1
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Wang C, Wu S, Hu Y, Wang J, Ru K, Zhao M. A novel arginine methylation-associated lncRNA signature effectively predicts prognosis in breast cancer patients. Front Oncol 2024; 14:1472434. [PMID: 39411134 PMCID: PMC11473254 DOI: 10.3389/fonc.2024.1472434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a disease highly associated with epigenetic modification, and arginine methylation is particularly important in its genetic regulation. However, the role of arginine methylation related lncRNAs in breast cancer has not been studied. First, we identified the related lncRNAs (from TCGA database) according to the differentially expressed genes related to arginine methylation in breast cancer. Then the lncRNAs related to protein arginine methylation were obtained by regression analysis, and the risk score model was constructed. Finally, the cell experiment and subcutaneous tumor model verified that the arginine methylation related lncRNA z68871.1 in the model had a significant effect on the proliferation and invasion of breast cancer cells. In conclusion, we successfully constructed an arginine methylation related lncRNA model, which has strong predictive ability. At the same time, this study provides an experimental basis for exploring the mechanism of arginine methylation in BC and helps to find new biomarkers of BC.
Collapse
Affiliation(s)
- Changli Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuaishuai Wu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanran Hu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Ru
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Du J, Wu S, Liu J, Guo B, Li J, Li W, Zhang Y, Song H, Shu W, Li Z, Zhu X. Analysis of clinicopathological characteristics and prognostic factors in 54 metaplastic breast carcinoma patients from northwest China. Cytojournal 2024; 21:31. [PMID: 39411170 PMCID: PMC11474753 DOI: 10.25259/cytojournal_15_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Metaplastic breast carcinoma (MBC) is a special type of morphologically heterogeneous and aggressively invasive breast cancer. MBC is characterized by the transformation of tumor epithelium into squamous epithelium and/or mesenchymal components, including differentiation into spindle cells, chondrocytes, and osteocytes. Due to its rarity and invasiveness, there is a paucity of research on MBC prognosis. Furthermore, there are currently no treatment guidelines for MBC. This study analyzed the clinicopathological characteristics, immunophenotype, and prognostic features of MBC. Our aim was to better characterize MBC, thereby identifying potential prognostic factors and new treatment methods. Moreover, we also describe an MBC case treated experimentally with anti-vascular targeted therapy. Material and Methods We retrospectively analyzed clinical pathological data on 54 female patients with MBC from Shaanxi Provincial People's Hospital and the XiJing Hospital of Air Force Medical University. These cases were diagnosed with MBC between January 1st, 2013, and October 1st, 2018. All patients were from the northwest region of China. The gross morphological, histological, and immunohistochemical features of MBC were analyzed. Kaplan-Meier analysis was used to calculate the survival rate, and univariate analysis was performed to identify significant prognostic factors. In addition, the treatment of an MBC patient with anti-angiogenic therapy was described, and a relevant literature review was conducted. Results MBC was diagnosed in 32 left breasts and 22 right breasts from 54 women aged 21-76 years (median age of 57 years). The maximum tumor diameter ranged from 0.6 to 14 cm (average of 4.1 cm). Of the 54 patients, 47 underwent surgical treatment, with lymph node metastasis found in 17.0% (8/47). According to the World Health Organization classification criteria for breast tumors, the study cohort consisted of 15 cases of squamous cell carcinoma, ten cases of spindle cell carcinoma, nine cases of carcinoma with associated stromal differentiation, 18 cases of mixed carcinoma, and two cases of adenocarcinoma with squamous differentiation. Based on the American Joint Committee on Cancer clinical staging criteria, the patients were classified as Stage I (10 cases, 18.5%), Stage II (26 cases, 48.1%), Stage III (11 cases, 20.4%), and Stage IV (7 cases, 13.0%). Immunohistochemical analysis revealed that 94.4% of patients had triple-negative breast cancer (TNBC), 47 cases showed mutant tumor protein 53 (TP53) expression, 29 cases showed positive epidermal growth factor receptor (EGFR) expression, 43 cases showed positive E-cadherin expression, and 37 cases showed positive Cluster of Differentiation 24 expression. The Ki-67 index ranged from 20% to 90%. Univariate analysis showed that the Ki-67 index was not significantly associated with either progression-free survival (PFS) or overall survival (OS) in MBC patients. Patients with negative axillary lymph nodes had significantly better PFS and OS than those with positive nodes (P < 0.05), and patients with clinical stage I-II disease had better PFS and OS than those with stage III-IV disease (P < 0.05). Patients treated with anthracycline-containing chemotherapy had significantly better PFS than those who did not receive chemotherapy. Univariate analysis revealed that the high expression of EGFR correlated with worse PFS (P < 0.05). The type of surgical approach employed did not affect the prognosis of MBC patients. Following the application of anti-angiogenic therapy, a rapid partial response was observed in an MBC patient with carcinoma and associated stromal differentiation. This patient subsequently underwent surgery and radiation therapy and has now achieved over 6 years of PFS. Conclusion MBC is a heterogeneous group of tumors with high malignancy and poor prognosis. The large majority is TNBC and exhibits unique immune phenotypes. The poor PFS of MBC patients may be related to EGFR expression, which could become a potential therapeutic target in these patients. Surgery remains the primary treatment method for MBC. The present study found that sentinel lymph node biopsy was feasible in appropriate patients, and that chemotherapy regimens incorporating anthracycline-class drugs did not appear to improve OS. Anti-angiogenic therapy holds promise as a potentially effective treatment approach for MBC, and the optimization of systemic treatment strategies should be a priority in the management of these patients.
Collapse
Affiliation(s)
- Jing Du
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Shuhan Wu
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Jiayan Liu
- Department of Pathology, Xijing Hospital of Air Force Medical University, Xi’an, China
| | - Bo Guo
- Department of Burns and Plastic Surgery, Tangdu Hospital of Air Force Medical University, Xi’an, China
| | - Jianhui Li
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Wenhan Li
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Ying Zhang
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Hengtao Song
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Wenjun Shu
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Zhenzhen Li
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| | - Xulong Zhu
- Department of Surgical Oncology and Pathology, Shaanxi Provincial People’s Hospital, Xian, China
| |
Collapse
|
4
|
Shi Y, Wu Z, Liu S, Zuo D, Niu Y, Qiu Y, Qiao L, He W, Qiu J, Yuan Y, Wang G, Li B. Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling. Nat Commun 2024; 15:7930. [PMID: 39256398 PMCID: PMC11387718 DOI: 10.1038/s41467-024-52170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising therapeutic option for hepatocellular carcinoma (HCC), but resistance to ICB occurs and patient responses vary. Here, we uncover protein arginine methyltransferase 3 (PRMT3) as a driver for immunotherapy resistance in HCC. We show that PRMT3 expression is induced by ICB-activated T cells via an interferon-gamma (IFNγ)-STAT1 signaling pathway, and higher PRMT3 expression levels correlate with reduced numbers of tumor-infiltrating CD8+ T cells and poorer response to ICB. Genetic depletion or pharmacological inhibition of PRMT3 elicits an influx of T cells into tumors and reduces tumor size in HCC mouse models. Mechanistically, PRMT3 methylates HSP60 at R446 to induce HSP60 oligomerization and maintain mitochondrial homeostasis. Targeting PRMT3-dependent HSP60 methylation disrupts mitochondrial integrity and increases mitochondrial DNA (mtDNA) leakage, which results in cGAS/STING-mediated anti-tumor immunity. Lastly, blocking PRMT3 functions synergize with PD-1 blockade in HCC mouse models. Our study thus identifies PRMT3 as a potential biomarker and therapeutic target to overcome immunotherapy resistance in HCC.
Collapse
Affiliation(s)
- Yunxing Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuxiong Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liang Qiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Niu D, Ma Y, Ren P, Chang S, Li C, Jiang Y, Han C, Lan K. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog 2024; 20:e1012535. [PMID: 39255317 PMCID: PMC11421797 DOI: 10.1371/journal.ppat.1012535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Patrick N, Markey M. Long-Read MDM4 Sequencing Reveals Aberrant Isoform Landscape in Metastatic Melanomas. Int J Mol Sci 2024; 25:9415. [PMID: 39273363 PMCID: PMC11395681 DOI: 10.3390/ijms25179415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.
Collapse
Affiliation(s)
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
7
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
8
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Poulet S, Dai M, Wang N, Yan G, Boudreault J, Daliah G, Guillevin A, Nguyen H, Galal S, Ali S, Lebrun JJ. Genome-wide in vivo CRISPR screen identifies TGFβ3 as actionable biomarker of palbociclib resistance in triple negative breast cancer. Mol Cancer 2024; 23:118. [PMID: 38831405 PMCID: PMC11145857 DOI: 10.1186/s12943-024-02029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFβ3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFβ3 treatment can overcome this. This study defines TGFβ3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFβ3 to propose a new combinatorial treatment for TNBC.
Collapse
Affiliation(s)
- Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Alan Guillevin
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Huong Nguyen
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Soaad Galal
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
10
|
Nakamura T, Sugeno N, Hasegawa T, Ikeda K, Yoshida S, Ishiyama S, Sato K, Takeda A, Aoki M. Alpha-synuclein promotes PRMT5-mediated H4R3me2s histone methylation by interacting with the BAF complex. FEBS J 2024; 291:1892-1908. [PMID: 38105619 DOI: 10.1111/febs.17037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
α-Synuclein (αS) is a key molecule in the pathomechanism of Parkinson's disease. Most studies on αS to date have focused on its function in the neuronal cytosol, but its action in the nucleus has also been postulated. Indeed, several lines of evidence indicate that overexpressed αS leads to epigenomic alterations. To clarify the functional role of αS in the nucleus and its pathological significance, HEK293 cells constitutively expressing αS were used to screen for nuclear proteins that interact with αS by nanoscale liquid chromatography/tandem mass spectrometry. Interactome analysis of the 229 identified nuclear proteins revealed that αS interacts with the BRG1-associated factor (BAF) complex, a family of multi-subunit chromatin remodelers important for neurodevelopment, and protein arginine methyltransferase 5 (PRMT5). Subsequent transcriptomic analysis also suggested a functional link between αS and the BAF complex. Based on these results, we analyzed the effect of αS overexpression on the BAF complex in neuronally differentiated SH-SY5Y cells and found that induction of αS disturbed the BAF maturation process, leading to a global increase in symmetric demethylation of histone H4 on arginine 3 (H4R3me2s) via enhanced BAF-PRMT5 interaction. Chromatin immunoprecipitation sequencing confirmed accumulated H4R3me2s methylation near the transcription start site of the neuronal cell adhesion molecule (NRCAM) gene, which has roles during neuronal differentiation. Transcriptional analyses confirmed the negative regulation of NRCAM by αS and PRMT5, which was reconfirmed by multiple datasets in the Gene Expression Omnibus (GEO) database. Taken together, these findings suggest that the enhanced binding of αS to the BAF complex and PRMT5 may cooperatively affect the neuronal differentiation process.
Collapse
Affiliation(s)
- Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Miyagi National Hospital, Watari, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensho Ikeda
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Lin CC, Chang TC, Wang Y, Guo L, Gao Y, Bikorimana E, Lemoff A, Fang YV, Zhang H, Zhang Y, Ye D, Soria-Bretones I, Servetto A, Lee KM, Luo X, Otto JJ, Akamatsu H, Napolitano F, Mani R, Cescon DW, Xu L, Xie Y, Mendell JT, Hanker AB, Arteaga CL. PRMT5 is an actionable therapeutic target in CDK4/6 inhibitor-resistant ER+/RB-deficient breast cancer. Nat Commun 2024; 15:2287. [PMID: 38480701 PMCID: PMC10937713 DOI: 10.1038/s41467-024-46495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.
Collapse
Affiliation(s)
- Chang-Ching Lin
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunpeng Gao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Bikorimana
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng V Fang
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dan Ye
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Alberto Servetto
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Kyung-Min Lee
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Xuemei Luo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph J Otto
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hiroaki Akamatsu
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fabiana Napolitano
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ram Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David W Cescon
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
13
|
Zhou H, Chang J, Zhang J, Zheng H, Miao X, Mo H, Sun J, Jia Q, Qi G. PRMT5 activates KLF5 by methylation to facilitate lung cancer. J Cell Mol Med 2024; 28:e17856. [PMID: 37461162 PMCID: PMC10902573 DOI: 10.1111/jcmm.17856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 03/01/2024] Open
Abstract
The highly expressed oncogenic factor Krüppel-like factor 5 (KLF5) promotes various cancerous processes, such as cell growth, survival, anti-apoptosis, migration and metastasis, particularly in lung cancer. Nevertheless, the modifications to KLF5 after translation are poorly understood. Protein arginine methyltransferase 5 (PRMT5) is considered as an oncogene known to be involved in different types of carcinomas, including lung cancer. Here, we show that the expression levels of PRMT5 and KLF5 are highly expressed lung cancer. Moreover, PRMT5 interacts with KLF5 and facilitates the dimethylation of KLF5 at Arginine 41 in a manner that depends on methyltransferase activity. Downregulation or pharmaceutical suppression of PRMT5 reduces the expression of KLF5 and its downstream targets both in vitro and in vivo. Mechanistically, the dimethylation of KLF5 by PRMT5 promotes the maintenance and proliferation of lung cancer cells at least partially by stabilising KLF5 via regulation of the Akt/GSK3β signalling axis. In summary, PRMT5 methylates KLF5 to prevent its degradation, thereby promoting the maintenance and proliferation of lung cancer cells. These results suggest that targeting PRMT5/KLF5 axis may offer a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jing Chang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jingjian Zhang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hongzhen Zheng
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Xiang Miao
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Huimin Mo
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jie Sun
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Qin Jia
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Guangsheng Qi
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
14
|
Julson JR, Horton SC, Quinn CH, Beierle AM, Bownes LV, Stewart JE, Aye J, Yoon KJ, Beierle EA. CDK4/6 Inhibition With Lerociclib is a Potential Therapeutic Strategy for the Treatment of Pediatric Sarcomas. J Pediatr Surg 2024; 59:473-482. [PMID: 37919169 PMCID: PMC10922146 DOI: 10.1016/j.jpedsurg.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Sarcomas are a heterogenous collection of bone and soft tissue tumors. The heterogeneity of these tumors makes it difficult to standardize treatment. CDK 4/6 inhibitors are a family of targeted agents which limit cell cycle progression and have been shown to be upregulated in sarcomas. In the current preclinical study, we evaluated the effects of lerociclib, a CDK4/6 inhibitor, on pediatric sarcomas in vitro and in 3D bioprinted tumors. METHODS The effects of lerociclib on viability, proliferation, cell cycle, motility, and stemness were assessed in established sarcoma cell lines, U-2 OS and MG-63, as well as sarcoma patient-derived xenografts (PDXs). 3D printed biotumors of each of the U-2 OS, MG-63, and COA79 cells were utilized to study the effects of lerociclib on tumor growth ex vivo. RESULTS CDK 4/6, as well as the intermediaries retinoblastoma protein (Rb) and phosphorylated Rb were identified as targets in the four sarcoma cell lines. Lerociclib treatment induced cell cycle arrest, decreased proliferation, motility, and stemness of sarcoma cells. Treatment with lerociclib decreased sarcoma cell viability in both traditional 2D culture as well as 3D bioprinted microtumors. CONCLUSIONS Inhibition of CDK 4/6 activity with lerociclib was efficacious in traditional 2D sarcoma cell culture as well as in 3D bioprints. Lerociclib holds promise and warrants further investigation as a novel therapeutic strategy for management of these heterogenous groups of tumors.
Collapse
Affiliation(s)
- Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sara C Horton
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie Aye
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
16
|
Sun Y, Jin X, Meng J, Guo F, Chen T, Zhao X, Wu H, Ren D. MST2 methylation by PRMT5 inhibits Hippo signaling and promotes pancreatic cancer progression. EMBO J 2023; 42:e114558. [PMID: 37905571 PMCID: PMC10690468 DOI: 10.15252/embj.2023114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
The Hippo signaling axis is a tumor suppressor pathway that is activated by various extra-pathway factors to regulate cell differentiation and organ development. Recent studies have reported that autophosphorylation of the core kinase cassette stimulates activation of the Hippo signaling cascade. Here, we demonstrate that protein arginine methyltransferase 5 (PRMT5) contributes to inactivation of the Hippo signaling pathway in pancreatic cancer. We show that the Hippo pathway initiator serine/threonine kinase 3 (STK3, also known as MST2) of Hippo signaling pathway can be symmetrically di-methylated by PRMT5 at arginine-461 (R461) and arginine-467 (R467) in its SARAH domain. Methylation suppresses MST2 autophosphorylation and kinase activity by blocking its homodimerization, thereby inactivating Hippo signaling pathway in pancreatic cancer. Moreover, we also show that the specific PRMT5 inhibitor GSK3326595 re-activates the dysregulated Hippo signaling pathway and inhibits the growth of human pancreatic cancer xenografts in immunodeficient mice, thus suggesting potential clinical application of PRMT5 inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Jin
- Department of Urology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Uro‐Oncology Institute of Central South UniversityChangshaChina
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of General SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Dakroub R, Huard S, Hajj-Younes Y, Suresh S, Badran B, Fayyad-Kazan H, Dubois T. Therapeutic Advantage of Targeting PRMT5 in Combination with Chemotherapies or EGFR/HER2 Inhibitors in Triple-Negative Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:785-799. [PMID: 37954171 PMCID: PMC10637385 DOI: 10.2147/bctt.s430513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Purpose Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subgroup characterized by a high risk of resistance to chemotherapies and high relapse potential. TNBC shows inter-and intra-tumoral heterogeneity; more than half expresses high EGFR levels and about 30% are classified as HER2-low breast cancers. High PRMT5 mRNA levels are associated with poor prognosis in TNBC and inhibiting PRMT5 impairs the viability of subsets of TNBC cell lines and delays tumor growth in TNBC mice models. TNBC patients may therefore benefit from a treatment targeting PRMT5. The aim of this study was to assess the therapeutic benefit of combining a PRMT5 inhibitor with different chemotherapies used in the clinics to treat TNBC patients, or with FDA-approved inhibitors targeting the HER family members. Methods The drug combinations were performed using proliferation and colony formation assays on TNBC cell lines that were sensitive or resistant to EPZ015938, a PRMT5 inhibitor that has been evaluated in clinical trials. The chemotherapies analyzed were cisplatin, doxorubicin, camptothecin, and paclitaxel. The targeted therapies tested were erlotinib (EGFR inhibitor), neratinib (EGFR/HER2/HER4 inhibitor) and tucatinib (HER2 inhibitor). Results We found that PRMT5 inhibition synergized mostly with cisplatin, and to a lesser extent with doxorubicin or camptothecin, but not with paclitaxel, to impair TNBC cell proliferation. PRMT5 inhibition also synergized with erlotinib and neratinib in TNBC cell lines, especially in those overexpressing EGFR. Additionally, a synergistic interaction was observed with neratinib and tucatinib in a HER2-low TNBC cell line as well as in a HER2-positive breast cancer cell line. We noticed that synergy can be obtained in TNBC cell lines that were resistant to PRMT5 inhibition alone. Conclusion Altogether, our data highlight the therapeutic potential of targeting PRMT5 using combinatorial strategies for the treatment of subsets of TNBC patients.
Collapse
Affiliation(s)
- Rayan Dakroub
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Solène Huard
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Yara Hajj-Younes
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Samyuktha Suresh
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| |
Collapse
|
18
|
Chan LH, Wang P, Abuhammad S, Lim LRJ, Cursons J, Sheppard KE, Goode DL. PRMT5 and CDK4/6 inhibition result in distinctive patterns of alternative splicing in melanoma. PLoS One 2023; 18:e0292278. [PMID: 37917641 PMCID: PMC10621831 DOI: 10.1371/journal.pone.0292278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
Drugs targeting cyclin-dependent kinases 4 and 6 (CDK4/6) are promising new treatments for melanoma and other solid malignancies. In studies on CDK4/6 inhibitor resistance, protein arginine methyltransferase 5 (PRMT5) regulation of alternative splicing was shown to be an important downstream component of the CDK4/6 pathway. However, the full effects of inhibition of CDK4/6 on splicing events in melanoma and the extent to which they are dependent on PRMT5 has not been established. We performed full-length mRNA sequencing on CHL1 and A375 melanoma cell lines treated with the CDK4/6 inhibitor palbociclib and the PRMT5 inhibitor GSK3326595 and analysed data for differential gene expression and differential pre-mRNA splicing induced by these agents. Changes in gene expression and RNA splicing were more extensive under PRMT5 inhibition than under CDK4/6 inhibition. Although PRMT5 inhibition and CDK4/6 inhibition induced common RNA splicing events and gene expression profiles, the majority of events induced by CDK4/6 inhibition were distinct. Our findings indicate CDK4/6 has the ability to regulate alternative splicing in a manner that is distinct from PRMT5 inhibition, resulting in divergent changes in gene expression under each therapy.
Collapse
Affiliation(s)
- Lok Hang Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peihan Wang
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shatha Abuhammad
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lydia Rui Jia Lim
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph Cursons
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - David L. Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Long S, Xu J, Huang H. Analysis of differential gene immune infiltration and clinical characteristics of skin cutaneous melanoma based on systems biology and drug repositioning methods to identify drug candidates for skin cutaneous melanoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2427-2447. [PMID: 37086280 PMCID: PMC10122093 DOI: 10.1007/s00210-023-02461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/09/2023] [Indexed: 04/23/2023]
Abstract
Skin cutaneous melanoma (SKCM) has a low early detection rate and a high mortality rate. There are many problems such as side effects and drug resistance in existing therapeutic drugs. Current studies have confirmed that SKCM pathogenesis-related genes promote the invasion and metastasis of cutaneous melanoma, but their roles in the tumor microenvironment (TME) remain unclear. Network pharmacology provides new opportunities for drug repurposing and repositioning, and is a fast, safe, and inexpensive drug discovery method to find new drugs for the treatment of SKCM. In this study, based on 3 databases (KEGG, OMIM, and Genotype) to obtain SKCM-related genes, and TCGA SKCM dataset, SKCM differential genes in GSE3189 and GSE46517 were intersected to identify SKCM pathogenesis-related differential genes, and the differential genes were immune infiltration and analysis, For survival analysis, a prognostic nomogram risk model was constructed based on the results of multivariate Cox regression analysis for risk stratification and prognosis prediction, then focused on the differential expression of ZC3H12A and its effect on TME. Finally, the protein interaction network method was used to quantify the similarity between 684 drug targets and skin melanoma, and to screen out drugs similar to skin melanoma. Based on 3 databases of KEGG, OMIM, and Genotype, 294 SKCM-related genes and 18 SKCM pathogenesis-related differential genes were obtained, and 18 SKCM pathogenesis-related differential genes were significantly correlated with TME. The constructed prognostic nomogram risk model predicted performance better and provided valuable information for immunotherapy. Multivariate Cox regression analysis and K-M analysis showed that ZC3H12A was a differentially expressed gene affecting the prognosis of SKCM and promoted the infiltration of anti-tumor immune cells CD8 + T cells, B cells, and DC cells. Based on the analysis of the protein interaction network method, 43 drugs were found to have high potential in the treatment of SKCM, and the literature search of these 43 drugs was carried out, and 21 drugs were found to have experimental verification for the treatment of SKCM. Taken together, the differential genes associated with the pathogenesis of SKCM have important roles in the tumor immune microenvironment, clinicopathological features, and prognosis, especially ZC3H12A has a potential role in identifying early SKCM patients. At the same time, it provides a new strategy for the drug development of SKCM and provides a basis for the reuse of SKCM drugs.
Collapse
Affiliation(s)
- Shengyong Long
- Department of Traumatology, Guizhou Province, Tongren People's Hospital, No 120 Middle Section of Taoyuan Avenue, Tongren City, 554399, People's Republic of China
| | - Jing Xu
- Department of Traumatology, Guizhou Province, Tongren People's Hospital, No 120 Middle Section of Taoyuan Avenue, Tongren City, 554399, People's Republic of China.
| | - Hai Huang
- Department of Traumatology, Guizhou Province, Tongren People's Hospital, No 120 Middle Section of Taoyuan Avenue, Tongren City, 554399, People's Republic of China
| |
Collapse
|
20
|
Khan SU, Ullah Z, Shaukat H, Unab S, Jannat S, Ali W, Ali A, Irfan M, Khan MF, Cervantes-Villagrana RD. TP53 and its Regulatory Genes as Prognosis of Cutaneous Melanoma. Cancer Inform 2023; 22:11769351231177267. [PMID: 37667731 PMCID: PMC10475268 DOI: 10.1177/11769351231177267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 09/06/2023] Open
Abstract
The present study was the first comprehensive investigation of genetic mutation and expression levels of the p53 signaling genes in cutaneous melanoma through various genetic databases providing large datasets. The mutational landscape of p53 and its signaling genes was higher than expected, with TP53 followed by CDKN2A being the most mutated gene in cutaneous melanoma. Furthermore, the expression analysis showed that TP53, MDM2, CDKN2A, and TP53BP1 were overexpressed, while MDM4 and CDKN2B were under-expressed in cutaneous melanoma. Overall, TCGA data revealed that among all the other p53 signaling proteins, CDKN2A was significantly higher in both sun and non-sun-exposed healthy tissues than in melanoma. Likewise, MDM4 and TP53BP1 expressions were markedly greater in non-sun-exposed healthy tissues compared to other groups. However, CDKN2B expression was higher in the sun-exposed healthy tissues than in other tissues. In addition, various genes were expressed significantly differently among males and females. In addition, CDKN2A was highly expressed in the SK-MEL-30 skin cancer cell line, whereas, Immune cell type expression analysis revealed that the MDM4 was highly expressed in naïve B-cells. Furthermore, all six genes were significantly overexpressed in extraordinarily overweight or obese tumor tissues compared to healthy tissues. MDM2 expression and tumor stage were closely related. There were differences in gene expression across patient age groups and positive nodal status. TP53 showed a positive correlation with B cells, MDM2 with CD8+T cells, macrophages and neutrophils, and MDM4 with neutrophils. CDKN2A/B had a non-significant correlation with all six types of immune cells. However, TP53BP1 was positively correlated with all five types of immune cells except B cells. Only TP53, MDM2, and CDKN2A had a role in cutaneous melanoma-specific tumor immunity. All TP53 and its regulating genes may be predictive for prognosis. The results of the present study need to be validated through future screening, in vivo, and in vitro studies.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Cell Biology, Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| | - Zahid Ullah
- Department of Software Engineering, Abasyn University Peshawar, Peshawar, Pakistan
| | - Hadia Shaukat
- Department of Zoology, Women University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Sheeza Unab
- Department of Zoology, University of Mianwali, Mianwali, Pakistan
| | - Saba Jannat
- Department of Zoology, Women University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ali
- Biochemical and Biotechnological Sciences Università degli studi della Campania Luigi Vanvitelli, Caserta, Campania, Italy
| | - Amir Ali
- Nanosciences and Nanotechnology Program, Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| | - Muhammad Irfan
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, Pakistan
| | | | | |
Collapse
|
21
|
Jiang Z, Zhang A, Wei W, Li S. Ambra1 modulates the sensitivity of mantle cell lymphoma to palbociclib by regulating cyclin D1. Sci Rep 2023; 13:8389. [PMID: 37225761 DOI: 10.1038/s41598-023-35096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare B-cell malignancy with a predominantly aggressive clinical course and poor prognosis. Abnormal expression of Ambra1 is closely related to the occurrence and development of various tumors. However, the role of Ambra1 in MCL remains unknown. Here, we performed both in vitro and in vivo experiments to investigate how Ambra1 regulates MCL progression and whether Ambra1 modulates the sensitivity of MCL cells to the CDK4/6 inhibitor palbociclib. We discovered that MCL cells had decreased levels of Ambra1 expression relative to normal B cells. Overexpression of Ambra1 in MCL cells inhibited autophagy, reduced cell proliferation, migration, and invasion, and decreased cyclin D1 level. While knockdown of Ambra1 reduced MCL cell sensitivity to CDK4/6 inhibitor palbociclib. Furthermore, overexpression of cyclin D1 lowered the sensitivity of MCL cells to palbociclib, enhanced cell proliferation, migration, invasion, and autophagy, and inhibited cell apoptosis. When Ambra1 expression was inhibited, the in vivo antitumor effects of palbociclib on MCL were reversed. Ambra1 expression was downregulated but cyclin D1 expression was upregulated in MCL samples, demonstrating a negative correlation between Ambra1 and cyclin D1. Our findings suggest a unique tumor suppressor function for Ambra1 in the development of MCL.
Collapse
Affiliation(s)
- Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Wenjia Wei
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China.
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China.
| |
Collapse
|
22
|
Ford K, Munson BP, Fong SH, Panwala R, Chu WK, Rainaldi J, Plongthongkum N, Arunachalam V, Kostrowicki J, Meluzzi D, Kreisberg JF, Jensen-Pergakes K, VanArsdale T, Paul T, Tamayo P, Zhang K, Bienkowska J, Mali P, Ideker T. Multimodal perturbation analyses of cyclin-dependent kinases reveal a network of synthetic lethalities associated with cell-cycle regulation and transcriptional regulation. Sci Rep 2023; 13:7678. [PMID: 37169829 PMCID: PMC10175263 DOI: 10.1038/s41598-023-33329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brenton P Munson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samson H Fong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wai Keung Chu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Todd VanArsdale
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Thomas Paul
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Liu A, Yu C, Qiu C, Wu Q, Huang C, Li X, She X, Wan K, Liu L, Li M, Wang Z, Chen Y, Hu F, Song D, Li K, Zhao C, Deng H, Sun X, Xu F, Lai S, Luo X, Hu J, Wang G. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene 2023; 42:1572-1584. [PMID: 36991117 DOI: 10.1038/s41388-023-02674-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Perturbations in transforming growth factor-β (TGF-β) signaling can lead to a plethora of diseases, including cancer. Mutations and posttranslational modifications (PTMs) of the partner of SMAD complexes contribute to the dysregulation of TGF-β signaling. Here, we reported a PTM of SMAD4, R361 methylation, that was critical for SMAD complexes formation and TGF-β signaling activation. Through mass spectrometric, co-immunoprecipitation (Co-IP) and immunofluorescent (IF) assays, we found that oncogene protein arginine methyltransferase 5 (PRMT5) interacted with SMAD4 under TGF-β1 treatment. Mechanically, PRMT5 triggered SMAD4 methylation at R361 and induced SMAD complexes formation and nuclear import. Furthermore, we emphasized that PRMT5 interacting and methylating SMAD4 was required for TGF-β1-induced epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis, and SMAD4 R361 mutation diminished PRMT5 and TGF-β1-induced metastasis. In addition, highly expressed PRMT5 or high level of SMAD4 R361 methylation indicated worse outcomes in clinical specimens analysis. Collectively, our study highlights the critical interaction of PRMT5 and SMAD4 and the roles of SMAD4 R361 methylation for controlling TGF-β signaling during metastasis. We provided a new insight for SMAD4 activation. And this study indicated that blocking PRMT5-SMAD4 signaling might be an effective targeting strategy in SMAD4 wild-type CRC.
Collapse
Affiliation(s)
- Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kairui Wan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Mao Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Department of Emergency and Trauma Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chongchong Zhao
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Haiteng Deng
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Xuling Sun
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, PR China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Senyan Lai
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
24
|
Kositza J, Nguyen J, Hong T, Mantwill K, Nawroth R. Identification of the KIF and MCM protein families as novel targets for combination therapy with CDK4/6 inhibitors in bladder cancer. Urol Oncol 2023; 41:253.e11-253.e20. [PMID: 36813612 DOI: 10.1016/j.urolonc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
CDK4/6 inhibitors have proven their potency for the treatment of cancer but only in combination with hormone or targeted therapies. The aim of this study was the identification of molecules that are involved in response mechanisms to CDK4/6 inhibitors and the development of novel combination therapies with corresponding inhibitors in bladder cancer. Genes of response to therapy and genes that confer resistance to the CDK4/6 inhibitor palbociclib were identified by performing an analysis of published literature and own published data using a CRISPR-dCas9 genome wide gain of function screen. Genes that were down-regulated upon treatment were compared with genes that confer resistance when up-regulated. Two of the top 5 genes were validated by quantitative PCR and western blotting upon treatment with palbociclib in the bladder cancer cell lines T24, RT112 and UMUC3. As inhibitors for combination therapy, we used ciprofloxacin, paprotrain, ispinesib and SR31527. Analysis of synergy was done using the "zero interaction potency" model. Cell growth was examined using sulforhodamine B staining. A list of genes that met the requirements for inclusion in the study was generated from 7 publications. Of the 5 most relevant genes, MCM6 and KIFC1 were chosen and their down-regulation upon treatment with palbociclib was confirmed by qPCR and immunoblotting. The combination of inhibitors against both, KIFC1 and MCM6 with PD resulted in a synergistic inhibition of cell growth. We have identified 2 molecular targets whose inhibition has promising potential for effective combination therapies with the CDK4/6 inhibitor palbociclib.
Collapse
Affiliation(s)
- Julian Kositza
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Nguyen
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
25
|
Che Y, Liu Y, Yao Y, Hill HA, Li Y, Cai Q, Yan F, Jain P, Wang W, Rui L, Wang M. Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations. Blood Cancer J 2023; 13:27. [PMID: 36797243 PMCID: PMC9935633 DOI: 10.1038/s41408-023-00799-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Constant challenges for the treatment of mantle cell lymphoma (MCL) remain to be recurrent relapses and therapy resistance, especially in patients harboring somatic mutations in the tumor suppressors ATM and TP53, which are accumulated as therapy resistance emerges and the disease progresses, consistent with our OncoPrint results that ATM and TP53 alterations were most frequent in relapsed/refractory (R/R) MCL. We demonstrated that protein arginine methyltransferase-5 (PRMT5) was upregulated in R/R MCL, which predicted a poor prognosis. PRMT5 inhibitors displayed profound antitumor effects in the mouse models of MCL with mutated ATM and/or TP53, or refractory to CD19-targeted CAR T-cell therapy. Genetic knockout of PRMT5 robustly inhibited tumor growth in vivo. Co-targeting PRMT5, and ATR or CDK4 by using their inhibitors showed synergistic antitumor effects both in vitro and in vivo. Our results have provided a rational combination therapeutic strategy targeting multiple PRMT5-coordinated tumor-promoting processes for the treatment of R/R MCL with high mutation burdens.
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Holly A Hill
- Department of Bioinformatics and Computer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Fangfang Yan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Lixin Rui
- Department of Medicine, the University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53726, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Prabhu SA, Moussa O, Gonçalves C, LaPierre JH, Chou H, Huang F, Richard VR, Ferruzo PYM, Guettler EM, Soria-Bretones I, Kirby L, Gagnon N, Su J, Silvester J, Krisna SS, Rose AAN, Sheppard KE, Cescon DW, Mallette FA, Zahedi RP, Borchers CH, Del Rincon SV, Miller WH. Inhibition of the MNK1/2-eIF4E Axis Augments Palbociclib-Mediated Antitumor Activity in Melanoma and Breast Cancer. Mol Cancer Ther 2023; 22:192-204. [PMID: 36722142 DOI: 10.1158/1535-7163.mct-22-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
Aberrant cell-cycle progression is characteristic of melanoma, and CDK4/6 inhibitors, such as palbociclib, are currently being tested for efficacy in this disease. Despite the promising nature of CDK4/6 inhibitors, their use as single agents in melanoma has shown limited clinical benefit. Herein, we discovered that treatment of tumor cells with palbociclib induces the phosphorylation of the mRNA translation initiation factor eIF4E. When phosphorylated, eIF4E specifically engenders the translation of mRNAs that code for proteins involved in cell survival. We hypothesized that cancer cells treated with palbociclib use upregulated phosphorylated eIF4E (phospho-eIF4E) to escape the antitumor benefits of this drug. Indeed, we found that pharmacologic or genetic disruption of MNK1/2 activity, the only known kinases for eIF4E, enhanced the ability of palbociclib to decrease clonogenic outgrowth. Moreover, a quantitative proteomics analysis of melanoma cells treated with combined MNK1/2 and CDK4/6 inhibitors showed downregulation of proteins with critical roles in cell-cycle progression and mitosis, including AURKB, TPX2, and survivin. We also observed that palbociclib-resistant breast cancer cells have higher basal levels of phospho-eIF4E, and that treatment with MNK1/2 inhibitors sensitized these palbociclib-resistant cells to CDK4/6 inhibition. In vivo we demonstrate that the combination of MNK1/2 and CDK4/6 inhibition significantly increases the overall survival of mice compared with either monotherapy. Overall, our data support MNK1/2 inhibitors as promising drugs to potentiate the antineoplastic effects of palbociclib and overcome therapy-resistant disease.
Collapse
Affiliation(s)
- Sathyen A Prabhu
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Omar Moussa
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | - Judith H LaPierre
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Hsiang Chou
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Fan Huang
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Pault Y M Ferruzo
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | - Isabel Soria-Bretones
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Kirby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Natascha Gagnon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jie Su
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - April A N Rose
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Frédérick A Mallette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Rene P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Sonia V Del Rincon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| |
Collapse
|
27
|
Vlašić I, Horvat A, Tadijan A, Slade N. p53 Family in Resistance to Targeted Therapy of Melanoma. Int J Mol Sci 2022; 24:ijms24010065. [PMID: 36613518 PMCID: PMC9820688 DOI: 10.3390/ijms24010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53 pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy. Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene and two other family members, TP63 and TP73, encode numerous protein isoforms that exhibit diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are expressed in melanoma cell lines and tumor samples, and several of them have already shown to have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion, migration, and response to therapy. Of special interest are p53 family isoforms with increased expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells, implying that modulating their expression or targeting their functional pathways could be a potential therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.
Collapse
|
28
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
30
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Liu S, Liu Z, Piao C, Zhang Z, Kong C, Yin L, Liu X. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:293. [PMID: 36199122 PMCID: PMC9533510 DOI: 10.1186/s13046-022-02500-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Protein arginine methyltransferases (PRMTs) regulate protein biological activity by modulating arginine methylation in cancer and are increasingly recognized as potential drug targets. Inhibitors targeting PRMTs are currently in the early phases of clinical trials and more candidate drugs are needed. Flavokawain A (FKA), extracted from kava plant, has been recognized as a potential chemotherapy drug in bladder cancer (BC), but its action mechanism remains unclear. METHODS We first determined the role of a type II PRMT, PRMT5, in BC tissue samples and performed cytological experiments. We then utilized bioinformatics tools, including computational simulation, virtual screening, molecular docking, and energy analysis, to identify the potential use of PRMT5 inhibitors for BC treatment. In vitro and in vivo co-IP and mutation assays were performed to elucidate the molecular mechanism of PRMT5 inhibitor. Pharmacology experiments like bio-layer interferometry, CETSA, and pull-down assays were further used to provide direct evidence of the complex binding process. RESULTS Among PRMTs, PRMT5 was identified as a therapeutic target for BC. PRMT5 expression in BC was correlated with poor prognosis and manipulating its expression could affect cancer cell growth. Through screening and extensive experimental validation, we recognized that a natural product, FKA, was a small new inhibitor molecule for PRMT5. We noticed that the product could inhibit the action of BC, in vitro and in vivo, by inhibiting PRMT5. We further demonstrated that FKA blocks the symmetric arginine dimethylation of histone H2A and H4 by binding to Y304 and F580 of PRMT5. CONCLUSIONS In summary, our research strongly suggests that PRMT5 is a potential epigenetic therapeutic target in bladder cancer, and that FKA can be used as a targeted inhibitor of PRMT5 for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Shuangjie Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhuonan Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chiyuan Piao
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhe Zhang
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chuize Kong
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Lei Yin
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xi Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
32
|
Šerman N, Vranić S, Glibo M, Šerman L, Mokos ZB. Genetic risk factors in melanoma etiopathogenesis and the role of genetic counseling: A concise review. Bosn J Basic Med Sci 2022; 22:673-682. [PMID: 35465855 PMCID: PMC9519167 DOI: 10.17305/bjbms.2021.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a highly aggressive cancer originating from melanocytes. Its etiopathogenesis is strongly related to genetic, epigenetic, and environmental factors. Melanomas encountered in clinical practice are predominantly sporadic, whereas hereditary melanomas account for approximately 10% of the cases. Hereditary melanomas mainly develop due to mutations in the CDKN2A gene, which encodes two tumor suppressor proteins involved in the cell cycle regulation. CDKN2A, along with CDK4, TERT, and POT1 genes, is a high-risk gene for melanoma. Among the genes that carry a moderate risk are MC1R and MITF, whose protein products are involved in melanin synthesis. The environment also contributes to the development of melanoma. Patients at risk of melanoma should be offered genetic counseling to discuss genetic testing options and the importance of skin UV protection, avoidance of sun exposure, and regular preventive dermatological examinations. Although cancer screening cannot prevent the development of the disease, it allows for early diagnosis when the survival rate is the highest.
Collapse
Affiliation(s)
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
33
|
Basera A, Hull R, Demetriou D, Bates DO, Kaufmann AM, Dlamini Z, Marima R. Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms 2022; 10:1852. [PMID: 36144454 PMCID: PMC9501168 DOI: 10.3390/microorganisms10091852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the primary cause of female cancer fatalities in low-middle-income countries (LMICs). Persistent infections from the human papillomavirus (HPV) can result in cervical cancer. However, numerous different factors influence the development and progression of cervical cancer. Transcriptomic knowledge of the mechanisms with which HPV causes cervical cancer pathogenesis is growing. Nonetheless, there is an existing gap hindering the development of therapeutic approaches and the improvement of patient outcomes. Alternative splicing allows for the production of numerous RNA transcripts and protein isoforms from a single gene, increasing the transcriptome and protein diversity in eukaryotes. Cancer cells exhibit astounding transcriptome modifications by expressing cancer-specific splicing isoforms. High-risk HPV uses cellular alternative splicing events to produce viral and host splice variants and proteins that drive cancer progression or contribute to distinct cancer hallmarks. Understanding how viruses utilize alternative splicing to drive pathogenesis and tumorigenesis is essential. Although research into the role of miRNAs in tumorigenesis is advancing, the function of other non-coding RNAs, including lncRNA and circRNA, has been understudied. Through their interaction with mRNA, non-coding RNAs form a network of competing endogenous RNAs (ceRNAs), which regulate gene expression and promote cervical cancer development and advancement. The dysregulated expression of non-coding RNAs is an understudied and tangled process that promotes cervical cancer development. This review will present the role of aberrant alternative splicing and immunosuppression events in HPV-mediated cervical tumorigenesis, and ceRNA network regulation in cervical cancer pathogenesis will also be discussed. Furthermore, the therapeutic potential of splicing disruptor drugs in cervical cancer will be deliberated.
Collapse
Affiliation(s)
- Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- David Owen Bates, Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreas Martin Kaufmann
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Clinic for Gynaecology, Laboratory for Gynaecologic Tumor Immunology, Institute of Health, Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
34
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
35
|
The RBPJ/DAPK3/UBE3A signaling axis induces PBRM1 degradation to modulate the sensitivity of renal cell carcinoma to CDK4/6 inhibitors. Cell Death Dis 2022; 13:295. [PMID: 35368029 PMCID: PMC8976838 DOI: 10.1038/s41419-022-04760-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
AbstractRenal cell carcinoma (RCC) is a kind of malignant tumor originating from the renal tubular epithelium. Approximately 30% of patients with renal cancer are found to have metastasis when first diagnosed. Exploring other effective treatment methods in addition to surgery is an urgent need in the research field of renal cell carcinoma. Polybromo 1 (PBRM1) is the second most mutated gene in RCC, with a mutation rate of ~40%. Notably, the posttranscriptional modification of PBRM1 in RCC is unclear. In this study, we performed unbiased mass spectrometry of PBRM1 and identified ubiquitin-protein ligase E3A (UBE3A), an extensively studied E3 ligase that can bind with PBRM1 and regulate the stability of PBRM1 in renal cancer cells. We further found that RBPJ/DAPK3 modulated the E3 ligase activity of UBE3A by interfering with the PKA phosphorylation of UBE3A. Finally, we demonstrated that the RBPJ/DAPK3/UBE3A/PBRM1/p21 axis contributed to the sensitivity of renal cancer cells to CDK4/6 inhibitors. In addition, in combination with RBPJ inhibitors, CDK4/6 inhibitors showed synergistically enhanced effects on renal cancer cells. In summary, we not only revealed a novel RBPJ/DAPK3/UBE3A/PBRM1/p21 signaling axis but also identified a combination strategy for overcoming the resistance of renal cancer cells to CDK4/6 inhibitors.
Collapse
|
36
|
Reprogramming RNA processing: an emerging therapeutic landscape. Trends Pharmacol Sci 2022; 43:437-454. [PMID: 35331569 DOI: 10.1016/j.tips.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.
Collapse
|
37
|
Qi J, Ouyang Z. Targeting CDK4/6 for Anticancer Therapy. Biomedicines 2022; 10:685. [PMID: 35327487 PMCID: PMC8945444 DOI: 10.3390/biomedicines10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) are key regulators of the cell cycle and are deemed as critical therapeutic targets of multiple cancers. Various approaches have been applied to silence CDK4/6 at different levels, i.e., CRISPR to knock out at the DNA level, siRNA to inhibit translation, and drugs that target the protein of interest. Here we summarize the current status in this field, highlighting the mechanisms of small molecular inhibitors treatment and drug resistance. We describe approaches to combat drug resistance, including combination therapy and PROTACs drugs that degrade the kinases. Finally, critical issues and perspectives in the field are outlined.
Collapse
Affiliation(s)
- Jiating Qi
- The Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Liu Q, Fang L, Wu C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes (Basel) 2022; 13:genes13030401. [PMID: 35327956 PMCID: PMC8951537 DOI: 10.3390/genes13030401] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors. However, the changes and errors of splicing regulation caused by splicing factors are strongly related to many diseases, something which represents one of this study’s main interests. Further understanding of alternative splicing regulation mediated by cellular factors is also a prospective choice to develop specific drugs for targeting the dynamic RNA splicing process. In this review, we firstly concluded the basic principle of alternative splicing. Afterwards, we showed how splicing isoforms affect physiological activities through specific disease examples. Finally, the available treatment methods relative to adjusting splicing activities have been summarized.
Collapse
|
39
|
Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): a single-arm, open-label, phase 2 trial. Lancet Oncol 2022; 23:374-381. [DOI: 10.1016/s1470-2045(22)00062-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
|
40
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
42
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
43
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2021; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
44
|
Aliagas E, Alay A, Martínez-Iniesta M, Hernández-Madrigal M, Cordero D, Gausachs M, Pros E, Saigí M, Busacca S, Sharkley AJ, Dawson A, Palmero R, Ruffinelli JC, Padrones S, Aso S, Escobar I, Ramos R, Llatjós R, Vidal A, Dorca E, Varela M, Sánchez-Céspedes M, Fennell D, Muñoz-Pinedo C, Villanueva A, Solé X, Nadal E. Efficacy of CDK4/6 inhibitors in preclinical models of malignant pleural mesothelioma. Br J Cancer 2021; 125:1365-1376. [PMID: 34588615 PMCID: PMC8576019 DOI: 10.1038/s41416-021-01547-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is no effective therapy for patients with malignant pleural mesothelioma (MPM) who progressed to platinum-based chemotherapy and immunotherapy. METHODS We aimed to investigate the antitumor activity of CDK4/6 inhibitors using in vitro and in vivo preclinical models of MPM. RESULTS Based on publicly available transcriptomic data of MPM, patients with CDK4 or CDK6 overexpression had shorter overall survival. Treatment with abemaciclib or palbociclib at 100 nM significantly decreased cell proliferation in all cell models evaluated. Both CDK4/6 inhibitors significantly induced G1 cell cycle arrest, thereby increasing cell senescence and increased the expression of interferon signalling pathway and tumour antigen presentation process in culture models of MPM. In vivo preclinical studies showed that palbociclib significantly reduced tumour growth and prolonged overall survival using distinct xenograft models of MPM implanted in athymic mice. CONCLUSIONS Treatment of MPM with CDK4/6 inhibitors decreased cell proliferation, mainly by promoting cell cycle arrest at G1 and by induction of cell senescence. Our preclinical studies provide evidence for evaluating CDK4/6 inhibitors in the clinic for the treatment of MPM.
Collapse
Affiliation(s)
- Elisabet Aliagas
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Ania Alay
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Maria Martínez-Iniesta
- Chemoresistance group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Miguel Hernández-Madrigal
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - David Cordero
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Mireia Gausachs
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Eva Pros
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Badalona, Barcelona, Spain
| | - Maria Saigí
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Badalona, Barcelona, Spain
| | - Sara Busacca
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Alan Dawson
- Department of Thoracic Surgery, Glenfield Hospital, Leicester, UK
| | - Ramón Palmero
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - José C Ruffinelli
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Susana Padrones
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Samantha Aso
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Ignacio Escobar
- Department of Thoracic Surgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Ricard Ramos
- Department of Thoracic Surgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Roger Llatjós
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Eduard Dorca
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Mar Varela
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Montse Sánchez-Céspedes
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Badalona, Barcelona, Spain
| | - Dean Fennell
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mesothelioma Research Programme, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Cristina Muñoz-Pinedo
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
| | - Xavi Solé
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Ernest Nadal
- Preclinical and Experimental Research in Thoracic Tumors (PrETT) group. Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain.
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain.
- Department of Clinical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet del Llobregat (Barcelona), Campus Bellvitge, Barcelona, Spain.
| |
Collapse
|
45
|
Pennycook BR, Barr AR. Palbociclib-mediated cell cycle arrest can occur in the absence of the CDK inhibitors p21 and p27. Open Biol 2021; 11:210125. [PMID: 34784791 PMCID: PMC8596008 DOI: 10.1098/rsob.210125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.
Collapse
Affiliation(s)
- Betheney R. Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
46
|
Freeman-Cook K, Hoffman RL, Miller N, Almaden J, Chionis J, Zhang Q, Eisele K, Liu C, Zhang C, Huser N, Nguyen L, Costa-Jones C, Niessen S, Carelli J, Lapek J, Weinrich SL, Wei P, McMillan E, Wilson E, Wang TS, McTigue M, Ferre RA, He YA, Ninkovic S, Behenna D, Tran KT, Sutton S, Nagata A, Ornelas MA, Kephart SE, Zehnder LR, Murray B, Xu M, Solowiej JE, Visswanathan R, Boras B, Looper D, Lee N, Bienkowska JR, Zhu Z, Kan Z, Ding Y, Mu XJ, Oderup C, Salek-Ardakani S, White MA, VanArsdale T, Dann SG. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021; 39:1404-1421.e11. [PMID: 34520734 DOI: 10.1016/j.ccell.2021.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.
Collapse
Affiliation(s)
- Kevin Freeman-Cook
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Robert L Hoffman
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nichol Miller
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jonathan Almaden
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Chionis
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Qin Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Koleen Eisele
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Chaoting Liu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cathy Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nanni Huser
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Lisa Nguyen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cinthia Costa-Jones
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sherry Niessen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jordan Carelli
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott L Weinrich
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ping Wei
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth McMillan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth Wilson
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Tim S Wang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michele McTigue
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Rose Ann Ferre
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - You-Ai He
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sacha Ninkovic
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Douglas Behenna
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Khanh T Tran
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Asako Nagata
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Martha A Ornelas
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Susan E Kephart
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Luke R Zehnder
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Brion Murray
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Meirong Xu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - James E Solowiej
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ravi Visswanathan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Britton Boras
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - David Looper
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nathan Lee
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jadwiga R Bienkowska
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhou Zhu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhengyan Kan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ying Ding
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Xinmeng Jasmine Mu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cecilia Oderup
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Shahram Salek-Ardakani
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michael A White
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| | - Stephen G Dann
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
47
|
Chen Y, Shao X, Zhao X, Ji Y, Liu X, Li P, Zhang M, Wang Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed Pharmacother 2021; 144:112252. [PMID: 34619493 DOI: 10.1016/j.biopha.2021.112252] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) as the major type II arginine methyltransferase catalyzes the mono- and symmetric dimethylation of arginine residues in both histone and non-histone proteins. Recently, increasing evidence has demonstrated that PRMT5 plays an indispensable role in the occurrence and development of various human cancers by promoting the cell proliferation, invasion, and migration. It has become a promising and valuable target in the cancer epigenetic therapy. This review is to summarize the clinical significance of PRMT5 in the cancers such as lung cancer, breast cancer and colorectal cancer, and the drug discovery targeting PRMT5. Importantly, the existing PRMT5 inhibitors representing different molecular mechanisms, and their pharmacological effect, mechanism of action and biological affinity are analyzed. Clinical status, current problems and future perspective of PRMT5 inhibitors for the treatment of cancers are also discussed, all of which provides crucial help for the future discovery of PRMT5 targeted drugs for cancer treatment.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiangge Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yuan Ji
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaorong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Peixuan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Mingyu Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China.
| |
Collapse
|
48
|
Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, He Y, Liu W, Liu R, Chen CH, Shi Y, Pan J, Zhou J, Jiang D, Chen C. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ 2021; 28:2931-2945. [PMID: 33972717 PMCID: PMC8481478 DOI: 10.1038/s41418-021-00793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is an oncogenic factor that is highly expressed in basal-like breast cancer (BLBC) and promotes cell proliferation, survival, migration, stemness, and tumor growth; however, its posttranslational modifications are poorly defined. Protein arginine methyltransferase 5 (PRMT5) is also an oncogene implicated in various carcinomas, including breast cancer. In this study, we found that PRMT5 interacts with KLF5 and catalyzes the di-methylation of KLF5 at Arginine 57 (R57) in a methyltransferase activity-dependent manner in BLBC cells. Depletion or pharmaceutical inhibition (using PJ-68) of PRMT5 decreased the expression of KLF5 and its downstream target genes in vitro and in vivo. PRMT5-induced KLF5R57me2 antagonizes GSK3β-mediated KLF5 phosphorylation and subsequently Fbw7-mediated KLF5 ubiquitination and coupled degradation. Functionally, PRMT5 promotes breast cancer stem cell maintenance and proliferation, at least partially, by stabilizing KLF5. PRMT5 and KLF5 protein levels were positively correlated in clinical BLBCs. Taken together, PRMT5 methylates KLF5 to prevent its phosphorylation, ubiquitination, and degradation, and thus promotes breast cancer stem cell maintenance and proliferation. These findings suggest that PRMT5 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yaohui He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Dang F, Nie L, Zhou J, Shimizu K, Chu C, Wu Z, Fassl A, Ke S, Wang Y, Zhang J, Zhang T, Tu Z, Inuzuka H, Sicinski P, Bass AJ, Wei W. Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nat Commun 2021; 12:5386. [PMID: 34508104 PMCID: PMC8433397 DOI: 10.1038/s41467-021-25700-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Although inhibitors targeting CDK4/6 kinases (CDK4/6i) have shown promising clinical prospect in treating ER+/HER2- breast cancers, acquired drug resistance is frequently observed and mechanistic knowledge is needed to harness their full clinical potential. Here, we report that inhibition of CDK4/6 promotes βTrCP1-mediated ubiquitination and proteasomal degradation of RB1, and facilitates SP1-mediated CDK6 transcriptional activation. Intriguingly, suppression of CK1ε not only efficiently prevents RB1 from degradation, but also prevents CDK4/6i-induced CDK6 upregulation by modulating SP1 protein stability, thereby enhancing CDK4/6i efficacy and overcoming resistance to CDK4/6i in vitro. Using xenograft and PDX models, we further demonstrate that combined inhibition of CK1ε and CDK4/6 results in marked suppression of tumor growth in vivo. Altogether, these results uncover the molecular mechanisms by which CDK4/6i treatment alters RB1 and CDK6 protein abundance, thereby driving the acquisition of CDK4/6i resistance. Importantly, we identify CK1ε as an effective target for potentiating the therapeutic efficacy of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jin Zhou
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shizhong Ke
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yuangao Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhenbo Tu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|