1
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Wei S, Xiao J, Ju F, Li J, Liu T, Hu Z. Aloperine Attenuates Hepatic Ischemia/Reperfusion-Induced Liver Injury via STAT-3 Signaling in a Murine Model. J Pharmacol Exp Ther 2024; 391:51-63. [PMID: 39164092 DOI: 10.1124/jpet.123.001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Hepatic ischemia/reperfusion (I/R) damage is one of the most common side effects of liver surgery. This pathophysiological process may lead to excessive hepatic damage. Aloperine is an active ingredient isolated from Sophora alopecuroides Linn and has a variety of therapeutic effects, including organ protection. However, the hepatoprotective effect of aloperine against hepatic I/R damage has not yet been determined. C57BL/6 mice were allocated to the sham-operated (sham), hepatic ischemia/reperfusion (I/R), and aloperine groups. The mice were exposed to 30 min of hepatic hilum occlusion. Then a 3-h reperfusion was performed. Mice in the sham group underwent sham surgery. Hepatic injury was evaluated by plasma aspartate aminotransferase (AST) and transaminase alanine aminotransferase (ALT) levels, histological evaluation, cell apoptosis, the number of activated inflammatory cells, and the expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6. The protein phosphorylation status of the reperfusion-associated survival pathways was evaluated. Mice with hepatic I/R injury presented increased plasma ALT and AST levels, increased hepatic apoptosis, abnormal histological structure, and elevated inflammatory responses. However, aloperine ameliorated hepatic I/R-induced injury. Moreover, aloperine enhanced the level of signal transducer and activator of transcription (STAT)-3 phosphorylation after I/R. Ag490, an agent that inhibits STAT-3 activity, abolished aloperine-induced STAT-3 phosphorylation and liver protection. Aloperine ameliorates hepatic I/R-induced liver injury via a STAT-3-mediated protective mechanism. Patients with hepatic I/R injury may benefit from aloperine treatment. SIGNIFICANCE STATEMENT: Hepatic I/R can cause excessive liver damage. This study revealed that aloperine, an active component isolated from Sophora alopecuroides Linn, ameliorates hepatic I/R injury and related liver damage in vivo. The underlying protective mechanism may involve the STAT-3 signaling pathway. These findings may lead to the development of a novel approach for treating hepatic I/R damage in clinical practice.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wei S, Xiao J, Ju F, Hu Z. Aloperine protects the testis against testicular ischemia/reperfusion injury in rats. Andrology 2024. [PMID: 39253755 DOI: 10.1111/andr.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Testicular torsion/detorsion can cause testis loss and infertility. Aloperine is a major active alkaloid extracted from Sophora alopecuroides Linn. It has been shown to have organ-protective effects. However, the effects of aloperine on the testis and its underlying mechanisms remain unclear. OBJECTIVES This study investigated the effect of aloperine on testicular torsion/detorsion injury in rats. MATERIALS AND METHODS Male Sprague-Dawley rats were randomized to the sham-operated (sham), testicular I/R (TI/R), or aloperine preconditioning (ALOPre) or postconditioning (ALOPost) groups. All rats except for the sham-operated rats were subjected to 3 h of right spermatic cord torsion (720°, clockwise), followed by 3 h of detorsion. Aloperine (10 mg/kg) was intravenously administered before testicular torsion (ALOPre) or at the onset of testicular detorsion (ALOPost). The therapeutic efficacy of aloperine was evaluated by histological analysis, oxidative stress evaluation, inflammatory response examination, apoptosis analysis, protein analysis, and immunohistological assessment. RESULTS Compared with TI/R, aloperine protected both the ipsilateral and contralateral testes against unilateral testicular I/R, as evidenced by a reduced testicular weight to body weight (TW/BW) ratio (ALOPre: p = 0.0037; ALOPost: p = 0.0021) and volume (ALOPre: p = 0.0020; ALOPost: p = 0.0009), less structural damage with better Johnsen (ALOPre: p = 0.0013; ALOPost: p = 0.0021), and Cosentino scores (ALOPre: p < 0.0001; ALOPost: p < 0.0001), increased mean seminiferous tubule diameter and mean seminiferous tubule epithelial height, decreased testicular apoptosis, and less oxidative stress and inflammatory response. In addition, aloperine significantly stimulated the phosphorylation of signal transducer and activator of transcription (STAT)-3 in the ipsilateral testes following detorsion. Administration of Ag490 suppressed STAT-3 phosphorylation, thereby abrogating the protective effects exerted by aloperine on the ipsilateral testis. DISCUSSION AND CONCLUSION Aloperine has a strong testicular protective effect on the ipsilateral and contralateral testes after testicular torsion/detorsion. This aloperine-induced ipsilateral testicular protection is mediated via the STAT-3 signaling pathway.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Manville RW, Yoshimura RF, Yeromin AV, Hogenkamp D, van der Horst J, Zavala A, Chinedu S, Arena G, Lasky E, Fisher M, Tracy CR, Othy S, Jepps TA, Cahalan MD, Abbott GW. Polymodal K + channel modulation contributes to dual analgesic and anti-inflammatory actions of traditional botanical medicines. Commun Biol 2024; 7:1059. [PMID: 39198706 PMCID: PMC11358443 DOI: 10.1038/s42003-024-06752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angel Zavala
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Sonia Chinedu
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Mark Fisher
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Christopher R Tracy
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Cahalan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Saxena H, Weintraub NL, Tang Y. Potential Therapeutic Targets for Hypotension in Duchenne Muscular Dystrophy. Med Hypotheses 2024; 185:111318. [PMID: 38585412 PMCID: PMC10993928 DOI: 10.1016/j.mehy.2024.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is marked by genetic mutations occurring in the DMD gene, which is widely expressed in the cardiovascular system. In addition to developing cardiomyopathy, patients with DMD have been reported to be susceptible to the development of symptomatic hypotension, although the mechanisms are unclear. Analysis of single-cell RNA sequencing data has identified potassium voltage-gated channel subfamily Q member 5 (KCNQ5) and possibly ryanodine receptor 2 (RyR2) as potential candidate hypotension genes whose expression is significantly upregulated in the vascular smooth muscle cells of DMD mutant mice. We hypothesize that heightened KCNQ5 and RyR2 expression contributes to decreased arterial blood pressure in patients with DMD. Exploring pharmacological approaches to inhibit the KCNQ5 and RyR2 channels holds promise in managing the systemic hypotension observed in individuals with DMD. This avenue of investigation presents new prospects for improving clinical outcomes for these patients.
Collapse
Affiliation(s)
- Harshi Saxena
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Dong XN, Li MT. Inhibitory effect of aloperine on transient outward potassium currents in rat cardiac myocytes. Front Pharmacol 2024; 15:1372973. [PMID: 38606176 PMCID: PMC11007096 DOI: 10.3389/fphar.2024.1372973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Objective Aloperine (ALO) is an effective quinolizidine alkaloid. Previous research has demonstrated its antiarrhythmic effect by inhibiting voltage-gated sodium currents in rat ventricular myocytes. This study explored its effect on transient outward potassium currents (Ito) in rat atrial myocytes to identify potential targets in the context of ion channel currents. Methods The Ito characteristics in rat atrial myocytes were recorded using a whole-cell patch-clamp technique. Molecular docking was performed to validate ligand-protein binding interactions. Results ALO at concentrations of 3 and 10 μM significantly reduced Ito current densities. Gating kinetics analysis revealed ALO's ability to slow Ito activation, hasten inactivation, and prolong transition from inactive to resting state. Molecular docking revealed that ALO could stably bind to KCND2. Conclusion ALO may inhibit Ito by slowing the activation process, accelerating inactivation, and delaying the recovery time after inactivation, potentially preventing acetylcholine-induced AF.
Collapse
Affiliation(s)
- Xiao-Na Dong
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Meng-Ting Li
- Baoying County Traditional Chinese Medicine Hospital, Yangzhou, China
| |
Collapse
|
8
|
Tsvetkov D, Schleifenbaum J, Wang Y, Kassmann M, Polovitskaya MM, Ali M, Schütze S, Rothe M, Luft FC, Jentsch TJ, Gollasch M. KCNQ5 Controls Perivascular Adipose Tissue-Mediated Vasodilation. Hypertension 2024; 81:561-571. [PMID: 38354270 DOI: 10.1161/hypertensionaha.123.21834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany (J.S.)
| | - Yibin Wang
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Maya M Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | - Mohamed Ali
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany (T.J.J.)
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| |
Collapse
|
9
|
Wei S, Ju F, Xiao J, Li J, Liu T, Hu Z. Aloperine Alleviates Myocardial Injury Induced by Myocardial Ischemia and Reperfusion by Activating the ERK1/2/β-catenin Signaling Pathway. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07566-0. [PMID: 38416285 DOI: 10.1007/s10557-024-07566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury can cause severe cardiac damage. Aloperine is a quinolizidine alkaloid found in the leaves and seeds of Sophora alopecuroides L. It has been recognized that aloperine has organ-protective properties; however, its role in cardioprotection is poorly characterized. This study aimed to evaluate the cardioprotective effects of aloperine against myocardial I/R injury in vivo. METHODS Adult male Sprague‒Dawley rats were randomly divided into sham-operated, control, and aloperine groups. All rats except for the sham-operated rats were subjected to 45 min of myocardial ischemia (by left anterior descending ligation) followed by 3 h of reperfusion. Aloperine (10 mg/kg) was given intravenously at the onset of reperfusion. The cardioprotective effects of aloperine were evaluated by determining infarct size, hemodynamics, histological changes, cardiac biomarkers, and cardiac apoptosis. RESULTS Aloperine limited infarct size; improved hemodynamics; attenuated myocardial I/R-induced histological deterioration; decreased serum LDH, CK-MB, and α-HBDH levels; and inhibited apoptosis after myocardial I/R injury. Moreover, aloperine stimulated the phosphorylation of ventricular ERK1/2, which is a major module of MAPK signaling pathways. Furthermore, aloperine increased the ventricular expression levels of β-catenin. Pharmacological inhibition of ERK1/2 diminished aloperine-induced cardioprotection and blocked ERK1/2/β-catenin signaling. CONCLUSIONS These data support the cardioprotective effect of aloperine against myocardial I/R injury, which is mediated, at least in part, by the ERK1/2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Shan X, Gegentuya, Wang J, Feng H, Zhang Z, Zheng Q, Zhang Q, Yang K, Wang J, Xu L. Aloperine protects pulmonary hypertension via triggering PPARγ signaling and inhibiting calcium regulatory pathway in pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2023; 325:C1058-C1072. [PMID: 37661916 DOI: 10.1152/ajpcell.00286.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Previous studies have reported the beneficial role of Aloperine (ALO), an active vasodilator purified from the seeds and leaves of the herbal plant Sophora alopecuroides L., on experimental pulmonary hypertension (PH); however, detailed mechanisms remain unclear. In this study, monocrotaline-induced PH (MCT-PH) rat model and primarily cultured rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to investigate the mechanisms of ALO on experimental PH, pulmonary vascular remodeling, and excessive proliferation of PASMCs. Results showed that first, ALO significantly prevented the disease development of MCT-PH by inhibiting right ventricular systolic pressure (RVSP) and right ventricular hypertrophy indexed by the Fulton Index, normalizing the pulmonary arterials (PAs) remodeling and improving the right ventricular function indexed by transthoracic echocardiography. ALO inhibited the excessive proliferation of both PAs and PASMCs. Then, isometric tension measurements showed vasodilation of ALO on precontracted PAs isolated from both control and MCT-PH rats via activating the KCNQ channel, which was blocked by specific KCNQ potassium channel inhibitor linopirdine. Moreover, by using immunofluorescence staining and nuclear/cytosol fractionation, we further observed that ALO significantly enhanced the PPARγ nuclear translocation and activation in PASMCs. Transcriptome analyses also revealed activated PPARγ signaling and suppressed calcium regulatory pathway in lungs from MCT-PH rats treated with ALO. In summary, ALO could attenuate MCT-PH through both transient vasodilation of PAs and chronic activation of PPARγ signaling pathway, which exerted antiproliferative roles on PASMCs and remodeled PAs.NEW & NOTEWORTHY Aloperine attenuates monocrotaline-induced pulmonary hypertension (MCT-PH) in rats by inhibiting the pulmonary vascular remodeling and proliferation of pulmonary arterial smooth muscle cells (PASMCs). In mechanism, Aloperine not only exerts a transient KCNQ-dependent vasodilation in precontracted pulmonary arteries (PAs) from both control and MCT-PH rats but also activates PPARγ nuclear translocation and signaling transduction in PASMCs, which chronically inhibits the calcium regulatory pathway and proliferation of PASMCs.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/prevention & control
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
- KCNQ Potassium Channels/metabolism
- KCNQ Potassium Channels/genetics
- Monocrotaline/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Piperidines/pharmacology
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Quinolizidines/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaoqian Shan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gegentuya
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Jing Wang
- Department of Scientific Research, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Qiuyu Zheng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Lei Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Manville RW, Baldwin SN, Eriksen EØ, Jepps TA, Abbott GW. Medicinal plant rosemary relaxes blood vessels by activating vascular smooth muscle KCNQ channels. FASEB J 2023; 37:e23125. [PMID: 37535015 PMCID: PMC10437472 DOI: 10.1096/fj.202301132r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Samuel N. Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Ørnberg Eriksen
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A. Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
12
|
Manville RW, Hogenkamp D, Abbott GW. Ancient medicinal plant rosemary contains a highly efficacious and isoform-selective KCNQ potassium channel opener. Commun Biol 2023; 6:644. [PMID: 37322081 PMCID: PMC10272180 DOI: 10.1038/s42003-023-05021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Manville RW, Alfredo Freites J, Sidlow R, Tobias DJ, Abbott GW. Native American ataxia medicines rescue ataxia-linked mutant potassium channel activity via binding to the voltage sensing domain. Nat Commun 2023; 14:3281. [PMID: 37280215 DOI: 10.1038/s41467-023-38834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
There are currently no drugs known to rescue the function of Kv1.1 voltage-gated potassium channels carrying loss-of-function sequence variants underlying the inherited movement disorder, Episodic Ataxia 1 (EA1). The Kwakwaka'wakw First Nations of the Pacific Northwest Coast used Fucus gardneri (bladderwrack kelp), Physocarpus capitatus (Pacific ninebark) and Urtica dioica (common nettle) to treat locomotor ataxia. Here, we show that extracts of these plants enhance wild-type Kv1.1 current, especially at subthreshold potentials. Screening of their constituents revealed that gallic acid and tannic acid similarly augment wild-type Kv1.1 current, with submicromolar potency. Crucially, the extracts and their constituents also enhance activity of Kv1.1 channels containing EA1-linked sequence variants. Molecular dynamics simulations reveal that gallic acid augments Kv1.1 activity via a small-molecule binding site in the extracellular S1-S2 linker. Thus, traditional Native American ataxia treatments utilize a molecular mechanistic foundation that can inform small-molecule approaches to therapeutically correcting EA1 and potentially other Kv1.1-linked channelopathies.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | | | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
14
|
Yang X, Na C, Wang Y. Angelica decursiva exerts antihypertensive activity by inhibiting L-type calcium channel. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116527. [PMID: 37088236 DOI: 10.1016/j.jep.2023.116527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica decursiva is a perennial herb that belongs to the Umbelliferae family. It is traditionally used to treat fever, upper respiratory tract infections, bleeding and hypertension. However, despite its extensive pharmacological potential, literature reports on its antihypertensive pharmacological properties are scarce. AIM OF THE STUDY In the study, crude extract from A. decursiva roots was examined for its antihypertensive activity and its molecular basis was explored. MATERIALS AND METHODS A. decursiva roots were extracted with ethanol, and isolated with silica gel normal-phase chromatography and reverse-phase high performance liquid chromatography. L-NAME-induced hypertensive mouse model was used to detect in vivo hypertensive activity. Thoracic aorta ring contraction activity and electrophysiology recordings were employed to evaluate in vitro antihypertensive activity and revealed an antihypertensive target, which was transiently expressed in HEK293T cells. RESULTS ADED exhibited significant antihypertensive effects in L-NAME-induced hypertension models and phenylephrine-induced vasoconstriction. Further screening revealed that demethylsuberosin is an essential component accounting for the antihypertension effects of A. decursiva. Voltage-gated calcium channel CaV1.2 is the likely target of A. decursiva for its antihypertension effects. CONCLUSION The study suggests that A. decursiva and demethylsuberosin may be effective antihypertensive agents in preclinical studies. It appears that A. decursiva and demethylsuberosin exert antihypertensive effects by inhibiting the CaV1.2 channel, which contributes to the vasodilatory effect. The present study provides experimental evidence that A. decursiva is an effective remedy for hypertension in folklore. Demethylsuberosin could be a lead molecule for antihypertension drug development.
Collapse
Affiliation(s)
- Xiaopei Yang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| | - Chen Na
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yan Wang
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, China.
| |
Collapse
|
15
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
16
|
Shen Y, Kim IM, Tang Y. Identification of Novel Gene Regulatory Networks for Dystrophin Protein in Vascular Smooth Muscle Cells by Single-Nuclear Transcriptome Analysis. Cells 2023; 12:892. [PMID: 36980233 PMCID: PMC10047041 DOI: 10.3390/cells12060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Duchenne muscular dystrophy is an X-linked recessive disease caused by mutations in dystrophin proteins that lead to heart failure and respiratory failure. Dystrophin (DMD) is not only expressed in cardiomyocytes and skeletal muscle cells, but also in vascular smooth muscle cells (VSMCs). Patients with DMD have been reported to have hypotension. Single nuclear RNA sequencing (snRNA-seq) is a state-of-the-art technology capable of identifying niche-specific gene programs of tissue-specific cell subpopulations. To determine whether DMD mutation alters blood pressure, we compared systolic, diastolic, and mean blood pressure levels in mdx mice (a mouse model of DMD carrying a nonsense mutation in DMD gene) and the wide-type control mice. We found that mdx mice showed significantly lower systolic, diastolic, and mean blood pressure than control mice. To understand how DMD mutation changes gene expression profiles from VSMCs, we analyzed an snRNA-seq dataset from the muscle nucleus of DMD mutant (DMDmut) mice and control (Ctrl) mice. Gene Ontology (GO) enrichment analysis revealed that the most significantly activated pathways in DMDmut-VSMCs are involved in ion channel function (potassium channel activity, cation channel complex, and cation channel activity). Notably, we discovered that the DMDmut-VSMCs showed significantly upregulated expression of KCNQ5 and RYR2, whereas the most suppressed pathways were transmembrane transporter activity (such as anion transmembrane transporter activity, inorganic anion transmembrane transporter activity, import into cell, and import across plasma membrane). Moreover, we analyzed metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) using "scMetabolism" R package. DMDmut-VSMCs exhibited dysregulation of pyruvate metabolism and nuclear acid metabolism. In conclusion, via the application of snRNA-seq, we (for the first time) identify the potential molecular regulation by DMD in the upregulation of the expression of KCNQ5 genes in VSMCs, which helps us to understand the mechanism of hypotension in DMD patients. Our study potentially offers new possibilities for therapeutic interventions in systemic hypotension in DMD patients with pharmacological inhibition of KCNQ5.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Manville RW, Redford KE, van der Horst J, Hogenkamp DJ, Jepps TA, Abbott GW. KCNQ5 activation by tannins mediates vasorelaxant effects of barks used in Native American botanical medicine. FASEB J 2022; 36:e22457. [PMID: 35997997 PMCID: PMC9404676 DOI: 10.1096/fj.202200724r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Tree and shrub barks have been used as folk medicine by numerous cultures across the globe for millennia, for a variety of indications, including as vasorelaxants and antispasmodics. Here, using electrophysiology and myography, we discovered that the KCNQ5 voltage-gated potassium channel mediates vascular smooth muscle relaxant effects of barks used in Native American folk medicine. Bark extracts (1%) from Birch, Cramp Bark, Slippery Elm, White Oak, Red Willow, White Willow, and Wild Cherry each strongly activated KCNQ5 expressed in Xenopus oocytes. Testing of a subset including both the most and the least efficacious extracts revealed that Red Willow, White Willow, and White Oak KCNQ-dependently relaxed rat mesenteric arteries; in contrast, Black Haw bark neither activated KCNQ5 nor induced vasorelaxation. Two compounds common to the active barks (gallic acid and tannic acid) had similarly potent and efficacious effects on both KCNQ5 activation and vascular relaxation, and this together with KCNQ5 modulation by other tannins provides a molecular basis for smooth muscle relaxation effects of Native American folk medicine bark extracts.
Collapse
Affiliation(s)
- Rian W. Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Kaitlyn E. Redford
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Derk J. Hogenkamp
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A. Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
18
|
Wei AD, Wakenight P, Zwingman TA, Bard AM, Sahai N, Willemsen MH, Schelhaas HJ, Stegmann APA, Verhoeven JS, de Man SA, Wessels MW, Kleefstra T, Shinde DN, Helbig KL, Basinger A, Wagner VF, Rodriguez-Buritica D, Bryant E, Millichap JJ, Millen KJ, Dobyns WB, Ramirez JM, Kalume FK. Human KCNQ5 de novo mutations underlie epilepsy and intellectual disability. J Neurophysiol 2022; 128:40-61. [PMID: 35583973 PMCID: PMC9236882 DOI: 10.1152/jn.00509.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.
Collapse
Affiliation(s)
- Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Theresa A Zwingman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nikhil Sahai
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Marjolein H Willemsen
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Helenius J Schelhaas
- Department of Neurology, Academic Centre for Epileptology Kempenhaeghe, Heeze, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith S Verhoeven
- Department of Neurology, Academic Centre for Epileptology Kempenhaeghe, Heeze, The Netherlands
| | - Stella A de Man
- Department of Pediatrics, Amphia Hospital, Breda, The Netherlands.,Department of Human Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marja W Wessels
- Department of Human Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Katherine L Helbig
- Ambry Genetics, Aliso Viejo, California.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alice Basinger
- Medical Genetics, Cook Children's Hospital, Fort Worth, Texas
| | - Victoria F Wagner
- Department of Pediatrics, University of Texas Health Science Center, Houston, Texas
| | | | - Emily Bryant
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John J Millichap
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Franck K Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
19
|
Abstract
Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.
Collapse
Affiliation(s)
- Kaitlyn E Redford
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, USA;
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, USA;
| |
Collapse
|
20
|
Abbott GW, Redford KE, Yoshimura RF, Manville RW, Moreira L, Tran K, Arena G, Kookootsedes A, Lasky E, Gunnison E. KCNQ and KCNE Isoform-Dependent Pharmacology Rationalizes Native American Dual Use of Specific Plants as Both Analgesics and Gastrointestinal Therapeutics. Front Physiol 2021; 12:777057. [PMID: 34858215 PMCID: PMC8632246 DOI: 10.3389/fphys.2021.777057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Indigenous peoples of the Americas are proficient in botanical medicine. KCNQ family voltage-gated potassium (Kv) channels are sensitive to a variety of ligands, including plant metabolites. Here, we screened methanolic extracts prepared from 40 Californian coastal redwood forest plants for effects on Kv current and membrane potential in Xenopus oocytes heterologously expressing KCNQ2/3, which regulates excitability of neurons, including those that sense pain. Extracts from 9 of the 40 plant species increased KCNQ2/3 current at –60 mV by ≥threefold (maximally, 15-fold by Urtica dioica) and/or hyperpolarized membrane potential by ≥-3 mV (maximally, –11 mV by Arctostaphylos glandulosa). All nine plants have traditionally been used as both analgesics and gastrointestinal therapeutics. Of two extracts tested, both acted as KCNQ-dependent analgesics in mice. KCNQ2/3 activation at physiologically relevant, subthreshold membrane potentials by tannic acid, gallic acid and quercetin provided molecular correlates for analgesic action of several of the plants. While tannic acid also activated KCNQ1 and KCNQ1-KCNE1 at hyperpolarized, negative membrane potentials, it inhibited KCNQ1-KCNE3 at both negative and positive membrane potentials, mechanistically rationalizing historical use of tannic acid-containing plants as gastrointestinal therapeutics. KCNE dependence of KCNQ channel modulation by plant metabolites therefore provides a molecular mechanistic basis for Native American use of specific plants as both analgesics and gastrointestinal aids.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Kaitlyn E Redford
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Luiz Moreira
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Kevin Tran
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, United States
| | | | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, United States
| | - Elliot Gunnison
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, United States
| |
Collapse
|
21
|
Ottosson NE, Silverå Ejneby M, Wu X, Estrada-Mondragón A, Nilsson M, Karlsson U, Schupp M, Rognant S, Jepps TA, Konradsson P, Elinder F. Synthetic resin acid derivatives selectively open the hK V 7.2/7.3 channel and prevent epileptic seizures. Epilepsia 2021; 62:1744-1758. [PMID: 34085706 DOI: 10.1111/epi.16932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hKV ) channel hKV 7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hKV 7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hKV 7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. METHODS Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. RESULTS Fourteen resin acid derivatives were tested on hKV 7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hKV 7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hKV 7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hKV 11.1, hNaV 1.5, or hCaV 1.2, or on the amplitude of hKV 11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. SIGNIFICANCE The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.
Collapse
Affiliation(s)
- Nina E Ottosson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Malin Silverå Ejneby
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | | | - Michelle Nilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Salomé Rognant
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Andrew Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Konradsson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Wang T, Liang L, Zhao C, Sun J, Wang H, Wang W, Lin J, Hu Y. Elucidating direct kinase targets of compound Danshen dropping pills employing archived data and prediction models. Sci Rep 2021; 11:9541. [PMID: 33953309 PMCID: PMC8100098 DOI: 10.1038/s41598-021-89035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Research on direct targets of traditional Chinese medicine (TCM) is the key to study the mechanism and material basis of it, but there is still no effective methods at present. We took Compound Danshen dropping pills (CDDP) as a study case to establish a strategy to identify significant direct targets of TCM. As a result, thirty potential active kinase targets of CDDP were identified. Nine of them had potential dose-dependent effects. In addition, the direct inhibitory effect of CDDP on three kinases, AURKB, MET and PIM1 were observed both on biochemical level and cellular level, which could not only shed light on the mechanisms of action involved in CDDP, but also suggesting the potency of drug repositioning of CDDP. Our results indicated that the research strategy including both in silico models and experimental validation that we built, were relatively efficient and reliable for direct targets identification for TCM prescription, which will help elucidating the mechanisms of TCM and promoting the modernization of TCM.
Collapse
Affiliation(s)
- Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Lu Liang
- College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Jinnan District, Tianjin, 300353, China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Hairong Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Jinnan District, Tianjin, 300353, China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China.
| |
Collapse
|
23
|
Huang S, Zhang Y, Zhang Y, Liu J, Liu Z, Wang X. Establishment of LC-MS/MS method for determination of aloperine in rat plasma and its application in preclinical pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122671. [PMID: 33819795 DOI: 10.1016/j.jchromb.2021.122671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Aloperine, a novel natural active alkaloid derived from Sophora alopecuroides L., has attracted much attention for its anti-inflammatory, antiviral, anti-tumor, anti-allergy and other pharmacological activities. In this study, we first established and validated an efficient and sensitive high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of aloperine in rat plasma. Cytisine was used as the internal standard (IS). The separation of aloperine and IS was conducted on a Phenomenex Luna Omega Polar C18 column (2.1 × 50 mm, 1.6 μm) with 0.3% (v/v) formic acid aqueous (containing 5 mM ammonium acetate) and 0.3% (v/v) formic acid acetonitrile using isocratic elution condition at a flow rate of 0.20 mL/min. Aloperine and IS were determined under the transitions of m/z 233.2 → 98.1 and m/z 191.2 → 148.2 (positive ionization mode), respectively. The calibration curve of aloperine was established in the range of 5 (LLOQ) to 2000 ng/mL (r2 = 0.994). The well validated method was full compliance with the bioanalytical method validation of FDA, and was applied to the pharmacokinetic study of aloperine in Sprague-Dawley rats after 50 mg/kg oral administration and 5 mg/kg intravenous injection. This study provides valuable references for the further study of Sophora alopecuroides L., especially for the drug development and clinical application of aloperine.
Collapse
Affiliation(s)
- Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanfang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Inhibitory effects of aloperine on voltage-gated Na + channels in rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1579-1588. [PMID: 33738513 DOI: 10.1007/s00210-021-02076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/28/2021] [Indexed: 12/08/2022]
Abstract
Aloperine (ALO), a quinolizidine alkaloid extracted from Sophora alopecuroides L., modulates hypertension, ventricular remodeling, and myocardial ischemia. However, few studies have evaluated the effects of ALO on other cardiovascular parameters. Accordingly, in this study, we used a rat model of aconitine-induced ventricular arrhythmia to assess the effects of ALO. Notably, ALO pretreatment delayed the onset of ventricular premature and ventricular tachycardia and reduced the incidence of fatal ventricular fibrillation. Moreover, whole-cell patch-clamp assays in rats' ventricular myocyte showed that ALO (3, 10, and 30 μM) significantly reduced the peak sodium current density of voltage-gated Na+ channel currents (INa) in a concentration-dependent manner. The gating kinetics characteristics showed that the steady-state activation and recovery curve were shifted in positive direction along the voltage axis, respectively, and the steady-state inactivation curve was shifted in negative direction along the voltage axis, i.e., which was similar to the inhibitory effects of amiodarone. These results indicated that ALO had anti-arrhythmic effects, partly attributed to INa inhibition. ALO may act as a class I sodium channel anti-arrhythmia agent.
Collapse
|
25
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Wu ZY, Meng XF, Jiao YS, Guo BL, Sui XH, Ma SJ, Chen WF, Singh RP. Bradyrhizobium arachidis mediated enhancement of (oxy)matrine content in the medicinal legume Sophora flavescens. Lett Appl Microbiol 2021; 72:570-577. [PMID: 33474743 DOI: 10.1111/lam.13453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Effect of rhizobial inoculation and nitrate application on the content of bioactive compounds in legume plants is an interesting aspect for interactions among microbes, plants and chemical fertilizers, as well as for cultivated practice of legumes. In this study, nitrate (0, 5 and 20 mmol l-1 ) and Bradyrhizobium arachidis strain CCBAU 051107T were applied, individually or in combination, to the root rhizosphere of the medicinal legume Sophora flavescens Aiton (SFA). Then the plant growth, nodulation and active ingredients including (oxy)matrine of SFA were determined and compared. Rhizobial inoculation alone significantly increased the numbers and fresh weight of root nodules. Nodulation was significantly inhibited due to nitrate (5 and 20 mmol l-1 ). Only oxymatrine was detected in the control plants without rhizobial inoculation and nitrate supplement, while both oxymatrine and matrine were synthesized in plants treated with inoculation of B. arachidis or supplied with nitrate. The content of oxymatrine was the highest in plants inoculated solely with rhizobia and was not significantly altered by additional application of nitrate. Combinations of B. arachidis inoculation and different concentrations of nitrate did not significantly change the concentrations of (oxy)matrine in the plant. In conclusion, sole rhizobial inoculation was the best approach to increase the contents of key active ingredients oxymatrine and matrine in the medicinal legume SFA.
Collapse
Affiliation(s)
- Z Y Wu
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - X F Meng
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Y S Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - B L Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X H Sui
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - S J Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - W F Chen
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - R P Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
27
|
Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Genetic determinants of ammonia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L41-L62. [PMID: 33050709 DOI: 10.1152/ajplung.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy M Martin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent J Concel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly A Brant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y P Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Swapna Upadhyay
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Louis J Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emrah Kostem
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Eleazar Eskin
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ann-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Redford KE, Abbott GW. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Commun Biol 2020; 3:356. [PMID: 32641720 PMCID: PMC7343821 DOI: 10.1038/s42003-020-1089-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Many commonly consumed plants are used as folk medicines, often with unclear molecular mechanisms. Recent studies uncovered the ubiquitous and influential KCNQ family of voltage-gated potassium (Kv) channels as a therapeutic target for several medicinal plant compounds. Capers - immature flower buds of Capparis spinosa - have been consumed for food and medicinal purposes for millennia. Here, we show that caper extract hyperpolarizes cells expressing KCNQ1 or KCNQ2/3 Kv channels. Capers are the richest known natural source of quercetin, the most consumed dietary flavonoid. Quercetin potentiated KCNQ1/KCNE1, KCNQ2/3 and KCNQ4 currents but, unusually, not KCNQ5. Strikingly, quercetin augmented both activation and inactivation of KCNQ1, via a unique KCNQ activation mechanism involving sites atop the voltage sensor and in the pore. The findings uncover a novel potential molecular basis for therapeutic effects of quercetin-rich foods and a new chemical space for atypical modes of KCNQ channel modulation. Kaitlyn E. Redford and Geoffrey W. Abbott show that quercetin, a flavonoid highly expressed in capers, potentiates KCNQ currents to varying degrees depending on the subunit composition of the channel complex. By combining in silico docking, mutagenesis, and electrophysiology they show that this flavonoid can bind KCNQ channels atop the voltage sensor and within the pore module, highlighting an atypical mode of channel modulation.
Collapse
Affiliation(s)
- Kaitlyn E Redford
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
Abbott GW. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front Physiol 2020; 11:583. [PMID: 32655402 PMCID: PMC7324551 DOI: 10.3389/fphys.2020.00583] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family are essential features of a broad range of excitable and non-excitable cell types and are found in organisms ranging from Hydra vulgaris to Homo sapiens. Although they are firmly in the superfamily of S4 domain-bearing voltage-sensing ion channels, KCNQ channels are highly sensitive to a range of endogenous and exogenous small molecules that act directly on the pore, the voltage-sensing domain, or the interface between the two. The focus of this review is regulation of KCNQs by direct binding of neurotransmitters and metabolites from both animals and plants and the role of the latter in the effects of plants consumed for food and as traditional folk medicines. The conceptual question arises: Are KCNQs voltage-gated channels that are also sensitive to ligands or ligand-gated channels that are also sensitive to voltage?
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
30
|
Qiu M, Liu J, Feng P, Su Y, Guo R, Shi F, Wang S, Zhao B. Cytochrome P450s regulates aloperine-induced pathological changes in mouse liver and kidney. Res Vet Sci 2020; 132:97-100. [PMID: 32544634 DOI: 10.1016/j.rvsc.2020.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Aloperine is a major active component in Sophora alopecuroides L that plays diverse pharmacological properties. Recent studies have indicated the potential effect of aloperine against hypertension and cancers. However, possible toxicity of aloperine has not been carefully studied in vivo. The aim of this study was to assess the effect of intraperitoneal aloperine injection on mouse liver and kidney tissues and to investigate the role of CYP450 genes in aloperine-induced toxicity. 72 BALB/c mice were randomly divided into four groups: vehicle control group (normal saline), low-dose group (4 mg/kg), medium-dose group (8 mg/kg), and high-dose group (16 mg/kg). 18 mice in each group were intraperitoneally injected with aloperine daily for 4 weeks, and were then kept for another 1 or 4 weeks without aloperine treatment. Serum was colleted for analysis of serum biochemical indexes including ALT, AST, BUN and CRE. The liver and kidney were collected for analysis of histopathologic changes and CYP450 expression and activity. Vacuolization of cytoplasm in liver cells, swelling in kidney tubular cells, increased levels of ALT, AST, BUN, and CRE, and alteration in the expression and activity of CYP450 were observed in the high-dose group after 4 weeks of treatment. However, all aloperine-induced damages were recovered to a certain degree after maintained without aloperine for 1 week, and fully recovered after maintained without aloperine for 4 weeks. These findings suggested that aloperine regulated the expression of CYP450, which was possibly involved in aloperine-induced reversible toxicity in mouse liver and kidney tissues.
Collapse
Affiliation(s)
- Mingning Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Feng
- College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Yongxia Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangyun Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Manville RW, Abbott GW. Isoform-Selective KCNA1 Potassium Channel Openers Built from Glycine. J Pharmacol Exp Ther 2020; 373:391-401. [PMID: 32217768 DOI: 10.1124/jpet.119.264507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of function of voltage-gated potassium (Kv) channels is linked to a range of lethal or debilitating channelopathies. New pharmacological approaches are warranted to isoform-selectively activate specific Kv channels. One example is KCNA1 Potassium Voltage-Gated Channel Subfamily A Member 1 (KCNA1) (Kv1.1), an archetypal Shaker-type Kv channel, in which loss-of-function mutations cause episodic ataxia type 1 (EA1). EA1 causes constant myokomia and episodic bouts of ataxia and may associate with epilepsy and other disorders. We previously found that the inhibitory neurotransmitter γ-aminobutyric acid and modified versions of glycine directly activate Kv channels within the KCNQ subfamily, a characteristic favored by strong negative electrostatic surface potential near the neurotransmitter carbonyl group. Here, we report that adjusting the number and positioning of fluorine atoms within the fluorophenyl ring of glycine derivatives produces isoform-selective KCNA1 channel openers that are inactive against KCNQ2/3 channels, or even KCNA2, the closest relative of KCNA1. The findings refine our understanding of the molecular basis for KCNQ versus KCNA1 activation and isoform selectivity and constitute, to our knowledge, the first reported isoform-selective KCNA1 opener. SIGNIFICANCE STATEMENT: Inherited loss-of-function gene sequence variants in KCNA1, which encodes the KCNA1 (Kv1.1) voltage-gated potassium channel, cause episodic ataxia type 1 (EA1), a movement disorder also linked to epilepsy and developmental delay. We have discovered several isoform-specific KCNA1-activating small molecules, addressing a notable gap in the field and providing possible lead compounds and a novel chemical space for the development of potential future therapeutic drugs for EA1.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
32
|
van der Horst J, Manville RW, Hayes K, Thomsen MB, Abbott GW, Jepps TA. Acetaminophen (Paracetamol) Metabolites Induce Vasodilation and Hypotension by Activating Kv7 Potassium Channels Directly and Indirectly. Arterioscler Thromb Vasc Biol 2020; 40:1207-1219. [PMID: 32188278 DOI: 10.1161/atvbaha.120.313997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.
Collapse
Affiliation(s)
- Jennifer van der Horst
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| | - Rian W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine (R.W.M., G.W.A.)
| | - Katie Hayes
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| | - Morten B Thomsen
- Cardiac Electrophysiology Group, Department of Biomedical Science (M.B.T.), University of Copenhagen, Denmark
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine (R.W.M., G.W.A.)
| | - Thomas A Jepps
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| |
Collapse
|
33
|
Manville RW, Abbott GW. Potassium channels act as chemosensors for solute transporters. Commun Biol 2020; 3:90. [PMID: 32111967 PMCID: PMC7048750 DOI: 10.1038/s42003-020-0820-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/06/2020] [Indexed: 01/27/2023] Open
Abstract
Potassium channels form physical complexes with solute transporters in vivo, yet little is known about their range of possible signaling modalities and the underlying mechanisms. The KCNQ2/3 potassium channel, which generates neuronal M-current, is voltage-gated and its activity is also stimulated by binding of various small molecules. KCNQ2/3 forms reciprocally regulating complexes with sodium-coupled myo-inositol transporters (SMITs) in mammalian neurons. Here, we report that the neurotransmitter γ-aminobutyric acid (GABA) and other small molecules directly regulate myo-inositol transport in rat dorsal root ganglia, and by human SMIT1-KCNQ2/3 complexes in vitro, by inducing a distinct KCNQ2/3 pore conformation. Reciprocally, SMIT1 tunes KCNQ2/3 sensing of GABA and related metabolites. Ion permeation and mutagenesis studies suggest that SMIT1 and GABA similarly alter KCNQ2/3 pore conformation but via different KCNQ subunits and molecular mechanisms. KCNQ channels therefore act as chemosensors to enable co-assembled myo-inositol transporters to respond to diverse stimuli including neurotransmitters, metabolites and drugs.
Collapse
Affiliation(s)
- Rίan W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|