1
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Janopaul-Naylor JR, Lee N, McBride S. Response to Concerns and Insights on Timing of Immunotherapy and Radiotherapy in Head and Neck Cancer. Head Neck 2024. [PMID: 39445633 DOI: 10.1002/hed.27977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- James R Janopaul-Naylor
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Danino D, Kalron Y, Haspel JA, Hazan G. Diurnal rhythms in varicella vaccine effectiveness. JCI Insight 2024; 9:e184452. [PMID: 39226122 PMCID: PMC11530121 DOI: 10.1172/jci.insight.184452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUNDImmune processes are influenced by circadian rhythms. We evaluate the association between varicella vaccine administration time of day and vaccine effectiveness.METHODSA national cohort, children younger than 6 years, were enrolled between January 2002 and December 2023. We compared children vaccinated during morning (7:00-10:59), late morning to afternoon (11:00-15:59), or evening hours (16:00-19:59). A Cox proportional hazards regression model was used to adjust for ethnicity, sex, and comorbidities. The first varicella infection occurring at least 14 days after vaccination and a second dose administration were treated as terminal events.RESULTSOf 251,141 vaccinated children, 4,501 (1.8%) experienced breakthrough infections. Infection rates differed based on vaccination time, with the lowest rates associated with late morning to afternoon (11:00-15:59), HR 0.88, 95% CI 0.82-0.95, P < 0.001, and the highest rates with evening vaccination (16:00-19:59), HR 1.41, 95% CI 1.32-1.52, P < 0.001. Vaccination timing remained significant after adjustment for ethnicity, sex, and comorbidities. The association between immunization time and infection risk followed a sinusoidal pattern, consistent with a diurnal rhythm in vaccine effectiveness.CONCLUSIONWe report a significant association between the time of varicella vaccination and its clinical effectiveness. Similar association was observed with the COVID-19 vaccine, providing proof of concept consistent with a diurnal rhythm in vaccine effectiveness.
Collapse
Affiliation(s)
- Dana Danino
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
- Pediatric Infectious Diseases Unit, Saban Children Hospital, Soroka University Medical Center, Beer Sheva, Israel
| | - Yoav Kalron
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
- Pediatric Pulmonary Unit, Saban Children Hospital, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
4
|
Janopaul-Naylor JR, Boe L, Yu Y, Sherman EJ, Pfister DG, Lee NY, McBride S. Effect of time-of-day nivolumab and stereotactic body radiotherapy in metastatic head and neck squamous cell carcinoma: A secondary analysis of a prospective randomized trial. Head Neck 2024; 46:2292-2300. [PMID: 38794815 PMCID: PMC11305937 DOI: 10.1002/hed.27825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Prior work documented circadian rhythm impacts on efficacy and toxicity of cancer therapies. METHODS Secondary analysis of prospective, phase II trial of metastatic HNSCC randomized to nivolumab+/-SBRT. Used cutoffs of 1100 and 1630. Timing classified by first infusion or majority of SBRT (e.g., PM SBRT defined by two or three fractions after 1630). RESULTS Of 62 patients, there was no significant difference in median PFS between AM nivolumab (n = 7, 175 days), PM nivolumab (n = 21, 58 days), or Mid-Day nivolumab (n = 34, 67 days; p = 0.8). There was no significant difference in median PFS with AM SBRT (n = 4, 78 days), PM SBRT (n = 13, 111 days), or Mid-Day SBRT (n = 15, 63 days; p = 0.8). There was no significant difference in Grade 3-4 toxicity or ORR. Sensitivity analyses with other timepoints were negative. CONCLUSIONS Further work may elucidate circadian impacts on select patients, tumors, and therapies; however, we found no significant effect in this study.
Collapse
Affiliation(s)
- James R Janopaul-Naylor
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lillian Boe
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric J Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors' efficacy? Br J Cancer 2024; 131:783-796. [PMID: 38834742 PMCID: PMC11369086 DOI: 10.1038/s41416-024-02704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical evaluation. METHODS Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence outcomes on ICI therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy. RESULTS Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint inhibitors (ICIs) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9 countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes. The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly through tumour immune evasion resulting from immunosuppressive tumour microenvironment. CONCLUSIONS AND PERSPECTIVE Such emerging understanding of circadian rhythms regulation of antitumour immunity now calls for randomised clinical trials of ICIs timing to establish recommendations for personalised chrono-immunotherapies with current and forthcoming drugs.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770, Montfermeil, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- Cancer Chronotherapy Team, Division of Biomedical Sciences, Medical School, Warwick University, Coventry, CV4 7AL, UK
| | - Nicholas I Wreglesworth
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2PW, UK
| | - Boris Duchemann
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000, Bobigny, France
| | - René Adam
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800, Villejuif, France
| | - Francis A Lévi
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France.
- Gastro-intestinal and Medical Oncology Service, Paul Brousse Hospital, 94800, Villejuif, France.
- Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
6
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Balit N, Cermakian N, Khadra A. The influence of circadian rhythms on CD8 + T cell activation upon vaccination: A mathematical modeling perspective. J Theor Biol 2024; 590:111852. [PMID: 38796098 DOI: 10.1016/j.jtbi.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Circadian rhythms have been implicated in the modulation of many physiological processes, including those associated with the immune system. For example, these rhythms influence CD8+ T cell responses within the adaptive immune system. The mechanism underlying this immune-circadian interaction, however, remains unclear, particularly in the context of vaccination. Here, we devise a molecularly-explicit gene regulatory network model of early signaling in the naïve CD8+ T cell activation pathway, comprised of three axes (or subsystems) labeled ZAP70, LAT and CD28, to elucidate the molecular details of this immune-circadian mechanism and its relation to vaccination. This is done by coupling the model to a periodic forcing function to identify the molecular players targeted by circadian rhythms, and analyzing how these rhythms subsequently affect CD8+ T cell activation under differing levels of T cell receptor (TCR) phosphorylation, which we designate as vaccine load. By performing both bifurcation and parameter sensitivity analyses on the model at the single cell and ensemble levels, we find that applying periodic forcing on molecular targets within the ZAP70 axis is sufficient to create a day-night discrepancy in CD8+ T cell activation in a manner that is dependent on the bistable switch inherent in CD8+ T cell early signaling. We also demonstrate that the resulting CD8+ T cell activation is dependent on the strength of the periodic coupling as well as on the level of TCR phosphorylation. Our results show that this day-night discrepancy is not transmitted to certain downstream molecules within the LAT subsystem, such as mTORC1, suggesting a secondary, independent circadian regulation on that protein complex. We also corroborate experimental results by showing that the circadian regulation of CD8+ T cell primarily acts at a baseline, pre-vaccination state, playing a facilitating role in priming CD8+ T cells to vaccine inputs according to the time of day. By applying an ensemble level analysis using bifurcation theory and by including several hypothesized molecular targets of this circadian rhythm, we further demonstrate an increased variability between CD8+ T cells (due to heterogeneity) induced by its circadian regulation, which may allow an ensemble of CD8+ T cells to activate at a lower vaccine load, improving its sensitivity. This modeling study thus provides insights into the immune targets of the circadian clock, and proposes an interaction between vaccine load and the influence of circadian rhythms on CD8+ T cell activation.
Collapse
Affiliation(s)
- Nasri Balit
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | - Nicolas Cermakian
- Douglas Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Ye Y, Liu C, Wu R, Kang D, Gao H, Lv H, Feng Z, Shi Y, Liu Z, Chen L. Circadian clock component PER2 negatively regulates CD4 + T cell IFN-γ production in ulcerative colitis. Mucosal Immunol 2024:S1933-0219(24)00076-X. [PMID: 39097147 DOI: 10.1016/j.mucimm.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Period circadian clock 2 (PER2) is involved in the pathogenesis of various inflammatory and autoimmune diseases. However, there are gaps in our understanding of the role of PER2 in regulating CD4+ T cells beyond its time-keeping function in ulcerative colitis (UC) pathogenesis. Our findings revealed PER2 was predominantly expressed in CD4+ T cells, while it was significantly decreased in the inflamed mucosa and peripheral blood CD4+ T cells of UC patients compared with that in Crohn's disease (CD) patients and healthy controls (HC). Notably, PER2 expression was significantly recovered in UC patients in remission (R-UC) compared to that in active UC patients (A-UC) but not in CD patients. It was negatively correlated with the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), Crohn's Disease Activity Index (CDAI), Simple Endoscopic Score for Crohn's disease (SES-CD), and C-reactive protein (CRP), respectively. Overexpression of PER2 markedly inhibited IFN-γ production in UC CD4+ T cells. RNA-seq analysis showed that overexpression of PER2 could repress the expression of a disintegrin and metalloproteinase 12 (ADAM12), a costimulatory molecule that determines Th1 cell fate. Mechanistically, cleavage under targets and tagmentation (CUT&Tag) analysis revealed that PER2 down-regulated ADAM12 expression by reducing its binding activity, thereby suppressing IFN-γ production in UC CD4+ T cells. Additionally, our data further demonstrated that ADAM12 was upregulated in CD4+ T cells and inflamed mucosa of A-UC patients compared to HC. Our study reveals a critical role of PER2 in regulating CD4+ T cell differentiation and highlights its potential as a therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Yulan Ye
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou 215008, China
| | - Changqin Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ruijin Wu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huiying Lv
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yanhong Shi
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| |
Collapse
|
9
|
Cermakian N, Labrecque N. Watch your clock: it matters for immunotherapy. Trends Cancer 2024; 10:671-672. [PMID: 38942640 DOI: 10.1016/j.trecan.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Does time of day matter for cancer immunotherapy? Whereas the concept of optimizing the time of treatment is well documented for chemotherapy, whether it applies to immunotherapy, a revolutionizing treatment exploiting the power of immune cells to control tumors, has recently been addressed in a study published in Cell.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Douglas Research Centre, Montréal, Québec, H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1Y2, Canada
| | - Nathalie Labrecque
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
10
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580339. [PMID: 38405770 PMCID: PMC10888792 DOI: 10.1101/2024.02.14.580339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrophages are prime therapeutic targets due to their pro-tumorigenic and immunosuppressive functions in tumors, but the varying efficacy of therapeutic approaches targeting macrophages highlights our incomplete understanding of how the tumor microenvironment (TME) can influence regulation of macrophages. The circadian clock is a key internal regulator of macrophage function, but how circadian rhythms of macrophages may be influenced by the tumor microenvironment remains unknown. We found that conditions associated with the TME such as polarizing stimuli, acidic pH, and elevated lactate concentrations can each alter circadian rhythms in macrophages. Circadian rhythms were enhanced in pro-resolution macrophages but suppressed in pro-inflammatory macrophages, and acidic pH had divergent effects on circadian rhythms depending on macrophage phenotype. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate that pH-driven changes in circadian rhythms are not mediated solely by the cAMP signaling pathway. Remarkably, clock correlation distance analysis of tumor-associated macrophages (TAMs) revealed evidence of circadian disorder in TAMs. This is the first report providing evidence that circadian rhythms of macrophages are altered within the TME. Our data further suggest that heterogeneity in circadian rhythms at the population level may underlie this circadian disorder. Finally, we sought to determine how circadian regulation of macrophages impacts tumorigenesis, and found that tumor growth was suppressed when macrophages had a functional circadian clock. Our work demonstrates a novel mechanism by which the tumor microenvironment can influence macrophage biology through altering circadian rhythms, and the contribution of circadian rhythms in macrophages to suppressing tumor growth.
Collapse
|
11
|
Butler CT, Rodgers AM, Curtis AM, Donnelly RF. Chrono-tailored drug delivery systems: recent advances and future directions. Drug Deliv Transl Res 2024; 14:1756-1775. [PMID: 38416386 PMCID: PMC11153310 DOI: 10.1007/s13346-024-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Circadian rhythms influence a range of biological processes within the body, with the central clock or suprachiasmatic nucleus (SCN) in the brain synchronising peripheral clocks around the body. These clocks are regulated by external cues, the most influential being the light/dark cycle, in order to synchronise with the external day. Chrono-tailored or circadian drug delivery systems (DDS) aim to optimise drug delivery by releasing drugs at specific times of day to align with circadian rhythms within the body. Although this approach is still relatively new, it has the potential to enhance drug efficacy, minimise side effects, and improve patient compliance. Chrono-tailored DDS have been explored and implemented in various conditions, including asthma, hypertension, and cancer. This review aims to introduce the biology of circadian rhythms and provide an overview of the current research on chrono-tailored DDS, with a particular focus on immunological applications and vaccination. Finally, we draw on some of the key challenges which need to be overcome for chrono-tailored DDS before they can be translated to more widespread use in clinical practice.
Collapse
Affiliation(s)
- Christine T Butler
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Aoife M Rodgers
- The Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7B, UK
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
12
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
13
|
Wyse CA, Rudderham LM, Nordon EA, Ince LM, Coogan AN, Lopez LM. Circadian Variation in the Response to Vaccination: A Systematic Review and Evidence Appraisal. J Biol Rhythms 2024; 39:219-236. [PMID: 38459699 PMCID: PMC11141079 DOI: 10.1177/07487304241232447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Molecular timing mechanisms known as circadian clocks drive endogenous 24-h rhythmicity in most physiological functions, including innate and adaptive immunity. Consequently, the response to immune challenge such as vaccination might depend on the time of day of exposure. This study assessed whether the time of day of vaccination (TODV) is associated with the subsequent immune and clinical response by conducting a systematic review of previous studies. The Cochrane Library, PubMed, Google, Medline, and Embase were searched for studies that reported TODV and immune and clinical outcomes, yielding 3114 studies, 23 of which met the inclusion criteria. The global severe acute respiratory syndrome coronavirus 2 vaccination program facilitated investigation of TODV and almost half of the studies included reported data collected during the COVID-19 pandemic. There was considerable heterogeneity in the demography of participants and type of vaccine, and most studies were biased by failure to account for immune status prior to vaccination, self-selection of vaccination time, or confounding factors such as sleep, chronotype, and shiftwork. The optimum TODV was concluded to be afternoon (5 studies), morning (5 studies), morning and afternoon (1 study), midday (1 study), and morning or late afternoon (1 study), with the remaining 10 studies reporting no effect. Further research is required to understand the relationship between TODV and subsequent immune outcome and whether any clinical benefit outweighs the potential effect of this intervention on vaccine uptake.
Collapse
Affiliation(s)
- Cathy A. Wyse
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Laura M. Rudderham
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Enya A. Nordon
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Louise M. Ince
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew N. Coogan
- Kathleen Lonsdale Institute for Human Health Research and Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Lorna M. Lopez
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
14
|
Touitou Y, Cermakian N, Touitou C. The environment and the internal clocks: The study of their relationships from prehistoric to modern times. Chronobiol Int 2024; 41:859-887. [PMID: 38757600 DOI: 10.1080/07420528.2024.2353857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Wang C, Zeng Q, Gül ZM, Wang S, Pick R, Cheng P, Bill R, Wu Y, Naulaerts S, Barnoud C, Hsueh PC, Moller SH, Cenerenti M, Sun M, Su Z, Jemelin S, Petrenko V, Dibner C, Hugues S, Jandus C, Li Z, Michielin O, Ho PC, Garg AD, Simonetta F, Pittet MJ, Scheiermann C. Circadian tumor infiltration and function of CD8 + T cells dictate immunotherapy efficacy. Cell 2024; 187:2690-2702.e17. [PMID: 38723627 DOI: 10.1016/j.cell.2024.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| | - Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Zeynep Melis Gül
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sisi Wang
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Phil Cheng
- Department of Oncology and Precision Oncology Service, Geneva University Hospitals, University of Geneva, Geneva 1211, Switzerland
| | - Ruben Bill
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; AGORA Cancer Research Center, Lausanne 1011, Switzerland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Sofie Hedlund Moller
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Mengzhu Sun
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ziyang Su
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Stéphane Jemelin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Thoracic and Endocrine Surgery, Department of Surgery, Geneva University Hospitals, Geneva 1205, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland
| | - Charna Dibner
- Division of Thoracic and Endocrine Surgery, Department of Surgery, Geneva University Hospitals, Geneva 1205, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Olivier Michielin
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Department of Oncology and Precision Oncology Service, Geneva University Hospitals, University of Geneva, Geneva 1211, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Division of Hematology, Department of Oncology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Mikaël J Pittet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; AGORA Cancer Research Center, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
16
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024:10.1007/s12035-024-04178-5. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
17
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
18
|
Kabrita CS, Al Bitar S, Ghanem E. The temporal expression pattern of classical MHC class I in sleep-restricted mice: Generalizations and broader implications. Brain Behav Immun Health 2024; 37:100751. [PMID: 38511151 PMCID: PMC10951454 DOI: 10.1016/j.bbih.2024.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The intricate relationship between sleep and leukocyte trafficking has garnered intense attention, particularly their homing dynamics to secondary lymphoid organs under normal and restricted sleep (SR). Considering the scarcity of information regarding circadian rhythms in major histocompatibility class I (MHC-I) expression in SR, we designed a study that assessed the temporal expression of MHC-I in murine lymph nodes and spleen and the subsequent effects of sleep recovery. Male C57BL/6, housed in 12:12 light/dark cycle, were grouped into control (C) and SR. SR was carried for one week before lymphoid tissues were sampled at selected time points and assessed for leukocyte number and MHC-I expression. SR resulted in 21% decrease in granulocyte and 24% increase in agranulocyte numbers. In C, MHC-I expression pattern in lymph nodes was bimodal and relatively higher than splenocytes during the animal's active phase (110.2 ± 1.8 vs 81.9 ± 3.8, respectively; p = 0.002). Splenocytes; however, showed a bimodal pattern upon SR, with higher protein levels during the rest than the activity period (154.6 + 36.2 vs 99.5 + 15.9, respectively; p = 0.002), suggesting preparedness for a potential infection. Furthermore, SR caused a significant drop in MHC-I expression at the onset of rest with 57% and 30% reduction in lymph nodes and splenocytes, respectively. However, the overall protein expression collectively taken from both lymphoid tissues remained stable, emphasizing its indispensable role in immunological homeostasis. This stability coincided with the restoration of protein levels to baseline after a short sleep recovery period, resembling a reset for MHC-I antigen presentation following a week of SR. Understanding the interplay between MHC-I expression and contextual factors could enhance treatment protocols, refining the efficacy and time precision of glucocorticoid-based therapies in immune modulation.
Collapse
Affiliation(s)
- Colette S. Kabrita
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Samar Al Bitar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| |
Collapse
|
19
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
20
|
March S, Nerurkar N, Jain A, Andrus L, Kim D, Whittaker CA, Tan EK, Thiberge S, Fleming HE, Mancio-Silva L, Rice CM, Bhatia SN. Autonomous circadian rhythms in the human hepatocyte regulate hepatic drug metabolism and inflammatory responses. SCIENCE ADVANCES 2024; 10:eadm9281. [PMID: 38657074 PMCID: PMC11042741 DOI: 10.1126/sciadv.adm9281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-β, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.
Collapse
Affiliation(s)
- Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Niketa Nerurkar
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Anisha Jain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease, The Rockefeller University, NY, New York, USA
| | - Daniel Kim
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Edward K.W. Tan
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Sabine Thiberge
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Centre de Production et d’Infection des Anophèles, 75015 Paris, France
| | - Heather E. Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, NY, New York, USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Wyss Institute at Harvard University, 201 Brookline Ave, Boston, MA 02215, USA
| |
Collapse
|
21
|
Bass J. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab 2024; 36:655-669. [PMID: 38335957 PMCID: PMC10990795 DOI: 10.1016/j.cmet.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Tauman R, Henig O, Rosenberg E, Marudi O, Dunietz TM, Grandner MA, Spitzer A, Zeltser D, Mizrahi M, Sprecher E, Ben-Ami R, Goldshmidt H, Goldiner I, Saiag E, Angel Y. Relationship among sleep, work features, and SARS-cov-2 vaccine antibody response in hospital workers. Sleep Med 2024; 116:90-95. [PMID: 38437781 DOI: 10.1016/j.sleep.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
STUDY OBJECTIVES Immunity is influenced by sleep and the circadian rhythm. Healthcare workers are predisposed to both insufficient sleep and circadian disruption. This study aimed to evaluate the relationship between sleep and work characteristics and the antibody response to the mRNA SARS-CoV-2 vaccine BNT162b2. METHODS The authors' prospective cohort study ("COVI3") evaluated the effect of a third (booster) dose of the BNT162b2 vaccine. A subset of participants provided information on anthropometric measures, sleep, stress and work characteristics including shift work and number of work hours per week. Blood samples for anti-S1-RBD IgG antibody levels were obtained 21 weeks following receipt of the third dose of the vaccine. RESULTS In total, 201 healthcare workers (73% women) were included. After adjustment for age, body mass index (BMI), shift work, smoking status, and perceived stress, short sleep duration (<7 h per night) was associated with lower anti-S1-RBD IgG levels (Odds ratio 2.36 [95% confidence interval 1.08-5.13]). Participants who performed shift work had higher odds of lower anti-S1-RBD IgG levels compared to those who did not work in shifts [odds ratio = 2.99 (95% confidence interval 1.40, 6.39)] after accounting for age, short sleep duration, BMI, smoking status and perceived stress. CONCLUSIONS Shift work and self-reported short sleep duration were associated with a lower antibody response following a booster dose of the SARS-CoV-2 vaccine. These findings suggest that the efficacy of vaccination, particularly among healthcare workers, may be augmented by addressing both sleep and circadian alignment.
Collapse
Affiliation(s)
- Riva Tauman
- Sieratzki-Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Oryan Henig
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Infectious Diseases and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Or Marudi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Anesthesia, Pain Management and Intensive care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Talia M Dunietz
- Sieratzki-Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michael A Grandner
- Department of Psychiatry, Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Avishay Spitzer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Departments of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeltser
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Mizrahi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Research and Development, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronen Ben-Ami
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Infectious Diseases and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hanoch Goldshmidt
- Department of Clinical Laboratories, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilana Goldiner
- Department of Clinical Laboratories, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Esther Saiag
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Information Systems and Operations, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoel Angel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Anesthesia, Pain Management and Intensive care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Physician Affairs, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
23
|
Ding J, Chen P, Qi C. Circadian rhythm regulation in the immune system. Immunology 2024; 171:525-533. [PMID: 38158836 DOI: 10.1111/imm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature in nearly all living organisms, representing oscillatory patterns with a 24-h cycle that are widespread across various physiological processes. Circadian rhythms regulate a multitude of physiological systems, including the immune system. At the molecular level, most immune cells autonomously express clock-regulating genes, which play critical roles in regulating immune cell functions. These functions encompass migration, phagocytic activity, immune cell metabolism (such as mitochondrial structural function and metabolism), signalling pathway activation, inflammatory responses, innate immune recognition, and adaptive immune processes (including vaccine responses and pathogen clearance). The endogenous circadian clock orchestrates multifaceted rhythmicity within the immune system, optimizing immune surveillance and responsiveness; this bears significant implications for maintaining immune homeostasis and resilience against diseases. This work provides an overview of circadian rhythm regulation within the immune system.
Collapse
Affiliation(s)
- Jun Ding
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| | - Pengyu Chen
- Department of Clinical Medicine (5+3 Integrated), The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| |
Collapse
|
24
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
25
|
Sharma D, Kohlbach KA, Maples R, Farrar JD. The β2-adrenergic receptor (ADRB2) entrains circadian gene oscillation and diurnal responses to virus infection in CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584692. [PMID: 38559276 PMCID: PMC10980027 DOI: 10.1101/2024.03.12.584692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adaptive immune cells are regulated by circadian rhythms (CR) under both steady state conditions and during responses to infection. Cytolytic CD8 + T cells display variable responses to infection depending upon the time of day of exposure. However, the neuronal signals that entrain these cyclic behaviors remain unknown. Immune cells express a variety of neurotransmitter receptors including nicotinic, glucocorticoid, and adrenergic receptors. Here, we demonstrate that the β2-adrenergic receptor (ADRB2) regulates the periodic oscillation of select core clock genes, such as Per2 and Bmal1 , and selective loss of the Adrb2 gene dramatically perturbs the normal diurnal oscillation of clock gene expression in CD8 + T cells. Consequently, their circadian-regulated anti-viral response is dysregulated, and the diurnal development of CD8 + T cells into variegated populations of cytolytic T cell (CTL) effectors is dramatically altered in the absence of ADRB2 signaling. Thus, the Adrb2 directly entrains core clock gene oscillation and regulates CR-dependent T cell responses to virus infection as a function of time-of-day of pathogen exposure. One Sentence Summary The β2-adrenergic receptor regulates circadian gene oscillation and downstream daily timing of cytolytic T cell responses to virus infection.
Collapse
|
26
|
Landré T, Karaboué A, Buchwald ZS, Innominato PF, Qian DC, Assié JB, Chouaïd C, Lévi F, Duchemann B. Effect of immunotherapy-infusion time of day on survival of patients with advanced cancers: a study-level meta-analysis. ESMO Open 2024; 9:102220. [PMID: 38232612 PMCID: PMC10937202 DOI: 10.1016/j.esmoop.2023.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have become the standard of care for numerous malignancies. Emerging evidence suggests that the time of day (ToD) of ICI administration could impact the outcomes of patients with cancer. The consistency of ToD effects on ICI efficacy awaits initial evaluation. MATERIALS AND METHODS This meta-analysis integrates progression-free survival (PFS) and overall survival (OS) data from studies with a defined 'cut-off' ToD. Hazard ratios (HRs) [95% confidence interval (CI)] of an earlier progression or death according to 'early' or 'late' ToD of ICIs were collected from each report and pooled. RESULTS Thirteen studies involved 1663 patients (Eastern Cooperative Oncology Group performance status 0-1, 83%; males/females, 67%/33%) with non-small-cell lung cancer (47%), renal cell carcinoma (24%), melanoma (20%), urothelial cancer (5%), or esophageal carcinoma (4%). Most patients received anti-programmed cell death protein 1 or anti-programmed death-ligand 1 (98%), and a small proportion also received anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) (18%). ToD cut-offs were 13:00 or 14:00 (i.e. ICI median infusion time), for six studies, and 16:00 or 16:30 (i.e. reported threshold for weaker vaccination responses) for seven studies. Pooled analyses revealed that the early ToD groups had longer OS (HR 0.50, 95% CI 0.42-0.58; P < 0.00001) and PFS (HR 0.51, 95% CI 0.42-0.61; P < 0.00001) compared with the late ToD groups. CONCLUSIONS Patients with selected metastatic cancers seemed to largely benefit from early ToD ICI infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking. Prospective randomized trials are needed to establish recommendations for optimal circadian timing of ICI-based cancer therapies.
Collapse
Affiliation(s)
- T Landré
- Hôpitaux Universitaires Paris Saint-Denis, UCOG, Assistance Publique - Hôpitaux de Paris, Sevran
| | - A Karaboué
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, Montfermeil; UPR 'Chronotherapy, Cancer and Transplantation', Paris-Saclay University Medical School, Villejuif, France
| | - Z S Buchwald
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, USA
| | - P F Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor; Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - D C Qian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, USA
| | - J B Assié
- Pneumology Service, CHI Créteil, Créteil; Inserm U955, UPEC, IMRB, Créteil
| | - C Chouaïd
- Pneumology Service, CHI Créteil, Créteil; Inserm U955, UPEC, IMRB, Créteil
| | - F Lévi
- UPR 'Chronotherapy, Cancer and Transplantation', Paris-Saclay University Medical School, Villejuif, France; Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Gastro-intestinal and Medical Oncology Service, Paul-Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif
| | - B Duchemann
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, France.
| |
Collapse
|
27
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
29
|
Hirose M, Leliavski A, de Assis LVM, Matveeva O, Skrum L, Solbach W, Oster H, Heyde I. Chronic Inflammation Disrupts Circadian Rhythms in Splenic CD4+ and CD8+ T Cells in Mice. Cells 2024; 13:151. [PMID: 38247842 PMCID: PMC10814081 DOI: 10.3390/cells13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.
Collapse
Affiliation(s)
- Misa Hirose
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | | | - Leonardo Vinícius Monteiro de Assis
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Olga Matveeva
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
| | - Ludmila Skrum
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, 23562 Lübeck, Germany;
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Isabel Heyde
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Khan S, Siddique R, Liu Y, Yong VW, Xue M. Towards improving the prognosis of stroke through targeting the circadian clock system. Int J Biol Sci 2024; 20:403-413. [PMID: 38169640 PMCID: PMC10758097 DOI: 10.7150/ijbs.88370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
Rhythmicity of the circadian system is a 24-hour period, driven by transcription-translation feedback loops of circadian clock genes. The central circadian pacemaker in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), which controls peripheral circadian clocks. In general, most physiological processes are regulated by the circadian system, which is modulated by environmental cues such as exposure to light and/or dark, temperature, and the timing of sleep/wake and food intake. The chronic circadian disruption caused by shift work, jetlag, and/or irregular sleep-wake cycles has long-term health consequences. Its dysregulation contributes to the risk of psychiatric disorders, sleep abnormalities, hypothyroidism and hyperthyroidism, cancer, and obesity. A number of neurological conditions may be worsened by changes in the circadian clock via the SCN pacemaker. For stroke, different physiological activities such as sleep/wake cycles are disrupted due to alterations in circadian rhythms. Moreover, the immunological processes that affect the evolution and recovery processes of stroke are regulated by the circadian clock or core-clock genes. Thus, disrupted circadian rhythms may increase the severity and consequences of stroke, while readjustment of circadian clock machinery may accelerate recovery from stroke. In this manuscript, we discuss the relationship between stroke and circadian rhythms, particularly on stroke development and its recovery process. We focus on immunological and/or molecular processes linking stroke and the circadian system and suggest the circadian rhythm as a target for designing effective therapeutic strategies in stroke.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Balistreri CR, Monastero R. Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know? Brain Sci 2023; 14:19. [PMID: 38248234 PMCID: PMC10812964 DOI: 10.3390/brainsci14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The term "neuroinflammation" defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and research. Consequently, new cellular and molecular mechanisms, diverse and conventional, are emerging. In listing some of those that will be the subject of our description and discussion, essential are the important roles of peripheral and infiltrated monocytes and clonotypic cells, alterations in the gut-brain axis, dysregulation of the apelinergic system, alterations in the endothelial glycocalyx of the endothelial component of neuronal vascular units, variations in expression of some genes and levels of the encoding molecules by the action of microRNAs (miRNAs), or other epigenetic factors and distinctive transcriptional factors, as well as the role of autophagy, ferroptosis, sex differences, and modifications in the circadian cycle. Such mechanisms can add significantly to understanding the complex etiological puzzle of neuroinflammation and ND. In addition, they could represent biomarkers and targets of ND, which is increasing in the elderly.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Roberto Monastero
- Unit of Neurology & Neuro-Physiopathology, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy;
| |
Collapse
|
32
|
Lai F, Li B, Mei J, Zhou Q, Long J, Liang R, Mo R, Peng S, Liu Y, Xiao H. The Impact of Vaccination Time on the Antibody Response to an Inactivated Vaccine against SARS-CoV-2 (IMPROVE-2): A Randomized Controlled Trial. Adv Biol (Weinh) 2023; 7:e2300028. [PMID: 37300345 DOI: 10.1002/adbi.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
There is still controversy about whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination at different times of day will induce a stronger immune response. Therefore, a randomized controlled trial (ChiCTR2100045109) is conducted to investigate the impact of vaccination time on the antibody response to the inactivated vaccine against SARS-CoV-2 from April 15 to 28, 2021. Participants are randomly assigned in a 1:1 ratio to receive inactivated SARS-CoV-2 vaccine in the morning or afternoon. The primary endpoint is the change of neutralizing antibody between baseline and 28 days after the second dose. In total, 503 participants are randomized, and 469 participants (238 in the morning group and 231 in the afternoon group) complete the follow-up. There is no significant difference in the change of neutralizing antibody between baseline and 28 days after the second dose between the morning and afternoon groups (22.2 [13.2, 45.0] AU mL-1 vs 22.0 [14.4, 40.7] AU mL-1 , P = 0.873). In prespecified age and sex subgroup analyses, there is also no significant difference in the morning and afternoon group (all P > 0.05). This study demonstrates that the vaccination time does not affect the antibody response of two doses of inactivated SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Fenghua Lai
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Jie Mei
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Qian Zhou
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Jianyan Long
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Ruiming Liang
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Ruohui Mo
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Yihao Liu
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
33
|
Xu X, Wang J, Chen G. Circadian cycle and neuroinflammation. Open Life Sci 2023; 18:20220712. [PMID: 37872969 PMCID: PMC10590615 DOI: 10.1515/biol-2022-0712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 10/25/2023] Open
Abstract
Circadian cycle is a fundamental characteristic of life formed in the long-term evolution of organisms and plays an important role in maintaining the proliferation, migration, and activation of immune cells. Studies have shown that circadian rhythm disorders affect the occurrence and development of neuroinflammation by inducing glial cell activation and peripheral immune responses. In this article, we briefly described the research progress of neuroinflammation and circadian rhythm in recent years and explored the effects and possible mechanism of circadian rhythmicity on microglia, astrocytes, and peripheral immune function.
Collapse
Affiliation(s)
- Xinzi Xu
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430065, China
| | - Junli Wang
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan430022, China
| | - Guohua Chen
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan430022, China
| |
Collapse
|
34
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
35
|
Xiang S, Li M, Li S. The circadian clock of anti-tumor immunity. Chin J Nat Med 2023; 21:481-482. [PMID: 37517816 DOI: 10.1016/s1875-5364(23)60431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Shuting Xiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Mingxi Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Suxin Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
Zhao L, Tang Y, Yang J, Lin F, Liu X, Zhang Y, Chen J. Integrative analysis of circadian clock with prognostic and immunological biomarker identification in ovarian cancer. Front Mol Biosci 2023; 10:1208132. [PMID: 37409345 PMCID: PMC10318361 DOI: 10.3389/fmolb.2023.1208132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Objective: To identify circadian clock (CC)-related key genes with clinical significance, providing potential biomarkers and novel insights into the CC of ovarian cancer (OC). Methods: Based on the RNA-seq profiles of OC patients in The Cancer Genome Atlas (TCGA), we explored the dysregulation and prognostic power of 12 reported CC-related genes (CCGs), which were used to generate a circadian clock index (CCI). Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to identify potential hub genes. Downstream analyses including differential and survival validations were comprehensively investigated. Results: Most CCGs are abnormally expressed and significantly associated with the overall survival (OS) of OC. OC patients with a high CCI had lower OS rates. While CCI was positively related to core CCGs such as ARNTL, it also showed significant associations with immune biomarkers including CD8+ T cell infiltration, the expression of PDL1 and CTLA4, and the expression of interleukins (IL-16, NLRP3, IL-1β, and IL-33) and steroid hormones-related genes. WGCNA screened the green gene module to be mostly correlated with CCI and CCI group, which was utilized to construct a PPI network to pick out 15 hub genes (RNF169, EDC4, CHCHD1, MRPL51, UQCC2, USP34, POM121, RPL37, SNRPC, LAMTOR5, MRPL52, LAMTOR4, NDUFB1, NDUFC1, POLR3K) related to CC. Most of them can exert prognostic values for OS of OC, and all of them were significantly associated with immune cell infiltration. Additionally, upstream regulators including transcription factors and miRNAs of key genes were predicted. Conclusion: Collectively, 15 crucial CC genes showing indicative values for prognosis and immune microenvironment of OC were comprehensively identified. These findings provided insight into the further exploration of the molecular mechanisms of OC.
Collapse
Affiliation(s)
- Lianfang Zhao
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Jiayan Yang
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Fang Lin
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Xiaofang Liu
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yongqiang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianhui Chen
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
37
|
Tran NQV, Le MK, Nguyen TA, Kondo T, Nakao A. Association of Circadian Clock Gene Expression with Pediatric/Adolescent Asthma and Its Comorbidities. Int J Mol Sci 2023; 24:ijms24087477. [PMID: 37108640 PMCID: PMC10138904 DOI: 10.3390/ijms24087477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The pathology of asthma is characterized by marked day-night variation, which is likely controlled by circadian clock activity. This study aimed to clarify the association of core circadian clock gene expression with clinical features of asthma. For this purpose, we accessed the National Center for Biotechnology Information database and analyzed transcriptomes of peripheral blood mononuclear cells and clinical characteristics of 134 pediatric/adolescent patients with asthma. Based on the expression patterns of seven core circadian clock genes (CLOCK, BMAL1, PER1-3, CRY1-2), we identified three circadian clusters (CCs) with distinct comorbidities and transcriptomic expressions. In the three CC subtypes, allergic rhinitis, and atopic dermatitis, both asthma comorbidities occurred in different proportions: CC1 had a high proportion of allergic rhinitis and atopic dermatitis; CC2 had a high proportion of atopic dermatitis but a low proportion of allergic rhinitis; and CC3 had a high proportion of allergic rhinitis but a low proportion of atopic dermatitis. This might be associated with the low activity of the FcεRI signaling pathway in CC2 and the cytokine-cytokine receptor interaction pathways in CC3. This is the first report to consider circadian clock gene expression in subcategories of patients with asthma and to explore their contribution to pathophysiology and comorbidity.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Minh-Khang Le
- Department of Human Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Thuy-An Nguyen
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Atopy Research Center, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
38
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
39
|
Ince LM, Barnoud C, Lutes LK, Pick R, Wang C, Sinturel F, Chen CS, de Juan A, Weber J, Holtkamp SJ, Hergenhan SM, Geddes-McAlister J, Ebner S, Fontannaz P, Meyer B, Vono M, Jemelin S, Dibner C, Siegrist CA, Meissner F, Graw F, Scheiermann C. Influence of circadian clocks on adaptive immunity and vaccination responses. Nat Commun 2023; 14:476. [PMID: 36717561 PMCID: PMC9885059 DOI: 10.1038/s41467-023-35979-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.
Collapse
Affiliation(s)
- Louise Madeleine Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lydia Kay Lutes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flore Sinturel
- Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Chien-Sin Chen
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Alba de Juan
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Jasmin Weber
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Stephan J Holtkamp
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Sophia Martina Hergenhan
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Jennifer Geddes-McAlister
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stefan Ebner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paola Fontannaz
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Jemelin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederik Graw
- BioQuant - Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland. .,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany. .,Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
40
|
Cermakian N, Labrecque N. Regulation of Cytotoxic CD8+ T Cells by the Circadian Clock. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:12-18. [PMID: 36542828 DOI: 10.4049/jimmunol.2200516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
Most aspects of physiology, including immunity, present 24-h variations called circadian rhythms. In this review, we examine the literature on the circadian regulation of CD8+ T cells, which are important to fight intracellular infections and tumors. CD8+ T cells express circadian clock genes, and ∼6% of their transcriptome presents circadian oscillations. CD8+ T cell counts present 24-h rhythms in the blood and in secondary lymphoid organs, which depend on the clock in these cells as well as on hormonal rhythms. Moreover, the strength of the response of these cells to Ag presentation varies according to time of day, a rhythm dependent on the CD8+ T cell clock. The relevance of CD8+ T cell circadian rhythms is shown by the daily variations in the fight of intracellular infections. Such a circadian regulation also has implications for cancer, as well as the optimization of vaccination and immunotherapy.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
42
|
Tumor Microenvironment and Metabolism: Role of the Mitochondrial Melatonergic Pathway in Determining Intercellular Interactions in a New Dynamic Homeostasis. Int J Mol Sci 2022; 24:ijms24010311. [PMID: 36613754 PMCID: PMC9820362 DOI: 10.3390/ijms24010311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
There is a growing interest in the role of alterations in mitochondrial metabolism in the pathoetiology and pathophysiology of cancers, including within the array of diverse cells that can form a given tumor microenvironment. The 'exhaustion' in natural killer cells and CD8+ t cells as well as the tolerogenic nature of dendritic cells in the tumor microenvironment seems determined by variations in mitochondrial function. Recent work has highlighted the important role played by the melatonergic pathway in optimizing mitochondrial function, limiting ROS production, endogenous antioxidants upregulation and consequent impacts of mitochondrial ROS on ROS-dependent microRNAs, thereby impacting on patterned gene expression. Within the tumor microenvironment, the tumor, in a quest for survival, seeks to 'dominate' the dynamic intercellular interactions by limiting the capacity of cells to optimally function, via the regulation of their mitochondrial melatonergic pathway. One aspect of this is the tumor's upregulation of kynurenine and the activation of the aryl hydrocarbon receptor, which acts to metabolize melatonin and increase the N-acetylserotonin/melatonin ratio, with effluxed N-acetylserotonin acting as a brain-derived neurotrophic factor (BDNF) mimic via its activation of the BDNF receptor, TrkB, thereby increasing the survival and proliferation of tumors and cancer stem-like cells. This article highlights how many of the known regulators of cells in the tumor microenvironment can be downstream of the mitochondrial melatonergic pathway regulation. Future research and treatment implications are indicated.
Collapse
|
43
|
Cervantes-Silva MP, Carroll RG, Wilk MM, Moreira D, Payet CA, O’Siorain JR, Cox SL, Fagan LE, Klavina PA, He Y, Drewinski T, McGinley A, Buel SM, Timmons GA, Early JO, Preston RJS, Hurley JM, Finlay DK, Schoen I, Javier Sánchez-García F, Mills KHG, Curtis AM. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nat Commun 2022; 13:7217. [PMID: 36470865 PMCID: PMC9722918 DOI: 10.1038/s41467-022-34897-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells play a key role in processing and presenting antigens to naïve T cells to prime adaptive immunity. Circadian rhythms are known to regulate many aspects of immunity; however, the role of circadian rhythms in dendritic cell function is still unclear. Here, we show greater T cell responses when mice are immunised in the middle of their rest versus their active phase. We find a circadian rhythm in antigen processing that correlates with rhythms in both mitochondrial morphology and metabolism, dependent on the molecular clock gene, Bmal1. Using Mdivi-1, a compound that promotes mitochondrial fusion, we are able to rescue the circadian deficit in antigen processing and mechanistically link mitochondrial morphology and antigen processing. Furthermore, we find that circadian changes in mitochondrial Ca2+ are central to the circadian regulation of antigen processing. Our results indicate that rhythmic changes in mitochondrial calcium, which are associated with changes in mitochondrial morphology, regulate antigen processing.
Collapse
Affiliation(s)
- Mariana P. Cervantes-Silva
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Richard G. Carroll
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Mieszko M. Wilk
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland ,grid.5522.00000 0001 2162 9631Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Diana Moreira
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cloe A. Payet
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - James R. O’Siorain
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Shannon L. Cox
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Lauren E. Fagan
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Paula A. Klavina
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Yan He
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.263761.70000 0001 0198 0694Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Tabea Drewinski
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Alan McGinley
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Sharleen M. Buel
- grid.33647.350000 0001 2160 9198Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - George A. Timmons
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - James O. Early
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Roger J. S. Preston
- grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Jennifer M. Hurley
- grid.33647.350000 0001 2160 9198Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - David K. Finlay
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ingmar Schoen
- grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - F. Javier Sánchez-García
- grid.418275.d0000 0001 2165 8782Immunoregulation Laboratory, Department of Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Kingston H. G. Mills
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Annie M. Curtis
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| |
Collapse
|
44
|
Yamanaka Y, Yokota I, Yasumoto A, Morishita E, Horiuchi H. Time of Day of Vaccination Does Not Associate With SARS-CoV-2 Antibody Titer Following First Dose of mRNA COVID-19 Vaccine. J Biol Rhythms 2022; 37:700-706. [PMID: 36154515 PMCID: PMC9726636 DOI: 10.1177/07487304221124661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immune system exhibits circadian rhythms, and its response to viral infection is influenced by the circadian clock system. Previous studies have reported associations between the time of day of vaccination against COVID-19 and production of anti-SARS-CoV-2 antibody titer. We examined the effect of vaccination time of day on anti-SARS-CoV-2 antibody titer after the first dose of vaccination with the mRNA-1273 (Moderna) COVID-19 vaccine in an adult population. A total of 332 Japanese adults participated in the present study. All participants were not infected with SARS-CoV-2 and had already received the first dose of mRNA-1273 2 to 4 weeks prior to participating in the study. The participants were asked to provide basic demographic characteristics (age, sex, medical history, allergy, medication, and mean sleep duration), the number of days after the first dose of vaccination, and the time of day of vaccination. Blood was collected from the participants, and SARS-CoV-2 antibody titers were measured. Ordinary least square regression was used for assessing the relationship between basic demographic characteristics, number of days after vaccination, time of day of vaccination, and the log10-transformed normalized antibody titer. The least square mean of antibody titers was not associated with the vaccination time and sleep durations. The least square means of antibody titers was associated with age; the antibody titers decreased in people aged 50 to 59 years and 60 to 64 years. The present findings demonstrate that the vaccination time with mRNA-1273 was not associated with the SARS-CoV-2 antibody titer in an adult population, suggesting that these results do not support restricting vaccination to a particular time of day. The present findings may be useful in optimizing SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Yujiro Yamanaka
- Laboratory of Life and Health Sciences, Graduate School of Education and Faculty of Education, Hokkaido University, Sapporo, Japan,Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan,Yujiro Yamanaka, Laboratory of Life and Health Sciences, Graduate School of Education and Faculty of Education, Hokkaido University, North-11, West-7, Kita-Ku, Sapporo 060-0811, Japan; e-mail:
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Yasumoto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Eriko Morishita
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
Erber AC, Wagner A, Karachaliou M, Jeleff M, Kalafatis P, Kogevinas M, Pepłońska B, Santonja I, Schernhammer E, Stockinger H, Straif K, Wiedermann U, Waldhör T, Papantoniou K. The Association of Time of Day of ChAdOx1 nCoV-19 Vaccine Administration With SARS-CoV-2 Anti-Spike IgG Antibody Levels: An Exploratory Observational Study. J Biol Rhythms 2022; 38:98-108. [PMID: 36367167 PMCID: PMC9659693 DOI: 10.1177/07487304221132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Data from human and animal studies are highly suggestive of an influence of time of day of vaccine administration on host immune responses. In this population-based study, we aimed to investigate the effect of time of day of administration of a COVID-19 vector vaccine, ChAdOx1 nCoV-19 (AstraZeneca), on SARS-CoV-2 anti-spike S1 immunoglobulin (IgG) levels. Participants were 803 university employees who received their first vaccine dose in March 2021, had serology data at baseline and at 3 weeks, and were seronegative at baseline. Antibody levels were determined in binding antibody units (BAU/mL) using enzyme-linked immunosorbent assay (ELISA). Generalized additive models (GAM) and linear regression were used to evaluate the association of time of day of vaccination continuously and in hourly bins with antibody levels at 3 weeks. Participants had a mean age of 42 years (SD: 12; range: 21-74) and 60% were female. Time of day of vaccination was associated non-linearly ("reverse J-shape") with antibody levels. Morning vaccination was associated with the highest (9:00-10:00 h: mean 292.1 BAU/mL; SD: 262.1), early afternoon vaccination with the lowest (12:00-13:00 h: mean 217.3 BAU/mL; SD: 153.6), and late afternoon vaccination with intermediate (14:00-15:00 h: mean 280.7 BAU/mL; SD: 262.4) antibody levels. Antibody levels induced by 12:00-13:00 h vaccination (but not other time intervals) were significantly lower compared to 9:00-10:00 h vaccination after adjusting for potential confounders (beta coefficient = -75.8, 95% confidence interval [CI] = -131.3, -20.4). Our findings show that time of day of vaccination against SARS-CoV-2 has an impact on the magnitude of IgG antibody levels at 3 weeks. Whether this difference persists after booster vaccine doses and whether it influences the level of protection against COVID-19 needs further evaluation.
Collapse
Affiliation(s)
- Astrid C. Erber
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Nuffield Department of Medicine,
University of Oxford, Oxford, UK
| | - Angelika Wagner
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Maren Jeleff
- Department of Social and Preventive
Medicine, Center for Public Health, Medical University of Vienna, Vienna,
Austria
| | - Polyxeni Kalafatis
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Beata Pepłońska
- Nofer Institute of Occupational
Medicine, University of Łodz, Łodz, Poland
| | - Isabel Santonja
- Clinical Department of Virology, Center
for Virology, Medical University of Vienna, Vienna, Austria
| | - Eva Schernhammer
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Channing Division of Network Medicine,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, Massachusetts, USA,Department of Epidemiology, Harvard
T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hannes Stockinger
- Institute for Hygiene and Applied
Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical
University of Vienna, Vienna, Austria
| | - Kurt Straif
- Barcelona Institute for Global Health
(ISGlobal), Barcelona, Spain,Boston College, Chestnut Hill,
Massachusetts, USA
| | - Ursula Wiedermann
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Waldhör
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Kyriaki Papantoniou,
Department of Epidemiology, Center for Public Health, Medical University of
Vienna, Kinderspitalgasse 15, Vienna 1090, Austria; e-mail:
| |
Collapse
|
46
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
47
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
48
|
Otasowie CO, Tanner R, Ray DW, Austyn JM, Coventry BJ. Chronovaccination: Harnessing circadian rhythms to optimize immunisation strategies. Front Immunol 2022; 13:977525. [PMID: 36275731 PMCID: PMC9585312 DOI: 10.3389/fimmu.2022.977525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination, as a public health measure, offers effective protection of populations against infectious diseases. Optimising vaccination efficacy, particularly for higher-risk individuals, like the elderly whose immunocompromised state can prevent the development of robust vaccine responses, is vital. It is now clear that 24-hour circadian rhythms, which govern virtually all aspects of physiology, can generate oscillations in immunological responses. Consequently, vaccine efficacy may depend critically on the time of day of administration(s), including for Covid-19, current vaccines, and any future diseases or pandemics. Published clinical vaccine trials exploring diurnal immune variations suggest this approach could represent a powerful adjunct strategy for optimising immunisation, but important questions remain to be addressed. This review explores the latest insights into diurnal immune variation and the outcomes of circadian timing of vaccination or 'chronovaccination'.
Collapse
Affiliation(s)
| | - Rachel Tanner
- Wolfson College, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Human Sciences, University of Oxford, Oxford, United Kingdom
| | - David W. Ray
- Wolfson College, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Austyn
- Wolfson College, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brendon J. Coventry
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
49
|
Filippatos F, Tatsi EB, Efthymiou V, Syriopoulou V, Michos A. Time of Day of BNT162b2 COVID-19 Immunization Affects Total SARS-CoV-2 Antibody Levels but Not Neutralizing Activity. J Biol Rhythms 2022; 37:562-566. [PMID: 35730571 DOI: 10.1177/07487304221100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To examine whether immunization time affects the immune responses elicited by the BNT162b2 COVID-19 vaccine, we investigated the possible association between total SARS-CoV-2 spike protein receptor binding domain (TAbs-RBD) and neutralizing (NAbs-RBD) antibodies with vaccination time. A cohort of 468 healthcare workers (mean age [±SD]: 48 [±13] years), were included in the study. One month after the second dose, healthcare workers who were vaccinated between 1500-2200 h had higher TAbs-RBD compared to 0700-1100 h and 1100-1500 h (p = 0.006). One month after the third dose, healthcare workers who were vaccinated between 0700-1100 h and 1500-2200 h had significantly higher TAbs-RBD compared to 1100-1500 h (p = 0.034). However, no association of NAbs-RBD with vaccination time was detected after each of the 3 doses (p > 0.4). Despite the possible effect of BNT162b2 vaccination time in TAbs-RBD levels, possibly due to rhythmic expression of clock genes, neutralizing activity was not associated with vaccination time and, therefore, further investigation is required.
Collapse
Affiliation(s)
- Filippos Filippatos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
50
|
Xiao T, Langston PK, Muñoz-Rojas AR, Jayewickreme T, Lazar MA, Benoist C, Mathis D. T regs in visceral adipose tissue up-regulate circadian-clock expression to promote fitness and enforce a diurnal rhythm of lipolysis. Sci Immunol 2022; 7:eabl7641. [PMID: 36179011 PMCID: PMC9769829 DOI: 10.1126/sciimmunol.abl7641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Regulatory T cells (Tregs) in nonlymphoid organs provide critical brakes on inflammation and regulate tissue homeostasis. Although so-called "tissue Tregs" are phenotypically and functionally diverse, serving to optimize their performance and survival, up-regulation of pathways related to circadian rhythms is a feature they share. Yet the diurnal regulation of Tregs and its consequences are controversial and poorly understood. Here, we profiled diurnal variations in visceral adipose tissue (VAT) and splenic Tregs in the presence and absence of core-clock genes. VAT, but not splenic, Tregs up-regulated their cell-intrinsic circadian program and exhibited diurnal variations in their activation and metabolic state. BMAL1 deficiency specifically in Tregs led to constitutive activation and poor oxidative metabolism in VAT, but not splenic, Tregs. Disruption of core-clock components resulted in loss of fitness: BMAL1-deficient VAT Tregs were preferentially lost during competitive transfers and in heterozygous TregBmal1Δ females. After 16 weeks of high-fat diet feeding, VAT inflammation was increased in mice harboring BMAL1-deficient Tregs, and the remaining cells lost the transcriptomic signature of bona fide VAT Tregs. Unexpectedly, VAT Tregs suppressed adipocyte lipolysis, and BMAL1 deficiency specifically in Tregs abrogated the characteristic diurnal variation in adipose tissue lipolysis, resulting in enhanced suppression of lipolysis throughout the day. These findings argue for the importance of the cell-intrinsic clock program in optimizing VAT Treg function and fitness.
Collapse
Affiliation(s)
- Tianli Xiao
- Department of Immunology, Harvard Medical School; Boston, USA
| | | | | | | | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and metabolism, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School; Boston, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| |
Collapse
|