg.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
14
|
Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos‐Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu Z, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H. Genomes shed light on the evolution of Begonia, a mega-diverse genus. THE NEW PHYTOLOGIST 2022; 234:295-310. [PMID: 34997964 PMCID: PMC7612470 DOI: 10.1111/nph.17949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 05/02/2023]
Abstract
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.
Collapse
|
15
|
Integration of the Physiology, Transcriptome and Proteome Reveals the Molecular Mechanism of Drought Tolerance in Cupressus gigantea. FORESTS 2022. [DOI: 10.3390/f13030401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Drought stress can dramatically impair woody plant growth and restrict the geographical distribution of many tree species. To better understand the dynamics between the response and mechanism of Cupressus gigantea to drought and post-drought recovery, a comparative analysis was performed, relying on physiological measurements, RNA sequencing (RNA-Seq) and two-dimensional gel electrophoresis (2-DE) proteins. In this study, the analyses revealed that photosynthesis was seriously inhibited, while osmolyte contents, antioxidant enzyme activity and non-enzymatic antioxidant contents were all increased under drought stress in seedlings. Re-watering led to a recovery in most of the parameters analyzed, mainly the photosynthetic parameters and osmolyte contents. Transcriptomic and proteomic profiling suggested that most of the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were specifically altered, and a few were consistently altered. Drought induced a common reduction in the level of DEGs and DEPs associated with photosynthesis. Notably, DEGs and DEPs involved in reactive oxygen species (ROS) scavenging, such as ascorbate oxidase and superoxide dismutase (SOD), showed an inverse pattern under desiccation. This study may improve our understanding of the underlying molecular mechanisms of drought resistance in C. gigantea and paves the way for more detailed molecular analysis of the candidate genes.
Collapse
|
16
|
Zhang L, Chen J, Zhang L, Wei Y, Li Y, Xu X, Wu H, Yang ZN, Huang J, Hu F, Huang W, Cui YL. The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in Arabidopsis chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1952-1966. [PMID: 34427970 DOI: 10.1111/jipb.13165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yajuan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyun Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
17
|
Wang Y, Bian Z, Pan T, Cao K, Zou Z. Improvement of tomato salt tolerance by the regulation of photosynthetic performance and antioxidant enzyme capacity under a low red to far-red light ratio. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:806-815. [PMID: 34530325 DOI: 10.1016/j.plaphy.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 05/04/2023]
Abstract
The red light (R) to far-red light (FR) ratio (R:FR) regulates plant responses to salt stress, but the regulation mechanism is still unclear. In this study, tomato seedlings were grown under half-strength Hoagland solution with or without 150 mM NaCl at two different R:FR ratios (7.4 and 0.8). The photosynthetic capacity, antioxidant enzyme activities, and the phenotypes at chloroplast ultrastructure and whole plant levels were investigated. The results showed that low R:FR significantly alleviated the damage of tomato seedlings from salt stress. On day 4, 8, and 12 at low R:FR, the maximum photochemical quantum yields (Fv/Fm) of photosystem II (PSII) were increased by 4.53%, 3.89%, and 16.49%, respectively; the net photosynthetic rates (Pn) of leaves were increased by 16.21%, 90.81%, and 118.00%, respectively. Low R:FR enhanced the integrity and stability of the chloroplast structure of salinity-treated plants through maintaining the high activities of antioxidant enzymes and mitigated the degradation rate of photosynthetic pigments caused by reactive oxygen species (ROS) under salt stress. The photosynthesis, antioxidant enzyme-related gene expression, and transcriptome sequencing analysis of tomato seedlings under different treatments were also investigated. Low R:FR promoted the de novo synthesis of D1 protein via triggering psbA expression, and upregulated the transcripts of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) related genes. Meanwhile, the transcriptome analysis confirmed the positive function of low R:FR on enhancing tomato salinity stress tolerance from the regulation of photosynthesis and ROS scavenging systems.
Collapse
Affiliation(s)
- Yunlong Wang
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Zhonghua Bian
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan, 610299, China
| | - Tonghua Pan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kai Cao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Zhirong Zou
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
18
|
Tian YN, Zhong RH, Wei JB, Luo HH, Eyal Y, Jin HL, Wu LJ, Liang KY, Li YM, Chen SZ, Zhang ZQ, Pang XQ. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. MOLECULAR PLANT 2021; 14:1149-1167. [PMID: 33857689 DOI: 10.1016/j.molp.2021.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The proteolytic degradation of the photodamaged D1 core subunit during the photosystem II (PSII) repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the PSII repair process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, whereas seedlings overexpressing CLH1 have enhanced light tolerance compared with the wild type. CLH1 is localized in the developing chloroplasts of young leaves and associates with the PSII-dismantling complexes RCC1 and RC47, with a preference for the latter upon exposure to high light. Furthermore, degradation of damaged D1 protein is retarded in young clh1-1/2-2 leaves after 18-h high-light exposure but is rescued by the addition of recombinant CLH1 in vitro. Moreover, overexpression of CLH1 in a variegated mutant (var2-2) that lacks thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. Taken together, these results establish CLH1 as a long-sought chlorophyll dephytylation enzyme that is involved in PSII repair and functions in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.
Collapse
Affiliation(s)
- Ya-Nan Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Rui-Hao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jun-Bin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hong-Hui Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Horticulture, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yoram Eyal
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - La-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ke-Ying Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ying-Man Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shu-Zhen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhao-Qi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Horticulture, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xue-Qun Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
19
|
Li D, Wang M, Zhang T, Chen X, Li C, Liu Y, Brestic M, Chen THH, Yang X. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. PHOTOSYNTHESIS RESEARCH 2021; 147:301-315. [PMID: 33394352 DOI: 10.1007/s11120-020-00810-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage exceeds the rate of D1 protein repair. Here, genetically engineered codA-tomato with the capability to accumulate glycinebetaine (GB) was established. After photoinhibition treatment at high temperature, the transgenic lines displayed more thermotolerance to heat-induced photoinhibition than the control line. GB maintained high expression of LeFtsHs and LeDegs and degraded the damaged D1 protein in time. Meanwhile, the increased transcription of synthesis-related genes accelerated the de novo synthesis of D1 protein. Low ROS accumulation reduced the inhibition of D1 protein translation in the transgenic plants, thereby reducing protein damage. The increased D1 protein content and decreased phosphorylated D1 protein (pD1) in the transgenic plants compared with control plants imply that GB may minimize photodamage and maximize D1 protein stability. As D1 protein exhibits a high turnover, PSII maybe repaired rapidly and efficiently in transgenic plants under photoinhibition treatment at high temperature, with the resultant mitigation of photoinhibition of PSII.
Collapse
Affiliation(s)
- Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiao Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
20
|
Duan S, Hu L, Dong B, Jin HL, Wang HB. Signaling from Plastid Genome Stability Modulates Endoreplication and Cell Cycle during Plant Development. Cell Rep 2021; 32:108019. [PMID: 32783941 DOI: 10.1016/j.celrep.2020.108019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
Plastid-nucleus genome coordination is crucial for plastid activity, but the mechanisms remain unclear. By treating Arabidopsis plants with the organellar genome-damaging agent ciprofloxacin, we found that plastid genome instability can alter endoreplication and the cell cycle. Similar results are observed in the plastid genome instability mutants of reca1why1why3. Cell division and embryo development are disturbed in the reca1why1why3 mutant. Notably, SMR5 and SMR7 genes, which encode cell-cycle kinase inhibitors, are upregulated in plastid genome instability plants, and the mutation of SMR7 can restore the endoreplication and growth phenotype of reca1why1why3 plants. Furthermore, we establish that the DNA damage response transcription factor SOG1 mediates the alteration of endoreplication and cell cycle triggered by plastid genome instability. Finally, we demonstrate that reactive oxygen species produced in plastids are important for plastid-nucleus genome coordination. Our findings uncover a molecular mechanism for the coordination of plastid and nuclear genomes during plant growth and development.
Collapse
Affiliation(s)
- Sujuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China; Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Lili Hu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Beibei Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China.
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China; Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Gawroński P, Enroth C, Kindgren P, Marquardt S, Karpiński S, Leister D, Jensen PE, Vinther J, Scharff LB. Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region. Cells 2021; 10:322. [PMID: 33557293 PMCID: PMC7914831 DOI: 10.3390/cells10020322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5' UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Christel Enroth
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Peter Kindgren
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - Jeppe Vinther
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| |
Collapse
|
22
|
Zhang Q, Li Y, Xu W, Zhang Y, Qi X, Fang Y, Peng C. Joint expression of Zmpepc, Zmppdk, and Zmnadp-me is more efficient than expression of one or two of those genes in improving the photosynthesis of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:410-419. [PMID: 33257233 DOI: 10.1016/j.plaphy.2020.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
This study assessed the effects of seven combinations of maize (Zea mays) genes phosphoenolpyruvate carboxylase (pepc), pyruvate phosphate dikinase (ppdk), and NADP-malic enzyme (nadp-me), on the photosynthesis of Arabidopsis. The photosynthetic rate, carboxylation efficiency, and shoot-dry-weight of Zmpepc (PC), Zmpepc + Zmppdk (PCK), Zmpepc + Zmnadp-me (PCM), and Zmpepc + Zmppdk + Zmnadp-me (PCKM) were significantly higher than those of the control wild-type (WT), with a trends to be PCKM > PCK > PC and PCM > WT. This indicated that Zmpepc was a prerequisite for improved photosynthetic performance; Zmppdk had a positive effect on Zmpepc, and the triple gene combination had the most significant synergistic effects. PCKM significantly enhanced activity of photosystem (PS)II (K, J phase) and PSI, light energy absorption (ABS/CSm) and conversion (TRo/ABS), and electron transfer (ETo/TRo). PCKM up-regulated 18 photosynthesis-related proteins, among which, 11 were involved in light reaction resulting in improved light-energy absorption and conversion efficiency, electron transfer, activity and stability of PSII and PSI, and the ATP and NADPH production. The remaining seven proteins were involved in dark reaction. The up-regulation of these proteins in PCKM improved the coordinated operation of light and dark reaction, increasing the photosynthesis and dry weight ultimately. These results also provide a promising strategy for the genetic improvement of the photosynthetic performance of C3 crops by inserting major C4 photosynthetic genes.
Collapse
Affiliation(s)
- Qingchen Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China; National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yan Li
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Weigang Xu
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Yu Zhang
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueli Qi
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yuhui Fang
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Chaojun Peng
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| |
Collapse
|
23
|
Kage U, Powell JJ, Gardiner DM, Kazan K. Ribosome profiling in plants: what is not lost in translation? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5323-5332. [PMID: 32459844 DOI: 10.1093/jxb/eraa227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 05/03/2023]
Abstract
Translation is a highly dynamic cellular process whereby genetic information residing in an mRNA molecule is converted into a protein that in turn executes specific functions. However, pre-synthesized mRNA levels do not always correlate with corresponding protein levels, suggesting that translational control plays an essential role in gene regulation. A better understanding of how gene expression is regulated during translation will enable the discovery of new genes and mechanisms that control important traits in plants. Therefore, in recent years, several methods have been developed to analyse the translatome; that is, all mRNAs being actively translated at a given time, tissue, and/or developmental stage. Ribosome profiling or ribo-seq is one such technology revolutionizing our ability to analyse the translatome and in turn understand translational control of gene expression. Ribo-seq involves isolating mRNA-ribosome complexes, treating them with a RNase, and then identifying ribosome-protected mRNA regions by deep sequencing. Here, we briefly review recent ribosome profiling studies that revealed new insights into plant biology. Manipulation of novel genes identified using ribosome profiling could prove useful for increasing yield through improved biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Udaykumar Kage
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
24
|
Dong X, Duan S, Wang H, Jin H. Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1418-1432. [PMID: 31944575 PMCID: PMC7540278 DOI: 10.1111/jipb.12907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/09/2020] [Indexed: 05/31/2023]
Abstract
The balance between cellular carbon (C) and nitrogen (N) must be tightly coordinated to sustain optimal growth and development in plants. In chloroplasts, photosynthesis converts inorganic C to organic C, which is important for maintenance of C content in plant cells. However, little is known about the role of chloroplasts in C/N balance. Here, we identified a nuclear-encoded protein LOW PHOTOSYNTHETIC EFFICIENCY2 (LPE2) that it is required for photosynthesis and C/N balance in Arabidopsis. LPE2 is specifically localized in the chloroplast. Both loss-of-function mutants, lpe2-1 and lpe2-2, showed lower photosynthetic activity, characterized by slower electron transport and lower PSII quantum yield than the wild type. Notably, LPE2 is predicted to encode the plastid ribosomal protein S21 (RPS21). Deficiency of LPE2 significantly perturbed the thylakoid membrane composition and plastid protein accumulation, although the transcription of plastid genes is not affected obviously. More interestingly, transcriptome analysis indicated that the loss of LPE2 altered the expression of C and N response related genes in nucleus, which is confirmed by quantitative real-time-polymerase chain reaction. Moreover, deficiency of LPE2 suppressed the response of C/N balance in physiological level. Taken together, our findings suggest that LPE2 plays dual roles in photosynthesis and the response to C/N balance.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Sujuan Duan
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hong‐Bin Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hong‐Lei Jin
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
25
|
Li X, Wang HB, Jin HL. Light Signaling-Dependent Regulation of PSII Biogenesis and Functional Maintenance. PLANT PHYSIOLOGY 2020; 183:1855-1868. [PMID: 32439719 PMCID: PMC7401124 DOI: 10.1104/pp.20.00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 05/16/2023]
Abstract
Light is a key environmental cue regulating photomorphogenesis and photosynthesis in plants. However, the molecular mechanisms underlying the interaction between light signaling pathways and photosystem function are unknown. Here, we show that various monochromatic wavelengths of light cooperate to regulate PSII function in Arabidopsis (Arabidopsis thaliana). The photoreceptors cryptochromes and phytochromes modulate the expression of HIGH CHLOROPHYLL FLUORESCENCE173 (HCF173), which is required for PSII biogenesis by regulating PSII core protein D1 synthesis mediated by the transcription factor ELONGATED HYPOCOTYL5 (HY5). HY5 directly binds to the ACGT-containing element ACE motif and G-box cis-element present in the HCF173 promoter and regulates its activity. PSII activity was decreased significantly in hy5 mutants under various monochromatic wavelengths of light. Interestingly, we demonstrate that HY5 also directly regulates the expression of the genes associated with PSII assembly and repair, including ALBINO3, HCF136, HYPERSENSITIVE TO HIGH LIGHT1, etc., which is required for the functional maintenance of PSII under photodamaging conditions. Moreover, deficiency of HY5 broadly decreases the accumulation of other photosystem proteins besides PSII proteins. Thus, our study reveals an important role of light signaling in both biogenesis and functional regulation of the photosystem and provides insight into the link between light signaling and photosynthesis in land plants.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Watkins KP, Williams-Carrier R, Chotewutmontri P, Friso G, Teubner M, Belcher S, Ruwe H, Schmitz-Linneweber C, van Wijk KJ, Barkan A. Exploring the proteome associated with the mRNA encoding the D1 reaction center protein of Photosystem II in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:369-382. [PMID: 31793101 DOI: 10.1111/tpj.14629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 05/13/2023]
Abstract
Synthesis of the D1 reaction center protein of Photosystem II is dynamically regulated in response to environmental and developmental cues. In chloroplasts, much of this regulation occurs at the post-transcriptional level, but the proteins responsible are largely unknown. To discover proteins that impact psbA expression, we identified proteins that associate with maize psbA mRNA by: (i) formaldehyde cross-linking of leaf tissue followed by antisense oligonucleotide affinity capture of psbA mRNA; and (ii) co-immunoprecipitation with HCF173, a psbA translational activator that is known to bind psbA mRNA. The S1 domain protein SRRP1 and two RNA Recognition Motif (RRM) domain proteins, CP33C and CP33B, were enriched with both approaches. Orthologous proteins were also among the enriched protein set in a previous study in Arabidopsis that employed a designer RNA-binding protein as a psbA RNA affinity tag. We show here that CP33B is bound to psbA mRNA in vivo, as was shown previously for CP33C and SRRP1. Immunoblot, pulse labeling, and ribosome profiling analyses of mutants lacking CP33B and/or CP33C detected some decreases in D1 protein levels under some conditions, but no change in psbA RNA abundance or translation. However, analogous experiments showed that SRRP1 represses psbA ribosome association in the dark, represses ycf1 ribosome association, and promotes accumulation of ndhC mRNA. As SRRP1 is known to harbor RNA chaperone activity, we postulate that SRRP1 mediates these effects by modulating RNA structures. The uncharacterized proteins that emerged from our analyses provide a resource for the discovery of proteins that impact the expression of psbA and other chloroplast genes.
Collapse
Affiliation(s)
- Kenneth P Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | | | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | | | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
27
|
Exploring the Link between Photosystem II Assembly and Translation of the Chloroplast psbA mRNA. PLANTS 2020; 9:plants9020152. [PMID: 31991763 PMCID: PMC7076361 DOI: 10.3390/plants9020152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation of damaged D1 and its replacement with nascent D1. Mechanisms that couple D1 synthesis with PSII assembly and repair are poorly understood. We address this question by using ribosome profiling to analyze the translation of chloroplast mRNAs in maize and Arabidopsis mutants with defects in PSII assembly. We found that OHP1, OHP2, and HCF244, which comprise a recently elucidated complex involved in PSII assembly and repair, are each required for the recruitment of ribosomes to psbA mRNA, which encodes D1. By contrast, HCF136, which acts upstream of the OHP1/OHP2/HCF244 complex during PSII assembly, does not have this effect. The fact that the OHP1/OHP2/HCF244 complex brings D1 into proximity with three proteins with dual roles in PSII assembly and psbA ribosome recruitment suggests that this complex is the hub of a translational autoregulatory mechanism that coordinates D1 synthesis with need for nascent D1 during PSII biogenesis and repair.
Collapse
|
28
|
Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN. mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene psbJ. PLANT PHYSIOLOGY 2020; 182:408-423. [PMID: 31685645 PMCID: PMC6945865 DOI: 10.1104/pp.19.00906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (Arabidopsis thaliana), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts. In this work, we demonstrate that mTERF8 is associated with the PEP complex. An mTERF8 knockout line displayed a wild-type-like phenotype under standard growth conditions, but showed impaired efficiency of photosystem II electron flow. Transcription of most chloroplast genes was not substantially affected in the mterf8 mutant; however, the level of the psbJ transcript from the psbEFLJ polycistron was increased. RNA blot analysis showed that a larger transcript accumulates in mterf8 than in the wild type. Thus, abnormal transcription and/or RNA processing occur for the psbEFLJ polycistron. Circular reverse transcription PCR and sequence analysis showed that the psbJ transcript terminates 95 nucleotides downstream of the translation stop codon in the wild type, whereas its termination is aberrant in mterf8 Both electrophoresis mobility shift assays and chloroplast chromatin immunoprecipitation analysis showed that mTERF8 specifically binds to the 3' terminal region of psbJ Transcription analysis using the in vitro T7 RNA polymerase system showed that mTERF8 terminates psbJ transcription. Together, these results suggest that mTERF8 is specifically involved in the transcription termination of the chloroplast gene psbJ.
Collapse
Affiliation(s)
- Hai-Bo Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fei-Min Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Xing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin-Shan Ye
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-He Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
McDermott JJ, Watkins KP, Williams-Carrier R, Barkan A. Ribonucleoprotein Capture by in Vivo Expression of a Designer Pentatricopeptide Repeat Protein in Arabidopsis. THE PLANT CELL 2019; 31:1723-1733. [PMID: 31123048 PMCID: PMC6713294 DOI: 10.1105/tpc.19.00177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 05/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins bind RNA via a mechanism that facilitates the customization of sequence specificity. However, natural PPR proteins have irregular features that limit the degree to which their specificity can be predicted and customized. We demonstrate here that artificial PPR proteins built from consensus PPR motifs selectively bind the intended RNA in vivo, and we use this property to develop a new tool for ribonucleoprotein characterization. We show by RNA coimmunoprecipitation sequencing (RIP-seq) that artificial PPR proteins designed to bind the Arabidopsis (Arabidopsis thaliana) chloroplast psbA mRNA bind with high specificity to psbA mRNA in vivo. Analysis of coimmunoprecipitating proteins by mass spectrometry showed the psbA translational activator HCF173 and two RNA binding proteins of unknown function (CP33C and SRRP1) to be highly enriched. RIP-seq revealed that these proteins are bound primarily to psbA RNA in vivo, and precise mapping of the HCF173 and CP33C binding sites placed them in different locations on psbA mRNA. These results demonstrate that artificial PPR proteins can be tailored to bind specific endogenous RNAs in vivo, add to the toolkit for characterizing native ribonucleoproteins, and open the door to other applications that rely on the ability to target a protein to a specified RNA sequence.
Collapse
Affiliation(s)
- James J McDermott
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kenneth P Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
30
|
Williams-Carrier R, Brewster C, Belcher SE, Rojas M, Chotewutmontri P, Ljungdahl S, Barkan A. The Arabidopsis pentatricopeptide repeat protein LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:56-66. [PMID: 30844105 DOI: 10.1111/tpj.14308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/21/2023]
Abstract
The expression of chloroplast genes relies on a host of nucleus-encoded proteins. Identification of such proteins and elucidation of their functions are ongoing challenges. We used ribosome profiling to revisit the function of the pentatricopeptide repeat protein LPE1, reported to stimulate translation of the chloroplast psbA mRNA in Arabidopsis. Mutation of the maize LPE1 ortholog causes a photosystem II (PSII) deficiency and a defect in translation of the chloroplast psbJ open reading frame (ORF) but has no effect on psbA expression. To reflect this function, we named the maize LPE1 ortholog Translation of psbJ 1 (TPJ1). Arabidopsis lpe1 mutants likewise exhibit a loss of psbJ translation, and have, in addition, a decrease in psbN translation. We detected a small decrease in ribosome occupancy on the psbA mRNA in Arabidopsis lpe1 mutants, but ribosome profiling analyses of other PSII mutants (hcf107 and hcf173) in conjunction with in vitro RNA binding data strongly suggest that this is a secondary effect of their PSII deficiency. We conclude that maize TPJ1 promotes PSII synthesis by activating translation of the psbJ ORF, that this function is conserved in Arabidopsis LPE1, and that an additional role for LPE1 in psbN translation contributes to the PSII deficiency in lpe1 mutants.
Collapse
Affiliation(s)
| | - Carolyn Brewster
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Susan E Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | - Sonja Ljungdahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
31
|
Supplementary Light Source Affects Growth, Metabolism, and Physiology of Adenophora triphylla (Thunb.) A.DC. Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6283989. [PMID: 31205942 PMCID: PMC6530224 DOI: 10.1155/2019/6283989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
Abstract
Adenophora triphylla (Thunb.) A.DC., a well-known herbaceous medicinal species, has been reported to protect against human obesity, cancer, and inflammation. Supplementary lighting is a practical strategy to improve crop quality, especially at a propagation stage. However, there has been no study available on the optimal supplementary light source for the commercial production of A. triphylla seedlings. In this study, plug seedlings were cultivated in a greenhouse for four weeks under an average daily light intensity of 490 μmol·m−2·s−1 PPFD coming from the sun and a supplemental lighting (16 h per day) at 120 μmol·m−2·s−1 PPFD provided by high pressure sodium (HPS), metal halide (MH), far-red (FR) light, white LED (red: green: blue = 2:4:3, LED-w), or mixed (red: green: blue = 4:1:4) LED (LED-mix). The results showed that LED-mix, with a higher percentage of red and blue light, substantially promoted seedling growth compared to other treatments by increasing stem diameter, biomass, specific leaf weight, and root to shoot ratio. The LED-mix also promoted accumulation of soluble sugar, starch, and chlorophyll in the tissue and increased contents of total phenols and flavonoids. Moreover, stomata density and pore area per leaf area under the LED-mix were remarkably greater than those under other treatments. Furthermore, the Western blot analysis revealed that the expression of photosynthetic protein, D1, was notably enhanced by the LED-mix as compared with other light sources. In addition, the LED-mix alleviated the oxidative damage of seedlings by improving enzymatic and nonenzymatic antioxidant systems. Collectively, these results suggest that the LED-mix was the optimal supplementary light source for the production of highest quality A. triphylla seedlings.
Collapse
|
32
|
Li Y, Liu B, Zhang J, Kong F, Zhang L, Meng H, Li W, Rochaix JD, Li D, Peng L. OHP1, OHP2, and HCF244 Form a Transient Functional Complex with the Photosystem II Reaction Center. PLANT PHYSIOLOGY 2019; 179:195-208. [PMID: 30397023 PMCID: PMC6324237 DOI: 10.1104/pp.18.01231] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
The reaction center (RC) of photosystem II (PSII), which is composed of D1, D2, PsbI, and cytochrome b559 subunits, forms at an early stage of PSII biogenesis. However, it is largely unclear how these components assemble to form a functional unit. In this work, we show that synthesis of the PSII core proteins D1/D2 and formation of the PSII RC is blocked specifically in the absence of ONE-HELIX PROTEIN1 (OHP1) and OHP2 proteins in Arabidopsis (Arabidopsis thaliana), indicating that OHP1 and OHP2 are essential for the formation of the PSII RC. Mutagenesis of the chlorophyll-binding residues in OHP proteins impairs their function and/or stability, suggesting that they may function in the binding of chlorophyll in vivo. We further show that OHP1, OHP2, and HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244), together with D1, D2, PsbI, and cytochrome b559, form a complex. We designated this complex the PSII RC-like complex to distinguish it from the RC subcomplex in the intact PSII complex. Our data imply that OHP1, OHP2, and HCF244 are present in this PSII RC-like complex for a limited time at an early stage of PSII de novo assembly and of PSII repair under high-light conditions. In a subsequent stage of PSII biogenesis, OHP1, OHP2, and HCF244 are released from the PSII RC-like complex and replaced by the other PSII subunits. Together with previous reports on the cyanobacterium Synechocystis, our results demonstrate that the process of PSII RC assembly is highly conserved among photosynthetic species.
Collapse
Affiliation(s)
- Yonghong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fanna Kong
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lin Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Han Meng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenjing Li
- College of Life Sciences, Langfang Teachers University, Langfang Hebei 065000, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dan Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lianwei Peng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|