1
|
Park KM, Kim B, Woo W, Kim LK, Hyun YM. Polystyrene microplastics induce activation and cell death of neutrophils through strong adherence and engulfment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136100. [PMID: 39405722 DOI: 10.1016/j.jhazmat.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 12/01/2024]
Abstract
Ingested microplastics (MPs) can accumulate throughout whole body, which may induce the dysfunction of immune system. However, it remains unclear how MP exposure affects innate immune responses at the cellular level. We found that mouse neutrophils strongly bind and then engulf polystyrene MPs. This interaction leads to proinflammatory state of neutrophils and eventually results in apoptotic cell death through toll-like receptor signaling pathway in a bacteria-recognition mimetic manner. Moreover, our data verified that orally administered polystyrene MPs reach various organs in mice, where they are interacted with and endocytosed by neutrophils. We confirmed that human neutrophils also strongly bind and internalize polystyrene MPs. Additionally, RNA sequencing analysis of polystyrene MPs-exposed human neutrophils showed the upregulation of cell death-related function. Therefore, the accumulated MPs may exacerbate inflammatory immune response by disrupting neutrophil function. These results provide novel insight into the adverse responses of neutrophils induced by MP exposure.
Collapse
Affiliation(s)
- Koung-Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonjin Woo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lark Kyun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Creusat F, Jouan Y, Gonzalez L, Barsac E, Ilango G, Lemoine R, Soulard D, Hankard A, Boisseau C, Guillon A, Lin Q, de Amat Herbozo C, Sencio V, Winter N, Sizaret D, Trottein F, Si-Tahar M, Briard B, Mallevaey T, Faveeuw C, Baranek T, Paget C. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. SCIENCE ADVANCES 2024; 10:eadn3257. [PMID: 39392875 PMCID: PMC11468905 DOI: 10.1126/sciadv.adn3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Neutrophil subsets endowed with regulatory/suppressive properties are widely regarded as deleterious immune cells that can jeopardize antitumoral response and/or antimicrobial resistance. Here, we describe a sizeable fraction of neutrophils characterized by the expression of programmed death-ligand 1 (PD-L1) in biological fluids of humans and mice with severe viral respiratory infections (VRI). Biological and transcriptomic approaches indicated that VRI-driven PD-L1+ neutrophils are endowed with potent regulatory functions and reduced classical antimicrobial properties, as compared to their PD-L1- counterpart. VRI-induced regulatory PD-L1+ neutrophils were generated remotely in the bone marrow in an IFN-γ-dependent manner and were quickly mobilized into the inflamed lungs where they fulfilled their maturation. Neutrophil depletion and PD-L1 blockade during experimental VRI resulted in higher mortality, increased local inflammation, and reduced expression of resolving factors. These findings suggest that PD-L1+ neutrophils are important players in disease tolerance by mitigating local inflammation during severe VRI and that they may constitute relevant targets for future immune interventions.
Collapse
Affiliation(s)
- Florent Creusat
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
- Service de Chirurgie Cardiaque et de Réanimation Chirurgicale Cardio-Vasculaire, CHRU de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emilie Barsac
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Guy Ilango
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Roxane Lemoine
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Cytometry and Single-cell Immunobiology Core Facility, University of Tours, Tours, France
| | - Daphnée Soulard
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Antoine Hankard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Chloé Boisseau
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Winter
- INRAe (Institut National de la Recherche pour l'Agriculture, l'Alimentation et l’Environnement), Université de Tours, ISP, 37380 Nouzilly, France
| | - Damien Sizaret
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service d’Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christelle Faveeuw
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Thomas Baranek
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
3
|
Kappler U, Henningham A, Nasreen M, Yamamoto A, Buultjens AH, Stinear TP, Sly P, Fantino E. Tolerance to Haemophilus influenzae infection in human epithelial cells: Insights from a primary cell-based model. PLoS Pathog 2024; 20:e1012282. [PMID: 38990812 PMCID: PMC11239077 DOI: 10.1371/journal.ppat.1012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1β, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| |
Collapse
|
4
|
Kole A, Bag AK, Pal AJ, De D. Generic model to unravel the deeper insights of viral infections: an empirical application of evolutionary graph coloring in computational network biology. BMC Bioinformatics 2024; 25:74. [PMID: 38365632 PMCID: PMC10874019 DOI: 10.1186/s12859-024-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations. METHODS To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins. RESULTS We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences. CONCLUSION Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.
Collapse
Affiliation(s)
- Arnab Kole
- Department of Computer Application, The Heritage Academy, Kolkata, W.B., 700107, India.
| | - Arup Kumar Bag
- Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Nadia, W.B., 741249, India
| |
Collapse
|
5
|
Liu C, Pan F, Sun Z, Chen Z, Wang J. Exploring the pathogenesis and key genes associated of acute myocardial infarction complicated with Alzheimer's disease. Sci Rep 2024; 14:1449. [PMID: 38228864 PMCID: PMC10791667 DOI: 10.1038/s41598-024-52094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024] Open
Abstract
Despite mounting evidence linking Acute Myocardial Infarction (AMI) to Alzheimer's disease (AD), the shared mechanism of these two conditions' occurrence remains unclear. This research aims to delve deeper into the molecular process of the occurrence of the two diseases. We retrieved the gene expression profiles of AD (GSE5281) and AMI (GSE66360) from the Gene Expression Omnibus database. Then, a total of 22 common differentially expressed genes (DEGs) including one downregulated gene and 21 upregulated genes were chosen for further analysis. Following the discovery of the common DEGs between AMI and AD, we performed protein-protein interaction analysis and hub gene identification analysis. Next, ten important hub genes were identified. Additionally, the key genes were identified by the least absolute shrinkage and selection operator and support vector machine-recursive feature elimination and multivariable logistic regression analysis. The BCL6 was identified to be the most connected with AMI and AD. Finally, the BCL6 gene was validated in the GSE40680 (AMI) and GSE122063 (AD) datasets. Our research indicates that AMI and AD share a comparable pathophysiology. The Hub genes, especially BCL6, were essential in developing AMI and AD. In addition, these hub genes and shared pathways can offer fresh perspectives for additional mechanism investigation.
Collapse
Affiliation(s)
- Chaosheng Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fuzhi Pan
- Department of Medical Image Science, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Zhiyu Sun
- Department of Cardiology, Dalian Friendship Hospital, Dalian, Liaoning, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Junjie Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
6
|
Jiang J, Guo F, Li W, Shan X. miR-346 regulates the development of ARDS by regulating the function of pulmonary microvascular endothelial cells. Noncoding RNA Res 2023; 8:579-588. [PMID: 37622060 PMCID: PMC10445102 DOI: 10.1016/j.ncrna.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, many studies have reported that microRNAs play an important role in the pathogenesis of a variety of diseases, and the aim of this paper is to explore the role and mechanism of miR-346 in acute respiratory distress syndrome (ARDS). A mouse model of ARDS was constructed by LPS induction, and RT-qPCR assay was used to verify that the expression level of miR-346 in lung tissue was significantly increased, and was negatively correlated with oxygenation index. Inhibiting the expression of miR-346 in mice and HPMECs by miR-346 inhibitor confirmed that decreased miR-346 expression could lead to increased oxygenation index, decreased lung index, lung water content and NO content to reduce lung injury in mice, while lung inflammation was alleviated and apoptosis was reduced in mice. The same results were obtained in cells. BCL6 was predicted to be a target of miR-346 by targetscan and miRDB; when miR-346 was inhibited, BCL6 expression was increased, and if miR-346 and BCL6 expression were inhibited at the same time, it could aggravate lung injury and reduce the proliferation of HPMECs and increase their apoptosis and inflammation in mice. This shows that miR-346 inhibits the migration of HPMECs by regulating BCL6 expression, which in turn promotes the apoptosis of HPMECs, leading to inflammation and inducing ARDS.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Fei Guo
- Department of Pulmonary and Critical Care Medicine, Yantai affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Xiaoxi Shan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| |
Collapse
|
7
|
Zeng X, Zhao F, Jia J, Ma X, Jiang Q, Zhang R, Li C, Wang T, Liu W, Hao Y, Tao K, Lou Z, Zhang P. Targeting BCL6 in Gastrointestinal Stromal Tumor Promotes p53-Mediated Apoptosis to Enhance the Antitumor Activity of Imatinib. Cancer Res 2023; 83:3624-3635. [PMID: 37556508 DOI: 10.1158/0008-5472.can-23-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Imatinib mesylate (IM) has revolutionized the treatment of gastrointestinal stromal tumor (GIST). However, most patients inevitably acquire IM resistance. Second- and third-line treatments exhibit modest clinical benefits with a median time to disease progression of 4 to 6 months, highlighting the urgency for novel therapeutic approaches. Here, we report that the expression of BCL6, a known oncogenic driver and transcriptional repressor, was significantly induced in GIST cells following IM treatment. Elevated BCL6 levels suppressed apoptosis and contributed to IM resistance. Mechanistically, BCL6 recruited SIRT1 to the TP53 promoter to modulate histone acetylation and transcriptionally repress TP53 expression. The reduction in p53 subsequently attenuated cell apoptosis and promoted tolerance of GIST cells to IM. Concordantly, treatment of GIST cells showing high BCL6 expression with a BCL6 inhibitor, BI-3802, conferred IM sensitivity. Furthermore, BI-3802 showed striking synergy with IM in IM-responsive and IM-resistant GIST cells in vitro and in vivo. Thus, these findings reveal a role for BCL6 in IM resistance and suggest that a combination of BCL6 inhibitors and IM could be a potentially effective treatment for GIST. SIGNIFICANCE BCL6 drives resistance to imatinib by inhibiting p53-mediated apoptosis and can be targeted in combination with imatinib to synergistically suppress tumor growth, providing a therapeutic strategy for treating gastrointestinal stromal tumor.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha, China
| | - Jie Jia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Niu M, Zhang X, Wu Z, Li B, Bao J, Dai J, Yang Z, Zeng Y, Li L, Pandol S, Sutton R, Wen L. Neutrophil-specific ORAI1 Calcium Channel Inhibition Reduces Pancreatitis-associated Acute Lung Injury. FUNCTION 2023; 5:zqad061. [PMID: 38020066 PMCID: PMC10666672 DOI: 10.1093/function/zqad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis is initiated within pancreatic exocrine cells and sustained by dysregulated systemic inflammatory responses mediated by neutrophils. Store-operated Ca2+ entry (SOCE) through ORAI1 channels in pancreatic acinar cells triggers acute pancreatitis, and ORAI1 inhibitors ameliorate experimental acute pancreatitis, but the role of ORAI1 in pancreatitis-associated acute lung injury has not been determined. Here, we showed mice with pancreas-specific deletion of Orai1 (Orai1ΔPdx1, ∼70% reduction in the expression of Orai1) are protected against pancreatic tissue damage and immune cell infiltration, but not pancreatitis-associated acute lung injury, suggesting the involvement of unknown cells that may cause such injury through SOCE via ORAI1. Genetic (Orai1ΔMRP8) or pharmacological inhibition of ORAI1 in murine and human neutrophils decreased Ca2+ influx and impaired chemotaxis, reactive oxygen species production, and neutrophil extracellular trap formation. Unlike pancreas-specific Orai1 deletion, mice with neutrophil-specific deletion of Orai1 (Orai1ΔMRP8) were protected against pancreatitis- and sepsis-associated lung cytokine release and injury, but not pancreatic injury in experimental acute pancreatitis. These results define critical differences between contributions from different cell types to either pancreatic or systemic organ injury in acute pancreatitis. Our findings suggest that any therapy for acute pancreatitis that targets multiple rather than single cell types is more likely to be effective.
Collapse
Affiliation(s)
- Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Zengkai Wu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Bin Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jingpiao Bao
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Juanjuan Dai
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Zihan Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yue Zeng
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Liang Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Tai Y, Sakaida Y, Kawasaki R, Kanemaru K, Akimoto K, Brombacher F, Ogawa S, Nakamura Y, Harada Y. Foxp3 and Bcl6 deficiency synergistically induces spontaneous development of atopic dermatitis-like skin disease. Int Immunol 2023; 35:423-435. [PMID: 37279329 DOI: 10.1093/intimm/dxad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease caused by immune dysfunction, specifically the hyperactivation of Th2 immunity. AD is a complex disease with multiple factors contributing to its development; however, the interaction between these factors is not fully understood. In this study, we demonstrated that the conditional deletion of both the forkhead box p3 (Foxp3) and B-cell lymphoma 6 (Bcl6) genes induced the spontaneous development of AD-like skin inflammation with hyperactivation of type 2 immunity, skin barrier dysfunction, and pruritus, which were not induced by the single deletion of each gene. Furthermore, the development of AD-like skin inflammation was largely dependent on IL-4/13 signaling but not on immunoglobulin E (IgE). Interestingly, we found that the loss of Bcl6 alone increased the expression of thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 in the skin, suggesting that Bcl6 controls Th2 responses by suppressing TSLP and IL-33 expression in epithelial cells. Our results suggest that Foxp3 and Bcl6 cooperatively suppress the pathogenesis of AD. Furthermore, these results revealed an unexpected role of Bcl6 in suppressing Th2 responses in the skin.
Collapse
Affiliation(s)
- Yuki Tai
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Sakaida
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Riyo Kawasaki
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Akimoto
- Laboratory of Molecular Medical Science, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Frank Brombacher
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component & Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7701, South Africa
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yohsuke Harada
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
10
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Ding Y, Yang Y, Xue L. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases. Front Immunol 2023; 14:1137523. [PMID: 37063924 PMCID: PMC10101339 DOI: 10.3389/fimmu.2023.1137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe close relationship between ankylosing spondylitis (AS) and inflammatory bowel diseases (IBD) has been supported by many aspects, including but not limited to clinical manifestations, epidemiology and pathogenesis. Some evidence suggests that immune cells actively participated in the pathogenesis of both diseases. However, information on which cells are primarily involved in this process and how these cells mobilize, migrate and interact is still limited.MethodsDatasets were downloaded from Gene Expression Omnibus (GEO) database. Common differentially expressed genes (coDEGs) were identified by package “limma”. The protein-protein interaction (PPI) network and Weighted Gene Co-Expression Network Analysis (WGCNA) were used to analyze the interactions between coDEGs. KEGG pathway enrichment analysis and inverse cumulative distribution function were applied to identify common differential pathways, while Gene Set Enrichment Analysis (GSEA) was used to confirm the significance. Correlation analysis between coDEGs and immune cells led to the identification of critical immune-cell-related coDEGs. The diagnostic models were established based on least absolute shrinkage and selection operator (LASSO) regression, while receiver operating characteristic (ROC) analysis was used to identify the ability of the model. Validation datasets were imported to demonstrate the significant association of coDEGs with specific immune cells and the capabilities of the diagnostic model.ResultsIn total, 67 genes were up-regulated and 185 genes were down-regulated in both diseases. Four down-regulated pathways and four up-regulated pathways were considered important. Up-regulated coDEGs were firmly associated with neutrophils, while down-regulated genes were significantly associated with CD8+ T−cells and CD4+ T−cells in both AS and IBD datasets. Five up-regulated and six down-regulated key immue-cell-related coDEGs were identified. Diagnostic models based on key immue-cell-related coDEGs were established and tested. Validation datasets confirmed the significance of the correlation between coDEGs and specific immune cells.ConclusionThis study provides fresh insights into the co-pathogenesis of AS and IBD. It is proposed that neutrophils and T cells may be actively involved in this process, however, in opposite ways. The immue-cell-related coDEGs, revealed in this study, may be relevant to their regulation, although relevant research is still lacking.
Collapse
|
12
|
Zhu B, Wei X, Narasimhan H, Qian W, Zhang R, Cheon IS, Wu Y, Li C, Jones RG, Kaplan MH, Vassallo RA, Braciale TJ, Somerville L, Colca JR, Pandey A, Jackson PEH, Mann BJ, Krawczyk CM, Sturek JM, Sun J. Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19. Sci Immunol 2023; 8:eadf0348. [PMID: 36821695 PMCID: PMC9972900 DOI: 10.1126/sciimmunol.adf0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The relationship between diabetes and COVID-19 is bi-directional: while individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, SARS-CoV-2 infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyper-inflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease following influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602 K (MSDC), dampened pulmonary inflammation and promoted lung recovery, while concurrently reducing blood glucose levels and hyperlipidemia following viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized HIF-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development following SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.
Collapse
Affiliation(s)
- Bibo Zhu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoqin Wei
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruixuan Zhang
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University of School of Medicine, Indianapolis, IN 46202, USA
| | - Robert A Vassallo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas J Braciale
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lindsay Somerville
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Patrick E H Jackson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Barbara J Mann
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Zhang W, Han Q, Ding Y, Zhou H, Chen Z, Wang J, Xiang J, Song Z, Abbas M, Shi L. Bcl6 drives stem-like memory macrophages differentiation to foster tumor progression. Cell Mol Life Sci 2022; 80:14. [PMID: 36542153 PMCID: PMC9771855 DOI: 10.1007/s00018-022-04660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Cancer development is a long-lasting process during which macrophages play a pivotal role. However, how macrophages maintain their cellular identity, persistence, expanding and pro-tumor property during malignant progression remains elusive. Inspired by the recent report of the activation of stem cell-like self-renewal mechanism in mature macrophages, we postulate that intra-tumoral macrophages might be trained to assume stem-like properties and memory-like activity favoring cancer development. Herein we demonstrated that tumor infiltrating macrophages rapidly converted into the CD11b+F4/80+Ly6C-Bcl6+ phenotype, and adopted stem cell-like properties involving expression of stemness-related genes, long-term persistence and self-renewing. Importantly, Bcl6+ macrophages stably maintained cell identity, gene signature, metabolic profile, and pro-tumor property even after long-term culture in tumor-free medium, which were hence termed stem cell-like memory macrophages (SMMs). Mechanistically, we showed that transcriptional factor Bcl6 co-opted the demethylase Tet2 and the deacetylase SIRT1 to confer the epigenetic imprinting and mitochondrial metabolic traits to SMMs, bolstering the stability and longevity of trained immunity in tumor-associated macrophages (TAMs). Furthermore, tumor-derived redHMGB1 was identified as the priming signal, which, through TLR4 and mTOR/AKT pathway, induced Bcl6-driven program underpinning SMMs generation. Collectively, our study uncovers a distinct macrophage population with a hybrid of stem cell and memory cell properties, and unveils a regulatory mechanism that integrates transcriptional, epigenetic and metabolic pathways to promote long-lasting pro-tumor immunity.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qin Han
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yina Ding
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310012, Zhejiang, China
| | - Huihui Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxin Xiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhengbo Song
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Muhammad Abbas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China
| | - Liyun Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China.
| |
Collapse
|
14
|
Multiple Death Pathways of Neutrophils Regulate Alveolar Macrophage Proliferation. Cells 2022; 11:cells11223633. [PMID: 36429062 PMCID: PMC9688429 DOI: 10.3390/cells11223633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Alveolar macrophage (AM) proliferation and self-renewal play an important role in the lung tissue microenvironment. However, the impact of immune cells, especially the neutrophils, on AM homeostasis or function is not well characterized. In this study, we induced in vivo migration of neutrophils into bronchoalveolar lavage (BAL) fluid and lung using CXCL1, and then co-cultured these with AMs in vitro. Neutrophils in the BAL (BAL-neutrophils), rather than neutrophils of bone marrow (BM-neutrophils), were found to inhibit AM proliferation. Analysis of publicly available data showed high heterogeneity of lung neutrophils with distinct molecular signatures of BM- and blood-neutrophils. Unexpectedly, BAL-neutrophils from influenza virus PR8-infected mice (PR8-neutrophils) did not inhibit the proliferation of AMs. Bulk RNA sequencing further revealed that co-culture of AMs with PR8-neutrophils induced IFN-α and -γ responses and inflammatory response, and AMs co-cultured with BAL-neutrophils showed higher expression of metabolism- and ROS-associated genes; in addition, BAL-neutrophils from PR8-infected mice modulated AM polarization and phagocytosis. BAL-neutrophil-mediated suppression of AM proliferation was abrogated by a combination of inhibitors of different neutrophil death pathways. Collectively, our findings suggest that multiple cell death pathways of neutrophils regulate the proliferation of AMs. Targeting neutrophil death may represent a potential therapeutic strategy for improving AM homeostasis during respiratory diseases.
Collapse
|
15
|
Bácsi A, Penyige A, Becs G, Benkő S, Kovács EG, Jenei C, Pócsi I, Balla J, Csernoch L, Balatoni I. Whole blood transcriptome characterization of young female triathlon athletes following an endurance exercise: a pilot study. Physiol Genomics 2022; 54:457-469. [PMID: 36250559 PMCID: PMC9762975 DOI: 10.1152/physiolgenomics.00090.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The vast majority of studies focusing on the effects of endurance exercise on hematological parameters and leukocyte gene expression were performed in adult men, so our aim was to investigate these changes in young females. Four young (age 15.3 ± 1.3 yr) elite female athletes completed an exercise session, in which they accomplished the cycling and running disciplines of a junior triathlon race. Blood samples were taken immediately before the exercise, right after the exercise, and then 1, 2, and 7 days later. Analysis of cell counts and routine biochemical parameters were complemented by RNA sequencing (RNA-seq) to whole blood samples. The applied exercise load did not trigger remarkable changes in either cardiovascular or biochemical parameters; however, it caused a significant increase in the percentage of neutrophils and a significant reduction in the ratio of lymphocytes immediately after exercise. Furthermore, endurance exercise induced a characteristic gene expression pattern change in the blood transcriptome. Gene set enrichment analysis (GSEA) using the Reactome database revealed that the expression of genes involved in immune processes and neutrophil granulocyte activation was upregulated, whereas the expression of genes important in translation and rRNA metabolism was downregulated. Comparison of a set of immune cell gene signatures (ImSig) and our transcriptomic data identified 15 overlapping genes related to T-cell functions and involved in podosome formation and adhesion to the vessel wall. Our results suggest that RNA-seq to whole blood together with ImSig analysis are useful tools for the investigation of systemic responses to endurance exercise.
Collapse
Affiliation(s)
- Attila Bácsi
- 1Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Penyige
- 2Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Gergely Becs
- 3Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- 4Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Elek Gergő Kovács
- 4Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,5Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Jenei
- 6Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- 7Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - József Balla
- 8Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- 4Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
16
|
Integrated Analysis of Transcriptome and Metabolome Reveals Distinct Responses of Pelteobagrus fulvidraco against Aeromonas veronii Infection at Invaded and Recovering Stage. Int J Mol Sci 2022; 23:ijms231710121. [PMID: 36077519 PMCID: PMC9456318 DOI: 10.3390/ijms231710121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish susceptible to Aeromonas veronii infection, which causes acute death resulting in huge economic losses. Understanding the molecular processes of host immune defense is indispensable to disease control. Here, we conducted the integrated and comparative analyses of the transcriptome and metabolome of yellow catfish in response to A. veronii infection at the invaded stage and recovering stage. The crosstalk between A. veronii-induced genes and metabolites uncovered the key biomarkers and pathways that strongest contribute to different response strategies used by yellow catfish at corresponding defense stages. We found that at the A. veronii invading stage, the immune defense was strengthened by synthesizing lipids with energy consumption to repair the skin defense line and accumulate lipid droplets promoting intracellular defense line; triggering an inflammatory response by elevating cytokine IL-6, IL-10 and IL-1β following PAMP-elicited mitochondrial signaling, which was enhanced by ROS produced by impaired mitochondria; and activating apoptosis by up-regulating caspase 3, 7 and 8 and Prostaglandin F1α, meanwhile down-regulating FoxO3 and BCL6. Apoptosis was further potentiated via oxidative stress caused by mitochondrial dysfunction and exceeding inflammatory response. Additionally, cell cycle arrest was observed. At the fish recovering stage, survival strategies including sugar catabolism with D-mannose decreasing; energy generation through the TCA cycle and Oxidative phosphorylation pathways; antioxidant protection by enhancing Glutathione (oxidized), Anserine, and α-ketoglutarate; cell proliferation by inducing Cyclin G2 and CDKN1B; and autophagy initiated by FoxO3, ATG8 and ATP6V1A were highlighted. This study provides a comprehensive picture of yellow catfish coping with A. veronii infection, which adds new insights for deciphering molecular mechanisms underlying fish immunity and developing stage-specific disease control techniques in aquaculture.
Collapse
|
17
|
Zhou J, He S, Wang B, Yang W, Zheng Y, Jiang S, Li D, Lin J. Construction and Bioinformatics Analysis of circRNA-miRNA-mRNA Network in Acute Myocardial Infarction. Front Genet 2022; 13:854993. [PMID: 35422846 PMCID: PMC9002054 DOI: 10.3389/fgene.2022.854993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acute myocardial infarction (AMI) is one of the main fatal diseases of cardiovascular diseases. Circular RNA (circRNA) is a non-coding RNA (ncRNA), which plays a role in cardiovascular disease as a competitive endogenous RNA (ceRNA). However, their role in AMI has not been fully clarified. This study aims to explore the mechanism of circRNA-related ceRNA network in AMI, and to identify the corresponding immune infiltration characteristics. Materials and Methods: The circRNA (GSE160717), miRNA (GSE24548), and mRNA (GSE60993) microarray datasets of AMI were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified by the “limma” package. After integrating the circRNA, miRNA and mRNA interaction, we constructed a circRNA-miRNA-mRNA network. The “clusterProfiler” package and String database were used for functional enrichment analysis and protein-protein interaction (PPI) analysis, respectively. After that, we constructed a circRNA-miRNA-hub gene network and validated the circRNAs and mRNAs using an independent dataset (GSE61144) as well as qRT-PCR. Finally, we used CIBERSORTx database to analyze the immune infiltration characteristics of AMI and the correlation between hub genes and immune cells. Results: Using the “limma” package of the R, 83 DEcircRNAs, 54 DEmiRNAs, and 754 DEmRNAs were identified in the microarray datasets of AMI. Among 83 DEcircRNAs, there are 55 exonic DEcircRNAs. Then, a circRNA-miRNA-mRNA network consists of 21 DEcircRNAs, 11 DEmiRNAs, and 106 DEmRNAs were predicted by the database. After that, 10 hub genes from the PPI network were identified. Then, a new circRNA-miRNA-hub gene network consists of 14 DEcircRNAs, 7 DEmiRNAs, and 9 DEmRNAs was constructed. After that, three key circRNAs (hsa_circ_0009018, hsa_circ_0030569 and hsa_circ_0031017) and three hub genes (BCL6, PTGS2 and PTEN) were identified from the network by qRT-PCR. Finally, immune infiltration analysis showed that hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. Conclusion: Our study constructed a circRNA-related ceRNA networks in AMI, consists of hsa_circ_0031017/hsa-miR-142-5p/PTEN axis, hsa_circ_0030569/hsa-miR-545/PTGS2 axis and hsa_circ_0009018/hsa-miR-139-3p/BCL6 axis. These three hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. It helps improve understanding of AMI mechanism and provides future potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Gao X, Zhu B, Wu Y, Li C, Zhou X, Tang J, Sun J. TFAM-Dependent Mitochondrial Metabolism Is Required for Alveolar Macrophage Maintenance and Homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1456-1466. [PMID: 35165165 PMCID: PMC9801487 DOI: 10.4049/jimmunol.2100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/29/2021] [Indexed: 01/04/2023]
Abstract
Alveolar macrophages (AMs) are major lung tissue-resident macrophages capable of proliferating and self-renewal in situ. AMs are vital in pulmonary antimicrobial immunity and surfactant clearance. The mechanisms regulating AM compartment formation and maintenance remain to be fully elucidated currently. In this study, we have explored the roles of mitochondrial transcription factor A (TFAM)-mediated mitochondrial fitness and metabolism in regulating AM formation and function. We found that TFAM deficiency in mice resulted in significantly reduced AM numbers and impaired AM maturation in vivo. TFAM deficiency was not required for the generation of AM precursors nor the differentiation of AM precursors into AMs, but was critical for the maintenance of AM compartment. Mechanistically, TFAM deficiency diminished gene programs associated with AM proliferation and self-renewal and promoted the expression of inflammatory genes in AMs. We further showed that TFAM-mediated AM compartment impairment resulted in defective clearance of cellular debris and surfactant in the lung and increased the host susceptibility to severe influenza virus infection. Finally, we found that influenza virus infection in AMs led to impaired TFAM expression and diminished mitochondrial fitness and metabolism. Thus, our data have established the critical function of TFAM-mediated mitochondrial metabolism in AM maintenance and function.
Collapse
Affiliation(s)
- Xiaochen Gao
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Bibo Zhu
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Chaofan Li
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Xian Zhou
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Jinyi Tang
- Department of Immunology, Mayo Clinic, Rochester, MN
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jie Sun
- Department of Immunology, Mayo Clinic, Rochester, MN;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Carter Immunology Center, University of Virginia, Charlottesville, VA; and
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
19
|
Osteopontin aggravates acute lung injury in influenza virus infection by promoting macrophages necroptosis. Cell Death Dis 2022; 8:97. [PMID: 35246529 PMCID: PMC8897470 DOI: 10.1038/s41420-022-00904-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Infection with influenza A virus (IAV) can trigger pulmonary inflammation and lung damage. Osteopontin (OPN) is an essential regulator of cell death and immunity. However, the role and underlying mechanism of OPN in cell death in IAV-induced pulmonary injury remain poorly understood. Here, we demonstrated that OPN-deficient (OPN-/-) mice were insensitive to IAV, exhibiting decreased viral loads and attenuated lung injury after IAV infection compared to those in wild-type (WT) mice. Moreover, macrophage necroptosis was significantly reduced in OPN-/- mice infected with IAV compared to that in infected WT mice. OPN increased the expression of necroptosis-related genes and exacerbated macrophage necroptosis in IAV-infected THP1 cells. Notably, adoptive transfer of WT bone marrow-derived macrophages (BMDMs) or OPN-/- BMDMs into mice restored resistance to influenza infection, and the rescue effect of OPN-/- BMDMs was better than that of WT BMDMs. Collectively, these results suggest that OPN deficiency in macrophages reduces necroptosis, which leads to a decrease in viral titers and protects against IAV infection. Therefore, OPN is a potential target for the treatment of IAV infection.
Collapse
|
20
|
Mogal MR, Sompa SA, Junayed A, Mahmod MR, Abedin MZ, Sikder MA. Common genetic aspects between COVID-19 and sarcoidosis: A network-based approach using gene expression data. Biochem Biophys Rep 2022; 29:101219. [PMID: 35128085 PMCID: PMC8803645 DOI: 10.1016/j.bbrep.2022.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
The pandemic situation of novel coronavirus disease 2019 (COVID-19) is a global threat on our current planet, with its rapid spread and high mortality rate. Sarcoidosis patients are at high risk to COVID-19 severity for having lung injuries as well as treating with immunosuppressive agents. So, physicians are in dilemma whether they should use immunosuppressive agents or not for the patients with sarcoidosis history and COVID-19 infection. Therefore, common factors should be identified to provide effective treatment. For determining the common genes between COVID-19 and sarcoidosis, GSE164805 and GSE18781 were retrieved from the Gene Expression Omnibus (GEO) database. Common upregulated genes were identified by using R language to investigate their involved pathways and gene ontologies (GO). With the aid of the STRING Cytoscape plugin tool, protein-protein interactions (PPIs) network was constructed. From the PPIs network, Hub genes and essential modules were detected by using Cytohubba, and MCODE respectively. For hub genes, TFs, TFs-miRNA, and drug, interaction networks were built through the NetworkAnalyst web platform. A total of 34 common upregulated genes were identified and among them, five hub genes, including TET2, MUC5AC, VDR, NFE2L2, and BCL6 were determined. In addition, a cluster having VDR and NFE2L2 was detected from the PPIs network. Moreover, 32 transcription factors and 9 miRNA were recognized for hub genes. Furthermore, vitamin D and some of its analogous compounds were obtained from the drug interaction network. In conclusion, hub genes identified in this study might have potential roles in modulating COVID-19 infection and sarcoidosis. However, further studies are required to corroborate this study. Sarcoidosis patients are at high risk to COVID-19 severity. This study aimed to find out common genetic factors for COVID-19 and Sarcoidosis. 34 common upregulated genes were identified from GSE164805 and GSE18781 datasets. From common upregulated genes, five hub genes, VDR, NFE2L2, BCL6, TET2, and MUC5AC, were recognized. Hub genes associated with miRNA, TFs, and drug molecules were also identified.
Collapse
|
21
|
Liu Y, Guan R, Yan J, Zhu Y, Sun S, Qu Y. Mesenchymal Stem Cell-Derived Extracellular Vesicle-Shuttled microRNA-302d-3p Represses Inflammation and Cardiac Remodeling Following Acute Myocardial Infarction. J Cardiovasc Transl Res 2022; 15:754-771. [PMID: 35194734 DOI: 10.1007/s12265-021-10200-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Our research intended to investigate the roles of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in acute myocardial infarction (AMI) via delivery of microRNA (miR)-302d-3p. AMI mouse models were established. EVs isolated from MSCs with miR-302d-3p mimic were injected near the infarct area or co-cultured with hypoxic cardiomyocytes to evaluate their effects. The expression of NF-κB pathway-related genes and inflammatory factors was determined. AMI mice exhibited downregulated miR-302d-3p and elevated MD2 and BCL6 levels. BCL6 was negatively targeted by miR-302d-3p and could bind to MD2 promoter to upregulate MD2 expression. MSCs-EVs, MSCs-EVs carrying miR-302d-3p, or BCL6 or MD2 silencing inactivated the NF-κB pathway and alleviated infarcted area, myocardial fibrosis, inflammation, apoptosis, and cardiac dysfunction in AMI mice. Besides, MSCs-EVs, MSCs-EVs carrying miR-302d-3p, or BCL6 or MD2 silencing diminished viability and inflammation but augmented apoptosis of hypoxic cardiomyocytes. Conclusively, MSCs-EVs carrying miR-302d-3p repressed inflammation and cardiac remodeling after AMI via BCL6/MD2/NF-κB axis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Rongchun Guan
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Jizhou Yan
- The Fifth Ward of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yueping Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Shiming Sun
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yan Qu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China.
| |
Collapse
|
22
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Wang Y, Wang L, Fu C, Wang X, Zuo S, Shu C, Shan Y, He J, Zhou Q, Li W, Yang YG, Hu Z, Hua S. Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:420-428. [PMID: 34903640 DOI: 10.4049/jimmunol.2100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
There are urgent needs for humanized mouse models of viral respiratory diseases to study immunopathogenesis and therapeutic interventions. Although human immune system (HIS) mice permit analysis in real time of human immune responses in vivo, evolutionary divergences preclude their usefulness for the respiratory viruses that do not infect mouse lungs. In this study, we sought to use HIS mice with human lung (HL) tissue xenografts (HISL mice) to address this issue. The grafted HL tissue maintained histologically normal structure, and populated with human tissue-resident immune cells, including CD11c+ dendritic cells and CD4+ and CD8+ tissue-resident memory T cells. HISL mice showed a marked expansion of tissue-resident memory T cells and generation of viral Ag-specific T cells in the HL xenografts, and production of antiviral IgM and IgG Abs upon immunization of the HL xenograft by H1N1 influenza viruses. RNA-seq analysis on H1N1-infected and control HL xenografts identified a total of 5089 differentially expressed genes with enrichments for genes involved in respiratory diseases, viral infections, and associated immune responses. Furthermore, prophylactic viral exposures resulted in protection against subsequent lethal challenge by intranasal viral inoculation. This study supports the usefulness of this preclinical model in exploring the immunopathology and therapies of respiratory viral diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Lei Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Xue Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Siyao Zuo
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Yong-Guang Yang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Shucheng Hua
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
| |
Collapse
|
24
|
Chang Y, Li X, Cheng Q, Hu Y, Chen X, Hua X, Fan X, Tao M, Song J, Hu S. Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Res Cardiol 2021; 116:64. [PMID: 34870762 DOI: 10.1007/s00395-021-00904-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Acute rejection (AR) is an important contributor to graft failure, which remains a leading cause of death after heart transplantation (HTX). The regulation of immune metabolism has become a new hotspot in the development of immunosuppressive drugs. In this study, Increased glucose metabolism of cardiac macrophages was found in patients with AR. To find new therapeutic targets of immune metabolism regulation for AR, CD45+ immune cells extracted from murine isografts, allografts, and untransplanted donor hearts were explored by single-cell RNA sequencing. Total 20 immune cell subtypes were identified among 46,040 cells. The function of immune cells in AR were illustrated simultaneously. Cardiac resident macrophages were substantially replaced by monocytes and proinflammatory macrophages during AR. Monocytes/macrophages in AR allograft were more active in antigen presentation and inflammatory recruitment ability, and glycolysis. Based on transcription factor regulation analysis, we found that the increase of glycolysis in monocytes/macrophages was mainly regulated by HIF1A. Inhibition of HIF1A could alleviate inflammatory cells infiltration in AR. To find out the effect of HIF1A on AR, CD45+ immune cells extracted from allografts after HIF1A inhibitor treatment were explored by single-cell RNA sequencing. HIF1A inhibitor could reduce the antigen presenting ability and pro-inflammatory ability of macrophages, and reduce the infiltration of Cd4+ and Cd8a+ T cells in AR. The expression of Hif1α in AR monocytes/macrophages was regulated by pyruvate kinase 2. Higher expression of HIF1A in macrophages was also detected in human hearts with AR. These indicated HIF1A may serve as a potential target for attenuating AR.
Collapse
Affiliation(s)
- Yuan Chang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiangjie Li
- School of Statistics and Data Science, Nankai University, Tianjin, 300371, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Ministry of Education, National Health Commission, Wuhan, 430000, China
| | - Yiqing Hu
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiao Chen
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiumeng Hua
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xuexin Fan
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Menghao Tao
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Jiangping Song
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
| | - Shengshou Hu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| |
Collapse
|
25
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
26
|
Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J Exp Med 2021; 218:e20201631. [PMID: 34473195 PMCID: PMC8421264 DOI: 10.1084/jem.20201631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the "cytokine storm" are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell-produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)-driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza.
Collapse
Affiliation(s)
- Julie C.F. Rappe
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
28
|
Zou H, Wang X, Liu L, Zhang C, Ren D. The effects of specialized emergency and intensive nursing team on arterial blood gas and pulmonary function in pulmonary infection with respiratory failure. Am J Transl Res 2021; 13:10785-10792. [PMID: 34650756 PMCID: PMC8506985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate effects of specialized emergency and intensive nursing team on arterial blood gas and pulmonary function in pulmonary infected patients with respiratory failure. METHODS 126 patients with pulmonary infection and respiratory failure admitted to our hospital were chosen and randomly divided into observation group and control group, with 63 cases in each group. The control-group received specialized routine nursing care, and the observation-group was treated with the emergency and intensive nursing care. Subsequently, the arterial blood gas, pulmonary function, inflammatory biomarkers, complication rate, recovery course and nursing satisfaction between the two groups were compared accordingly. RESULTS After nursing care, the arterial blood gas and pulmonary function indexes of the two groups were remarkably improved than before, and the improvement in observation-group was superior to that in control-group (P<0.05); The inflammatory indicators of hs-CRP and PCT in two groups decreased substantially than before, and observation-group had remarkably lower indicators than that of the control-group (P<0.05); The incidence of complications in observation-group was 4.76%, significantly lower than 19.05% in control-group (P<0.05); The objects in observation-group spent exactly shorter time on ventilator than whom in control-group, and the difference was statistically significant (P<0.05); The observation-group had critically shorter length of hospital stay than those in control-group (P<0.05). The satisfaction of the observation-group with nursing care was 93.65%, which was dramatically higher than 73.02% in control-group (P<0.05). CONCLUSIONS For pulmonary infection and respiratory failure, the nursing intervention carried by the specialized emergency and intensive nursing team can remarkably improve the arterial blood gas and pulmonary function, reduce the patients' inflammatory indicators and incidence of complications. The application of the nursing team can reduce the time on ventilator and length of hospital stay, and improve patients' satisfaction with nursing care.
Collapse
Affiliation(s)
- Hong Zou
- Department of Nursing, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Xiaoping Wang
- Department of Endocrinology, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Chunyan Zhang
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Dapeng Ren
- Department of Anesthesiology, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| |
Collapse
|
29
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
30
|
Wu YX, Jiang FJ, Liu G, Wang YY, Gao ZQ, Jin SH, Nie YJ, Chen D, Chen JL, Pang QF. Dehydrocostus Lactone Attenuates Methicillin-Resistant Staphylococcus aureus-Induced Inflammation and Acute Lung Injury via Modulating Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22189754. [PMID: 34575918 PMCID: PMC8472345 DOI: 10.3390/ijms22189754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dehydrocostus lactone (DHL), a natural sesquiterpene lactone isolated from the traditional Chinese herbs Saussurea lappa and Inula helenium L., has important anti-inflammatory properties used for treating colitis, fibrosis, and Gram-negative bacteria-induced acute lung injury (ALI). However, the effects of DHL on Gram-positive bacteria-induced macrophage activation and ALI remains unclear. In this study, we found that DHL inhibited the phosphorylation of p38 MAPK, the degradation of IκBα, and the activation and nuclear translocation of NF-κB p65, but enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Nrf2 and HO-1 in lipoteichoic acid (LTA)-stimulated RAW264.7 cells and primary bone-marrow-derived macrophages (BMDMs). Given the critical role of the p38 MAPK/NF-κB and AMPK/Nrf2 signaling pathways in the balance of M1/M2 macrophage polarization and inflammation, we speculated that DHL would also have an effect on macrophage polarization. Further studies verified that DHL promoted M2 macrophage polarization and reduced M1 polarization, then resulted in a decreased inflammatory response. An in vivo study also revealed that DHL exhibited anti-inflammatory effects and ameliorated methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI. In addition, DHL treatment significantly inhibited the p38 MAPK/NF-κB pathway and activated AMPK/Nrf2 signaling, leading to accelerated switching of macrophages from M1 to M2 in the MRSA-induced murine ALI model. Collectively, these data demonstrated that DHL can promote macrophage polarization to an anti-inflammatory M2 phenotype via interfering in p38 MAPK/NF-κB signaling, as well as activating the AMPK/Nrf2 pathway in vitro and in vivo. Our results suggested that DHL might be a novel candidate for treating inflammatory diseases caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Ying-Ying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Si-Hao Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Jun-Liang Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
31
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
32
|
BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood 2021; 137:812-825. [PMID: 32911532 DOI: 10.1182/blood.2019001745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.
Collapse
|
33
|
Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathog 2021; 17:e1009381. [PMID: 34197564 PMCID: PMC8248730 DOI: 10.1371/journal.ppat.1009381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions. Exacerbated complement activation and immune deregulation are at the basis of several pathologies induced by respiratory viruses. Here, we report that complement decay-accelerating factor (DAF), which inhibits complement activation in healthy cells, increases disease severity upon influenza A virus (IAV) infection. Remarkably, DAF interaction with IAV proteins, hemagglutinin (HA) and neuraminidase (NA), resulted in excessive complement activation and recruitment of innate and adaptive immune cells, without affecting viral loads. Furthermore, we observed that viral NA directly cleaves DAF and promotes complement activation, providing a possible link between IAV-DAF interaction and pathology. Therefore, our results unveil a novel pathway that could modulate disease severity, which may help to understand the increased pathogenicity of zoonotic and pandemic IAV infections.
Collapse
|
34
|
Wu Y, Goplen NP, Sun J. Aging and respiratory viral infection: from acute morbidity to chronic sequelae. Cell Biosci 2021; 11:112. [PMID: 34158111 PMCID: PMC8218285 DOI: 10.1186/s13578-021-00624-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The altered immune response in aged hosts play a vital role in contributing to their increased morbidity and mortality during respiratory virus infections. The aged hosts display impaired antiviral immune response as well as increased risk for long-term pulmonary sequelae post virus clearance. However, the underlying cellular and molecular mechanisms driving these alterations of the immune compartment have not been fully elucidated. During the era of COVID-19 pandemic, a better understanding of such aspects is urgently needed to provide insight that will benefit the geriatric patient care in prevention as well as treatment. Here, we review the current knowledge about the unique immune characteristics of aged hosts during homeostasis and respiratory virus infections.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nick P Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Sun
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
Zhu B, Wu Y, Huang S, Zhang R, Son YM, Li C, Cheon IS, Gao X, Wang M, Chen Y, Zhou X, Nguyen Q, Phan AT, Behl S, Taketo MM, Mack M, Shapiro VS, Zeng H, Ebihara H, Mullon JJ, Edell ES, Reisenauer JS, Demirel N, Kern RM, Chakraborty R, Cui W, Kaplan MH, Zhou X, Goldrath AW, Sun J. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity 2021; 54:1200-1218.e9. [PMID: 33951416 PMCID: PMC8192557 DOI: 10.1016/j.immuni.2021.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.
Collapse
Affiliation(s)
- Bibo Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yue Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Su Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ruixuan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Young Min Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chaofan Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Min Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Xian Zhou
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Quynh Nguyen
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony T Phan
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Virginia S Shapiro
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - John J Mullon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Janani S Reisenauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nadir Demirel
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M Kern
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Mansouri S, Katikaneni DS, Gogoi H, Jin L. Monocyte-Derived Dendritic Cells (moDCs) Differentiate into Bcl6 + Mature moDCs to Promote Cyclic di-GMP Vaccine Adjuvant-Induced Memory T H Cells in the Lung. THE JOURNAL OF IMMUNOLOGY 2021; 206:2233-2245. [PMID: 33879579 DOI: 10.4049/jimmunol.2001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Induction of lung mucosal immune responses is highly desirable for vaccines against respiratory infections. We recently showed that monocyte-derived dendritic cells (moDCs) are responsible for lung IgA induction. However, the dendritic cell subset inducing lung memory TH cells is unknown. In this study, using conditional knockout mice and adoptive cell transfer, we found that moDCs are essential for lung mucosal responses but are dispensable for systemic vaccine responses. Next, we showed that mucosal adjuvant cyclic di-GMP differentiated lung moDCs into Bcl6+ mature moDCs promoting lung memory TH cells, but they are dispensable for lung IgA production. Mechanistically, soluble TNF mediates the induction of lung Bcl6+ moDCs. Our study reveals the functional heterogeneity of lung moDCs during vaccination and paves the way for an moDC-targeting vaccine strategy to enhance immune responses on lung mucosa.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
37
|
Guo G, Gao M, Gao X, Zhu B, Huang J, Tu X, Kim W, Zhao F, Zhou Q, Zhu S, Wu Z, Yan Y, Zhang Y, Zeng X, Zhu Q, Yin P, Luo K, Sun J, Deng M, Lou Z. Reciprocal regulation of RIG-I and XRCC4 connects DNA repair with RIG-I immune signaling. Nat Commun 2021; 12:2187. [PMID: 33846346 PMCID: PMC8041803 DOI: 10.1038/s41467-021-22484-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.
Collapse
Affiliation(s)
- Guijie Guo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ming Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xiaochen Gao
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Bibo Zhu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Qin Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Shouhai Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zheming Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yuanliang Yan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yong Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xiangyu Zeng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Qian Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Min Deng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Clinical characteristics and peripheral immunocyte subsets alteration of 85 COVID-19 deaths. Aging (Albany NY) 2021; 13:6289-6297. [PMID: 33711813 PMCID: PMC7993687 DOI: 10.18632/aging.202819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Objectives: To retrospectively evaluate the clinical and immunological characteristics of patients who died of COVID-19 and to identify patients at high risk of death at an early stage and reduce their mortality. Results: Total white blood cell count, neutrophil count and C-reactive protein were significantly higher in patients who died of COVID-19 than those who recovered from it (p < 0.05), but the total lymphocyte count, CD4 + T cells, CD8 + T cells, B cells and natural killer cells were significantly lower when compared in the same groups. Multiple logistic regression analysis showed that increased D-dimer, decreased CD4 + T cells and increased neutrophils were risk factors for mortality. Further multiple COX regression demonstrated that neutrophil ≥ 5.27 × 109/L increased the risk of death in COVID-19 patients after adjustment for age and gender. However, CD4 + T cells ≥ 260/μL appeared to reduce the risk of death. Conclusion: SARS-CoV-2 infection led to a significant decrease of lymphocytes, and decreased CD4 + T cell count was a risk factor for COVID-19 patients to develop severe disease and death. Methods: This study included 190 hospitalized COVID-19 patients from January 30, 2020 to March 4, 2020 in Wuhan, China, of whom 85 died and 105 recovered. Two researchers independently collected the clinical and laboratory data from electronic medical records.
Collapse
|
39
|
Tushir S, Kamanna S, Nath SS, Bhat A, Rose S, Aithal AR, Tatu U. Proteo-Genomic Analysis of SARS-CoV-2: A Clinical Landscape of Single-Nucleotide Polymorphisms, COVID-19 Proteome, and Host Responses. J Proteome Res 2021; 20:1591-1601. [PMID: 33555895 PMCID: PMC7885802 DOI: 10.1021/acs.jproteome.0c00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/26/2022]
Abstract
A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and continues to be a global health challenge. To understand viral disease biology, we have carried out proteo-genomic analysis using next-generation sequencing (NGS) and mass spectrometry on nasopharyngeal swabs of COVID-19 patients to examine the clinical genome and proteome. Our study confirms the mutability of SARS-CoV-2 showing multiple single-nucleotide polymorphisms. NGS analysis detected 27 mutations, of which 14 are synonymous, 11 are missense, and 2 are extragenic in nature. Phylogenetic analysis of SARS-CoV-2 isolates indicated their close relation to a Bangladesh isolate and multiple origins of isolates within the country. Our proteomic analysis, for the first time, identified 13 different SARS-CoV-2 proteins from the clinical swabs. Of the total 41 peptides captured by high-resolution mass spectrometry, 8 matched to nucleocapsid protein, 2 to ORF9b, and 1 to spike glycoprotein and ORF3a, with remaining peptides mapping to ORF1ab polyprotein. Additionally, host proteome analysis revealed several key host proteins to be uniquely expressed in COVID-19 patients. Pathway analysis of these proteins points toward modulation in immune response, especially involving neutrophil and IL-12-mediated signaling. Besides revealing the aspects of host-virus pathogenesis, our study opens new avenues to develop better diagnostic markers and therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Tushir
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Sathisha Kamanna
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Sujith S. Nath
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Aishwarya Bhat
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Steffimol Rose
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Advait R. Aithal
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute
of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021; 30:9636897211010632. [PMID: 33949207 PMCID: PMC8114753 DOI: 10.1177/09636897211010632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) first emerged in December 2019 in Wuhan, China, and has since spread rapidly worldwide. As researchers seek to learn more about COVID-19, the disease it causes, this novel virus continues to infect and kill. Despite the socioeconomic impacts of SARS-CoV-2 infections and likelihood of future outbreaks of other pathogenic coronaviruses, options to prevent or treat coronavirus infections remain limited. In current clinical trials, potential coronavirus treatments focusing on killing the virus or on preventing infection using vaccines largely ignore the host immune response. The relatively small body of current research on the virus indicates pathological responses by the immune system as the leading cause for much of the morbidity and mortality caused by COVID-19. In this review, we investigated the host innate and adaptive immune responses against COVID-19, collated information on recent COVID-19 experimental data, and summarized the systemic immune responses to and histopathology of SARS-CoV-2 infection. Finally, we summarized the immune-related biomarkers to define patients with high-risk and worst-case outcomes, and identified the possible usefulness of inflammatory markers as potential immunotherapeutic targets. This review provides an overview of current knowledge on COVID-19 and the symptomatological differences between healthy, convalescent, and severe cohorts, while offering research directions for alternative immunoregulation therapeutic targets.
Collapse
Affiliation(s)
- Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Hsu
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Cancer Center, Hualien, Taiwan
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Department of Radiation Oncology, Hualien, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Lu L, Fong CHY, Zhang AJ, Wu WL, Li IC, Lee ACY, Dissanayake TK, Chen L, Hung IFN, Chan KH, Chu H, Kok KH, Yuen KY, To KKW. Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040754. [PMID: 33322574 PMCID: PMC7768360 DOI: 10.3390/vaccines8040754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Wai-Lan Wu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Iris Can Li
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Andrew Chak-Yiu Lee
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Linlei Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Hin Chu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence:
| |
Collapse
|
42
|
Vargas-Alarcón G, Posadas-Sánchez R, Ramírez-Bello J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci 2020; 260:118313. [PMID: 32835700 PMCID: PMC7441892 DOI: 10.1016/j.lfs.2020.118313] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The prevalence and mortality of the outbreak of the COVID-19 pandemic show marked geographic variation. The presence of several subtypes of the coronavirus and the genetic differences in the populations could condition that variation. Thus, the objective of this study was to propose variants in genes that encode proteins related to the SARS-CoV-2 entry into the host cells as possible targets for genetic associations studies. METHODS The allelic frequencies of the polymorphisms in the ACE2, TMPRSS2, TMPRSS11A, cathepsin L (CTSL), and elastase (ELANE) genes were obtained in four populations from the American, African, European, and Asian continents reported in the 1000 Genome Project. Moreover, we evaluated the potential biological effect of these variants using different web-based tools. RESULTS In the coding sequences of these genes, we detected one probably-damaging polymorphism located in the TMPRSS2 gene (rs12329760) that produces a change of amino acid. Furthermore, forty-eight polymorphisms with possible functional consequences were detected in the non-coding sequences of the following genes: three in ACE2, seventeen in TMPRSS2, ten in TMPRSS11A, twelve in ELANE, and six in CTSL. These polymorphisms produce binding sites for transcription factors and microRNAs. The minor allele frequencies of these polymorphisms vary in each community; indeed, some of them are high in specific populations. CONCLUSION In summary, using data of the 1000 Genome Project and web-based tools, we propose some polymorphisms, which, depending on the population, could be used for genetic association studies.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | | | | |
Collapse
|
43
|
Abstract
COVID-19 is often related to hyperinflammation that drives lung or multiorgan injury. The immunopathological mechanisms that cause excessive inflammation are under investigation and constantly updated. Here, a gene network approach was used on recently published data sets to identify possible COVID-19 inflammatory mechanisms and bioactive genes. First, network analysis of putative SARS-CoV-2 cellular receptors led to the mining of a neutrophil-response signature and relevant inflammatory genes. Second, analysis of RNA-seq data sets of lung cells infected with SARS-CoV-2 revealed that infected cells expressed neutrophil-attracting chemokines. COVID-19 is often related to hyperinflammation that drives lung or multiorgan injury. The immunopathological mechanisms that cause excessive inflammation are under investigation and constantly updated. Here, a gene network approach was used on recently published data sets to identify possible COVID-19 inflammatory mechanisms and bioactive genes. First, network analysis of putative SARS-CoV-2 cellular receptors led to the mining of a neutrophil-response signature and relevant inflammatory genes. Second, analysis of RNA-seq data sets of lung cells infected with SARS-CoV-2 revealed that infected cells expressed neutrophil-attracting chemokines. Third, analysis of RNA-seq data sets of bronchoalveolar lavage fluid cells from COVID-19 patients identified upregulation of neutrophil genes and chemokines. Different inflammatory genes mined here, including TNFR, IL-8, CXCR1, CXCR2, ADAM10, GPR84, MME, ANPEP, and LAP3, might be druggable targets in efforts to limit SARS-CoV-2 inflammation in severe clinical cases. The possible role of neutrophils in COVID-19 inflammation needs to be studied further.
Collapse
|
44
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Zhao X, Yang L, Chang N, Hou L, Zhou X, Yang L, Li L. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 2020; 11:379. [PMID: 32424179 PMCID: PMC7235026 DOI: 10.1038/s41419-020-2582-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
Inappropriate neutrophil infiltration and subsequent neutrophil extracellular trap (NET) formation have been confirmed to be involved in chronic inflammatory conditions. Fatty liver disease is an increasingly severe health problem worldwide and currently considered the most common cause of chronic liver disease. Sphingosine 1-phosphate (S1P), a product of membrane sphingolipid metabolism, regulates vital physiological and pathological actions by inducing infiltration and activation of various cell types through S1P receptors (S1PRs). Here, we seek to determine the S1PR-mediated effects on neutrophil activation during chronic liver inflammation. In this study, NETs are detected in the early stage of methionine-choline-deficient and a high-fat (MCDHF) diet-induced liver injury. NET depletion by deoxyribonuclease I intraperitoneal injection significantly protects liver from MCDHF-induced liver injury in vivo. Meanwhile, we show that levels of myeloperoxidase-DNA complex (NET marker) in the serum present positive correlation with sphingosine kinase1 (S1P rate-limiting enzyme) messenger RNA expression or S1P levels in the injured liver of MCDHF-fed mice. In vitro, S1PR2 participates in the redirection of neutrophil apoptosis to NETosis via Gαi/o, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and reactive oxygen species signaling pathways. Moreover, S1PR2 knockdown in MCDHF-fed mice by S1PR2-siRNA intravenous injection significantly inhibits NET formation in damaged liver tissue and then alleviates hepatic inflammation and fibrosis. Conclusion: In the early stage of fatty liver disease, S1PR2-mediated neutrophil activation plays an important role in the evolvement of liver injury.
Collapse
Affiliation(s)
- Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
46
|
Laghlali G, Lawlor KE, Tate MD. Die Another Way: Interplay between Influenza A Virus, Inflammation and Cell Death. Viruses 2020; 12:v12040401. [PMID: 32260457 PMCID: PMC7232208 DOI: 10.3390/v12040401] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus (IAV) is a major concern to human health due to the ongoing global threat of a pandemic. Inflammatory and cell death signalling pathways play important roles in host defence against IAV infection. However, severe IAV infections in humans are characterised by excessive inflammation and tissue damage, often leading to fatal disease. While the molecular mechanisms involved in the induction of inflammation during IAV infection have been well studied, the pathways involved in IAV-induced cell death and their impact on immunopathology have not been fully elucidated. There is increasing evidence of significant crosstalk between cell death and inflammatory pathways and a greater understanding of their role in host defence and disease may facilitate the design of new treatments for IAV infection.
Collapse
Affiliation(s)
- Gabriel Laghlali
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69007 Lyon, France
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722742
| |
Collapse
|
47
|
Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease. Int J Mol Sci 2020; 21:ijms21030851. [PMID: 32013006 PMCID: PMC7038180 DOI: 10.3390/ijms21030851] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils have a prominent role in all human immune responses against any type of pathogen or stimulus. The lungs are a major neutrophil reservoir and neutrophilic inflammation is a primary response to both infectious and non-infectious challenges. While neutrophils are well known for their essential role in clearance of bacteria, they are also equipped with specific mechanisms to counter viruses and fungi. When these defense mechanisms become aberrantly activated in the absence of infection, this commonly results in debilitating chronic lung inflammation. Clearance of bacteria by phagocytosis is the hallmark role of neutrophils and has been studied extensively. New studies on neutrophil biology have revealed that this leukocyte subset is highly adaptable and fulfills diverse roles. Of special interest is how these adaptations can impact the outcome of an immune response in the lungs due to their potent capacity for clearing infection and causing damage to host tissue. The adaptability of neutrophils and their propensity to influence the outcome of immune responses implicates them as a much-needed target of future immunomodulatory therapies. This review highlights the recent advances elucidating the mechanisms of neutrophilic inflammation, with a focus on the lung environment due to the immense and growing public health burden of chronic lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), and acute lung inflammatory diseases such as transfusion-related acute lung injury (TRALI).
Collapse
|