1
|
Smith WPJ, Armstrong-Bond E, Coyte KZ, Knight CG, Basler M, Brockhurst MA. Multiplicity of type 6 secretion system toxins limits the evolution of resistance. Proc Natl Acad Sci U S A 2025; 122:e2416700122. [PMID: 39786933 PMCID: PMC11745330 DOI: 10.1073/pnas.2416700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in Acinetobacter baylyi attackers shape resistance evolution in susceptible Escherichia coli competitors. In both our models and experiments, we find that combinations of multiple distinct toxins limit resistance evolution by creating genetic bottlenecks, driving resistant lineages extinct before they can reach high frequency. We also show that, paradoxically, single-toxin attackers can drive the evolution of cross-resistance, protecting bacteria against unfamiliar toxin combinations, even though such evolutionary pathways were inaccessible against multitoxin attackers. Our findings indicate that, comparable to antimicrobial and anticancer combination therapies, multitoxin T6SS arsenals function to limit resistance evolution in competing microbes. This helps us to understand why T6SSs remain widespread and effective weapons in microbial communities, and why many T6SS-armed bacteria encode functionally diverse anticompetitor toxins.
Collapse
Affiliation(s)
- William P. J. Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Ewan Armstrong-Bond
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Katharine Z. Coyte
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Marek Basler
- Biozentrum Center for Molecular Life Sciences, University of Basel, BaselCH-4056, Switzerland
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| |
Collapse
|
2
|
Pinheiro F. Predicting the evolution of antibiotic resistance. Curr Opin Microbiol 2024; 82:102542. [PMID: 39298866 DOI: 10.1016/j.mib.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Predicting the evolution of antibiotic resistance is critical for realizing precision antibiotic therapies. How exactly to achieve such predictions is a theoretical challenge. Insights from mathematical models that reflect future behavior of microbes under antibiotic stress can inform intervention protocols. However, this requires going beyond heuristic approaches by modeling ecological and evolutionary responses linked to metabolic pathways and cellular functions. Developing such models is now becoming possible due to increasing data availability from systematic experiments with microbial systems. Here, I review recent theoretical advances promising building blocks to piece together a predictive theory of antibiotic resistance evolution. I focus on the conceptual framework of eco-evolutionary response models grounded on quantitative laws of bacterial physiology. These forward-looking models can predict previously unknown behavior of bacteria upon antibiotic exposure. With current developments covering mostly the case of ribosome-targeting antibiotics, I write this Opinion piece as an invitation to generalize the principles discussed here to a broader range of drugs and context dependencies.
Collapse
|
3
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
He Z, Smets BF, Dechesne A. Mating Assay: Plating Below a Cell Density Threshold is Required for Unbiased Estimation of Plasmid Conjugation Frequency of RP4 Transfer Between E. coli Strains. MICROBIAL ECOLOGY 2024; 87:109. [PMID: 39198281 PMCID: PMC11358341 DOI: 10.1007/s00248-024-02427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Mating assays are common laboratory experiments for measuring the conjugation frequency, i.e. efficiency at which a plasmid transfers from a population of donor cells to a population of recipient cells. Selective plating remains a widely used quantification method to enumerate transconjugants at the end of such assays. However, conjugation frequencies may be inaccurately estimated because plasmid transfer can occur on transconjugant-selective plates rather than only during the intended mating duration. We investigated the influence of cell density on this phenomenon. We conducted mating experiments with IncPα plasmid RP4 harbored in Escherichia coli at a fixed cell density and mating conditions, inoculated a serial dilution of the mating mixture on transconjugant-selective plates or in transconjugant-selective broth, and compared the results to a model of cell-to-cell distance distribution. Our findings suggest that irrespective of the mating mode (liquid vs solid), the enumeration of transconjugants becomes significantly biased if the plated cell density exceeds 28 Colony Forming Unit (CFU)/mm2 (or 1.68•105 CFU/standard 9 cm Petri dish). This threshold is determined with a 95% confidence interval of ± 4 CFU/mm2 (± 2.46•104 CFU/standard 9 cm Petri dish). Liquid mating assays were more sensitive to this bias because the conjugation frequency of RP4 is several orders of magnitude lower in suspension compared to surface mating. Therefore, if selective plating is used, we recommend to plate at this density threshold and that negative controls are performed where donors and recipients are briefly mixed before plating at the same dilutions as for the actual mating assay. As an alternative, a liquid enumeration method can be utilized to increase the signal-to-noise ratio and allow for more accurate enumeration of transconjugants.
Collapse
Affiliation(s)
- Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kgs. Lyngby, Denmark.
- Sino-Danish College (SDC) for Education and Research, University of Chinese Academy of Sciences, 8000, Aarhus C, Denmark.
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Zhang Y, Cai Y, Jin X, Wu Q, Bai F, Liu J. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol 2024:10.1038/s41589-024-01708-z. [PMID: 39138382 DOI: 10.1038/s41589-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yumin Cai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Qile Wu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
James B, Reesaul H, Kashif S, Behruznia M, Meehan CJ, Domingo-Sananes MR, Hubbard ATM. The effect of antibiotic selection on collateral effects and evolvability of uropathogenic Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:19. [PMID: 39036800 PMCID: PMC11254750 DOI: 10.1038/s44259-024-00037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Trimethoprim is recommended as a first-line treatment of urinary tract infections (UTIs) in the UK. In 2018, 31.4% of Escherichia coli isolated from UTIs in England were trimethoprim-resistant, leading to overreliance on other first and second-line antibiotics. Here, we assessed whether, in principle, prior selection with trimethoprim results in collateral effects to other antibiotics recommended for the treatment of UTIs. As collateral effects, we considered changes in susceptibility, mutation-selection window and population establishment probability. We selected 10 trimethoprim-resistant derivatives from three clinical isolates of uropathogenic Escherichia coli. We found that mutations conferring trimethoprim resistance did not have any collateral effects on fosfomycin. In contrast, resistance to trimethoprim resulted in decreased susceptibility (collateral resistance) to nitrofurantoin, below the clinical breakpoint and narrowed the mutation-selection window, thereby reducing the maximum concentration for selection of nitrofurantoin resistance mutations. Our analyses demonstrate that multiple collateral responses should be accounted for when predicting and optimising antibiotic use, limiting future antimicrobial resistance emergence.
Collapse
Affiliation(s)
- Beth James
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Hishikha Reesaul
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Sidra Kashif
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Mahboobeh Behruznia
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Conor J. Meehan
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Maria Rosa Domingo-Sananes
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, Nottingham Trent University, Clifton Campus, College Drive, Clifton, Nottingham NG11 8NS UK
| |
Collapse
|
7
|
El Megdar S, Fayzi L, Elkheloui R, Laktib A, Bourouache M, El Boulani A, Abou Oualid H, Cherifi K, Msanda F, Hassi M, Mimouni R, Hamadi F. Biological Synthesis of Silver Nanoparticles from Lavandula mairei Humbert: Antibacterial and Antioxidant Activities. Curr Microbiol 2024; 81:151. [PMID: 38647541 DOI: 10.1007/s00284-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Hospital-acquired infections involving carbapenem-resistant Acinetobacter baumannii (A. baumannii) and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae pose significant challenges in the intensive care units. The lack of novel antimicrobial drugs amplifies the urgency to explore innovative management strategies. Nanotechnology, with its ability to generate nanoparticles possessing specific properties beneficial in drug delivery and nanomedicine, stands as a pivotal research domain. The objective of this study was to synthesize, for the first time, biologically silver nanoparticles (Ag-NPs) from Lavandula mairei Humbert (L. mairei) plant. The biosynthesized Ag-NPs were characterized by UV-visible spectral analysis, X-Ray diffraction Analysis, Fourier transform infrared spectroscopy analysis, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy. Subsequently, the antibacterial and antioxidant activities of Ag-NPs were assessed using the micro-dilution method, DPPH test and FRAP assay, respectively. The green-synthesized Ag-NPs exhibited high antibacterial activity against ESBL-producing multidrug-resistant (MDR) strains and against carbapenem-resistant and non-carbapenem-resistant strains of A. baumannii, as well as a very interesting antioxidant activity. The present study suggests that these results hold very promising for the potential application of biologically synthesized Ag-NPs from L. mairei (Ag-LM-NPs) in the invention of novel antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Soufiane El Megdar
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Lahbib Fayzi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Raja Elkheloui
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Asma Laktib
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Bourouache
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Abdellah El Boulani
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Hicham Abou Oualid
- Green Energy Park, Institut de Recherche en Energie Solaire Et Energies Nouvelles (IRESEN), Benguerir, Morocco
| | - Khalil Cherifi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fouad Msanda
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Hassi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Rachida Mimouni
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
8
|
Shastry RP, Abhinand CS. Targeting the Pseudomonas aeruginosa quorum sensing system to inhibit virulence factors and eradicate biofilm formation using AHL-analogue phytochemicals. J Biomol Struct Dyn 2024; 42:1956-1965. [PMID: 37097921 DOI: 10.1080/07391102.2023.2202270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Quorum sensing plays a major role in the expression of virulence and development of biofilm in the human pathogen Pseudomonas aeruginosa. Natural compounds are well-known for their antibacterial characteristics by blocking various metabolic pathways. The goal of this study is to find natural compounds that mimic AHL (Acyl homoserine lactone) and suppress virulence in P. aeruginosa, which is triggered by quorum sensing-dependent pathways as an alternative drug development strategy. To support this rationale, functional network analysis and in silico investigations were carried out to find natural AHL analogues, followed by molecular docking studies. Out of the 16 top-hit AHL analogues derived from phytochemicals, seven ligands were found to bind to the quorum sensing activator proteins. Cassialactone, an AHL analogue, exhibited the highest binding affinity for RhlI, RhlR, and PqsE of P. aeruginosa, with a docking score of -9.4, -8.9, and -8.7 kcal/mol, respectively. 2(5H)-Furanone, a well-known inhibitor, was also docked to compare the docking score and intermolecular interactions between the ligand and the target protein. Furthermore, molecular dynamics simulations and binding free energy calculations were performed to determine the stability of the docked complexes. Additionally, the ADME properties of the analogues were also analyzed to evaluate the pharmacological parameters. Functional network analysis further showed that the interconnectedness of proteins such as RhlI, RhlR, LasI, and PqsE with the virulence and biofilm phenotype of the pathogen could offer potential as a therapeutic target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
9
|
Durand R, Jalbert-Ross J, Fijarczyk A, Dubé AK, Landry CR. Cross-feeding affects the target of resistance evolution to an antifungal drug. PLoS Genet 2023; 19:e1011002. [PMID: 37856537 PMCID: PMC10617708 DOI: 10.1371/journal.pgen.1011002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Pathogenic fungi are a cause of growing concern. Developing an efficient and safe antifungal is challenging because of the similar biological properties of fungal and host cells. Consequently, there is an urgent need to better understand the mechanisms underlying antifungal resistance to prolong the efficacy of current molecules. A major step in this direction would be to be able to predict or even prevent the acquisition of resistance. We leverage the power of experimental evolution to quantify the diversity of paths to resistance to the antifungal 5-fluorocytosine (5-FC), commercially known as flucytosine. We generated hundreds of independent 5-FC resistant mutants derived from two genetic backgrounds from wild isolates of Saccharomyces cerevisiae. Through automated pin-spotting, whole-genome and amplicon sequencing, we identified the most likely causes of resistance for most strains. Approximately a third of all resistant mutants evolved resistance through a pleiotropic drug response, a potentially novel mechanism in response to 5-FC, marked by cross-resistance to fluconazole. These cross-resistant mutants are characterized by a loss of respiration and a strong tradeoff in drug-free media. For the majority of the remaining two thirds, resistance was acquired through loss-of-function mutations in FUR1, which encodes an important enzyme in the metabolism of 5-FC. We describe conditions in which mutations affecting this particular step of the metabolic pathway are favored over known resistance mutations affecting a step upstream, such as the well-known target cytosine deaminase encoded by FCY1. This observation suggests that ecological interactions may dictate the identity of resistance hotspots.
Collapse
Affiliation(s)
- Romain Durand
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Jordan Jalbert-Ross
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
| | - Anna Fijarczyk
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Alexandre K. Dubé
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Christian R. Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5205. [PMID: 37626093 PMCID: PMC10457284 DOI: 10.1038/s41467-023-40974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
Collapse
Affiliation(s)
- Eva Stadler
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Lukas Friedrich
- Medicinal Chemistry & Drug Design Global Research & Development, Discovery Technologies, Merck Healthcare, 64293, Darmstadt, Germany
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Claudia Demarta-Gatsi
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Weill Cornell Medical College, New York, NY, 10021, USA
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Abdoulaye A Djimdé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, DD1 4HN, Scotland, UK
| | - Laurent Dembélé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David S Khoury
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland.
| |
Collapse
|
11
|
Alexander HK. Quantifying stochastic establishment of mutants in microbial adaptation. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001365. [PMID: 37561015 PMCID: PMC10482372 DOI: 10.1099/mic.0.001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Studies of microbial evolution, especially in applied contexts, have focused on the role of selection in shaping predictable, adaptive responses to the environment. However, chance events - the appearance of novel genetic variants and their establishment, i.e. outgrowth from a single cell to a sizeable population - also play critical initiating roles in adaptation. Stochasticity in establishment has received little attention in microbiology, potentially due to lack of awareness as well as practical challenges in quantification. However, methods for high-replicate culturing, mutant labelling and detection, and statistical inference now make it feasible to experimentally quantify the establishment probability of specific adaptive genotypes. I review methods that have emerged over the past decade, including experimental design and mathematical formulas to estimate establishment probability from data. Quantifying establishment in further biological settings and comparing empirical estimates to theoretical predictions represent exciting future directions. More broadly, recognition that adaptive genotypes may be stochastically lost while rare is significant both for interpreting common lab assays and for designing interventions to promote or inhibit microbial evolution.
Collapse
Affiliation(s)
- Helen K. Alexander
- Institute of Ecology & Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Czuppon P, Day T, Débarre F, Blanquart F. A stochastic analysis of the interplay between antibiotic dose, mode of action, and bacterial competition in the evolution of antibiotic resistance. PLoS Comput Biol 2023; 19:e1011364. [PMID: 37578976 PMCID: PMC10449190 DOI: 10.1371/journal.pcbi.1011364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
The use of an antibiotic may lead to the emergence and spread of bacterial strains resistant to this antibiotic. Experimental and theoretical studies have investigated the drug dose that minimizes the risk of resistance evolution over the course of treatment of an individual, showing that the optimal dose will either be the highest or the lowest drug concentration possible to administer; however, no analytical results exist that help decide between these two extremes. To address this gap, we develop a stochastic mathematical model of bacterial dynamics under antibiotic treatment. We explore various scenarios of density regulation (bacterial density affects cell birth or death rates), and antibiotic modes of action (biostatic or biocidal). We derive analytical results for the survival probability of the resistant subpopulation until the end of treatment, the size of the resistant subpopulation at the end of treatment, the carriage time of the resistant subpopulation until it is replaced by a sensitive one after treatment, and we verify these results with stochastic simulations. We find that the scenario of density regulation and the drug mode of action are important determinants of the survival of a resistant subpopulation. Resistant cells survive best when bacterial competition reduces cell birth and under biocidal antibiotics. Compared to an analogous deterministic model, the population size reached by the resistant type is larger and carriage time is slightly reduced by stochastic loss of resistant cells. Moreover, we obtain an analytical prediction of the antibiotic concentration that maximizes the survival of resistant cells, which may help to decide which drug dosage (not) to administer. Our results are amenable to experimental tests and help link the within and between host scales in epidemiological models.
Collapse
Affiliation(s)
- Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, Paris, France
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen’s University, Kingston, Canada
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| |
Collapse
|
13
|
Witzany C, Rolff J, Regoes RR, Igler C. The pharmacokinetic-pharmacodynamic modelling framework as a tool to predict drug resistance evolution. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001368. [PMID: 37522891 PMCID: PMC10433423 DOI: 10.1099/mic.0.001368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Pharmacokinetic-pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.
Collapse
Affiliation(s)
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Gifford DR, Berríos-Caro E, Joerres C, Suñé M, Forsyth JH, Bhattacharyya A, Galla T, Knight CG. Mutators can drive the evolution of multi-resistance to antibiotics. PLoS Genet 2023; 19:e1010791. [PMID: 37311005 DOI: 10.1371/journal.pgen.1010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.
Collapse
Affiliation(s)
- Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Ernesto Berríos-Caro
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Joerres
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marc Suñé
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jessica H Forsyth
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tobias Galla
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, Palma de Mallorca, Spain
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Kosterlitz O, Huisman JS. Guidelines for the estimation and reporting of plasmid conjugation rates. Plasmid 2023; 126:102685. [PMID: 37121291 DOI: 10.1016/j.plasmid.2023.102685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Conjugation is a central characteristic of plasmid biology and an important mechanism of horizontal gene transfer in bacteria. However, there is little consensus on how to accurately estimate and report plasmid conjugation rates, in part due to the wide range of available methods. Given the similarity between approaches, we propose general reporting guidelines for plasmid conjugation experiments. These constitute best practices based on recent literature about plasmid conjugation and methods to measure conjugation rates. In addition to the general guidelines, we discuss common theoretical assumptions underlying existing methods to estimate conjugation rates and provide recommendations on how to avoid violating these assumptions. We hope this will aid the implementation and evaluation of conjugation rate measurements, and initiate a broader discussion regarding the practice of quantifying plasmid conjugation rates.
Collapse
Affiliation(s)
- Olivia Kosterlitz
- Department of Biology, University of Washington, 3747 W Stevens Way NE, Life Sciences Bldg, Seattle, Washington, United States of America.
| | - Jana S Huisman
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| |
Collapse
|
16
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Bogri A, Otani S, Aarestrup FM, Brinch C. Interplay between strain fitness and transmission frequency determines prevalence of antimicrobial resistance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.981377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The steep rise of infections caused by bacteria that are resistant to antimicrobial agents threatens global health. However, the association between antimicrobial use and the prevalence of resistance is not straightforward. Therefore, it is necessary to quantify the importance of additional factors that affect this relationship. We theoretically explore how the prevalence of resistance is affected by the combination of three factors: antimicrobial use, bacterial transmission, and fitness cost of resistance. We present a model that combines within-host, between-hosts and between-populations dynamics, built upon the competitive Lotka-Volterra equations. We developed the model in a manner that allows future experimental validation of the findings with single isolates in the laboratory. Each host may carry two strains (susceptible and resistant) that represent the host’s commensal microbiome and are not the target of the antimicrobial treatment. The model simulates a population of hosts who are treated periodically with antibiotics and transmit bacteria to each other. We show that bacterial transmission results in strain co-existence. Transmission disseminates resistant bacteria in the population, increasing the levels of resistance. Counterintuitively, when the cost of resistance is low, high transmission frequencies reduce resistance prevalence. Transmission between host populations leads to more similar resistance levels, increasing the susceptibility of the population with higher antimicrobial use. Overall, our results indicate that the interplay between bacterial transmission and strain fitness affects the prevalence of resistance in a non-linear way. We then place our results within the context of ecological theory, particularly on temporal niche partitioning and metapopulation rescue, and we formulate testable experimental predictions for future research.
Collapse
|
18
|
Le D, Akiyama T, Weiss D, Kim M. Dissociation kinetics of small-molecule inhibitors in Escherichia coli is coupled to physiological state of cells. Commun Biol 2023; 6:223. [PMID: 36841892 PMCID: PMC9968327 DOI: 10.1038/s42003-023-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Bioactive small-molecule inhibitors represent a treasure chest for future drugs. In vitro high-throughput screening is a common approach to identify the small-molecule inhibitors that bind tightly to purified targets. Here, we investigate the inhibitor-target binding/unbinding kinetics in E. coli cells using a benzimidazole-derivative DNA inhibitor as a model system. We find that its unbinding rate is not constant but depends on cell growth rate. This dependence is mediated by the cellular activity, forming a feedback loop with the inhibitor's activity. In accordance with this feedback, we find cell-to-cell heterogeneity in inhibitor-target interaction, leading to co-existence of two distinct subpopulations: actively growing cells that dissociate the inhibitors from the targets and non-growing cells that do not. We find similar heterogeneity for other clinical DNA inhibitors. Our studies reveal a mechanism that couples inhibitor-target kinetics to cell physiology and demonstrate the significant effect of this coupling on drug efficacy.
Collapse
Affiliation(s)
- Dai Le
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Sheets MB, Tague N, Dunlop MJ. An optogenetic toolkit for light-inducible antibiotic resistance. Nat Commun 2023; 14:1034. [PMID: 36823420 PMCID: PMC9950086 DOI: 10.1038/s41467-023-36670-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
Collapse
Affiliation(s)
- Michael B Sheets
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Nathan Tague
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Watkins ER, Kalizang'Oma A, Gori A, Gupta S, Heyderman RS. Factors affecting antimicrobial resistance in Streptococcus pneumoniae following vaccination introduction. Trends Microbiol 2022; 30:1135-1145. [PMID: 35843855 DOI: 10.1016/j.tim.2022.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, meningitis, and septicaemia worldwide. Pneumococcal antimicrobial resistance (AMR) has been highlighted by the WHO as an important public health concern, with emerging serotypes showing resistance to multiple antibiotics. Indeed, although the introduction of pneumococcal conjugate vaccines (PCVs) has been associated with an overall decline in pneumococcal AMR, there have been increases in prevalence of potentially disease-causing AMR serotypes not targeted by vaccination. Here, we discuss a variety of evolutionary mechanisms at the host, pathogen, and environmental levels that may contribute to changes in the prevalence of pneumococcal AMR in the post-vaccination era. The relative importance of these factors may vary by population, pneumococcal lineage, geography, and time, leading to the complex relationship between vaccination, antibiotic use, and AMR.
Collapse
Affiliation(s)
| | - Akuzike Kalizang'Oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
21
|
Reding C. Predicting the re-distribution of antibiotic molecules caused by inter-species interactions in microbial communities. ISME COMMUNICATIONS 2022; 2:110. [PMID: 37938684 PMCID: PMC9723709 DOI: 10.1038/s43705-022-00186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2023]
Abstract
Microbes associate in nature forming complex communities, but they are often studied in purified form. Here I show that neighbouring species enforce the re-distribution of carbon and antimicrobial molecules, predictably changing drug efficacy with respect to standard laboratory assays. A simple mathematical model, validated experimentally using pairwise competition assays, suggests that differences in drug sensitivity between the competing species causes the re-distribution of drug molecules without affecting carbon uptake. The re-distribution of drug is even when species have similar drug sensitivity, reducing drug efficacy. But when their sensitivities differ the re-distribution is uneven: The most sensitive species accumulates more drug molecules, increasing efficacy against it. Drug efficacy tests relying on samples with multiple species are considered unreliable and unpredictable, but study demonstrates that efficacy in these cases can be qualitatively predicted. It also suggests that living in communities can be beneficial even when all species compete for a single carbon source, as the relationship between cell density and drug required to inhibit their growth may be more complex than previously thought.
Collapse
Affiliation(s)
- Carlos Reding
- Department of Biosciences, University of Exeter, EX4 4QD, Exeter, UK.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
22
|
Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Aly SA. Nanosized Combined Antimicrobial Drugs Decreased Emergence of Resistance in Escherichia coli: A Future Promise. Microb Drug Resist 2022; 28:972-979. [DOI: 10.1089/mdr.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Safy Hadiya
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Reham A. Ibrahem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, Egypt
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Sherine A. Aly
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
23
|
Moffett AS, Thomas PJ, Hinczewski M, Eckford AW. Cheater suppression and stochastic clearance through quorum sensing. PLoS Comput Biol 2022; 18:e1010292. [PMID: 35901008 PMCID: PMC9333318 DOI: 10.1371/journal.pcbi.1010292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully understood. In this study, we reveal unexpected effects of regulating public good production through quorum sensing on bacterial population dynamics, showing that quorum sensing can be a collectively harmful alternative to unregulated production. We analyze a birth-death model of bacterial population dynamics accounting for public good production and the presence of non-producing cheaters. Our model demonstrates that when demographic noise is a factor, the consequences of controlling public good production according to quorum sensing depend on the cost of public good production and the growth rate of populations in the absence of public goods. When public good production is inexpensive, quorum sensing is a destructive alternative to unconditional production, in terms of the mean population extinction time. When costs are higher, quorum sensing becomes a constructive strategy for the producing strain, both stabilizing cooperation and decreasing the risk of population extinction. Quorum sensing is a process through which bacteria can regulate gene expression according to their population density. The reasons for why bacteria use quorum sensing to regulate production of “public goods”, biochemical products that benefit nearby bacteria, are not entirely clear. We use mathematical modeling to explore how quorum sensing compares to other strategies for controlling production of public goods, namely unconditional production independent on population density, in small populations of bacteria where the random nature of growth is significant. Our model captures both how likely “cheater” strains, which do not produce public goods but benefit from them, are to take over a population and how long on average the population will last before going extinct. We find that depending on how expensive public good production is and how critical public goods are for growth, quorum sensing can decrease or increase the mean time to extinction compared with unconditional production, while always reducing the likelihood of cheaters taking over. Our results could have important implications for the growth of bacterial infections, for example Pseudomonas aeruginosa infections of the lungs of cystic fibrosis patients.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Andrew W. Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Kosterlitz O, Muñiz Tirado A, Wate C, Elg C, Bozic I, Top EM, Kerr B. Estimating the transfer rates of bacterial plasmids with an adapted Luria–Delbrück fluctuation analysis. PLoS Biol 2022; 20:e3001732. [PMID: 35877684 PMCID: PMC9352209 DOI: 10.1371/journal.pbio.3001732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise. Here, we take a different approach to estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to capturing the random nature of plasmid conjugation, our new methodology, the Luria–Delbrück method (“LDM”), can be used on a diverse set of bacterial systems, including cases for which current approaches are inaccurate. A notable example involves plasmid transfer between different strains or species where the rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each population within the assay. Using stochastic simulations and experiments, we show that the LDM has high accuracy and precision for estimation of transfer rates compared to the most widely used methods, which can produce estimates that differ from the LDM estimate by orders of magnitude. Plasmid transfer can often spread resistance between important clinical pathogens. This study shows that widely used methods can lead to biased estimates of plasmid transfer rate by several orders of magnitude, and presents a new approach, inspired by the classic Luria-Delbrück approach, for accurately assessing this fundamental rate parameter
Collapse
Affiliation(s)
- Olivia Kosterlitz
- Biology Department, University of Washington, Seattle, Washington, United States of America
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- * E-mail: (OK); (BK)
| | - Adamaris Muñiz Tirado
- Biology Department, University of Washington, Seattle, Washington, United States of America
| | - Claire Wate
- Biology Department, University of Washington, Seattle, Washington, United States of America
| | - Clint Elg
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- Department of Biological Sciences and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Eva M. Top
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- Department of Biological Sciences and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin Kerr
- Biology Department, University of Washington, Seattle, Washington, United States of America
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America
- * E-mail: (OK); (BK)
| |
Collapse
|
25
|
Droplet-based methods for tackling antimicrobial resistance. Curr Opin Biotechnol 2022; 76:102755. [PMID: 35841864 DOI: 10.1016/j.copbio.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Application of droplet-based methods enables (i) faster detection, (ii) increased sensitivity, (iii) characterization of the level of heterogeneity in response to antibiotics by bacterial populations, and (iv) expanded screening of the effectiveness of antibiotic combinations. Hereby, we discuss the key steps and parameters of droplet-based experiments to investigate antimicrobial resistance. We also review recent findings accomplished with these methods and highlight their advantages and capacity to yield new insights into the problem of antimicrobial resistance.
Collapse
|
26
|
Saebelfeld M, Das SG, Hagenbeek A, Krug J, de Visser JAGM. Stochastic establishment of β-lactam-resistant Escherichia coli mutants reveals conditions for collective resistance. Proc Biol Sci 2022; 289:20212486. [PMID: 35506221 PMCID: PMC9065960 DOI: 10.1098/rspb.2021.2486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For antibiotic resistance to arise, new resistant mutants must establish in a bacterial population before they can spread via natural selection. Comprehending the stochastic factors that influence mutant establishment is crucial for a quantitative understanding of antibiotic resistance emergence. Here, we quantify the single-cell establishment probability of four Escherichia coli strains expressing β-lactamase alleles with different activity against the antibiotic cefotaxime, as a function of antibiotic concentration in both unstructured (liquid) and structured (agar) environments. We show that concentrations well below the minimum inhibitory concentration (MIC) can substantially hamper establishment, particularly for highly resistant mutants. While the pattern of establishment suppression is comparable in both tested environments, we find greater variability in establishment probability on agar. Using a simple branching model, we investigate possible sources of this stochasticity, including environment-dependent lineage variability, but cannot reject other possible causes. Lastly, we use the single-cell establishment probability to predict each strain's MIC in the absence of social interactions. We observe substantially higher measured than predicted MIC values, particularly for highly resistant strains, which indicates cooperative effects among resistant cells at large cell numbers, such as in standard MIC assays.
Collapse
Affiliation(s)
- Manja Saebelfeld
- Institute for Biological Physics, University of Cologne, Cologne, Germany,Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Suman G. Das
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Arno Hagenbeek
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | |
Collapse
|
27
|
Influence of Sub-Inhibitory Dosage of Cefotaxime on Multidrug Resistant Staphylococcus haemolyticus Isolated from Sick Neonatal Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11030360. [PMID: 35326823 PMCID: PMC8944431 DOI: 10.3390/antibiotics11030360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus haemolyticus has emerged to be a frequently encountered late-onset sepsis pathogen among newborn infants. Critical care of neonates involves substantial usage of antibiotics and these pathogens are often exposed to sub-optimal doses of antibiotics which can augment maintenance of selection determinants and a range of physiological effects, prime among them being biofilm formation. Therefore, in this study, the outcome of a sub-inhibitory dosage of a commonly prescribed third-generation antibiotic, cefotaxime (CTX), on multidrug resistant (MDR) S. haemolyticus, was investigated. A total of 19 CTX-resistant, MDR and 5 CTX-susceptible strains isolated from neonates were included. Biofilm-forming abilities of S. haemolyticus isolates in the presence of sub-optimal CTX (30 μg/mL) were determined by crystal violet assays and extracellular DNA (eDNA) quantitation. CTX was found to significantly enhance biofilm production among the non-susceptible isolates (p-valueWilcoxintest—0.000008) with an increase in eDNA levels (p-valueWilcoxintest—0.000004). Further, in the absence of antibiotic selection in vitro, populations of MDR isolates, JNM56C1 and JNM60C2 remained antibiotic non-susceptible after >500 generations of growth. These findings demonstrate that sub-optimal concentration of CTX induces biofilm formation and short-term non-exposure to antibiotics does not alter non-susceptibility among S. haemolyticus isolates under the tested conditions.
Collapse
|
28
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
29
|
Effect of methylpyrazoles and coumarin association on the growth of Gram-negative bacteria. Arch Microbiol 2022; 204:160. [PMID: 35113268 DOI: 10.1007/s00203-022-02773-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
One approach to overcome the antimicrobial resistance of many pathogens is to associate compounds with antimicrobial properties and obtain combinations superior compared to the effect of each compound. To identify a possible potentiating effect, we tested and analyzed the inhibitory effect of the combination of coumarin with two pyrazole derivatives, 1,1'-methandiylbis (3,5-dimethyl-1H-pyrazole (AM4) and 3,5-dimethyl-1H-pyrazol-1-yl) methanol 3,5-dimethyl-1-hydroxymethylpyrazol (SAM4). A clear synergistic effect was recorded when coumarin was associated with SAM4, in which case the Fractional Inhibitory Concentration Index (FICI) had a value equal to 0.468 for Citrobacter freundii, Proteus mirabilis, and E. coli. In the other cases, however, both the association between coumarin and AM4 and coumarin SAM4 had only an additive effect (FICI = 0.937-1.00). The bactericidal effect of the coumarin-pyrazole combination over time was better in all cases compared to the effect of the compounds used separately. The viability of the bacterial cells at sub-inhibitory concentrations of the tested compounds was variable, depending on both the type of compound and the bacterial strain.
Collapse
|
30
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Mujaddidi N, Nisa S, Al Ayoubi S, Bibi Y, Khan S, Sabir M, Zia M, Ahmad S, Qayyum A. Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi J Biol Sci 2021; 28:6432-6440. [PMID: 34764760 PMCID: PMC8568839 DOI: 10.1016/j.sjbs.2021.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022] Open
Abstract
The emergence of multidrug resistance in pathogenic bacteria limits the utilization of available antibiotics. The development of alternate options to treat infectious diseases is the need of the day.The present study was aimed to synthesize, characterize and evaluate the bioactive properties of silver nanoparticles. Endophytic bacterium Bacillus cereus (MT193718) isolated from Berberis lycium was used to synthesize biocompatible silver nanoparticles. Antibacterial properties of AgNPs were evaluated against clinically isolated multidrug-resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. AgNPs indicated significant antibacterial activity against S. aureus and K. pneumoniae fwith a zone of inhibition of 17 and 18 mm at a concentration of 1000 µg/ mL with minimum inhibitory concentration of 15.6 and 62.5 µg/mL respectively. Significant antioxidant activity with an IC50 value of 9.5 µg/mL was recorded. Biosynthesized AgNPs were found compatible with red blood cells at a concentration of 31.5 µg/ml with no clumping of erythrocytes. The study suggested that AgNPs synthesized by the endophytic bacterium Bacillus cereus are biologically active and can be used as antioxidant and antibacterial agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Neelam Mujaddidi
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Samha Al Ayoubi
- Department of General Sciences, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Salman Khan
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Maimoona Sabir
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| |
Collapse
|
32
|
Kuosmanen T, Cairns J, Noble R, Beerenwinkel N, Mononen T, Mustonen V. Drug-induced resistance evolution necessitates less aggressive treatment. PLoS Comput Biol 2021; 17:e1009418. [PMID: 34555024 PMCID: PMC8491903 DOI: 10.1371/journal.pcbi.1009418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/05/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing body of experimental evidence suggests that anticancer and antimicrobial therapies may themselves promote the acquisition of drug resistance by increasing mutability. The successful control of evolving populations requires that such biological costs of control are identified, quantified and included to the evolutionarily informed treatment protocol. Here we identify, characterise and exploit a trade-off between decreasing the target population size and generating a surplus of treatment-induced rescue mutations. We show that the probability of cure is maximized at an intermediate dosage, below the drug concentration yielding maximal population decay, suggesting that treatment outcomes may in some cases be substantially improved by less aggressive treatment strategies. We also provide a general analytical relationship that implicitly links growth rate, pharmacodynamics and dose-dependent mutation rate to an optimal control law. Our results highlight the important, but often neglected, role of fundamental eco-evolutionary costs of control. These costs can often lead to situations, where decreasing the cumulative drug dosage may be preferable even when the objective of the treatment is elimination, and not containment. Taken together, our results thus add to the ongoing criticism of the standard practice of administering aggressive, high-dose therapies and motivate further experimental and clinical investigation of the mutagenicity and other hidden collateral costs of therapies.
Collapse
Affiliation(s)
- Teemu Kuosmanen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Robert Noble
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Present address: Department of Mathematics, City, University of London, London, United Kingdom
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tommi Mononen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Saebelfeld M, Das SG, Brink J, Hagenbeek A, Krug J, de Visser JAGM. Antibiotic Breakdown by Susceptible Bacteria Enhances the Establishment of β-Lactam Resistant Mutants. Front Microbiol 2021; 12:698970. [PMID: 34489889 PMCID: PMC8417073 DOI: 10.3389/fmicb.2021.698970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
For a better understanding of the evolution of antibiotic resistance, it is imperative to study the factors that determine the initial establishment of mutant resistance alleles. In addition to the antibiotic concentration, the establishment of resistance alleles may be affected by interactions with the surrounding susceptible cells from which they derive, for instance via the release of nutrients or removal of the antibiotic. Here, we investigate the effects of social interactions with surrounding susceptible cells on the establishment of Escherichia coli mutants with increasing β-lactamase activity (i.e., the capacity to hydrolyze β-lactam antibiotics) from single cells under the exposure of the antibiotic cefotaxime (CTX) on agar plates. We find that relatively susceptible cells, expressing a β-lactamase with very low antibiotic-hydrolyzing activity, increase the probability of mutant cells to survive and outgrow into colonies due to the active breakdown of the antibiotic. However, the rate of breakdown by the susceptible strain is much higher than expected based on its low enzymatic activity. A detailed theoretical model suggests that this observation may be explained by cell filamentation causing delayed lysis. While susceptible cells may hamper the spread of higher-resistant β-lactamase mutants at relatively high frequencies, our findings show that they promote their initial establishment.
Collapse
Affiliation(s)
- Manja Saebelfeld
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Suman G. Das
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jorn Brink
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Arno Hagenbeek
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - J. Arjan G. M. de Visser
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
34
|
Akiyama T, Kim M. Stochastic response of bacterial cells to antibiotics: its mechanisms and implications for population and evolutionary dynamics. Curr Opin Microbiol 2021; 63:104-108. [PMID: 34325154 DOI: 10.1016/j.mib.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022]
Abstract
The effectiveness of antibiotics against bacterial infections has been declining due to the emergence of resistance. Precisely understanding the response of bacteria to antibiotics is critical to maximizing antibiotic-induced bacterial eradication while minimizing the emergence of antibiotic resistance. Cell-to-cell heterogeneity in antibiotic susceptibility is observed across various bacterial species for a wide range of antibiotics. Heterogeneity in antibiotic susceptibility is not always due to the genetic differences. Rather, it can be caused by non-genetic mechanisms such as stochastic gene expression and biased partitioning upon cell division. Heterogeneous susceptibility leads to the stochastic growth and death of individual cells and stochastic fluctuations in population size. These fluctuations have important implications for the eradication of bacterial populations and the emergence of genotypic resistance.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
35
|
Atypical Genetic Basis of Pyrazinamide Resistance in Monoresistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.01916-20. [PMID: 33722890 PMCID: PMC8315952 DOI: 10.1128/aac.01916-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pyrazinamide (PZA) is a widely used antitubercular chemotherapeutic. Typically, PZA resistance (PZA-R) emerges in Mycobacterium tuberculosis strains with existing resistance to isoniazid and rifampin (i.e., multidrug resistance [MDR]) and is conferred by loss-of-function pncA mutations that inhibit conversion to its active form, pyrazinoic acid (POA). PZA-R departing from this canonical scenario is poorly understood. Here, we genotyped pncA and purported alternative PZA-R genes (panD, rpsA, and clpC1) with long-read sequencing of 19 phenotypically PZA-monoresistant isolates collected in Sweden and compared their phylogenetic and genomic characteristics to a large set of MDR PZA-R (MDRPZA-R) isolates. We report the first association of ClpC1 mutations with PZA-R in clinical isolates, in the ClpC1 promoter (clpC1p−138) and the N terminus of ClpC1 (ClpC1Val63Ala). Mutations have emerged in both these regions under POA selection in vitro, and the N-terminal region of ClpC1 has been implicated further, through its POA-dependent efficacy in PanD proteolysis. ClpC1Val63Ala mutants spanned 4 Indo-Oceanic sublineages. Indo-Oceanic isolates invariably harbored ClpC1Val63Ala and were starkly overrepresented (odds ratio [OR] = 22.2, P < 0.00001) among PZA-monoresistant isolates (11/19) compared to MDRPZA-R isolates (5/80). The genetic basis of Indo-Oceanic isolates’ overrepresentation in PZA-monoresistant tuberculosis (TB) remains undetermined, but substantial circumstantial evidence suggests that ClpC1Val63Ala confers low-level PZA resistance. Our findings highlight ClpC1 as potentially clinically relevant for PZA-R and reinforce the importance of genetic background in the trajectory of resistance development.
Collapse
|
36
|
Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, Quinn A, Del Barrio-Tofiño E, López-Causapé C, Hedge J, Torrens G, Van der Schalk T, Xavier BB, Fernández-Cuenca F, Arenzana A, Recanatini C, Timbermont L, Sifakis F, Ruzin A, Ali O, Lammens C, Goossens H, Kluytmans J, Kumar-Singh S, Oliver A, Malhotra-Kumar S, MacLean C. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat Commun 2021; 12:2460. [PMID: 33911082 PMCID: PMC8080559 DOI: 10.1038/s41467-021-22814-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.
Collapse
Affiliation(s)
| | | | - Natalia Kapel
- University of Oxford, Department of Zoology, Oxford, UK
| | - Fien H R de Winter
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Pramod Jangir
- University of Oxford, Department of Zoology, Oxford, UK
| | - Angus Quinn
- University of Oxford, Department of Zoology, Oxford, UK
| | | | | | - Jessica Hedge
- University of Oxford, Department of Zoology, Oxford, UK
| | - Gabriel Torrens
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Thomas Van der Schalk
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | | - Angel Arenzana
- Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - Claudia Recanatini
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | | - Alexey Ruzin
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Omar Ali
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
- Viela Bio, Gaithersburg, MD, USA
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Microvida Laboratory for Medical Microbiology and Department of Infection Control, Amphia Hospital, Breda, The Netherlands
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Molecular Pathology Group, Faculty of Medicine-Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Belgium
| | - Antonio Oliver
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Craig MacLean
- University of Oxford, Department of Zoology, Oxford, UK.
| |
Collapse
|
37
|
Zhao X, Illing R, Ruelens P, Bachmann M, Cuniberti G, de Visser JAGM, Baraban L. Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors. LAB ON A CHIP 2021; 21:1492-1502. [PMID: 33881032 DOI: 10.1039/d0lc01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Rico Illing
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Philip Ruelens
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Larysa Baraban
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
38
|
Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat Ecol Evol 2021; 5:431-441. [PMID: 33526890 DOI: 10.1038/s41559-020-01385-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Tackling antibiotic resistance necessitates deep understanding of how resource competition within and between species modulates the fitness of resistant microbes. Recent advances in ecological coexistence theory offer a powerful framework to probe the mechanisms regulating intra- and interspecific competition, but the significance of this body of theory to the problem of antibiotic resistance has been largely overlooked. In this Perspective, we draw on emerging ecological theory to illustrate how changes in resource niche overlap can be equally important as changes in competitive ability for understanding costs of resistance and the persistence of resistant pathogens in microbial communities. We then show how different temporal patterns of resource and antibiotic supply, alongside trade-offs in competitive ability at high and low resource concentrations, can have diametrically opposing consequences for the coexistence and exclusion of resistant and susceptible strains. These insights highlight numerous opportunities for innovative experimental and theoretical research into the ecological dimensions of antibiotic resistance.
Collapse
|
39
|
Mutability of demographic noise in microbial range expansions. ISME JOURNAL 2021; 15:2643-2654. [PMID: 33746203 PMCID: PMC8397776 DOI: 10.1038/s41396-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022]
Abstract
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.
Collapse
|
40
|
Meirelles LA, Perry EK, Bergkessel M, Newman DK. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biol 2021; 19:e3001093. [PMID: 33690640 PMCID: PMC7946323 DOI: 10.1371/journal.pbio.3001093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Elena K. Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Megan Bergkessel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
41
|
Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics (Basel) 2020; 9:antibiotics9110770. [PMID: 33147736 PMCID: PMC7692380 DOI: 10.3390/antibiotics9110770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Diseases caused by Escherichia coli (E. coli) and Salmonella spp. can negatively impact turkey farming. The aim of this study was to isolate and characterize multidrug-resistant (MDR) E. coli and Salmonella spp. in healthy and diseased turkeys. A total of 30 fecal samples from healthy turkeys and 25 intestinal samples from diseased turkeys that died of enteritis were collected. Bacterial isolation and identification were based on biochemical properties and polymerase chain reaction (PCR). Antibiogram profiles were determined by disk diffusion. The tetracycline-resistance gene tetA was detected by PCR. All samples were positive for E. coli. Only 11 samples (11/30; 36.67%) were positive for Salmonella spp. from healthy turkeys, whereas 16 (16/25; 64%) samples were positive for Salmonella spp. from diseased turkeys. E. coli isolated from diseased turkeys showed higher resistance to levofloxacin, gentamicin, chloramphenicol, ciprofloxacin, streptomycin, and tetracycline. Salmonella spp. isolated from healthy turkeys exhibited higher resistance to gentamicin, chloramphenicol, ciprofloxacin, streptomycin, imipenem, and meropenem. All E. coli and Salmonella spp. from both healthy and diseased turkeys were resistant to erythromycin. Salmonella spp. from both healthy and diseased turkeys were resistant to tetracycline. Multidrug resistance was observed in both E. coli and Salmonella spp. from diseased turkeys. Finally, the tetA gene was detected in 93.1% of the E. coli isolates and in 92.59% of the Salmonella spp. isolates. To the best of our knowledge, this is the first study to isolate and characterize tetA-gene-containing MDR E. coli and Salmonella spp. from healthy and diseased turkeys in Bangladesh. Both microorganisms are of zoonotic significance and represent a significant public health challenge.
Collapse
|
42
|
Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat Commun 2020; 11:3970. [PMID: 32769975 PMCID: PMC7414891 DOI: 10.1038/s41467-020-17735-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
The rise of antibiotic resistance in many bacterial pathogens has been driven by the spread of a few successful strains, suggesting that some bacteria are genetically pre-disposed to evolving resistance. Here, we test this hypothesis by challenging a diverse set of 222 isolates of Staphylococcus aureus with the antibiotic ciprofloxacin in a large-scale evolution experiment. We find that a single efflux pump, norA, causes widespread variation in evolvability across isolates. Elevated norA expression potentiates evolution by increasing the fitness benefit provided by DNA topoisomerase mutations under ciprofloxacin treatment. Amplification of norA provides a further mechanism of rapid evolution in isolates from the CC398 lineage. Crucially, chemical inhibition of NorA effectively prevents the evolution of resistance in all isolates. Our study shows that pre-existing genetic diversity plays a key role in shaping resistance evolution, and it may be possible to predict which strains are likely to evolve resistance and to optimize inhibitor use to prevent this outcome.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | - Jessica Hedge
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Natalia Kapel
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Bernadette Young
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
| |
Collapse
|