1
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
Zhang J, Ding W, Yin Z, Liu S, Zhao M, Xu Y, Liu J, Pan W, Peng S, Wei C, Zheng Z, Qin JJ, Wan J, Wang M. Interleukin-12p40 deficiency attenuates myocardial ferroptosis in doxorubicin-induced chronic cardiomyopathy by inhibiting Th17 differentiation and interleukin-17A production. Cardiovasc Res 2024; 120:2117-2133. [PMID: 39298642 DOI: 10.1093/cvr/cvae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Interleukin (IL)-12p40 is a common subunit of the bioactive cytokines IL-12 and IL-23, and it also has its own intrinsic functional activity. However, its role in doxorubicin-induced chronic cardiomyopathy (DICCM) as well as the underlying mechanisms are still unknown. METHODS AND RESULTS In this study, we used IL-12p40-knockout mice, IL-23p19-knockout mice, Rag1-knockout mice, a ferroptosis inhibitor, recombinant IL-12 (rIL-12), rIL-23, rIL-12p40, rIL-12p80, and anti-IL17A to investigate the effects of IL-12p40 on DICCM and elucidate the underlying mechanisms. We found that myocardial ferroptosis were increased in DICCM and that the inhibition of ferroptosis protected against DICCM. The expression of IL-12p40 was upregulated, and IL-12p40 was predominantly expressed by CD4+ T cells in the hearts of mice with DICCM. IL-12p40 knockout attenuated cardiac dysfunction, fibrosis and ferroptosis in DICCM, and similar results were observed in the context of CD4+ T cell IL-12p40 deficiency in Rag1-/- mice. Treatment with rIL-23, but not rIL-12, rIL-12p40 monomer or rIL-12p80, abolished the protective effects of IL-12p40 knockout. Moreover, rIL-23 treatment and IL-23p19 knockout exacerbated and ameliorated DICCM, respectively. IL-12p40 knockout might protect against DICCM by inhibiting Th17 differentiation and IL-17A production but not Th1, Th2 and Treg differentiation. Neutralizing IL-17A with an antibody also attenuated cardiac dysfunction, fibrosis, and ferroptosis. The IL-12p40/Th17/IL-17A axis might promote cardiomyocyte ferroptosis by activating TNF receptor-associated factor 6 (TRAF6)/mitogen-activated protein kinase (MAPK)/P53 signalling in DICCM. CONCLUSION Interleukin-12p40 deficiency protects against DICCM by inhibiting Th17 differentiation and the production of IL-17A, which plays critical roles in cardiomyocyte ferroptosis in DICCM via activating TRAF6/MAPK/P53 signalling. Our study may provide novel insights for the identification of therapeutic targets for treating DICCM in the clinic.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Walkenhorst M, Sonner JK, Meurs N, Engler JB, Bauer S, Winschel I, Woo MS, Raich L, Winkler I, Vieira V, Unger L, Salinas G, Lantz O, Friese MA, Willing A. Protective effect of TCR-mediated MAIT cell activation during experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:9287. [PMID: 39468055 PMCID: PMC11519641 DOI: 10.1038/s41467-024-53657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells express semi-invariant T cell receptors (TCR) for recognizing bacterial and yeast antigens derived from riboflavin metabolites presented on the non-polymorphic MHC class I-related protein 1 (MR1). Neuroinflammation in multiple sclerosis (MS) is likely initiated by autoreactive T cells and perpetuated by infiltration of additional immune cells, but the precise role of MAIT cells in MS pathogenesis remains unknown. Here, we use experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, and find an accumulation of MAIT cells in the inflamed central nervous system (CNS) enriched for MAIT17 (RORγt+) and MAIT1/17 (T-bet+RORγt+) subsets with inflammatory and protective features. Results from transcriptome profiling and Nur77GFP reporter mice show that these CNS MAIT cells are activated via cytokines and TCR. Blocking TCR activation with an anti-MR1 antibody exacerbates EAE, whereas enhancing TCR activation with the cognate antigen, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil, ameliorates EAE severity, potentially via the induction of amphiregulin (AREG). In summary, our findings suggest that TCR-mediated MAIT cell activation is protective in CNS inflammation, likely involving an induction of AREG.
Collapse
Affiliation(s)
- Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris Winkler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Olivier Lantz
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
van der Mescht MA, Steel HC, de Beer Z, Masenge A, Abdullah F, Ueckermann V, Anderson R, Rossouw TM. T-Cell Phenotypes and Systemic Cytokine Profiles of People Living with HIV Admitted to Hospital with COVID-19. Microorganisms 2024; 12:2149. [PMID: 39597537 PMCID: PMC11596914 DOI: 10.3390/microorganisms12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Whether SARS-CoV-2 infection leads to a higher mortality and morbidity in people living with HIV (PLWH) in Africa remains inconclusive. In this study, we explored the differences in the T-cell phenotypes between people with and without HIV on the day of admission (V1) and ±7 days later (V2), as well as their cytokine/chemokine profiles on V1. Patients admitted with COVID-19 were recruited between May 2020 and December 2021 from the Steve Biko Academic and Tshwane District Hospitals in Pretoria, South Africa. Of 174 patients, 37 (21%) were PLWH. T-cell profiles were determined by flow cytometry, and cytokine levels were determined using a multiplex suspension bead array. PLWH were significantly younger than those without HIV, and were more likely to be female. In an adjusted analysis, PLWH had higher percentages of CD4+ central memory (CM) programmed cell death protein 1 (PD-1)+, CD8+ effector memory (EM)2, and CD8+ EM4 CD57+ cells, as well as higher concentrations of interleukin (IL)-35 at admission. PLWH with CD4+ T-cell counts of >200 cells/mm3 had altered CD4+ and CD8+ T-cell profiles, lower levels of systemic inflammation measured by plasma ferritin and PCT levels, and less severe disease. PLWH with CD4+ T-cell counts of <200 cells/mm3 on admission had higher concentrations of IL-6 and lower levels of IL-29. At V2, the percentages of CD4+ CM PD-1+ T-cells and CD8+ EM4 T-cells co-expressing CD57 and PD-1 remained higher in PLWH, while all other CD8+ EM populations were lower. Fewer CD8+ EM T-cells after ±7 days of admission may be indicative of mechanisms inhibiting EM T-cell survival, as indicated by the higher expression of IL-35 and the T-cell maturation arrest observed in PLWH. This profile was not observed in PLWH with severe immunodeficiency, highlighting the need for differentiated care in the broader PLWH population.
Collapse
Affiliation(s)
- Mieke A. van der Mescht
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Zelda de Beer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
- Tshwane District Hospital, Pretoria 0084, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
- Office of AIDS and TB Research, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| |
Collapse
|
5
|
Bose A, Pahan K. Build muscles and protect myelin. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:175-182. [PMID: 39741558 PMCID: PMC11683878 DOI: 10.1515/nipt-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS. The β-hydroxy β-methylbutyrate (HMB) is a widely-used muscle-building supplement in human and recently it has been shown that low-dose HMB is capable of stimulating the differentiation of cultured OPCs to oligodendrocytes for remyelination. Moreover, other causes of autoimmune demyelination are the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and upregulation of autoimmune T-helper 1(Th1) and Th17 cells. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS in which the autoimmune demyelination is nicely visible. It has been reported that in EAE mice, oral HMB upregulates Tregs and decreases Th1 and Th17 responses, leading to remyelination in the CNS. Here, we analyze these newly-described features of HMB, highlighting the putative promyelinating nature of this supplement.
Collapse
Affiliation(s)
- Ahana Bose
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Jana M, Prieto S, Gorai S, Dasarathy S, Kundu M, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate stimulates the maturation of oligodendroglial progenitor cells to oligodendrocytes. J Neurochem 2024; 168:1340-1358. [PMID: 38419348 PMCID: PMC11260247 DOI: 10.1111/jnc.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Oligodendrocytes are the myelinating cells in the CNS and multiple sclerosis (MS) is a demyelinating disorder that is characterized by progressive loss of myelin. Although oligodendroglial progenitor cells (OPCs) should be differentiated into oligodendrocytes, for multiple reasons, OPCs fail to differentiate into oligodendrocytes in MS. Therefore, increasing the maturation of OPCs to oligodendrocytes may be of therapeutic benefit for MS. The β-hydroxy β-methylbutyrate (HMB) is a muscle-building supplement in humans and this study underlines the importance of HMB in stimulating the maturation of OPCs to oligodendrocytes. HMB treatment upregulated the expression of different maturation markers including PLP, MBP, and MOG in cultured OPCs. Double-label immunofluorescence followed by immunoblot analyses confirmed the upregulation of OPC maturation by HMB. While investigating mechanisms, we found that HMB increased the maturation of OPCs isolated from peroxisome proliferator-activated receptor β-/- (PPARβ-/-) mice, but not PPARα-/- mice. Similarly, GW6471 (an antagonist of PPARα), but not GSK0660 (an antagonist of PPARβ), inhibited HMB-induced maturation of OPCs. GW9662, a specific inhibitor of PPARγ, also could not inhibit HMB-mediated stimulation of OPC maturation. Furthermore, PPARα agonist GW7647, but neither PPARβ agonist GW0742 nor PPARγ agonist GW1929, alone increased the maturation of OPCs. Finally, HMB treatment of OPCs led to the recruitment of PPARα, but neither PPARβ nor PPARγ, to the PLP gene promoter. These results suggest that HMB stimulates the maturation of OPCs via PPARα and that HMB may have therapeutic prospects in remyelination.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Poddar J, Rangasamy SB, Pahan K. Therapeutic efficacy of cinnamein, a component of balsam of Tolu/Peru, in controlled cortical impact mouse model of TBI. Neurochem Int 2024; 176:105742. [PMID: 38641028 DOI: 10.1016/j.neuint.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Mondal S, Sheinin M, Rangasamy SB, Pahan K. Amelioration of experimental autoimmune encephalomyelitis by gemfibrozil in mice via PPARβ/δ: implications for multiple sclerosis. Front Cell Neurosci 2024; 18:1375531. [PMID: 38835441 PMCID: PMC11148333 DOI: 10.3389/fncel.2024.1375531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
It is important to describe effective and non-toxic therapies for multiple sclerosis (MS), an autoimmune demyelinating disease. Experimental autoimmune encephalomyelitis (EAE) is an immune-mediated inflammatory disease that serves as a model for MS. Earlier we and others have shown that, gemfibrozil, a lipid-lowering drug, exhibits therapeutic efficacy in EAE. However, the underlying mechanism was poorly understood. Although gemfibrozil is a known ligand of peroxisome proliferator-activated receptor α (PPARα), here, we established that oral administration of gemfibrozil preserved the integrity of blood-brain barrier (BBB) and blood-spinal cord barrier (BSB), decreased the infiltration of mononuclear cells into the CNS and inhibited the disease process of EAE in both wild type and PPARα-/- mice. On the other hand, oral gemfibrozil was found ineffective in maintaining the integrity of BBB/BSB, suppressing inflammatory infiltration and reducing the disease process of EAE in mice lacking PPARβ (formerly PPARδ), indicating an important role of PPARβ/δ, but not PPARα, in gemfibrozil-mediated preservation of BBB/BSB and protection of EAE. Regulatory T cells (Tregs) play a critical role in the disease process of EAE/MS and we also demonstrated that oral gemfibrozil protected Tregs in WT and PPARα-/- EAE mice, but not PPARβ-/- EAE mice. Taken together, our findings suggest that gemfibrozil, a known ligand of PPARα, preserves the integrity of BBB/BSB, enriches Tregs, and inhibits the disease process of EAE via PPARβ, but not PPARα.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Suresh B Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Peng Y, Zhang X, Tang Y, He S, Rao G, Chen Q, Xue Y, Jin H, Liu S, Zhou Z, Xiang Y. Role of autoreactive Tc17 cells in the pathogenesis of experimental autoimmune encephalomyelitis. NEUROPROTECTION 2024; 2:49-59. [DOI: 10.1002/nep3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024]
Abstract
AbstractBackgroundThe pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE—an animal model of MS) is primarily mediated by T cells. However, recent studies have only focused on interleukin (IL)‐17‐secreting CD4+ T‐helper cells, also known as Th17 cells. This study aimed to compare Th17 cells and IL‐17‐secreting CD8+ T‐cytotoxic cells (Tc17) in the context of MS/EAE.MethodsFemale C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptides 35–55 (MOG35–55), pertussis toxin, and complete Freund's adjuvant to establish the EAE animal model. T cells were isolated from the spleen (12–14 days postimmunization). CD4+ and CD8+ T cells were purified using isolation kit and then differentiated into Th17 and Tc17, respectively, using MOG35–55 and IL‐23. The secretion levels of interferon‐γ (IFN‐γ) and IL‐17 were measured via enzyme‐linked immunosorbent assay using cultured CD4+ and CD8+ T cell supernatants. The pathogenicity of Tc17 and Th17 cells was assessed through adoptive transfer (tEAE), with the clinical course assessed using an EAE score (0–5). Hematoxylin and eosin as well as Luxol fast blue staining were used to examine the spinal cord. Purified CD8+ CD3+ and CD4+ CD3+ cells differentiated into Tc17 and Th17 cells, respectively, were stimulated with MOG35–55 peptide for proliferation assays.ResultsThe results showed that Tc17 cells (15,951 ± 1985 vs. 55,709 ± 4196 cpm; p < 0.050) exhibited a weaker response to highest dose (20 μg/mL) MOG35–55 than Th17 cells. However, this response was not dependent on Th17 cells. After the 48 h stimulation, at the highest dose (20 μg/mL) of MOG35–55. Tc17 cells secreted lower levels of IFN‐γ (280.00 ± 15.00 vs. 556.67 ± 15.28 pg/mL, p < 0.050) and IL‐17 (102.67 ± 5.86 pg/mL vs. 288.33 ± 12.58 pg/mL; p < 0.050) than Th17 cells. Similar patterns were observed for IFN‐γ secretion at 96 and 144 h. Furthermore, Tc17 cell‐induced tEAE mice exhibited similar EAE scores to Th17 cell‐induced tEAE mice and also showed similar inflammation and demyelination.ConclusionThe degree of pathogenicity of Tc17 cells in EAE is lower than that of Th17 cells. Future investigation on different immune cells and EAE models is warranted to determine the mechanisms underlying MS.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Xiuli Zhang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yandan Tang
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shunqing He
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Guilan Rao
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Quan Chen
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Yahui Xue
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Hong Jin
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shu Liu
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Ziyang Zhou
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yun Xiang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
10
|
Jeong B, Pahan K. IL-12p40 Monomer: A Potential Player in Macrophage Regulation. IMMUNO 2024; 4:77-90. [PMID: 38435456 PMCID: PMC10907066 DOI: 10.3390/immuno4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Macrophages are myeloid phagocytic leukocytes whose functions are to protect against infections, mediate T-cell responses, and maintain tissue homeostasis. IL-12p40 monomer is a cytokine that is largely produced by macrophages, and it has, for the longest time, been considered a largely non-functional cytokine of the IL-12 family. However, new research has emerged that demonstrates that this p40 monomer may play a bigger role in shaping immune environments. To shed light on the specific effects of p40 monomer on macrophages and their surrounding environment, we showed, through cell culture studies, qPCR, ELISA, and immunofluorescence analyses, that the direct administration of recombinant p40 monomer to RAW 264.7 cells and primary lung macrophages stimulated the production of both pro-inflammatory (TNFα) and anti-inflammatory (IL-10) signals. Accordingly, p40 monomer prevented the full pro-inflammatory effects of LPS, and the neutralization of p40 monomer by mAb a3-3a stimulated the pro-inflammatory effects of LPS. Furthermore, we demonstrated that the intranasal administration of p40 monomer upregulated TNFα+IL-10+ macrophages in vivo in the lungs of mice. Collectively, these results indicate an important immunoregulatory function of p40 monomer in the upregulation of both pro- and anti-inflammatory molecules in macrophages.
Collapse
Affiliation(s)
- Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Raha S, Paidi RK, Dutta D, Pahan K. Cinnamic acid, a natural plant compound, exhibits neuroprotection in a mouse model of Sandhoff disease via PPARα. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:17-32. [PMID: 38532783 PMCID: PMC10961485 DOI: 10.1515/nipt-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Tay-Sachs disease (TSD) and its severe form Sandhoff disease (SD) are autosomal recessive lysosomal storage metabolic disorders, which often result into excessive GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Although patients with these diseases appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to early death accompanied by manifestation of motor difficulties and gradual loss of behavioral skills. Unfortunately, there is still no effective treatment available for TSD/SD. The present study highlights the importance of cinnamic acid (CA), a naturally occurring aromatic fatty acid present in a number of plants, in inhibiting the disease process in a transgenic mouse model of SD. Oral administration of CA significantly attenuated glial activation and inflammation and reduced the accumulation of GM2 gangliosides/glycoconjugates in the cerebral cortex of Sandhoff mice. Besides, oral CA also improved behavioral performance and increased the survival of Sandhoff mice. While assessing the mechanism, we found that oral administration of CA increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Sandhoff mice and that oral CA remained unable to reduce glycoconjugates, improve behavior and increase survival in Sandhoff mice lacking PPARα. Our results indicate a beneficial function of CA that utilizes a PPARα-dependent mechanism to halt the progression of SD and thereby increase the longevity of Sandhoff mice.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
12
|
Jana M, Mondal S, Jana A, Pahan K. Induction of IL-2 by interleukin-12 p40 homodimer and IL-12, but not IL-23, in microglia and macrophages: Implications for multiple sclerosis. Cytokine 2024; 174:156457. [PMID: 38056248 PMCID: PMC10872483 DOI: 10.1016/j.cyto.2023.156457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor β1 deficient (IL-12Rβ1-/-) and IL-12 receptor β2 deficient (IL-12Rβ2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rβ1, but not IL-12Rβ2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA.
| |
Collapse
|
13
|
Michael BD, Dunai C, Needham EJ, Tharmaratnam K, Williams R, Huang Y, Boardman SA, Clark JJ, Sharma P, Subramaniam K, Wood GK, Collie C, Digby R, Ren A, Norton E, Leibowitz M, Ebrahimi S, Fower A, Fox H, Tato E, Ellul MA, Sunderland G, Held M, Hetherington C, Egbe FN, Palmos A, Stirrups K, Grundmann A, Chiollaz AC, Sanchez JC, Stewart JP, Griffiths M, Solomon T, Breen G, Coles AJ, Kingston N, Bradley JR, Chinnery PF, Cavanagh J, Irani SR, Vincent A, Baillie JK, Openshaw PJ, Semple MG, Taams LS, Menon DK. Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses. Nat Commun 2023; 14:8487. [PMID: 38135686 PMCID: PMC10746705 DOI: 10.1038/s41467-023-42320-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/06/2023] [Indexed: 12/24/2023] Open
Abstract
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.
Collapse
Affiliation(s)
- Benedict D Michael
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK.
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK.
| | - Cordelia Dunai
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
| | - Edward J Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kukatharmini Tharmaratnam
- Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, L69 3GF, UK
| | - Robyn Williams
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yun Huang
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sarah A Boardman
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jordan J Clark
- University of Liverpool, Liverpool, L69 7BE, UK
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine, Mount Sinai, NY, 10029, USA
| | - Parul Sharma
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Krishanthi Subramaniam
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Greta K Wood
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ceryce Collie
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Richard Digby
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander Ren
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emma Norton
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Maya Leibowitz
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Soraya Ebrahimi
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew Fower
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hannah Fox
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Esteban Tato
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Mark A Ellul
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK
| | - Geraint Sunderland
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Marie Held
- Centre for Cell Imaging, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire Hetherington
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Franklyn N Egbe
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alish Palmos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Kathy Stirrups
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander Grundmann
- Clinical Neurosciences, Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, SO17 1BF, UK
- Department of Neurology, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Anne-Cecile Chiollaz
- Département de médecine interne des spécialités (DEMED), University of Geneva, Geneva, CH-1211, Switzerland
| | - Jean-Charles Sanchez
- Département de médecine interne des spécialités (DEMED), University of Geneva, Geneva, CH-1211, Switzerland
| | - James P Stewart
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Michael Griffiths
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Tom Solomon
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK
- The Pandemic Institute, Liverpool, L7 3FA, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge, CB2 0QQ, UK
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
| | - Jonathan Cavanagh
- Centre for Immunology, School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial College London, London, SW7 2BX, UK
- Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Malcolm G Semple
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
- Respiratory Unit, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
14
|
Sheinin M, Mondal S, Pahan K. Neutralization of p40 Homodimer and p40 Monomer Leads to Tumor Regression in Patient-Derived Xenograft Mice with Pancreatic Cancer. Cancers (Basel) 2023; 15:5796. [PMID: 38136341 PMCID: PMC10742282 DOI: 10.3390/cancers15245796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic cancer is a highly aggressive cancer with a high mortality rate and limited treatment options. It is the fourth leading cause of cancer in the US, and mortality is rising rapidly, with a 12% relative 5-year survival rate. Early diagnosis remains a challenge due to vague symptoms, lack of specific biomarkers, and rapid tumor progression. Interleukin-12 (IL-12) is a central cytokine that regulates innate (natural killer cells) and adaptive (cytokine T-lymphocytes) immunity in cancer. We demonstrated that serum levels of IL-12p40 homodimer (p402) and p40 monomer (p40) were elevated and that of IL-12 and IL-23 were lowered in pancreatic cancer patients compared to healthy controls. Comparably, human PDAC cells produced greater levels of p402 and p40 and lower levels of IL-12 and IL-23 compared to normal pancreatic cells. Notably, neutralization of p402 by mAb a3-1d and p40 by mAb a3-3a induced the death of human PDAC cells, but not normal human pancreatic cells. Furthermore, we demonstrated that treatment of PDX mice with p402 mAb and p40 mAb resulted in apoptosis and tumor shrinkage. This study illustrates a new role of p402 and p40 monomer in pancreatic cancer, highlighting possible approaches against this deadly form of cancer with p402 and p40 monomer immunotherapies.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Raha S, Dutta D, Paidi RK, Pahan K. Lipid-Lowering Drug Gemfibrozil Protects Mice from Tay-Sachs Disease via Peroxisome Proliferator-Activated Receptor α. Cells 2023; 12:2791. [PMID: 38132111 PMCID: PMC10741479 DOI: 10.3390/cells12242791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Tay-Sachs disease (TSD) is a progressive heritable neurodegenerative disorder characterized by the deficiency of the lysosomal β-hexosaminidase enzyme (Hex-/-) and the storage of GM2 ganglioside, as well as other related glycoconjugates. Along with motor difficulties, TSD patients also manifest a gradual loss of skills and behavioral problems, followed by early death. Unfortunately, there is no cure for TSD; however, research on treatments and therapeutic approaches is ongoing. This study underlines the importance of gemfibrozil (GFB), an FDA-approved lipid-lowering drug, in inhibiting the disease process in a transgenic mouse model of Tay-Sachs. Oral administration of GFB significantly suppressed glial activation and inflammation, while also reducing the accumulation of GM2 gangliosides/glycoconjugates in the motor cortex of Tay-Sachs mice. Furthermore, oral GFB improved behavioral performance and increased the life expectancy of Tay-Sachs mice. While investigating the mechanism, we found that oral administration of GFB increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Tay-Sachs mice, and that GFB remained unable to reduce glycoconjugates and improve behavior and survival in Tay-Sachs mice lacking PPARα. Our results indicate a beneficial function of GFB that employs a PPARα-dependent mechanism to halt the progression of TSD and increase longevity in Tay-Sachs mice.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (D.D.); (R.K.P.)
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (D.D.); (R.K.P.)
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (D.D.); (R.K.P.)
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (D.D.); (R.K.P.)
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Aschenbrenner I, Siebenmorgen T, Lopez A, Parr M, Ruckgaber P, Kerle A, Rührnößl F, Catici D, Haslbeck M, Frishman D, Sattler M, Zacharias M, Feige MJ. Assembly-dependent Structure Formation Shapes Human Interleukin-23 versus Interleukin-12 Secretion. J Mol Biol 2023; 435:168300. [PMID: 37805067 DOI: 10.1016/j.jmb.2023.168300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:βheterodimer. For human αsubunits it has been shown that they depend on theirβsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same βsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsβsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its βsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.
Collapse
Affiliation(s)
- Isabel Aschenbrenner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Till Siebenmorgen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Abraham Lopez
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Marina Parr
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Philipp Ruckgaber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Anna Kerle
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Florian Rührnößl
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dragana Catici
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Martin Haslbeck
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dmitrij Frishman
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Matthias J Feige
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
17
|
Hildenbrand K, Bohnacker S, Menon PR, Kerle A, Prodjinotho UF, Hartung F, Strasser PC, Catici DA, Rührnößl F, Haslbeck M, Schumann K, Müller SI, da Costa CP, Esser-von Bieren J, Feige MJ. Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions. SCIENCE ADVANCES 2023; 9:eadg6874. [PMID: 37878703 PMCID: PMC10599630 DOI: 10.1126/sciadv.adg6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a β subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Priyanka Rajeev Menon
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich F. Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Patrick C. Strasser
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dragana A. M. Catici
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Schumann
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Stephanie I. Müller
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection and Research (DZIF), partner site Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
- Department of Immunobiology, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
18
|
Paidi RK, Raha S, Roy A, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate binds to PPARα to improve hippocampal functions in mice. Cell Rep 2023; 42:112717. [PMID: 37437568 PMCID: PMC10440158 DOI: 10.1016/j.celrep.2023.112717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/09/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
This study underlines the importance of β-hydroxy β-methylbutyrate (HMB), a muscle-building supplement in human, in increasing mouse hippocampal plasticity. Detailed proteomic analyses reveal that HMB serves as a ligand of peroxisome proliferator-activated receptor α (PPARα), a nuclear hormone receptor involved in fat metabolism, via interaction with the Y314 residue. Accordingly, HMB is ineffective in increasing plasticity of PPARα-/- hippocampal neurons. While lentiviral establishment of full-length PPARα restores the plasticity-promoting effect of HMB in PPARα-/- hippocampal neurons, lentiviral transduction of Y314D-PPARα remains unable to do that, highlighting the importance of HMB's interaction with the Y314 residue. Additionally, oral HMB improves spatial learning and memory and reduces plaque load in 5X familial Alzheimer's disease (5XFAD) mice, but not in 5XFADΔPPARα mice (5XFAD lacking PPARα), indicating the involvement of PPARα in HMB-mediated neuroprotection in 5XFAD mice. These results delineate neuroprotective functions of HMB and suggest that this widely used supplement may be repurposed for AD.
Collapse
Affiliation(s)
- Ramesh K Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Avik Roy
- Simmaron Research Institute, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Sheinin M, Mondal S, Roy A, Rangasamy SB, Poddar J, Pahan K. Suppression of Experimental Autoimmune Encephalomyelitis in Mice by β-Hydroxy β-Methylbutyrate, a Body-Building Supplement in Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:187-198. [PMID: 37314416 PMCID: PMC10330056 DOI: 10.4049/jimmunol.2200267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/20/2023] [Indexed: 06/15/2023]
Abstract
Although several immunomodulatory drugs are available for multiple sclerosis (MS), most present significant side effects with long-term use. Therefore, delineation of nontoxic drugs for MS is an important area of research. β-Hydroxy β-methylbutyrate (HMB) is accessible in local GNC stores as a muscle-building supplement in humans. This study underlines the importance of HMB in suppressing clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of MS. Dose-dependent study shows that oral HMB at a dose of 1 mg/kg body weight/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, orally administered HMB attenuated perivascular cuffing, preserved the integrity of the blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, maintained the expression of myelin genes, and blocked demyelination in the spinal cord of EAE mice. From the immunomodulatory side, HMB protected regulatory T cells and suppressed Th1 and Th17 biasness. Using peroxisome proliferator-activated receptor (PPAR)α-/- and PPARβ-/- mice, we observed that HMB required PPARβ, but not PPARα, to exhibit immunomodulation and suppress EAE. Interestingly, HMB reduced the production of NO via PPARβ to protect regulatory T cells. These results describe a novel anti-autoimmune property of HMB that may be beneficial in the treatment of MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Suresh B. Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
20
|
Blanchet X, Weber C, von Hundelshausen P. Chemokine Heteromers and Their Impact on Cellular Function-A Conceptual Framework. Int J Mol Sci 2023; 24:10925. [PMID: 37446102 DOI: 10.3390/ijms241310925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoattractant cytokines or chemokines are proteins involved in numerous biological activities. Their essential role consists of the formation of gradient and (immune) cell recruitment. Chemokine biology and its related signaling system is more complex than simple ligand-receptor interactions. Beside interactions with their cognate and/or atypical chemokine receptors, and glycosaminoglycans (GAGs), chemokines form complexes with themselves as homo-oligomers, heteromers and also with other soluble effector proteins, including the atypical chemokine MIF, carbohydrate-binding proteins (galectins), damage-associated molecular patterns (DAMPs) or with chemokine-binding proteins such as evasins. Likewise, nucleic acids have been described as binding targets for the tetrameric form of CXCL4. The dynamic balance between monomeric and dimeric structures, as well as interactions with GAGs, modulate the concentrations of free chemokines available along with the nature of the gradient. Dimerization of chemokines changes the canonical monomeric fold into two main dimeric structures, namely CC- and CXC-type dimers. Recent studies highlighted that chemokine dimer formation is a frequent event that could occur under pathophysiological conditions. The structural changes dictated by chemokine dimerization confer additional biological activities, e.g., biased signaling. The present review will provide a short overview of the known functionality of chemokines together with the consequences of the interactions engaged by the chemokines with other proteins. Finally, we will present potential therapeutic tools targeting the chemokine multimeric structures that could modulate their biological functions.
Collapse
Affiliation(s)
- Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| |
Collapse
|
21
|
Paidi RK, Jana M, Raha S, Mishra RK, Jeong B, Sheinin M, Pahan K. Prenol, but Not Vitamin C, of Fruit Binds to SARS-CoV-2 Spike S1 to Inhibit Viral Entry: Implications for COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1938-1949. [PMID: 37144841 PMCID: PMC10615733 DOI: 10.4049/jimmunol.2200279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Fruit consumption may be beneficial for fighting infection. Although vitamin C is the celebrity component of fruit, its role in COVID-19 is unclear. Because spike S1 of SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) on host cells to enter the cell and initiate COVID-19, using an α-screen-based assay, we screened vitamin C and other components of fruit for inhibiting the interaction between spike S1 and ACE2. We found that prenol, but neither vitamin C nor other major components of fruit (e.g., cyanidin and rutin), reduced the interaction between spike S1 and ACE2. Thermal shift assays indicated that prenol associated with spike S1, but not ACE2, and that vitamin C remained unable to do so. Although prenol inhibited the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus, into human ACE2-expressing HEK293 cells, vitamin C blocked the entry of pseudotyped vesicular stomatitis virus, not SARS-CoV-2, indicating the specificity of the effect. Prenol, but not vitamin C, decreased SARS-CoV-2 spike S1-induced activation of NF-κB and the expression of proinflammatory cytokines in human A549 lung cells. Moreover, prenol also decreased the expression of proinflammatory cytokines induced by spike S1 of N501Y, E484K, Omicron, and Delta variants of SARS-CoV-2. Finally, oral treatment with prenol reduced fever, decreased lung inflammation, enhanced heart function, and improved locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. These results suggest that prenol and prenol-containing fruits, but not vitamin C, may be more beneficial for fighting against COVID-19.
Collapse
Affiliation(s)
- Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Rama K. Mishra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
22
|
Mahfooz NS, Merling MR, Claeys TA, Dowling JW, Forero A, Robinson RT. Human IL-35 Inhibits the Bioactivity of IL-12 and Its Interaction with IL-12Rβ2. Immunohorizons 2023; 7:431-441. [PMID: 37289499 PMCID: PMC10580122 DOI: 10.4049/immunohorizons.2300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
IL-35 is an immunosuppressive cytokine with roles in cancer, autoimmunity, and infectious disease. In the conventional model of IL-35 biology, the p35 and Ebi3 domains of this cytokine interact with IL-12Rβ2 and gp130, respectively, on the cell surface of regulatory T and regulatory B cells, triggering their suppression of Th cell activity. Here we use a human IL-12 bioactivity reporter cell line, protein binding assays, and primary human Th cells to demonstrate an additional mechanism by which IL-35 suppresses Th cell activity, wherein IL-35 directly inhibits the association of IL-12 with its surface receptor IL-12Rβ2 and downstream IL-12-dependent activities. IL-12 binding to the surface receptor IL-12Rβ1 was unaffected by IL-35. These data demonstrate that in addition to acting via regulatory T and regulatory B cells, human IL-35 can also directly suppress IL-12 bioactivity and its interaction with IL-12Rβ2.
Collapse
Affiliation(s)
- Najmus S. Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Marlena R. Merling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Tiffany A. Claeys
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Jack W. Dowling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Richard T. Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
23
|
Lay CS, Isidro-Llobet A, Kilpatrick LE, Craggs PD, Hill SJ. Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes. Nat Commun 2023; 14:2882. [PMID: 37208328 PMCID: PMC10199020 DOI: 10.1038/s41467-023-38541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | | | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter D Craggs
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
- Crick-GSK Biomedical Linklabs, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
24
|
Mittereder LR, Swoboda J, De Pascalis R, Elkins KL. IL-12p40 is essential but not sufficient for Francisella tularensis LVS clearance in chronically infected mice. PLoS One 2023; 18:e0283161. [PMID: 36972230 PMCID: PMC10042368 DOI: 10.1371/journal.pone.0283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
IL-12p40 plays an important role in F. tularensis Live Vaccine Strain (LVS) clearance that is independent of its functions as a part of the heterodimeric cytokines IL-12p70 or IL-23. In contrast to WT, p35, or p19 knockout (KO) mice, p40 KO mice infected with LVS develop a chronic infection that does not resolve. Here, we further evaluated the role of IL-12p40 in F. tularensis clearance. Despite reduced IFN-γ production, primed splenocytes from p40 KO and p35 KO mice appeared functionally similar to those from WT mice during in vitro co-culture assays of intramacrophage bacterial growth control. Gene expression analysis revealed a subset of genes that were upregulated in re-stimulated WT and p35 KO splenocytes, but not p40 KO splenocytes, and thus are candidates for involvement in F. tularensis clearance. To directly evaluate a potential mechanism for p40 in F. tularensis clearance, we reconstituted protein levels in LVS-infected p40 KO mice using either intermittent injections of p40 homodimer (p80) or treatment with a p40-producing lentivirus construct. Although both delivery strategies yielded readily detectable levels of p40 in sera and spleens, neither treatment had a measurable impact on LVS clearance by p40 KO mice. Taken together, these studies demonstrate that clearance of F. tularensis infection depends on p40, but p40 monomers and/or dimers alone are not sufficient.
Collapse
Affiliation(s)
- Lara R Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jonathan Swoboda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
25
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Sheinin M, Jeong B, Paidi RK, Pahan K. Regression of Lung Cancer in Mice by Intranasal Administration of SARS-CoV-2 Spike S1. Cancers (Basel) 2022; 14:5648. [PMID: 36428739 PMCID: PMC9688283 DOI: 10.3390/cancers14225648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
This study underlines the importance of SARS-CoV-2 spike S1 in prompting death in cultured non-small cell lung cancer (NSCLC) cells and in vivo in lung tumors in mice. Interestingly, we found that recombinant spike S1 treatment at very low doses led to death of human A549 NSCLC cells. On the other hand, boiled recombinant SARS-CoV-2 spike S1 remained unable to induce death, suggesting that the induction of cell death in A549 cells was due to native SARS-CoV-2 spike S1 protein. SARS-CoV-2 spike S1-induced A549 cell death was also inhibited by neutralizing antibodies against spike S1 and ACE2. Moreover, our newly designed wild type ACE2-interacting domain of SARS-CoV-2 (wtAIDS), but not mAIDS, peptide also attenuated SARS-CoV-2 spike S1-induced cell death, suggesting that SARS-CoV-2 spike S1-induced death in A549 NSCLC cells depends on its interaction with ACE2 receptor. Similarly, recombinant spike S1 treatment also led to death of human H1299 and H358 NSCLC cells. Finally, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) intoxication led to the formation tumors in lungs of A/J mice and alternate day intranasal treatment with low dose of recombinant SARS-CoV-2 spike S1 from 22-weeks of NNK insult (late stage) induced apoptosis and tumor regression in the lungs. These studies indicate that SARS-CoV-2 spike S1 may have implications for lung cancer treatment.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Cao H, Diao J, Liu H, Liu S, Liu J, Yuan J, Lin J. The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2022; 29:818-829. [PMID: 36166586 DOI: 10.1093/ibd/izac199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, are characterized by chronic idiopathic inflammation of gastrointestinal tract. Although the pathogenesis of IBD remains unknown, intestinal immune dysfunction has been considered as the core pathogenesis. In the intestinal immune system, T helper 1 (Th1) and Th17 cells are indispensable for intestine homeostasis via preventing pathogenic bacteria invasion, regulating metabolism and functions of intestinal epithelial cells (IECs), and promoting IEC self-renewal. However, during the development of IBD, Th1 and Th17 cells acquire the pathogenicity and change from the maintainer of intestinal homeostasis to the destroyer of intestinal mucosa. Because of coexpressing interferon-γ and interleukin-17A, Th17 cells with pathogenicity are named as pathogenic Th17 cells. In disease states, Th1 cells impair IEC programs by inducing IEC apoptosis, recruiting immune cells, promoting adhesion molecules expression of IECs, and differentiating to epithelial cell adhesion molecule-specific interferon γ-positive Th1 cells. Pathogenic Th17 cells induce IEC injury by triggering IBD susceptibility genes expression of IECs and specifically killing IECs. In addition, Th1 and pathogenic Th17 cells could cooperate to induce colitis. The evidences from IBD patients and animal models demonstrate that synergistic action of Th1 and pathogenic Th17 cells occurs in the diseases development and aggravates the mucosal inflammation. In this review, we focused on Th1 and Th17 cell programs in homeostasis and intestine inflammation and specifically discussed the impact of Th1 and Th17 cell pathogenicity and their synergistic action on the onset and the development of IBD. We hoped to provide some clues for treating IBD.
Collapse
Affiliation(s)
- Hui Cao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
29
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
30
|
Neurotropic EV71 causes encephalitis by engaging intracellular TLR9 to elicit neurotoxic IL12-p40-iNOS signaling. Cell Death Dis 2022; 13:328. [PMID: 35399111 PMCID: PMC8995170 DOI: 10.1038/s41419-022-04771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
AbstractBrainstem encephalitis, a manifestation of severe enterovirus 71 (EV71) infection, is an acute excessive inflammatory response. The mechanisms underlying its development remain poorly understood. Usually neurotropic viruses trigger acute host immune response by engaging cell surface or intracellular receptors. Here, we show that EV71 engagement with intracellular receptor TLR9 elicits IL-12p40-iNOS signaling causing encephalitis in mice. We identified IL-12p40 to be the only prominent cytokine-induced at the early infection stage in the brainstem of mice subjected to a lethal dose of EV71. The upregulated IL-12p40 proteins were expressed in glial cells but not neuronal cells. To better understand the role of IL-12p40 in severe EV71 infection, we treated the EV71-infected mice with an antibody against IL-12p40 and found the mortality rate, brainstem inflammation, and gliosis to be markedly reduced, suggesting that the acute IL-12p40 response plays a critical role in the pathogenesis of brainstem encephalitis. Mechanistically, intracellular TLR9 was found essential to the activation of the IL-12p40 response. Blocking TLR9 signaling with CpG-ODN antagonist ameliorated IL-12p40 response, brainstem inflammation, and limb paralysis in mice with EV71-induced encephalitis. We further found the glial IL-12p40 response might damage neurons by inducing excess production of neurotoxic NO by iNOS. Overall, EV71 engagement with intracellular TLR9 was found to elicit a neurotoxic glial response via IL12p40-iNOS signaling contributing to the neurological manifestation of EV71 infection. This pathway could potentially be targeted for the treatment of brainstem encephalitis.
Collapse
|
31
|
Kundu M, Raha S, Roy A, Pahan K. Regression of Triple-Negative Breast Cancer in a Patient-Derived Xenograft Mouse Model by Monoclonal Antibodies against IL-12 p40 Monomer. Cells 2022; 11:259. [PMID: 35053375 PMCID: PMC8773899 DOI: 10.3390/cells11020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.
Collapse
Affiliation(s)
- Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (M.K.); (S.R.); (A.R.)
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (M.K.); (S.R.); (A.R.)
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (M.K.); (S.R.); (A.R.)
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (M.K.); (S.R.); (A.R.)
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Malashenkova I, Ushakov V, Zakharova N, Krynskiy S, Ogurtsov D, Hailov N, Chekulaeva E, Ratushnyy A, Kartashov S, Kostyuk G, Didkovsky N. Neuro-Immune Aspects of Schizophrenia with Severe Negative Symptoms: New Diagnostic Markers of Disease Phenotype. Sovrem Tekhnologii Med 2021; 13:24-33. [PMID: 35265356 PMCID: PMC8858398 DOI: 10.17691/stm2021.13.6.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to analyze the immune-inflammatory profile of patients with paranoid schizophrenia and relate it to the severity of negative symptoms and the MRI data in order to identify biomarkers of schizophrenia severity, search for new approaches to therapy, and control its effectiveness. Materials and Methods The main group included 51 patients with paranoid schizophrenia, the control group - 30 healthy subjects. Patients underwent MRI scans and immunological studies, which included an assessment of natural and adaptive immunity, the systemic level of key pro-inflammatory and anti-inflammatory cytokines, and other markers of inflammation. Results Disorders of immunity and immunoinflammatory profile in patients with paranoid schizophrenia with severe negative symptoms were revealed for the first time: in the presence of severe negative symptoms (>15 points according to the NSA-4 scale), the levels of humoral immunity factors, cytokines IL-10 and IL-12p40 and neurotrophin NGF were increased as well as the markers of systemic inflammation. Morphometric changes in the brain, typical for patients with schizophrenia, and also specific for patients with severe negative symptoms, were determined. The data analysis revealed correlations between the immune changes with structural changes in some of the brain areas, including the frontal cortex and hippocampus. Associations were found between the levels of anti-inflammatory IL-10, IL-12p40 cytokines and morphometric parameters of the brain, specific only for schizophrenic patients with severe negative symptoms. Conclusion The interdisciplinary approach, combining brain morphometry with in-depth immunological and clinical studies, made it possible to determine neurobiological, immune, and neurocognitive markers of paranoid schizophrenia with severe negative symptoms. The results are important for further deciphering the pathogenesis of schizophrenia and its subtypes, as well as for the search for new approaches to the treatment of severe forms of the disease.
Collapse
Affiliation(s)
- I.K. Malashenkova
- Head of the Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia; Leading Researcher, Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| | - V.L. Ushakov
- Associate Professor, Senior Researcher; National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, Moscow, 115409, Russia; Department Head; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia; Leading Researcher, Institute for Advanced Brain Research; Lomonosov Moscow State University, 27/1 Lomonosov Avenue, Moscow, 119192, Russia
| | - N.V. Zakharova
- Head of the Laboratory for Fundamental Research Methods; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia
| | - S.A. Krynskiy
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - D.P. Ogurtsov
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia; Researcher, Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| | - N.A. Hailov
- Senior Researcher, Resource Center for Molecular and Cellular Biology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - E.I. Chekulaeva
- Junior Researcher, Resource Center for Molecular and Cellular Biology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - A.Y. Ratushnyy
- Researcher, Laboratory of Cell Physiology; Russian Federation State Research Center Institute of Biomedical Problems of the Russian Academy of Sciences, 76A Khoroshevskoe Shosse, Moscow, 123007, Russia
| | - S.I. Kartashov
- Laboratory Deputy Head; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - G.P. Kostyuk
- Professor, Chief Physician; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia
| | - N.A. Didkovsky
- Professor, Head of the Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| |
Collapse
|
33
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
34
|
Lee SY, Moon SJ, Moon YM, Seo HB, Ryu JG, Lee AR, Lee CR, Kim DS, Her YM, Choi JW, Kwok SK, Park SH, Cho ML. A novel cytokine consisting of the p40 and EBI3 subunits suppresses experimental autoimmune arthritis via reciprocal regulation of Th17 and Treg cells. Cell Mol Immunol 2021; 19:79-91. [PMID: 34782759 PMCID: PMC8752814 DOI: 10.1038/s41423-021-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The interleukin (IL)-12 cytokine family is closely related to the development of T helper cells, which are responsible for autoimmune disease enhancement or suppression. IL-12 family members are generally heterodimers and share three α-subunits (p35, p19, and p28) and two β-subunits (p40 and EBI3). However, a β-sheet p40 homodimer has been shown to exist and antagonize IL-12 and IL-23 signaling 1. Therefore, we assumed the existence of a p40-EBI3 heterodimer in nature and sought to investigate its role in immune regulation. METHODS The presence of the p40-EBI3 heterodimer was confirmed by ELISA, immunoprecipitation, and western blotting. A p40-EBI3 vector and p40-EBI3-Fc protein were synthesized to confirm the immunological role of this protein in mice with collagen-induced arthritis (CIA). The anti-inflammatory effects of p40-EBI3 were analyzed with regard to clinical, histological, and immune cell-regulating features in mice with CIA. RESULTS Clinical arthritis scores and the expression levels of proinflammatory cytokines (e.g., IL-17, IL-1β, IL-6, and TNF-α) were significantly attenuated in p40-EBI3-overexpressing and p40-EBI3-Fc-treated mice with CIA compared to vehicle-treated mice with CIA. Structural joint damage and vessel formation-related gene expression were also reduced by p40-EBI3 heterodimer treatment. In vitro, the p40-EBI3-Fc protein significantly suppressed the differentiation of Th17 cells and reciprocally induced CD4+CD25+Foxp3+ (regulatory T) cells. p40-EBI3 also inhibited osteoclast formation in a concentration-dependent manner. CONCLUSION In this study, p40-EBI3 ameliorated proinflammatory conditions both in vivo and in vitro. We propose that p40-EBI3 is a novel anti-inflammatory cytokine involved in suppressing the immune response through the expansion of Treg cells and suppression of Th17 cells and osteoclastogenesis.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chae Rim Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Yang-Mi Her
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
35
|
Paidi RK, Jana M, Mishra RK, Dutta D, Pahan K. Selective Inhibition of the Interaction between SARS-CoV-2 Spike S1 and ACE2 by SPIDAR Peptide Induces Anti-Inflammatory Therapeutic Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2521-2533. [PMID: 34645689 PMCID: PMC8664124 DOI: 10.4049/jimmunol.2100144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023]
Abstract
Many patients with coronavirus disease 2019 in intensive care units suffer from cytokine storm. Although anti-inflammatory therapies are available to treat the problem, very often, these treatments cause immunosuppression. Because angiotensin-converting enzyme 2 (ACE2) on host cells serves as the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to delineate a SARS-CoV-2-specific anti-inflammatory molecule, we designed a hexapeptide corresponding to the spike S1-interacting domain of ACE2 receptor (SPIDAR) that inhibited the expression of proinflammatory molecules in human A549 lung cells induced by pseudotyped SARS-CoV-2, but not vesicular stomatitis virus. Accordingly, wild-type (wt), but not mutated (m), SPIDAR inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 and IL-1β in human lung cells. However, wtSPIDAR remained unable to reduce activation of NF-κB and expression of proinflammatory molecules in lungs cells induced by TNF-α, HIV-1 Tat, and viral dsRNA mimic polyinosinic-polycytidylic acid, indicating the specificity of the effect. The wtSPIDAR, but not mutated SPIDAR, also hindered the association between ACE2 and spike S1 of SARS-CoV-2 and inhibited the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus, into human ACE2-expressing human embryonic kidney 293 cells. Moreover, intranasal treatment with wtSPIDAR, but not mutated SPIDAR, inhibited lung activation of NF-κB, protected lungs, reduced fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1-to-ACE2 interaction by wtSPIDAR may be beneficial for coronavirus disease 2019.
Collapse
Affiliation(s)
- Ramesh K Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL;
- Division of Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
36
|
Raha S, Ghosh A, Dutta D, Patel DR, Pahan K. Activation of PPARα enhances astroglial uptake and degradation of β-amyloid. Sci Signal 2021; 14:eabg4747. [PMID: 34699252 DOI: 10.1126/scisignal.abg4747] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arunava Ghosh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Paidi RK, Jana M, Raha S, McKay M, Sheinin M, Mishra RK, Pahan K. Eugenol, a Component of Holy Basil (Tulsi) and Common Spice Clove, Inhibits the Interaction Between SARS-CoV-2 Spike S1 and ACE2 to Induce Therapeutic Responses. J Neuroimmune Pharmacol 2021; 16:743-755. [PMID: 34677731 PMCID: PMC8531902 DOI: 10.1007/s11481-021-10028-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Spike S1 of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells to enter the cell and initiate COVID-19. Since ACE2 is a favorable enzyme, we were interested in finding a molecule capable of binding spike S1, but not ACE2, and inhibiting the interaction between spike S1 and ACE2. Holy basil (Tulsi) has a long history as a medicine for different human disorders. Therefore, we screened different components of Tulsi leaf and found that eugenol, but not other major components (e.g. ursolic acid, oleanolic acid and β-caryophylline), inhibited the interaction between spike S1 and ACE2 in an AlphaScreen-based assay. By in silico analysis and thermal shift assay, we also observed that eugenol associated with spike S1, but not ACE2. Accordingly, eugenol strongly suppressed the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus (VSV), into human ACE2-expressing HEK293 cells. Eugenol also reduced SARS-CoV-2 spike S1-induced activation of NF-κB and the expression of IL-6, IL-1β and TNFα in human A549 lung cells. Moreover, oral treatment with eugenol reduced lung inflammation, decreased fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1, but not ACE2, by eugenol may be beneficial for COVID-19 treatment.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Mary McKay
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA. .,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.
| |
Collapse
|
38
|
Georgy J, Arlt Y, Moll JM, Ouzin M, Weitz HT, Gremer L, Willbold D, Grötzinger J, Thives-Kurenbach F, Scheller J, Floss DM. Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction. J Biol Chem 2021; 297:101295. [PMID: 34637790 PMCID: PMC8571081 DOI: 10.1016/j.jbc.2021.101295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jacqueline Georgy
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Arlt
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Felix Thives-Kurenbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
39
|
Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, Spangler JB, Ely LK, Thomas C, Skiniotis G, Garcia KC. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021; 184:983-999.e24. [PMID: 33606986 PMCID: PMC7899134 DOI: 10.1016/j.cell.2021.01.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rβ1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rβ1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rβ2/IL-12Rβ1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rβ1 directly engages the common p40 subunit. We targeted the shared IL-12Rβ1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.
Collapse
Affiliation(s)
- Caleb R Glassman
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yamuna Kalyani Mathiharan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouliana Panova
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jamie B Spangler
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren K Ely
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Thomas
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
ACE-2-interacting Domain of SARS-CoV-2 (AIDS) Peptide Suppresses Inflammation to Reduce Fever and Protect Lungs and Heart in Mice: Implications for COVID-19 Therapy. J Neuroimmune Pharmacol 2021; 16:59-70. [PMID: 33426604 PMCID: PMC7797355 DOI: 10.1007/s11481-020-09979-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
COVID-19 is an infectious respiratory illness caused by the virus strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and until now, there is no effective therapy against COVID-19. Since SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) for entering into host cells, to target COVID-19 from therapeutic angle, we engineered a hexapeptide corresponding to the ACE2-interacting domain of SARS-CoV-2 (AIDS) that inhibits the association between receptor-binding domain-containing spike S1 and ACE-2. Accordingly, wild type (wt), but not mutated (m), AIDS peptide inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 in human lungs cells. Interestingly, intranasal intoxication of C57/BL6 mice with recombinant SARS-CoV-2 spike S1 led to fever, increase in IL-6 in lungs, infiltration of neutrophils into the lungs, arrhythmias, and impairment in locomotor activities, mimicking some of the important symptoms of COVID-19. However, intranasal treatment with wtAIDS, but not mAIDS, peptide reduced fever, protected lungs, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of ACE2-to-SARS-CoV-2 interaction by wtAIDS may be beneficial for COVID-19.
Collapse
|