1
|
Song Y, Ma Q, Luo J, Yang Z, Li J, Zhao J. Liushen Wan alleviates the virulence and inflammation of Staphylococcus aureus via NLRP3 inflammasome and TLR2-NF-κB/p38 MAPK signaling pathways. Int Immunopharmacol 2025; 144:113633. [PMID: 39566390 DOI: 10.1016/j.intimp.2024.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Infectious diseases have been a major threat to health worldwide, with bacterial infections being particularly prominent. Staphylococcus aureus (S. aureus) infections are associated with the most deaths. Inhibition of virulence factor and excessive inflammation induced by S. aureus has become a potential antibiotic alternative/synergistic therapy without causing greater survival pressure to prevent the emergence of "superbugs" in the future. Liushen Wan (LSW), a traditional Chinese medicine, used for multiple bacterial infectious diseases. In this work, we researched its therapeutic effect and explored the potential mechanism of LSW aiming at S. aureus in vivo and in vitro. Minimal inhibitory concentration (MIC) assay, hemolysis assay, invasion assay, staphyloxanthin assay and evolution of resistance assay were performed to show that LSW alleviated the virulence of S. aureus without suppressing S. aureus activity, and short-term use of LSW did not make bacteria resistant to it. Biofilm inhibition assay demonstrated that LSW inhibited the formation of biofilm and destroyed mature biofilm of S. aureus. In vitro experiments using RT-qPCR, ELISA and western blot analysis indicated LSW inhibited the inflammatory reaction triggered by HK-S. aureus and S. aureus through NLRP3 inflammasome and TLR2-NF-κB/p38 MAPK pathway. Moreover, LSW alleviated lung damage induced by S. aureus. Taken together, LSW is a promising antibacterial, anti-virulence and anti-inflammatory drug, which could provide the pharmacological basis on the traditional application of LSW for diseases associated with S. aureus infection in clinical.
Collapse
Affiliation(s)
- Yudi Song
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jincan Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou Laboratory, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), 519020, China.
| | - Jiqiang Li
- The Second Affiliated Hospital Of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China.
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
2
|
Tang LP, Guo YN, Mou RW, Liang SS, Lu MH, He YM. Effects of Clausena lansium leaves volatile oil emulsion against Staphylococcus aureus in mice via autophagy modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156159. [PMID: 39442278 DOI: 10.1016/j.phymed.2024.156159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Volatile oil from fresh Clausena lansium (Lour.) Skeels (Rutaceae) (common name Wampee) has been previously extracted by our group from fresh C. lansium leaf and its components were qualitative and quantitatively analyzed by GC-MS. It altered the cell membrane permeability of Staphylococcus aureus and reduced the levels of inflammation factors. However, previous in vivo reports on the anti-inflammatory and the antibacterial properties against S. aureus are scarce. HYPOTHESIS/PURPOSE To evaluate the protective in vivo effects of Wampee leaves volatile oil emulsion (WVOE) against S. aureus-induced pneumonia and elucidate the underlying mechanisms of action. METHODS Wild-type and nucleotide oligomerization domain-like receptor protein 3 (NLRP3)-deficient mice were used. Mice were treated with WVOE for 7 days, and subjected to S. aureus infection by nasal administration on day 5 for 48 h. Lung and blood samples were collected for assessing lung damage and protein abundance. Lung bacterial load, wet/dry ratio, C-reactive protein (CRP) levels, inflammatory cytokines secretion, and lung histopathological injury were examined. RESULTS WVOE effectively reduced lung bacterial load, wet/dry ratio, and CRP levels increased following S. aureus infection in mice. WVOE decreased the secretion of inflammatory cytokines (IL-6 and TNF-α) and lung histopathological injury, and suppressed the NF-κB pathway and NLRP3 inflammasome activation. NLRP3-/- mice exhibited lower bacterial load, inflammatory cytokines levels and lung histopathological injury compared with mice in the model group. Autophagy was enhanced in S. aureus-infected mice, with higher levels of p-mTOR, Beclin-1, Atg 16L1, Atg7, p62, p-p62, and LC3II. WVOE administration restored the autophagy related protein levels. Autophagy was inhibited in NLRP3-/- mice of the control and model groups, and WVOE lost its ability to regulate the autophagy-related proteins enhanced upon S. aureus infection. WVOE enhanced autophagy to alleviate lung injury by inhibiting NLRP3-targeted P62. Furthermore, compared with the 3MA + model group, WVOE reduced the bacterial load and CRP levels, pulmonary septa narrowing, and congestion. NLRP3 protein expression increased due to autophagy inhibition. WVOE exerted a pharmacological effect through the PI3K/AKT/mTOR pathway. CONCLUSION WVOE regulated the PI3K/AKT/mTOR pathway and enhanced autophagy, with NLRP3 playing a crucial role. WVOE exhibited protective effects against S. aureus-induced pneumonia by inhibiting NLRP3 inflammasome activation and enhancing autophagy. These findings expand the understanding of antibacterial properties of WVOE, and provide novel insights into the therapeutic potential of WVOE in managing S. aureus infections.
Collapse
Affiliation(s)
- Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
3
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Dorner H, Stolzer I, Mattner J, Kaminski S, Leistl S, Edrich LM, Schwendner R, Hobauer J, Sebald A, Leikam S, Gonzalez Acera M, Düll M, Lang R, Seidel G, Seitz T, Hellerbrand C, Fuhrmann G, Distler U, Tenzer S, Eichhorn P, Vieth M, Schramm C, Arnold P, Becker C, Weidinger C, Siegmund B, Atreya R, Leppkes M, Naschberger E, Sampaziotis F, Dietrich P, Rauh M, Wirtz S, Kremer AE, Neurath MF, Günther C. Gut Pathobiont-Derived Outer Membrane Vesicles Drive Liver Inflammation and Fibrosis in Primary Sclerosing Cholangitis-Associated Inflammatory Bowel Disease. Gastroenterology 2024; 167:1183-1197.e16. [PMID: 38992449 DOI: 10.1053/j.gastro.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC), often associated with inflammatory bowel disease (IBD), presents a multifactorial etiology involving genetic, immunologic, and environmental factors. Gut dysbiosis and bacterial translocation have been implicated in PSC-IBD, yet the precise mechanisms underlying their pathogenesis remain elusive. Here, we describe the role of gut pathobionts in promoting liver inflammation and fibrosis due to the release of bacterial outer membrane vesicles (OMVs). METHODS Preclinical mouse models in addition to ductal organoids were used to acquire mechanistic data. A proof-of-concept study including serum and liver biopsies of a patient cohort of PSC (n = 22), PSC-IBD (n = 45), and control individuals (n = 27) was performed to detect OMVs in the systemic circulation and liver. RESULTS In both preclinical model systems and in patients with PSC-IBD, the translocation of OMVs to the liver correlated with enhanced bacterial sensing and accumulation of the NLRP3 inflammasome. Using ductal organoids, we were able to precisely attribute the pro-inflammatory and pro-fibrogenic properties of OMVs to signaling pathways dependent on Toll-like receptor 4 and NLRP3-gasdermin-D. The immunostimulatory potential of OMVs could be confirmed in macrophages and hepatic stellate cells. Furthermore, when we administered gut pathobiont-derived OMVs to Mdr2-/- mice, we observed a significant enhancement in liver inflammation and fibrosis. In a translational approach, we substantiated the presence of OMVs in the systemic circulation and hepatic regions of severe fibrosis using a PSC-IBD patient cohort. CONCLUSIONS This study demonstrates the contribution of gut pathobionts in releasing OMVs that traverse the mucosal barrier and, thus, promote liver inflammation and fibrosis in PSC-IBD. OMVs might represent a critical new environmental factor that interacts with other disease factors to cause inflammation and thus define potential new targets for fibrosis therapy.
Collapse
Affiliation(s)
- Heidrun Dorner
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie Kaminski
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Leistl
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa-Maria Edrich
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raphael Schwendner
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Hobauer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Sebald
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Leikam
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam Düll
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerald Seidel
- Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Phillip Eichhorn
- Institute of Pathology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Christoph Schramm
- Department of Medicine, Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carl Weidinger
- Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raja Atreya
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fotios Sampaziotis
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; Cambridge Liver Unit, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Peter Dietrich
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Research Laboratory, Division of Pediatrics, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
5
|
Woo HE, Cho JY, Lim YH. Propionibacterium freudenreichii MJ2-derived extracellular vesicles inhibit RANKL-induced osteoclastogenesis and improve collagen-induced rheumatoid arthritis. Sci Rep 2024; 14:24973. [PMID: 39443658 PMCID: PMC11500175 DOI: 10.1038/s41598-024-76911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Rheumatoid arthritis causes excessive bone loss by stimulating osteoclast differentiation. Extracellular vesicles are valuable disease markers, conveyors of distant cell-to-cell communication, and carriers for drug delivery. The aim of this study was to investigate the anti-osteoclastogenic effects of extracellular vesicles derived from dairy Propionibacterium freudenreichii MJ2 (PFEVs) and the improvement effect of PFEVs on collagen-induced arthritis (CIA) animal model. PFEVs were observed by scanning electron microscopy, transmission electron microscopy, nanoparticle tracking analysis, and LC-MS/MS. The inhibitory activity of PFEVs against receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was investigated in RAW 264.7 cells. PFEVs significantly decreased the expression levels of genes and proteins related to osteoclast differentiation. PFEVs decreased RANK-RANKL binding. In a CIA mouse model, PFEVs treatment significantly reduced arthritis scores and collagen-specific immunoglobulins. PFEVs treatment also reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines. The anti-inflammatory effects were confirmed by H&E staining, and PFEVs treatment inhibited osteoclastogenesis in the CIA mouse model. In conclusion, PFEVs inhibited osteoclast differentiation by inhibiting RANK-RANKL signaling, thereby decreasing the expression of osteoclast differentiation-related genes. PFEVs also improved collagen-induced arthritis by inhibiting inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Hee-Eun Woo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Joo-Young Cho
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
6
|
Li M, Wang B, Chen J, Jiang L, Zhou Y, Guo G, Jiang F, Hu Y, Wang C, Yang Y, Tang J, Han P, Yu J, Shen H. Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection. NPJ Biofilms Microbiomes 2024; 10:102. [PMID: 39370453 PMCID: PMC11456606 DOI: 10.1038/s41522-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Luhui Jiang
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Changming Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yi Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
8
|
Jiang X, Fu T, Huang L. PANoptosis: a new insight for oral diseases. Mol Biol Rep 2024; 51:960. [PMID: 39235684 DOI: 10.1007/s11033-024-09901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Tingting Fu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
| |
Collapse
|
9
|
Chen X, Li Q, Xie J, Nie S. Immunomodulatory Effects of Probiotic-Derived Extracellular Vesicles: Opportunities and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19259-19273. [PMID: 39177683 DOI: 10.1021/acs.jafc.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Probiotics are known to modulate host immune responses in the course of many diseases. Recently, bacterial extracellular vesicles (EVs), which contain bioactive proteins, lipids, nucleic acids, and metabolites released by bacteria, have been identified as potentially important mediators of bacteria-bacterium and bacteria-host interactions. With the deepening of research, it has been found that probiotic-derived EVs play a significant role in regulating host immune function and, thus, exerting health-promoting effects. Nevertheless, current research is in its early stages, and there remains a long way to go to bridge the gap between basic research and clinical practice. In this review, we describe the fundamental aspects of probiotic-derived EVs, including their biogenesis, cargo sorting mechanism, and transport capabilities. We further discussed the potential mechanisms of probiotic-derived EVs in regulating the host's gut microbiota and immune responses. Finally, we speculate about the potential of probiotic-derived EVs as new postbiotics for applications in functional food, disease treatment substitutes, and immune regulatory adjuvants.
Collapse
Affiliation(s)
- Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Li J, Zhu K, Li C, Huang W, Tian X, Yan H, Zhao Y, Zhou J, Gao X, Rao X, Li G, Zhou R, Li M. Alkaline shock protein 23 (Asp23)-controlled cell wall imbalance promotes membrane vesicle biogenesis in Staphylococcus aureus. J Extracell Vesicles 2024; 13:e12501. [PMID: 39193667 DOI: 10.1002/jev2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Membrane vesicles (MVs) are produced by species across all domains of life and have diverse physiological functions as well as promising applications. While the mechanisms for vesiculation in Gram-negative bacteria are well-established, the genetic determinants and regulatory factors responsible for MV biogenesis in Gram-positive bacteria remain largely unknown. Here, we demonstrate that a Q225P substitution in the alternative sigma factor B (SigB) triggers MV production in Staphylococcus aureus strain Newman by hindering the specific binding of SigB to the asp23 promoter, thereby repressing expression of alkaline shock protein 23 (Asp23). Isogenic deletion of asp23 also promotes MV formation in Newman, confirming the critical roles played by sigB and asp23 in modulating S. aureus vesiculation. While bacterial growth and cytoplasmic membrane fluidity are not impaired, mutation of asp23 weakens the cell wall and enhances autolysis, consistent with decreased expression of alpha-type psm and lrgAB that modulate murein hydrolase activity. TEM and proteomic analysis show that Newman and asp23 deletion mutant generate MVs with nearly identical morphology and composition, but virulence-associated factors are significantly enriched in MVs from the asp23 mutant. Overall, this study reveals novel genetic determinants underlying S. aureus vesiculation and advances the understanding of the physiology of MV biogenesis in S. aureus.
Collapse
Affiliation(s)
- Jia Li
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Keting Zhu
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chao Li
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wei Huang
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xing Tian
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - He Yan
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Jing Zhou
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Xindi Gao
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
12
|
Prince A, Tiwari A, Mandal T, Koiri D, Meher G, Sinha DK, Saleem M. Lipid Specificity of the Fusion of Bacterial Extracellular Vesicles with the Host Membrane. J Phys Chem B 2024; 128:8116-8130. [PMID: 38981091 DOI: 10.1021/acs.jpcb.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bacterial membrane vesicles (MVs) facilitate the long-distance delivery of virulence factors crucial for pathogenicity. The entry and trafficking mechanisms of virulence factors inside host cells are recently emerging; however, whether bacterial MVs can fuse and modulate the physicochemical properties of the host lipid membrane and membrane lipid parameter for fusion remains unknown. In this study, we reconstituted the interaction of bacterial MVs with host cell lipid membranes and quantitatively showed that bacterial MV interaction increases the fluidity, dipole potential, and compressibility of a biologically relevant multicomponent host membrane upon fusion. The presence of cylindrical lipids, such as phosphatidylcholine, and a moderate acyl chain length of C16 help the MV interaction. While significant binding of bacterial MVs to the raft-like lipid membranes with phase-separated regions of the membrane was observed, however, MVs prefer binding to the liquid-disordered regions of the membrane. Furthermore, the elevated levels of cholesterol tend to hinder the interaction of bacterial MVs, as evident from the favorable excess Gibbs free energy of mixing bacterial MVs with host lipid membranes. The findings provide new insights that might have implications for the regulation of host machinery by bacterial pathogens through manipulation of the host membrane properties.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Titas Mandal
- Department of Physical Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Debraj Koiri
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Geetanjali Meher
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
13
|
Li Y, Wang Y, Lin X, Sun S, Wu A, Ge Y, Yuan M, Wang J, Deng X, Tian Y. Algicidal bacteria-derived membrane vesicles as shuttles mediating cross-kingdom interactions between bacteria and algae. SCIENCE ADVANCES 2024; 10:eadn4526. [PMID: 39110793 PMCID: PMC11305373 DOI: 10.1126/sciadv.adn4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Bacterial membrane vesicles (BMVs) are crucial biological vehicles for facilitating interspecies and interkingdom interactions. However, the extent and mechanisms of BMV involvement in bacterial-algal communication remain elusive. This study provides evidence of BMVs delivering cargos to targeted microalgae. Membrane vesicles (MVs) from Chitinimonas prasina LY03 demonstrated an algicidal profile similar to strain LY03. Further investigation revealed Tambjamine LY2, an effective algicidal compound, selectively packaged into LY03-MVs. Microscopic imaging demonstrated efficient delivery of Tambjamine LY2 to microalgae Heterosigma akashiwo and Thalassiosira pseudonana through membrane fusion. In addition, the study demonstrated the versatile cargo delivery capabilities of BMVs to algae, including the transfer of MV-carried nucleic acids into algal cells and the revival of growth in iron-depleted microalgae by MVs. Collectively, our findings reveal a previously unknown mechanism by which algicidal bacteria store hydrophobic algicidal compounds in MVs to trigger target microalgae death and highlight BMV potency in understanding and engineering bacterial-algae cross-talk.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaolan Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuqian Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Anan Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yintong Ge
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Menghui Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianhua Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
15
|
Cui L, Yang R, Huo D, Li L, Qu X, Wang J, Wang X, Liu H, Chen H, Wang X. Streptococcus pneumoniae extracellular vesicles aggravate alveolar epithelial barrier disruption via autophagic degradation of OCLN (occludin). Autophagy 2024; 20:1577-1596. [PMID: 38497494 PMCID: PMC11210924 DOI: 10.1080/15548627.2024.2330043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) represents a major human bacterial pathogen leading to high morbidity and mortality in children and the elderly. Recent research emphasizes the role of extracellular vesicles (EVs) in bacterial pathogenicity. However, the contribution of S. pneumoniae EVs (pEVs) to host-microbe interactions has remained unclear. Here, we observed that S. pneumoniae infections in mice led to severe lung injuries and alveolar epithelial barrier (AEB) dysfunction. Infections of S. pneumoniae reduced the protein expression of tight junction protein OCLN (occludin) and activated macroautophagy/autophagy in lung tissues of mice and A549 cells. Mechanically, S. pneumoniae induced autophagosomal degradation of OCLN leading to AEB impairment in the A549 monolayer. S. pneumoniae released the pEVs that could be internalized by alveolar epithelial cells. Through proteomics, we profiled the cargo proteins inside pEVs and found that these pEVs contained many virulence factors, among which we identified a eukaryotic-like serine-threonine kinase protein StkP. The internalized StkP could induce the phosphorylation of BECN1 (beclin 1) at Ser93 and Ser96 sites, initiating autophagy and resulting in autophagy-dependent OCLN degradation and AEB dysfunction. Finally, the deletion of stkP in S. pneumoniae completely protected infected mice from death, significantly alleviated OCLN degradation in vivo, and largely abolished the AEB disruption caused by pEVs in vitro. Overall, our results suggested that pEVs played a crucial role in the spread of S. pneumoniae virulence factors. The cargo protein StkP in pEVs could communicate with host target proteins and even hijack the BECN1 autophagy initiation pathway, contributing to AEB disruption and bacterial pathogenicity.Abbreviations: AEB: alveolarepithelial barrier; AECs: alveolar epithelial cells; ATG16L1: autophagy related 16 like 1; ATP:adenosine 5'-triphosphate; BafA1: bafilomycin A1; BBB: blood-brain barrier; CFU: colony-forming unit; co-IP: co-immunoprecipitation; CQ:chloroquine; CTRL: control; DiO: 3,3'-dioctadecylox-acarbocyanineperchlorate; DOX: doxycycline; DTT: dithiothreitol; ECIS: electricalcell-substrate impedance sensing; eGFP: enhanced green fluorescentprotein; ermR: erythromycin-resistance expression cassette; Ery: erythromycin; eSTKs: eukaryotic-like serine-threoninekinases; EVs: extracellular vesicles; HA: hemagglutinin; H&E: hematoxylin and eosin; HsLC3B: human LC3B; hpi: hours post-infection; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC/MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVs: membranevesicles; NC:negative control; NETs:neutrophil extracellular traps; OD: optical density; OMVs: outer membrane vesicles; PBS: phosphate-buffered saline; pEVs: S.pneumoniaeextracellular vesicles; protK: proteinase K; Rapa: rapamycin; RNAi: RNA interference; S.aureus: Staphylococcusaureus; SNF:supernatant fluid; sgRNA: single guide RNA; S.pneumoniae: Streptococcuspneumoniae; S.suis: Streptococcussuis; TEER: trans-epithelium electrical resistance; moi: multiplicity ofinfection; TEM:transmission electron microscope; TJproteins: tight junction proteins; TJP1/ZO-1: tight junction protein1; TSA: tryptic soy agar; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Luqing Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jundan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
16
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
17
|
Zheng H, Triplett KD, Prossnitz ER, Hall PR, Daly SM. G protein-coupled estrogen receptor agonist G-1 decreases ADAM10 levels and NLRP3-inflammasome component activation in response to Staphylococcus aureus alpha-hemolysin. Microbiologyopen 2024; 13:e23. [PMID: 38867416 PMCID: PMC11168966 DOI: 10.1002/mbo3.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Huayu Zheng
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Kathleen D. Triplett
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Eric R. Prossnitz
- Department of Internal Medicine, School of Medicine, Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism and University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Pamela R. Hall
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Seth M. Daly
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| |
Collapse
|
18
|
Jiang B, Huang J. Influences of bacterial extracellular vesicles on macrophage immune functions. Front Cell Infect Microbiol 2024; 14:1411196. [PMID: 38873097 PMCID: PMC11169721 DOI: 10.3389/fcimb.2024.1411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Bacterial extracellular vesicles (EVs) are crucial mediators of information transfer between bacteria and host cells. Macrophages, as key effector cells in the innate immune system, have garnered widespread attention for their interactions with bacterial EVs. Increasing evidence indicates that bacterial EVs can be internalized by macrophages through multiple pathways, thereby influencing their immune functions. These functions include inflammatory responses, antimicrobial activity, antigen presentation, and programmed cell death. Therefore, this review summarizes current research on the interactions between bacterial EVs and macrophages. This will aid in the deeper understanding of immune modulation mediated by pathogenic microorganisms and provide a basis for developing novel antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
19
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Wang Y, Li S, Wang T, Zou M, Peng X. Extracellular Vesicles From Mycoplasma gallisepticum: Modulators of Macrophage Activation and Virulence. J Infect Dis 2024; 229:1523-1534. [PMID: 37929888 DOI: 10.1093/infdis/jiad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transporting proteins. To investigate the pathogenesis of Mycoplasma gallisepticum, a major threat to the poultry industry, we isolated and characterized M. gallisepticum-produced EVs. Our study highlights the significant impact of M. gallisepticum-derived EVs on immune function and macrophage apoptosis, setting them apart from other M. gallisepticum metabolites. These EVs dose-dependently enhance M. gallisepticum adhesion and proliferation, simultaneously modulating Toll-like receptor 2 and interferon γ pathways and thereby inhibiting macrophage activation. A comprehensive protein analysis revealed 117 proteins in M. gallisepticum-derived EVs, including established virulence factors, such as GapA, CrmA, VlhA, and CrmB. Crucially, these EV-associated proteins significantly contribute to M. gallisepticum infection. Our findings advance our comprehension of M. gallisepticum pathogenesis, offering insights for preventive strategies and emphasizing the pivotal role of M. gallisepticum-derived EVs and their associated proteins. This research sheds light on the composition and crucial role of M. gallisepticum-derived EVs in M. gallisepticum pathogenesis, aiding our fight against M. gallisepticum infections.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Shen F, Zhang Y, Li C, Yang H, Yuan P. Network pharmacology and experimental verification of the mechanism of licochalcone A against Staphylococcus aureus pneumonia. Front Microbiol 2024; 15:1369662. [PMID: 38803378 PMCID: PMC11128579 DOI: 10.3389/fmicb.2024.1369662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus strains cause the majority of pneumonia cases and are resistant to various antibiotics. Given this background, it is very important to discover novel host-targeted therapies. Licochalcone A (LAA), a natural plant product, has various biological activities, but its primary targets in S. aureus pneumonia remain unclear. Therefore, the purpose of this study was to identify its molecular target against S. aureus pneumonia. Network pharmacology analysis, histological assessment, enzyme-linked immunosorbent assays, and Western blotting were used to confirm the pharmacological effects. Network pharmacology revealed 33 potential targets of LAA and S. aureus pneumonia. Enrichment analysis revealed that these potential genes were enriched in the Toll-like receptor and NOD-like receptor signaling pathways. The results were further verified by experiments in which LAA alleviated histopathological changes, inflammatory infiltrating cells and inflammatory cytokines (TNF, IL-6, and IL-1β) in the serum and bronchoalveolar lavage fluid in vivo. Moreover, LAA treatment effectively reduced the expression levels of NF-κB, p-JNK, p-p38, NLRP3, ASC, caspase 1, IL-1β, and IL-18 in lung tissue. The in vitro experimental results were consistent with the in vivo results. Thus, our findings demonstrated that LAA exerts anti-infective effects on S. aureus-induced lung injury via suppression of the Toll-like receptor and NOD-like receptor signaling pathways, which provides a theoretical basis for understanding the function of LAA against S. aureus pneumonia and implies its potential clinical application.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yinghua Zhang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
22
|
Li M, Wang Y, Liu H, Huang X, Peng H, Yang Y, Hu Z, Dou J, Xiao C, Chen J, Shang W, Rao X. Staphylococcus Aureus Membrane Vesicles Kill Tumor Cells Through a Caspase-1-Dependent Pyroptosis Pathway. Int J Nanomedicine 2024; 19:4007-4019. [PMID: 38715701 PMCID: PMC11075688 DOI: 10.2147/ijn.s455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Nanosized outer membrane vesicles (OMVs) from Gram-negative bacteria have attracted increasing interest because of their antitumor activity. However, the antitumor effects of MVs isolated from Gram-positive bacteria have rarely been investigated. Methods MVs of Staphylococcus aureus USA300 were prepared and their antitumor efficacy was evaluated using tumor-bearing mouse models. A gene knock-in assay was performed to generate luciferase Antares2-MVs for bioluminescent detection. Cell counting kit-8 and lactic dehydrogenase release assays were used to detect the toxicity of the MVs against tumor cells in vitro. Active caspase-1 and gasdermin D (GSDMD) levels were determined using Western blot, and the tumor inhibition ability of MVs was determined in B16F10 cells treated with a caspase-1 inhibitor. Results The vesicular particles of S. aureus USA300 MVs were 55.23 ± 8.17 nm in diameter, and 5 μg of MVs remarkably inhibited the growth of B16F10 melanoma in C57BL/6 mice and CT26 colon adenocarcinoma in BALB/c mice. The bioluminescent signals correlated well with the concentrations of the engineered Antares2-MVs (R2 = 0.999), and the sensitivity for bioluminescence imaging was 4 × 10-3 μg. Antares2-MVs can directly target tumor tissues in vivo, and 20 μg/mL Antares2-MVs considerably reduced the growth of B16F10 and CT26 tumor cells, but not non-carcinomatous bEnd.3 cells. MV treatment substantially increased the level of active caspase-1, which processes GSDMD to trigger pyroptosis in tumor cells. Blocking caspase-1 activation with VX-765 significantly protected tumor cells from MV killing in vitro and in vivo. Conclusion S. aureus MVs can kill tumor cells by activating the pyroptosis pathway, and the induction of pyroptosis in tumor cells is a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Jianxiong Dou
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Chuan Xiao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| | - Xiancai Rao
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Chongqing, 400038, People’s Republic of China
| |
Collapse
|
23
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
24
|
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater 2024; 180:18-45. [PMID: 38641182 DOI: 10.1016/j.actbio.2024.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Chun Liu
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Negar Yazdani
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029 Australia
| | - Chaminda Jayampath Seneviratne
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| |
Collapse
|
25
|
Muñoz-Echeverri LM, Benavides-López S, Geiger O, Trujillo-Roldán MA, Valdez-Cruz NA. Bacterial extracellular vesicles: biotechnological perspective for enhanced productivity. World J Microbiol Biotechnol 2024; 40:174. [PMID: 38642254 PMCID: PMC11032300 DOI: 10.1007/s11274-024-03963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.
Collapse
Affiliation(s)
- Laura M Muñoz-Echeverri
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Santiago Benavides-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, CP 62210, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México.
| |
Collapse
|
26
|
Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, Jiao F, Qiao H. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Control Release 2024; 368:355-371. [PMID: 38432468 DOI: 10.1016/j.jconrel.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Delayed wound healing caused by bacterial infection remains a major challenge in clinical treatment. Exotoxins incorporated in bacterial extracellular vesicles play a key role as the disease-causing virulence factors. Safe and specific antivirulence agents are expected to be developed as an effective anti-bacterial infection strategy, instead of single antibiotic therapy. Plant-derived extracellular vesicle-like nanoparticles have emerged as promising therapeutic agents for skin diseases, but the elucidations of specific mechanisms of action and clinical transformation still need to be advanced. Here, dandelion-derived extracellular vesicle-like nanoparticles (TH-EVNs) are isolated and exert antivirulence activity through specifically binding to Staphylococcus aureus (S. aureus) exotoxins, thereby protecting the host cell from attack. The neutralization of TH-EVNs against exotoxins has considerable binding force and stability, showing complete detoxification effect in vivo. Then gelatin methacryloyl hydrogel is developed as TH-EVNs-loaded dressing for S. aureus exotoxin-invasive wounds. Hydrogel dressings demonstrate good physical and mechanical properties, thus achieving wound retention and controlled release of TH-EVNs, in addition to promoting cell proliferation and migration. In vivo results show accelerated re-epithelialization, promotion of collagen maturity and reduction of inflammation after treatment. Collectively, the developed TH-EVNs-laden hydrogel dressings provide a potential therapeutic approach for S. aureus exotoxin- associated trauma.
Collapse
Affiliation(s)
- Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoya Liu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Cong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqing Zhong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinping Mao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
27
|
Bao H, Gong Z, Zhao J, Ren P, Yu Z, Su N, Gong L, Mao W, Liu B, Zhang S, Yang Y, Cao J. Prostaglandin D 2 is involved in the regulation of inflammatory response in Staphylococcus aureus-infected mice macrophages. Int Immunopharmacol 2024; 129:111526. [PMID: 38295545 DOI: 10.1016/j.intimp.2024.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most infamous and widespread bacterial pathogens, causing a hard-to-estimate number of uncomplicated skin infections and probably hundreds of thousands to millions of more severe, invasive infections globally per year. S. aureus may also be acquired from animals, especially in the livestock industry. The interaction mechanism of host and S. aureus has significance for finding ways to against S. aureus infection and control inflammatory response of host, while the molecular biological activities after S. aureus infection, particular in inflammatory and immune cells are not fully clear. The present study aimed to explore whether pattern recognition receptors (PRRs) mediate prostaglandin D2 (PGD2) synthesis and PGD2 participates in the regulation of inflammatory response in macrophages during S. aureus infection or synthetic bacterial lipopeptide (Pam2CSK4) stimulation. PGD2 secretion level was enhanced by mice peritoneal macrophages infected with the S. aureus. The results indicated that PGD2 secretion was impaired in S. aureus infected-macrophages from toll-like receptors 2 (TLR2)-deficient and NLR pyrin domain-containing 3 (NLRP3)-deficient mice. PGD2 synthetase (hematopoietic PGD synthase, HPGDS) inhibitors could reduce the activation of macrophage mitogen-activated protein kinase (MAPK)/nuclear factor-κ-gene binding (NF-κB) signaling pathways. HPGDS inhibition impaired cytokines (TNF-α, IL-1β, IL-10 and RANTES) secretion and macrophage phagocytosis during S. aureus infection. In addition, inhibition of endogenous PGD2 synthesis was unable to affect the TLR2 and NLRP3 expression in S. aureus-infected macrophages. Taken together, macrophage PGD2 secretion after S. aureus infection depended on receptors TLR2 and NLRP3, and the induced PGD2 participated in the regulation of inflammatory response in S. aureus-infected macrophages. Interestingly, it was found that exogenous PGD2 down-regulated the cytokines secretion and had no effect on phagocytosis in the S. aureus-infected macrophages.
Collapse
Affiliation(s)
- Haixia Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Key Lab of Germplasm Innovation and Utilization of Triticeae Crop, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Zhiguo Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Jiamin Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Peipei Ren
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Zhuoya Yu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Niri Su
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Linlin Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Yinfeng Yang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China.
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China.
| |
Collapse
|
28
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
29
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
30
|
Liu BD, Akbar R, Oliverio A, Thapa K, Wang X, Fan GC. BACTERIAL EXTRACELLULAR VESICLES IN THE REGULATION OF INFLAMMATORY RESPONSE AND HOST-MICROBE INTERACTIONS. Shock 2024; 61:175-188. [PMID: 37878470 PMCID: PMC10921997 DOI: 10.1097/shk.0000000000002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Benjamin D. Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna Oliverio
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kajol Thapa
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
31
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Wang L, Liu M, Qi Y, Wang J, Shi Q, Xie X, Zhou C, Ma L. hsdSA regulated extracellular vesicle-associated PLY to protect Streptococcus pneumoniae from macrophage killing via LAPosomes. Microbiol Spectr 2024; 12:e0099523. [PMID: 38018988 PMCID: PMC10783081 DOI: 10.1128/spectrum.00995-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE S. pneumoniae is a major human pathogen that undergoes a spontaneous and reversible phase variation that allows it to survive in different host environments. Interestingly, we found hsdSA , a gene that manipulated the phase variation, promoted the survival and replication of S. pneumoniae in macrophages by regulating EV production and EV-associated PLY. More importantly, here we provided the first evidence that higher EV-associated PLY (produced by D39) could form LAPosomes that were single membrane compartments containing S. pneumoniae, which are induced by integrin β1/NOX2/ROS pathway. At the same time, EV-associated PLY increased the permeability of lysosome membrane and induced an insufficient acidification to escape the host killing, and ultimately prolonged the survival of S. pneumoniae in macrophages. In contrast, lower EV-associated PLY (produced by D39ΔhsdSA ) activated ULK1 recruitment to form double-layered autophagosomes to eliminate bacteria.
Collapse
Affiliation(s)
- Liping Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyuan Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yixin Qi
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jian Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qixue Shi
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaolin Xie
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changlin Zhou
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lingman Ma
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
37
|
Chen Y, Zhang H, Hu X, Cai W, Jiang L, Wang Y, Wu Y, Wang X, Ni W, Zhou K. Extracellular Vesicles: Therapeutic Potential in Central Nervous System Trauma by Regulating Cell Death. Mol Neurobiol 2023; 60:6789-6813. [PMID: 37482599 DOI: 10.1007/s12035-023-03501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, 313099, China
- Department of Orthopedics, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, 313099, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
38
|
Li D, Hodges R, AukrustNaqvi M, Bair J, Bispo PJM, Gilmore MS, Gregory-Ksander M, Dartt DA. Staphylococcus aureus activates NRLP3-dependent IL-1β secretion from human conjunctival goblet cells using α toxin and toll-like receptors 2 and 1. Front Cell Infect Microbiol 2023; 13:1265471. [PMID: 38089811 PMCID: PMC10711068 DOI: 10.3389/fcimb.2023.1265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
We used cultured human conjunctival goblet cells to determine (i) whether the toxigenic S. aureus- induced activation of the epithelial goblet cells requires two signals to activate the NLRP3 inflammasome, (ii) if one signal is mediated by TLR1, TLR2, or TLR6, and (iii) if the S. aureus toxin α toxin is another signal for the activation of the inflammasome and secretion of mature IL-1β. Cultured cells were incubated with siRNA to knock down the different TLRs. After stimulation with toxigenic S. aureus RN6390, pro-IL-1β synthesis, caspase-1 activity, and mature IL-1β secretion were measured. In a separate set of experiments, the cells were incubated with toxigenic S. aureus RN6390 or mutant S. aureus ALC837 that does not express α toxin with or without exogenous α toxin. A gentamicin protection assay was used to determine if intracellular bacteria were active. We conclude that α toxin from toxigenic S. aureus triggers two separate mechanisms required for the activation of the NLRP3 inflammasome and secretion of mature IL-1β. In the first mechanism, α toxin secreted from internalized S. aureus produces a pore, allowing the internalized bacteria and associated pathogen-associated molecular patterns to interact with intracellular TLR2 and, to a lesser extent, TLR1. In the second mechanism, α toxin forms a pore in the plasma membrane, leading to an efflux of cytosolic K+ and influx of Ca2+. We conclude that α toxin by these two different mechanisms triggers the synthesis of pro-IL-1β and NLRP3 components, activation of capase-1, and secretion of mature IL-1β to defend against bacterial infection.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Robin Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Maria AukrustNaqvi
- Department of Life Sciences and Health Faculty of Health Sciences Oslo Metropolitan University, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
| | - Paulo J. M. Bispo
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Michael S. Gilmore
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Yao L, Wei B, Wang Y, Xu B, Yang M, Chen X, Chen F. A critical role of outer membrane vesicles in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2023; 22:95. [PMID: 37919721 PMCID: PMC10623783 DOI: 10.1186/s12941-023-00645-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND This study aimed to illustrate the status of carbapenem-resistant Enterobacterales (CRE) infections in a Chinese tertiary hospital and to investigate the role of outer membrane vesicles (OMVs) in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP). METHODS The data of CRE infections was collected from laboratory records, and the CRE isolates from two distinct periods (2015/07 to 2017/07 and 2020/04 to 2021/04) were enrolled to detect the carbapenemase genes by polymerase chain reaction (PCR). Multilocus sequence typing (MLST) was used to analyze the molecular characterization of CRKP. The conjugation assay was performed to verify the transmission of the antibiotic resistance plasmid. The OMVs of CRKP were isolated with a method combining an electrophoretic technique with a 300 kDa cut-off dialysis bag. The protein components in CRKP OMVs were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS), and the meropenem-hydrolyzing bioactivity of KPC in CRKP OMVs was determined with different treatments in vitro. RESULTS A total of 178 CRE isolates, including 100 isolates from 2015/07 to 2017/07 and 78 isolates from 2020/04 to 2021/04, were collected for the detection of carbapenemase genes. We found that the carbapenemase gene blaKPC was the most prevalent, followed by blaNDM. By MLST, we found that sequence type (ST) 11 CRKP (96.1%) was the leading type during 2015/07 to 2017/07 and that the ST15 CRKP increased to 46.2% in the late period of 2020/04 to 2021/04. The diameters of Klebsiella pneumoniae OMVs ranged from 100 to 200 nm, and by proteomics analysis the most proteins from OMVs belonged to the "enzyme" group. The KPC enzyme was found in the OMVs from CRKP, and the OMVs could protect inside KPC from proteinase K digestion. Moreover, the KPC enzymes within OMVs, which could be released after Triton X-100 treatment, could hydrolyze meropenem. CONCLUSIONS CRE has increasingly caused infections in hospitals, and blaKPC-positive CRKP infections have constituted a major proportion of infections in the past decade. The OMVs play a critical role in antibiotic resistance in CRKP.
Collapse
Affiliation(s)
- Lifeng Yao
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiwen Wei
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanxia Wang
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beihui Xu
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yang
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuxiang Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Beam JE, Wagner NJ, Lu KY, Parsons JB, Fowler VG, Rowe SE, Conlon BP. Inflammasome-mediated glucose limitation induces antibiotic tolerance in Staphylococcus aureus. iScience 2023; 26:107942. [PMID: 37790275 PMCID: PMC10543182 DOI: 10.1016/j.isci.2023.107942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
Staphylococcus aureus is a leading human pathogen that frequently causes relapsing infections. The failure of antibiotics to eradicate infection contributes to infection relapse. Host-pathogen interactions have a substantial impact on antibiotic susceptibility and the formation of antibiotic tolerant cells. In this study, we interrogate how a major S. aureus virulence factor, α-toxin, interacts with macrophages to alter the microenvironment of the pathogen, thereby influencing its susceptibility to antibiotics. We find α-toxin-mediated activation of the NLRP3 inflammasome induces antibiotic tolerance. Induction of tolerance is driven by increased glycolysis in the host cells, resulting in glucose limitation and ATP depletion in S. aureus. Additionally, inhibition of NLRP3 activation improves antibiotic efficacy in vitro and in vivo, suggesting that this strategy has potential as a host-directed therapeutic to improve outcomes. Our findings identify interactions between S. aureus and the host that result in metabolic crosstalk that can determine the outcome of antimicrobial therapy.
Collapse
Affiliation(s)
- Jenna E. Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
43
|
Gurunathan S, Kim JH. Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. Microb Pathog 2023; 183:106308. [PMID: 37595812 DOI: 10.1016/j.micpath.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
44
|
Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol 2023; 14:1274295. [PMID: 37841244 PMCID: PMC10570811 DOI: 10.3389/fimmu.2023.1274295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in gut health regulation, transcending their traditional roles as byproducts of bacterial metabolism. These vesicles function as cargo carriers and contribute to various aspects of intestinal homeostasis, including microbial balance, antimicrobial peptide secretion, physical barrier integrity, and immune system activation. Therefore, any imbalance in BEV production can cause several gut-related issues including intestinal infection, inflammatory bowel disease, metabolic dysregulation, and even cancer. BEVs derived from beneficial or commensal bacteria can act as potent immune regulators and have been implicated in maintaining gut health. They also show promise for future clinical applications in vaccine development and tumor immunotherapy. This review examines the multifaceted role of BEVs in gut health and disease, and also delves into future research directions and potential applications.
Collapse
Affiliation(s)
- Desen Sun
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Pan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Wang Y, Luo X, Xiang X, Hao C, Ma D. Roles of bacterial extracellular vesicles in systemic diseases. Front Microbiol 2023; 14:1258860. [PMID: 37840728 PMCID: PMC10569430 DOI: 10.3389/fmicb.2023.1258860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Accumulating evidence suggests that in various systems, not all bidirectional microbiota-host interactions involve direct cell contact. Bacterial extracellular vesicles (BEVs) may be key participants in this interkingdom crosstalk. BEVs mediate microbiota functions by delivering effector molecules that modulate host signaling pathways, thereby facilitating host-microbe interactions. BEV production during infections by both pathogens and probiotics has been observed in various host tissues. Therefore, these vesicles released by microbiota may have the ability to drive or inhibit disease pathogenesis in different systems within the host. Here, we review the current knowledge of BEVs and particularly emphasize their interactions with the host and the pathogenesis of systemic diseases.
Collapse
Affiliation(s)
- Yanzhen Wang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhen Xiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Ran J, Yin H, Xu Y, Wang Y, Li G, Wu X, Peng L, Peng Y, Fang R. RACK1 mediates NLRP3 inflammasome activation during Pasteurella multocida infection. Vet Res 2023; 54:73. [PMID: 37684678 PMCID: PMC10492393 DOI: 10.1186/s13567-023-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/10/2023] Open
Abstract
Pasteurella multocida is a gram-negative bacterium that causes serious diseases in a wide range of animal species. Inflammasomes are intracellular multimolecular protein complexes that play a critical role in host defence against microbial infection. Our previous study showed that bovine P. multocida type A (PmCQ2) infection induces NLRP3 inflammasome activation. However, the exact mechanism underlying PmCQ2-induced NLRP3 inflammasome activation is not clear. Here, we show that NLRP3 inflammasome activation is positively regulated by a scaffold protein called receptor for activated C kinase 1 (RACK1). This study shows that RACK1 expression was downregulated by PmCQ2 infection in primary mouse peritoneal macrophages and mouse tissues, and overexpression of RACK1 prevented PmCQ2-induced cell death and reduced the numbers of adherent and invasive PmCQ2, indicating a modulatory role of RACK1 in the cell death that is induced by P. multocida infection. Next, RACK1 knockdown by siRNA significantly attenuated PmCQ2-induced NLRP3 inflammasome activation, which was accompanied by a reduction in the protein expression of interleukin (IL)-1β, pro-IL-1β, caspase-1 and NLRP3 as well as the formation of ASC specks, while RACK1 overexpression by pcDNA3.1-RACK1 plasmid transfection significantly promoted PmCQ2-induced NLRP3 inflammasome activation; these results showed that RACK1 is essential for NLRP3 inflammasome activation. Furthermore, RACK1 knockdown decreased PmCQ2-induced NF-κB activation, but RACK1 overexpression had the opposite effect. In addition, the immunofluorescence staining and immunoprecipitation results showed that RACK1 colocalized with NLRP3 and that NEK7 and interacted with these proteins. However, inhibition of potassium efflux significantly attenuated the RACK1-NLRP3-NEK7 interaction. Our study demonstrated that RACK1 plays an important role in promoting NLRP3 inflammasome activation by regulating NF-κB and promoting NLRP3 inflammasome assembly.
Collapse
Affiliation(s)
- Jinrong Ran
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hang Yin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yating Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
47
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
48
|
罗 凯, 谢 茂, 杨 为, 李 涛, 姜 春. [Effect of Pp2 cm Gene Silencing on Mouse Macrophage Resistance Against Staphylococcus aureus Infection via TLR Pathway]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:941-946. [PMID: 37866950 PMCID: PMC10579066 DOI: 10.12182/20230960206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 10/24/2023]
Abstract
Objective To investigate the effect of silencing protein phosphatase 2cm ( Pp2cm) gene on the expression of inflammatory factors in macrophages infected with Staphylococcus aureus ( S. aureus) and the mechanisms involved. Methods The effects of Pp2cm knockdown on inflammatory factors, proliferation, apoptosis, and Toll-like receptor (TLR) signaling were analyzed in RAW 264.7 cells, a murine macrophage cell line, transfected with adenovirus (Ad). The cells were divided into four groups, including Ad-Ctrl group, Ad- Pp2cm group, Ad-Ctrl+ S. aureus group and Ad- Pp2cm+ S. aureus group. Cell transfection was achieved by separately introducing control adenovirus (Ad-Ctrl) or adenovirus targeting the Pp2cm gene (Ad- Pp2cm) and inflammation or the absence of inflammation was induced by applying or not applying S. aureus. The expression of tumor necrosis factor-alpha ( TNF-α), interleukin-1β ( IL-1 β), TLR2, TLR4, Toll-like receptor adaptor protein ( Tirap) and myeloid differentiation factor 88 ( Myd88) was determined by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). PP2Cm protein expression was determined by Western blot. Cell proliferation was determined by cell counting kit-8 (CCK-8) assay and cell apoptosis was measured by flow cytometry. Results The expression of Pp2cmgene and PP2Cm protein was downregulated in the Ad- Pp2cm group when compared to the Ad-Ctrl group, with the diference showing statistical significance ( P<0.05). When compared to those of the Ad-Ctrl+ S. aureus group, macrophages in the Ad- Pp2cm+ S. aureus group showed significantly increase in the TNF- α and IL-1 β gene levels ( P<0.01). Furthermore, the Ad- Pp2cm group demonstrated elevated gene expression levels of TLR2, TLR4, Tirap and Myd88 in macrophages when compared to the Ad-Ctrl group, with the difference showing statistical significance ( P<0.05). There were no statistically significant differences in cell apoptosis and proliferation between the Ad-Ctrl and Ad- Pp2cm groups. Conclusions Silencing Pp2cm gene promotes the inflammatory response of macrophages to S. aureus infection. Moreover, the TLR pathway plays an important role in the inflammatory activation of macrophages.
Collapse
Affiliation(s)
- 凯腾 罗
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 麻醉转化医学国家地方联合工程研究中心 线粒体与代谢研究室 (成都 610041)Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 茂迪 谢
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 为 杨
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 麻醉转化医学国家地方联合工程研究中心 线粒体与代谢研究室 (成都 610041)Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 涛 李
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 麻醉转化医学国家地方联合工程研究中心 线粒体与代谢研究室 (成都 610041)Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 春玲 姜
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 麻醉转化医学国家地方联合工程研究中心 线粒体与代谢研究室 (成都 610041)Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
da Silva DR, Gonzalez CF, Lorca G. Internalization of extracellular vesicles from Lactobacillus johnsonii N6.2 elicit an RNA sensory response in human pancreatic cell lines. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e101. [PMID: 37720361 PMCID: PMC10500552 DOI: 10.1002/jex2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 09/19/2023]
Abstract
Cells of all domains of life can secrete extracellular vesicles (EV). These secreted vesicles have been indicated as vehicles carrying molecules that facilitate intra- and inter-species interaction. Lactobacillus johnsonii N6.2, a bacterium used in probiotic preparations, has been shown to produce nano-sized EV. In the present work we used L. johnsonii N6.2 EV, concentrated from exosome depleted MRS supernatant, to identify the uptake mechanisms of EV and the impact of the RNA cargo in the EV on the upregulation of the cellular response of βlox5 human pancreatic cells. Using eukaryotic uptake inhibitors, it was found that EV are internalized by the clathrin/dynamin mediated endocytosis pathway. Further co-localization experiments with the endosome markers RAB5, RAB7 and LAMP1 as well as calcein indicated that EV escape the endosome shortly after RAB7 fusion. Using the expression of the 2',5'-oligoadenylate synthetase (OAS) host pathway, previously identified as targeted by L. johnsonii EV, we found that the host cellular response to the EV are dependent on the integrity of the external components of the EV as well as on the RNA cargo. Global transcriptome analysis was performed on EV and the bacterial whole cell. It was found that the RNA transcripts found within the EV largely represent the most abundantly transcribed genes in the bacterial cells such as those associated with protein synthesis and glycolysis. Further analysis showed an enrichment of smaller size transcripts as well as those encoding for membrane bound or extracellular proteins in L. johnsonii's EV.
Collapse
Affiliation(s)
- Danilo R. da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Graciela Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
50
|
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 2023; 21:415-430. [PMID: 36932221 DOI: 10.1038/s41579-023-00875-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicles are produced by species across all domains of life, suggesting that vesiculation represents a fundamental principle of living matter. In Gram-negative bacteria, membrane vesicles (MVs) can originate either from blebs of the outer membrane or from endolysin-triggered explosive cell lysis, which is often induced by genotoxic stress. Although less is known about the mechanisms of vesiculation in Gram-positive and Gram-neutral bacteria, recent research has shown that both lysis and blebbing mechanisms also exist in these organisms. Evidence has accumulated over the past years that different biogenesis routes lead to distinct types of MV with varied structure and composition. In this Review, we discuss the different types of MV and their potential cargo packaging mechanisms. We summarize current knowledge regarding how MV composition determines their various functions including support of bacterial growth via the disposal of waste material, nutrient scavenging, export of bioactive molecules, DNA transfer, neutralization of phages, antibiotics and bactericidal functions, delivery of virulence factors and toxins to host cells and inflammatory and immunomodulatory effects. We also discuss the advantages of MV-mediated secretion compared with classic bacterial secretion systems and we introduce the concept of quantal secretion.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Stefan Schild
- Institute of Molecular Biosciences-Infection Biology, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|