1
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
3
|
Krusenstjerna AC, Jusufovic N, Saylor TC, Stevenson B. DnaA modulates the gene expression and morphology of the Lyme disease spirochete. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598065. [PMID: 38895450 PMCID: PMC11185795 DOI: 10.1101/2024.06.08.598065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All bacteria encode a multifunctional DNA-binding protein, DnaA, which initiates chromosomal replication. Despite having the most complex, segmented bacterial genome, little is known about Borrelia burgdorferi DnaA and its role in maintaining the spirochete's physiology. In this work we utilized inducible CRISPR-interference and overexpression to modulate cellular levels of DnaA to better understand this essential protein. Dysregulation of DnaA, either up or down, increased or decreased cell lengths, respectively, while also significantly slowing replication rates. Using fluorescent microscopy, we found the DnaA CRISPRi mutants had increased numbers of chromosomes with irregular spacing patterns. DnaA-depleted spirochetes also exhibited a significant defect in helical morphology. RNA-seq of the conditional mutants showed significant changes in the levels of transcripts involved with flagellar synthesis, elongation, cell division, virulence, and other functions. These findings demonstrate that the DnaA plays a commanding role in maintaining borrelial growth dynamics and protein expression, which are essential for the survival of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Andrew C Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Timothy C Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Raghunandanan S, Zhang K, Zhang Y, Sze CW, Priya R, Luo Y, Lynch MJ, Crane BR, Li C, Yang XF. MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598185. [PMID: 38915556 PMCID: PMC11195095 DOI: 10.1101/2024.06.10.598185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen, adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well established as essential for its enzootic cycle, the function of methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear. In this study, we demonstrate that MCP5, one of the most abundant MCPs in B. burgdorferi, is differentially expressed in response to environmental signals as well as at different stages of the pathogen's enzootic cycle. Specifically, the expression of mcp5 is regulated by the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, which are critical for the spirochete's colonization of the tick vector and mammalian host, respectively. Infection experiments with an mcp5 mutant revealed that spirochetes lacking MCP5 could not establish infections in either C3H/HeN mice or Severe Combined Immunodeficiency (SCID) mice, which are defective in adaptive immunity, indicating the essential role of MCP5 in mammalian infection. However, the mcp5 mutant could establish infection and disseminate in NOD SCID Gamma (NSG) mice, which are deficient in both adaptive and most innate immune responses, suggesting a crucial role of MCP5 in evading host innate immunity. In the tick vector, the mcp5 mutants survived feeding but failed to transmit to mice, highlighting the importance of MCP5 in transmission. Our findings reveal that MCP5, regulated by the Rrp1 and Rrp2 pathways, is critical for the establishment of infection in mammalian hosts by evading host innate immunity and is important for the transmission of spirochetes from ticks to mammalian hosts, underscoring its potential as a target for intervention strategies.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Yan Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Luo
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
5
|
Strnad M, Koizumi N, Nakamura S, Vancová M, Rego ROM. It's not all about flagella - sticky invasion by pathogenic spirochetes. Trends Parasitol 2024; 40:378-385. [PMID: 38523038 DOI: 10.1016/j.pt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Pathogenic spirochetes cause a range of serious human diseases such as Lyme disease (LD), syphilis, leptospirosis, relapsing fever (RF), and periodontal disease. Motility is a critical virulence factor for spirochetes. From the mechanical perspective of the infection, it has been widely believed that flagella are the sole key players governing the migration and dissemination of these pathogens in the host. Here, we highlight the important contribution of spirochetal surface-exposed adhesive molecules and their dynamic interactions with host molecules in the process of infection, specifically in spirochetal swimming and crawling migration. We believe that these recent findings overturn the prevailing view depicting the spirochetal body to be just an inert elastic bag, which does not affect spirochetal cell locomotion.
Collapse
Affiliation(s)
- Martin Strnad
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Marie Vancová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574855. [PMID: 38260563 PMCID: PMC10802407 DOI: 10.1101/2024.01.09.574855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flagella propel pathogens through their environments yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly in the Lyme spirochete Borrelia burgdorferi, the archetypal flagellar regulator σ28 is absent. We rediscovered gene bb0268 in B. burgdorferi as flgV, a broadly-conserved gene in the flagellar superoperon alongside σ28 in many Spirochaetes, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We found that B. burgdorferi FlgV is localized within flagellar motors. B. burgdorferi lacking flgV construct fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, B. burgdorferi lacking flgV survive and replicate in Ixodes ticks but are attenuated for dissemination and infection in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Zhu S, Sun X, Li Y, Feng X, Gao B. The common origin and degenerative evolution of flagella in Actinobacteria. mBio 2023; 14:e0252623. [PMID: 38019005 PMCID: PMC10746217 DOI: 10.1128/mbio.02526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Flagellar motility plays an important role in the environmental adaptation of bacteria and is found in more than 50% of known bacterial species. However, this important characteristic is sparsely distributed within members of the phylum Actinobacteria, which constitutes one of the largest bacterial groups. It is unclear why this important fitness organelle is absent in most actinobacterial species and the origin of flagellar genes in other species. Here, we present detailed analyses of the evolution of flagellar genes in Actinobacteria, in conjunction with the ecological distribution and cell biological features of major actinobacterial lineages, and the co-evolution of signal transduction systems. The results presented in addition to clarifying the puzzle of sporadic distribution of flagellar motility in Actinobacteria, also provide important insights into the evolution of major lineages within this phylum.
Collapse
Affiliation(s)
- Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Yuqian Li
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Xueyin Feng
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
9
|
Sze CW, Zhang K, Lynch MJ, Iyer R, Crane BR, Schwartz I, Li C. A chemosensory-like histidine kinase is dispensable for chemotaxis in vitro but regulates the virulence of Borrelia burgdorferi through modulating the stability of RpoS. PLoS Pathog 2023; 19:e1011752. [PMID: 38011206 PMCID: PMC10703414 DOI: 10.1371/journal.ppat.1011752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
As an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B. burgdorferi through modulating the stability of RpoS, a key transcriptional regulator of the spirochete. First, microscopic analyses using green-fluorescence-protein (GFP) tags reveal that CheA1 has a unique and dynamic cellular localization. Second, loss-of-function studies indicate that CheA1 is not required for chemotaxis in vitro despite sharing a high sequence and structural similarity to its counterparts from other bacteria. Third, mouse infection studies using needle inoculations show that a deletion mutant of CheA1 (cheA1mut) is able to establish systemic infection in immune-deficient mice but fails to do so in immune-competent mice albeit the mutant can survive at the inoculation site for up to 28 days. Tick and mouse infection studies further demonstrate that CheA1 is dispensable for tick colonization and acquisition but essential for tick transmission. Lastly, mechanistic studies combining immunoblotting, protein turnover, mutagenesis, and RNA-seq analyses reveal that depletion of CheA1 affects RpoS stability, leading to reduced expression of several RpoS-regulated virulence factors (i.e., OspC, BBK32, and DbpA), likely due to dysregulated clpX and lon protease expression. Bulk RNA-seq analysis of infected mouse skin tissues further show that cheA1mut fails to elicit mouse tnf-α, il-10, il-1β, and ccl2 expression, four important cytokines for Lyme disease development and B. burgdorferi transmigration. Collectively, these results reveal a unique role and regulatory mechanism of CheA1 in modulating virulence factor expression and add new insights into understanding the regulatory network of B. burgdorferi.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael J. Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Radha Iyer
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Ira Schwartz
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
Hammond EM, Olsen KJ, Ram S, Tran GVV, Hall LS, Bradley JE, Lund FE, Samuels DS, Baumgarth N. Antigen-Specific CD4 T Cell and B Cell Responses to Borrelia burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:994-1005. [PMID: 37556156 PMCID: PMC10530202 DOI: 10.4049/jimmunol.2200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Long-lived T-dependent B cell responses fail to develop during persistent infection of mice with Borrelia burgdorferi, the causative agent of Lyme disease, raising questions about the induction and/or functionality of anti-B. burgdorferi adaptive immune responses. Yet, a lack of reagents has limited investigations into B. burgdorferi-specific T and B cells. We attempted two approaches to track B. burgdorferi-induced CD4 T cells. First, a B. burgdorferi mutant was generated with an influenza hemagglutinin (HA) peptide, HA111-119, inserted into the B. burgdorferi arthritis-related protein (Arp) locus. Although this B. burgdorferi arp::HA strain remained infectious, peptide-specific TCR transgenic CD4 T cells in vitro, or adoptively transferred into B. burgdorferi arp::HA-infected BALB/c mice, did not clonally expand above those of recipients infected with the parental B. burgdorferi strain or a B. burgdorferi mutant containing an irrelevant peptide. Some expansion, however, occurred in B. burgdorferi arp::HA-infected BALB/c SCID mice. Second, a (to our knowledge) newly identified I-Ab-restricted CD4 T cell epitope, Arp152-166, was used to generate Arp MHC class II tetramers. Flow cytometry showed small numbers of Arp-specific CD4 T cells emerging in mice infected with B. burgdorferi but not with Arp-deficient Borrelia afzelii. Although up to 30% of Arp-specific CD4 T cells were ICOS+PD-1+CXCR5+BCL6+ T follicular helper cells, their numbers declined after day 12, before germinal centers (GCs) are prominent. Although some Arp-specific B cells, identified using fluorochrome-labeled rArp proteins, had the phenotype of GC B cells, their frequencies did not correlate with anti-Arp serum IgG. The data suggest a failure not in the induction, but in the maintenance of GC T follicular helper and/or B cells to B. burgdorferi.
Collapse
Affiliation(s)
- Elizabeth M. Hammond
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Kimberly J. Olsen
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Shivneel Ram
- Center for Immunology and Infectious Diseases, University of California Davis
| | - Giang Vu Vi Tran
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana
| | - John E. Bradley
- Department of Microbiology, University of Alabama, Birmingham
| | - Frances E. Lund
- Department of Microbiology, University of Alabama, Birmingham
| | | | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
- Department of Molecular Microbiology and Immunology and Department of Molecular and Comparative Pathobiology, Johns Hopkins University
| |
Collapse
|
11
|
Hayes KA, Dressler JM, Norris SJ, Edmondson DG, Jutras BL. A large screen identifies beta-lactam antibiotics which can be repurposed to target the syphilis agent. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:4. [PMID: 38686211 PMCID: PMC11057208 DOI: 10.1038/s44259-023-00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/02/2024]
Abstract
Syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (hereafter called T. pallidum), is re-emerging as a worldwide sexually transmitted infection. A single intramuscular dose of benzathine penicillin G is the preferred syphilis treatment option. Both supply shortage concerns and the potential for acquired antibiotic resistance further the need to broaden the repertoire of syphilis therapeutics. We reasoned that other β-lactams may be equally or more effective at targeting the disease-causing agent, Treponema pallidum, but have yet to be discovered due to a previous lack of a continuous in vitro culture system. Recent technical advances with respect to in vitro T. pallidum propagation allowed us to conduct a high-throughput screen of almost 100 β-lactams. Using several molecular and cellular approaches that we developed or adapted, we identified and confirmed the efficacy of several β-lactams that were similar to or outperformed the current standard, benzathine penicillin G. These options are either currently used to treat bacterial infections or are synthetic derivatives of naturally occurring compounds. Our studies not only identified additional potential therapeutics in the resolution of syphilis, but provide techniques to study the complex biology of T. pallidum-a spirochete that has plagued human health for centuries.
Collapse
Affiliation(s)
- Kathryn A. Hayes
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jules M. Dressler
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Brandon L. Jutras
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Sze CW, Li C. Chemotaxis Coupling Protein CheW 2 Is Not Required for the Chemotaxis but Contributes to the Full Pathogenicity of Borreliella burgdorferi. Infect Immun 2023; 91:e0000823. [PMID: 36939335 PMCID: PMC10112267 DOI: 10.1128/iai.00008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
The bacterial chemotaxis regulatory circuit mainly consists of coupling protein CheW, sensor histidine kinase CheA, and response regulator CheY. Most bacteria, such as Escherichia coli, have a single gene encoding each of these proteins. Interestingly, the Lyme disease pathogen, Borreliella burgdorferi, has multiple chemotaxis proteins, e.g., two CheA, three CheW, and three CheY proteins. The genes encoding these proteins mainly reside in two operons: cheW2-cheA1-cheB2-cheY2 (A-I) and cheA2-cheW3-cheX-cheY3 (A-II). Previous studies demonstrate that all the genes in A-II are essential for the chemotaxis of B. burgdorferi; however, the role of those genes in A-I remains unknown. This study aimed to fill this gap using the CheW2 gene, the first gene in A-I, as a surrogate. We first mapped the transcription start site of A-I upstream of cheW2 and identified a σ70-like promoter (PW2) and two binding sites (BS1 and BS2) of BosR, an unorthodox Fur/Per homolog. We then demonstrated that BosR binds to PW2 via BS1 and BS2 and that deletion of bosR significantly represses the expression of cheW2 and other genes in A-I, implying that BosR is a positive regulator of A-I. Deletion of cheW2 has no impact on the chemotaxis of B. burgdorferi in vitro but abrogates its ability to evade host adaptive immunity, because the mutant can establish systemic infection only in SCID mice and not in immunocompetent BALB/c mice. This report substantiates the previous proposition that A-I is not implicated in chemotaxis; rather, it may function as a signaling transduction pathway to regulate B. burgdorferi virulence gene expression.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Čorak N, Anniko S, Daschkin-Steinborn C, Krey V, Koska S, Futo M, Široki T, Woichansky I, Opašić L, Kifer D, Tušar A, Maxeiner HG, Domazet-Lošo M, Nicolaus C, Domazet-Lošo T. Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. Int J Mol Sci 2023; 24:5594. [PMID: 36982667 PMCID: PMC10057712 DOI: 10.3390/ijms24065594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.
Collapse
Affiliation(s)
- Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Sirli Anniko
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Viktoria Krey
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Physics of Synthetic Biological Systems-E14, Physics Department and ZNN, Technische Universität München, D-85748 Garching, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | | | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia
| | - Anja Tušar
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Horst-Günter Maxeiner
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Comlamed, Friedrich-Bergius Ring 15, D-97076 Würzburg, Germany
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Carsten Nicolaus
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
14
|
Diving into the complexity of the spirochetal endoflagellum. Trends Microbiol 2023; 31:294-307. [PMID: 36244923 DOI: 10.1016/j.tim.2022.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Spirochaetes, a phylum that includes medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, are in many ways highly unique bacteria. Their cell morphology, subcellular organization, and metabolism reveal atypical features. Spirochetal motility is also singular, dependent on the presence of periplasmic flagella or endoflagella, inserted subterminally at cell poles and not penetrating the outer membrane and elongating outside the cell as in enterobacteria. In this review we present a comprehensive comparative genomics analysis of endoflagellar systems in spirochetes, highlighting recent findings on the flagellar basal body and filament. Continued progress in understanding the function and architecture of spirochetal flagella is uncovering paradigm-shifting mechanisms of bacterial motility.
Collapse
|
15
|
Socarras KM, Haslund-Gourley BS, Cramer NA, Comunale MA, Marconi RT, Ehrlich GD. Large-Scale Sequencing of Borreliaceae for the Construction of Pan-Genomic-Based Diagnostics. Genes (Basel) 2022; 13:1604. [PMID: 36140772 PMCID: PMC9498496 DOI: 10.3390/genes13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kayla M. Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Garth D. Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
16
|
Kurniyati K, Chang Y, Liu J, Li C. Transcriptional and functional characterizations of multiple flagellin genes in spirochetes. Mol Microbiol 2022; 118:175-190. [PMID: 35776658 PMCID: PMC9481697 DOI: 10.1111/mmi.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
The flagellar filament is a helical propeller for bacterial locomotion. In external flagellates, the filaments are mostly homopolymers of a single flagellin protein. By contrast, the flagellar filaments of spirochetes are mostly heteropolymers of multiple flagellin proteins. This report seeks to investigate the role of multiple flagellin proteins using the oral spirochete Treponema denticola as a model. First, biochemical and genetic studies uncover that the flagellar filaments of T. denticola mainly comprise four proteins, FlaA, FlaB1, FlaB2, and FlaB3, in a defined stoichiometry. Second, transcriptional analyses reveal that the genes encoding these four proteins are regulated by two different transcriptional factors, sigma28 and sigma70 . Third, loss-of-function studies demonstrate that each individual flagellin protein contributes to spirochete motility, but none of them is absolutely required. Last, we provide genetic and structural evidence that FlaA forms a "seam"-like structure around the core and that deletion of individual flagellin protein alters the flagellar homeostasis. Collectively, these results demonstrate that T. denticola has evolved a unique mechanism to finely regulate its flagellar filament gene expression and assembly which renders the organelle with the right number, shape, strength, and structure for its distinct motility.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Yunjie Chang
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Jun Liu
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Microbiology and Immunology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
17
|
Controlled Proteolysis of an Essential Virulence Determinant Dictates Infectivity of Lyme Disease Pathogens. Infect Immun 2022; 90:e0005922. [PMID: 35416705 DOI: 10.1128/iai.00059-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Borrelia burgdorferi BB0323 protein undergoes a complex yet poorly defined proteolytic maturation event that generates N-terminal and C-terminal proteins with essential functions in cell growth and infection. Here, we report that a borrelial protease, B. burgdorferi high temperature requirement A protease (BbHtrA), cleaves BB0323 between asparagine (N) and leucine (L) at positions 236 and 237, while the replacement of these residues with alanine in the mutant protein prevents its cleavage, despite preserving its normal secondary structure. The N-terminal BB0323 protein binds BbHtrA, but its cleavage site mutant displays deficiency in such interaction. An isogenic borrelial mutant with NL-to-AA substitution in BB0323 (referred to as Bbbb0323NL) maintains normal growth yet is impaired for infection of mice or transmission from infected ticks. Notably, the BB0323 protein is still processed in Bbbb0323NL, albeit with lower levels of mature N-terminal BB0323 protein and multiple aberrantly processed polypeptides, which could result from nonspecific cleavages at other asparagine and leucine residues in the protein. The lack of infectivity of Bbbb0323NL is likely due to the impaired abundance or stoichiometry of a protein complex involving BB0238, another spirochete protein. Together, these studies highlight that a precise proteolytic event and a particular protein-protein interaction, involving multiple borrelial virulence determinants, are mutually inclusive and interconnected, playing essential roles in the infectivity of Lyme disease pathogens.
Collapse
|
18
|
Guo S, Xu H, Chang Y, Motaleb MA, Liu J. FliL ring enhances the function of periplasmic flagella. Proc Natl Acad Sci U S A 2022; 119:e2117245119. [PMID: 35254893 PMCID: PMC8931381 DOI: 10.1073/pnas.2117245119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
SignificanceHow flagella sense complex environments and control bacterial motility remain fascinating questions. Here, we deploy cryo-electron tomography to determine in situ structures of the flagellar motor in wild-type and mutant cells of Borrelia burgdorferi, revealing that three flagellar proteins (FliL, MotA, and MotB) form a unique supramolecular complex in situ. Importantly, FliL not only enhances motor function by forming a ring around the stator complex MotA/MotB in its extended, active conformation but also facilitates assembly of the stator complex around the motor. Our in situ data provide insights into how cooperative remodeling of the FliL-stator supramolecular complex helps regulate the collective ion flux and establishes the optimal function of the flagellar motor to guide bacterial motility in various environments.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
19
|
Characterization of the Flagellar Collar Reveals Structural Plasticity Essential for Spirochete Motility. mBio 2021; 12:e0249421. [PMID: 34809456 PMCID: PMC8609358 DOI: 10.1128/mbio.02494-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spirochetes are a remarkable group of bacteria with distinct morphology and periplasmic flagella that enable motility in viscous environments, such as host connective tissues. The collar, a spirochete-specific complex of the periplasmic flagellum, is required for this unique spirochete motility, yet it has not been clear how the collar assembles and enables spirochetes to transit between complex host environments. Here, we characterize the collar complex in the Lyme disease spirochete Borrelia burgdorferi. We discover as well as delineate the distinct functions of two novel collar proteins, FlcB and FlcC, by combining subtractive bioinformatic, genetic, and cryo-electron tomography approaches. Our high-resolution in situ structures reveal that the multiprotein collar has a remarkable structural plasticity essential not only for assembly of flagellar motors in the highly curved membrane of spirochetes but also for generation of the high torque necessary for spirochete motility.
Collapse
|
20
|
Fule L, Halifa R, Fontana C, Sismeiro O, Legendre R, Varet H, Coppée JY, Murray GL, Adler B, Hendrixson DR, Buschiazzo A, Guo S, Liu J, Picardeau M. Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira. Mol Microbiol 2021; 116:1392-1406. [PMID: 34657338 DOI: 10.1111/mmi.14831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/31/2023]
Abstract
Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.
Collapse
Affiliation(s)
- Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | - Ruben Halifa
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Celia Fontana
- Boehringer Ingelheim Santé Animale, Saint Priest, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Gerald L Murray
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alejandro Buschiazzo
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Shuaiqi Guo
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
| |
Collapse
|
21
|
Xu H, Hu B, Flesher DA, Liu J, Motaleb MA. BB0259 Encompasses a Peptidoglycan Lytic Enzyme Function for Proper Assembly of Periplasmic Flagella in Borrelia burgdorferi. Front Microbiol 2021; 12:692707. [PMID: 34659138 PMCID: PMC8517470 DOI: 10.3389/fmicb.2021.692707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Assembly of the bacterial flagellar rod, hook, and filament requires penetration through the peptidoglycan (PG) sacculus and outer membrane. In most β- and γ-proteobacteria, the protein FlgJ has two functional domains that enable PG hydrolyzing activity to create pores, facilitating proper assembly of the flagellar rod. However, two distinct proteins performing the same functions as the dual-domain FlgJ are proposed in δ- and ε-proteobacteria as well as spirochetes. The Lyme disease spirochete Borrelia burgdorferi genome possesses a FlgJ and a PG lytic SLT enzyme protein homolog (BB0259). FlgJ in B. burgdorferi is crucial for flagellar hook and filament assembly but not for the proper rod assembly reported in other bacteria. However, BB0259 has never been characterized. Here, we use cryo-electron tomography to visualize periplasmic flagella in different bb0259 mutant strains and provide evidence that the E580 residue of BB0259 is essential for PG-hydrolyzing activity. Without the enzyme activity, the flagellar hook fails to penetrate through the pores in the cell wall to complete assembly of an intact periplasmic flagellum. Given that FlgJ and BB0259 interact with each other, they likely coordinate the penetration through the PG sacculus and assembly of a functional flagellum in B. burgdorferi and other spirochetes. Because of its role, we renamed BB0259 as flagellar-specific lytic transglycosylase or LTaseBb.
Collapse
Affiliation(s)
- Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - David A. Flesher
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
- Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
22
|
A simple method to detect Borrelia burgdorferi sensu lato proteins in different sub-cellular compartments by immunofluorescence. Ticks Tick Borne Dis 2021; 12:101808. [PMID: 34455142 DOI: 10.1016/j.ttbdis.2021.101808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
Spirochaetes constitute a unique phylum of bacteria, many of which cause severe clinical diseases. Borrelia burgdorferi sensu lato (B. burgdorferi s.l.)-the primary agent of Lyme borreliosis (LB)-is a quintessential member of this poorly understood phylum and the leading cause of tick-borne illness throughout most of the northern hemisphere. Despite its importance in human health, we lack a fundamental understanding of how B. burgdorferi s.l. is able to accomplish basic physiological tasks, such as DNA replication/segregation, and cell elongation or division. Recent advances in molecular tools to probe these essential cellular processes are great strides forward but require genetic manipulation. The latter is important since not all agents of LB are genetically tractable. Here, we describe a single method that is capable of fluorescently labeling B. burgdorferi s.l. proteins in different sub-cellular compartments. A comparative analysis of six different methods indicates that our optimized procedure outperforms all others and is the first to localize a cytoplasmic protein in B. burgdorferi s.l. by immunofluorescence. We contend that this strategy could be easily adapted to study the localization of any protein, in many Borrelia genospecies, information that will yield functional insights into the complex biology of this fascinating group of bacteria. In addition, it may provide new avenues of research in both in situ studies and in Lyme diagnostics.
Collapse
|
23
|
Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, McClune ME, Chang Y, Cramer N, Liu J, Jones CN, Jutras BL. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog 2021; 17:e1009546. [PMID: 33984073 PMCID: PMC8118282 DOI: 10.1371/journal.ppat.1009546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.
Collapse
Affiliation(s)
- Marisela M. Davis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aaron M. Brock
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tanner G. DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brittany P. Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mecaila E. McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nicholas Cramer
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Caroline N. Jones
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
24
|
Chen Y, Vargas SM, Smith TC, Karna SLR, MacMackin Ingle T, Wozniak KL, Wormley FL, Seshu J. Borrelia peptidoglycan interacting Protein (BpiP) contributes to the fitness of Borrelia burgdorferi against host-derived factors and influences virulence in mouse models of Lyme disease. PLoS Pathog 2021; 17:e1009535. [PMID: 33882111 PMCID: PMC8092773 DOI: 10.1371/journal.ppat.1009535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins. However, the burden of bpiP mutant in C3H/HeN mice at day 14, 28 and 62 post-infection was significantly lower compared to control strains. No viable bpiP mutant was re-isolated from any tissues at day 62 post-infection although bpiP mutant was able to colonize immunodeficient SCID at day 28 post-infection. Acquisition or transmission of bpiP mutant by Ixodes scapularis larvae or nymphs respectively, from and to mice, was significantly lower compared to control strains. Further analysis of bpiP mutant revealed increased sensitivity to vancomycin, osmotic stress, lysosomal extracts, human antimicrobial peptide cathelicidin-LL37, complement-dependent killing in the presence of day 14 post-infection mouse serum and increased internalization of CFSC-labeled bpiP mutant by macrophages and dendritic cells compared to control strains. These studies demonstrate the importance of accessory protein/s involved in sustaining integrity of PG and cell envelope during different phases of Bb infection.
Collapse
Affiliation(s)
- Yue Chen
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sean M. Vargas
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Trever C. Smith
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sai Lakshmi Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Taylor MacMackin Ingle
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karen L. Wozniak
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
25
|
Bista S, Singh P, Bernard Q, Yang X, Hart T, Lin YP, Kitsou C, Singh Rana V, Zhang F, Linhardt RJ, Zhnag K, Akins DR, Hritzo L, Kim Y, Grab DJ, Dumler JS, Pal U. A Novel Laminin-Binding Protein Mediates Microbial-Endothelial Cell Interactions and Facilitates Dissemination of Lyme Disease Pathogens. J Infect Dis 2021; 221:1438-1447. [PMID: 31758693 DOI: 10.1093/infdis/jiz626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.
Collapse
Affiliation(s)
- Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Preeti Singh
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, USA
| | - Yi-Pin Lin
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, New York, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kai Zhnag
- Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucy Hritzo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dennis J Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland
| |
Collapse
|
26
|
A CRISPR interference platform for selective downregulation of gene expression in Borrelia burgdorferi. Appl Environ Microbiol 2021; 87:AEM.02519-20. [PMID: 33257311 PMCID: PMC7851697 DOI: 10.1128/aem.02519-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The spirochete Borrelia burgdorferi causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into B. burgdorferi biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in B. burgdorferi For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of dcas9 and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes flaB, mreB, rodA, and ftsI, whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in B. burgdorferi Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the Borrelia genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our B. burgdorferi CRISPRi platform, which should facilitate future genetic studies of this important pathogen.IMPORTANCE Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in B. burgdorferi, as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of dcas9 expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in B. burgdorferi.
Collapse
|
27
|
DeHart TG, Kushelman MR, Hildreth SB, Helm RF, Jutras BL. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol 2021; 6:1583-1592. [PMID: 34819646 PMCID: PMC8612929 DOI: 10.1038/s41564-021-01003-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) β-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.
Collapse
Affiliation(s)
- Tanner G. DeHart
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Mara R. Kushelman
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Sherry B. Hildreth
- grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Richard F. Helm
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Brandon L. Jutras
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Molecular and Cellular Biology, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
28
|
Abstract
Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Collapse
Affiliation(s)
- Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
- Departments of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- Departments of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NY Department of Health, Albany NY, 12208, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
30
|
Sanderson VP, Mainprize IL, Verzijlenberg L, Khursigara CM, Wills MKB. The Platelet Fraction Is a Novel Reservoir to Detect Lyme Borrelia in Blood. BIOLOGY 2020; 9:biology9110366. [PMID: 33137967 PMCID: PMC7694117 DOI: 10.3390/biology9110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022]
Abstract
Simple Summary To diagnose Lyme disease, a patient’s blood is tested for antibodies that develop as part of the immune response. This can lead to cases being missed or inadequately treated. An ideal test would directly detect the Lyme disease bacteria, Borrelia, to provide better clinical guidance. In this study, we aimed to improve the methods currently used to find Borrelia in human blood, and identified two opportunities for optimization. We demonstrate that the container most commonly used to collect blood (EDTA) decreases Borrelia’s ability to grow, and we identify a superior alternative (citrate). Additionally, using experimentally infected blood, we show that Borrelia is highly concentrated in the platelet fraction, making it an ideal candidate for direct detection. These results lay the foundation for diagnostic test development, which could improve patient outcomes in Lyme disease. Abstract Serological diagnosis of Lyme disease suffers from considerable limitations. Yet, the technique cannot currently be replaced by direct detection methods, such as bacterial culture or molecular analysis, due to their inadequate sensitivity. The low bacterial burden in vasculature and lack of consensus around blood-based isolation of the causative pathogen, Borrelia burgdorferi, are central to this challenge. We therefore addressed methodological optimization of Borrelia recovery from blood, first by analyzing existing protocols, and then by using experimentally infected human blood to identify the processing conditions and fractions that increase Borrelia yield. In this proof-of-concept study, we now report two opportunities to improve recovery and detection of Borrelia from clinical samples. To enhance pathogen viability and cultivability during whole blood collection, citrate anticoagulant is superior to more commonly used EDTA. Despite the widespread reliance on serum and plasma as analytes, we found that the platelet fraction of blood concentrates Borrelia, providing an enriched resource for direct pathogen detection by microscopy, laboratory culture, Western blot, and PCR. The potential for platelets to serve as a reservoir for Borrelia and its diagnostic targets may transform direct clinical detection of this pathogen.
Collapse
Affiliation(s)
- Victoria P. Sanderson
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Iain L. Mainprize
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Lisette Verzijlenberg
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Cezar M. Khursigara
- Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54062); Fax: +1-519-837-1802
| |
Collapse
|
31
|
Spirochete Flagella and Motility. Biomolecules 2020; 10:biom10040550. [PMID: 32260454 PMCID: PMC7225975 DOI: 10.3390/biom10040550] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host-pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics.
Collapse
|
32
|
Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A, Buschiazzo A, Sindelar CV. An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. eLife 2020; 9:e53672. [PMID: 32157997 PMCID: PMC7065911 DOI: 10.7554/elife.53672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
Spirochete bacteria, including important pathogens, exhibit a distinctive means of swimming via undulations of the entire cell. Motility is powered by the rotation of supercoiled 'endoflagella' that wrap around the cell body, confined within the periplasmic space. To investigate the structural basis of flagellar supercoiling, which is critical for motility, we determined the structure of native flagellar filaments from the spirochete Leptospira by integrating high-resolution cryo-electron tomography and X-ray crystallography. We show that these filaments are coated by a highly asymmetric, multi-component sheath layer, contrasting with flagellin-only homopolymers previously observed in exoflagellated bacteria. Distinct sheath proteins localize to the filament inner and outer curvatures to define the supercoiling geometry, explaining a key functional attribute of this spirochete flagellum.
Collapse
Affiliation(s)
- Kimberley H Gibson
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Elsio A Wunder
- Departament of Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of HealthSalvadorBrazil
| | - Megan R Brady
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Fabiana San Martin
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Ariel Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Zhiguo Shang
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, School of Medicine, Yale UniversityNew HavenUnited States
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut PasteurParisFrance
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut PasteurParisFrance
| | - Albert Ko
- Departament of Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of HealthSalvadorBrazil
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut PasteurParisFrance
| | - Charles Vaughn Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
33
|
Abstract
Periplasmic flagella are complex nanomachines responsible for distinctive morphology and motility of spirochetes. Although bacterial flagella have been extensively studied for several decades in the model systems Escherichia coli and Salmonella enterica, our understanding of periplasmic flagella in many disease-causing spirochetes remains incomplete. Recent advances, including molecular genetics, biochemistry, structural biology, and cryo-electron tomography, have greatly increased our understanding of structure and function of periplasmic flagella. In this chapter, we summarize some of the recent findings that provide new insights into the structure, assembly, and function of periplasmic flagella.
Collapse
|
34
|
Zhang K, He J, Cantalano C, Guo Y, Liu J, Li C. FlhF regulates the number and configuration of periplasmic flagella in Borrelia burgdorferi. Mol Microbiol 2020; 113:1122-1139. [PMID: 32039533 DOI: 10.1111/mmi.14482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
The Lyme disease bacterium Borrelia burgdorferi has 7-11 periplasmic flagella (PF) that arise from the cell poles and extend toward the midcell as a flat-ribbon, which is distinct from other bacteria. FlhF, a signal recognition particle (SRP)-like GTPase, has been found to regulate the flagellar number and polarity; however, its role in B. burgdorferi remains unknown. B. burgdorferi has an FlhF homolog (BB0270). Structural and biochemical analyses show that BB0270 has a similar structure and enzymatic activity as its counterparts from other bacteria. Genetics and cryo-electron tomography studies reveal that deletion of BB0270 leads to mutant cells that have less PF (4 ± 2 PF per cell tip) and fail to form a flat-ribbon, indicative of a role of BB0270 in the control of PF number and configuration. Mechanistically, we demonstrate that BB0270 localizes at the cell poles and controls the number and position of PF via regulating the flagellar protein stability and the polar localization of the MS-ring protein FliF. Our study not only provides the detailed characterizations of BB0270 and its profound impacts on flagellar assembly, morphology and motility in B. burgdorferi, but also unveils mechanistic insights into how spirochetes control their unique flagellar patterns.
Collapse
Affiliation(s)
- Kai Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Jun He
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Claudio Cantalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.,Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.,Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
35
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
36
|
Ng HM, Slakeski N, Butler CA, Veith PD, Chen YY, Liu SW, Hoffmann B, Dashper SG, Reynolds EC. The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis. Front Cell Infect Microbiol 2019; 9:432. [PMID: 31921707 PMCID: PMC6930189 DOI: 10.3389/fcimb.2019.00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.
Collapse
Affiliation(s)
- Hong Min Ng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Sze Wei Liu
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Brigitte Hoffmann
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Thriving in Wetlands: Ecophysiology of the Spiral-Shaped Methanotroph Methylospira mobilis as Revealed by the Complete Genome Sequence. Microorganisms 2019; 7:microorganisms7120683. [PMID: 31835835 PMCID: PMC6956133 DOI: 10.3390/microorganisms7120683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Candidatus Methylospira mobilis is a recently described spiral-shaped, micro-aerobic methanotroph, which inhabits northern freshwater wetlands and sediments. Due to difficulties of cultivation, it could not be obtained in a pure culture for a long time. Here, we report on the successful isolation of strain Shm1, the first axenic culture of this unique methanotroph. The complete genome sequence obtained for strain Shm1 was 4.7 Mb in size and contained over 4800 potential protein-coding genes. The array of genes encoding C1 metabolic capabilities in strain Shm1 was highly similar to that in the closely related non-motile, moderately thermophilic methanotroph Methylococcus capsulatus Bath. The genomes of both methanotrophs encoded both low- and high-affinity oxidases, which allow their survival in a wide range of oxygen concentrations. The repertoire of signal transduction systems encoded in the genome of strain Shm1, however, by far exceeded that in Methylococcus capsulatus Bath but was comparable to those in other motile gammaproteobacterial methanotrophs. The complete set of motility genes, the presence of both the molybdenum–iron and vanadium-iron nitrogenases, as well as a large number of insertion sequences were also among the features, which define environmental adaptation of Methylospira mobilis to water-saturated, micro-oxic, heterogeneous habitats depleted in available nitrogen.
Collapse
|
38
|
Xu H, He J, Liu J, Motaleb MA. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi. Mol Microbiol 2019; 113:418-429. [PMID: 31743518 DOI: 10.1111/mmi.14428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar-stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.
Collapse
Affiliation(s)
- Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jun He
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
39
|
Chang Y, Moon KH, Zhao X, Norris SJ, Motaleb MA, Liu J. Structural insights into flagellar stator-rotor interactions. eLife 2019; 8:48979. [PMID: 31313986 PMCID: PMC6663468 DOI: 10.7554/elife.48979] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Ki Hwan Moon
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Xiaowei Zhao
- Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
40
|
Winslow C, Coburn J. Recent discoveries and advancements in research on the Lyme disease spirochete Borrelia burgdorferi. F1000Res 2019; 8. [PMID: 31214329 PMCID: PMC6545822 DOI: 10.12688/f1000research.18379.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
This review highlights some of the highest-profile developments and advancements in the research on
Borrelia burgdorferi, the Lyme disease spirochete, that have emerged in the last two years. Particular emphasis is placed on the controversy surrounding genus nomenclature, antigenic variation at the
vlsE locus, genes involved in infectivity and virulence, membrane characteristics of
B. burgdorferi, and developments in experimental approaches.
Collapse
Affiliation(s)
- Christa Winslow
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
41
|
Zhang K, Qin Z, Chang Y, Liu J, Malkowski MG, Shipa S, Li L, Qiu W, Zhang JR, Li C. Analysis of a flagellar filament cap mutant reveals that HtrA serine protease degrades unfolded flagellin protein in the periplasm of Borrelia burgdorferi. Mol Microbiol 2019; 111:1652-1670. [PMID: 30883947 DOI: 10.1111/mmi.14243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook-associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non-motile mutant cells that are unable to assemble flagellar filaments and pentagon-shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella-deficient mutants (i.e., in the hook, rod, or MS-ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, 14203, USA
| | - Saimtun Shipa
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Li Li
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Weigang Qiu
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute, Virginia Commonwealth University, Richmond, VI, 23298, USA
| |
Collapse
|
42
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
43
|
Takacs CN, Kloos ZA, Scott M, Rosa PA, Jacobs-Wagner C. Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi. Appl Environ Microbiol 2018; 84:e01824-18. [PMID: 30315081 PMCID: PMC6275353 DOI: 10.1128/aem.01824-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lyme disease is the most widely reported vector-borne disease in the United States. Its incidence is rapidly increasing, and disease symptoms can be debilitating. The need to understand the biology of the disease agent, the spirochete Borrelia burgdorferi, is thus evermore pressing. Despite important advances in B. burgdorferi genetics, the array of molecular tools available for use in this organism remains limited, especially for cell biological studies. Here, we adapt a palette of bright and mostly monomeric fluorescent proteins for versatile use and multicolor imaging in B. burgdorferi We also characterize two novel antibiotic selection markers and establish the feasibility of their use in conjunction with extant markers. Last, we describe a set of promoters of low and intermediate strengths that allow fine-tuning of gene expression levels. These molecular tools complement and expand current experimental capabilities in B. burgdorferi, which will facilitate future investigation of this important human pathogen. To showcase the usefulness of these reagents, we used them to investigate the subcellular localization of BB0323, a B. burgdorferi lipoprotein essential for survival in the host and vector environments. We show that BB0323 accumulates at the cell poles and future division sites of B. burgdorferi cells, highlighting the complex subcellular organization of this spirochete.IMPORTANCE Genetic manipulation of the Lyme disease spirochete B. burgdorferi remains cumbersome, despite significant progress in the field. The scarcity of molecular reagents available for use in this pathogen has slowed research efforts to study its unusual biology. Of interest, B. burgdorferi displays complex cellular organization features that have yet to be understood. These include an unusual morphology and a highly fragmented genome, both of which are likely to play important roles in the bacterium's transmission, infectivity, and persistence. Here, we complement and expand the array of molecular tools available for use in B. burgdorferi by generating and characterizing multiple fluorescent proteins, antibiotic selection markers, and promoters of varied strengths. These tools will facilitate investigations in this important human pathogen, as exemplified by the polar and midcell localization of the cell envelope regulator BB0323, which we uncovered using these reagents.
Collapse
Affiliation(s)
- Constantin N Takacs
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Zachary A Kloos
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Microbiology Program, Yale University, New Haven, Connecticut, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Cryo-electron tomography of periplasmic flagella in Borrelia burgdorferi reveals a distinct cytoplasmic ATPase complex. PLoS Biol 2018; 16:e3000050. [PMID: 30412577 PMCID: PMC6248999 DOI: 10.1371/journal.pbio.3000050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time, that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. This structure not only strengthens structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our studies provide structural insights into the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the basis for the development of novel therapeutic strategies against several pathogenic spirochetes. Cryo-electron tomography of periplasmic flagella in the Lyme disease bacterium Borrelia burgdorferi reveals it to have a distinct cytoplasmic ATPase complex and an atypical interaction with the flagellar C-ring. Type III secretion systems are widely utilized by gram-negative bacteria to assemble flagella or to transport virulence effectors into eukaryotic cells. The central component is known as a type III secretion machine, which consists of a membrane-bound export apparatus and a cytosolic ATPase complex. Powered by the proton motive force and ATP hydrolysis, the secretion machine is responsible for substrate recognition and export. Here, we use the Lyme disease spirochete B. burgdorferi as a model system to unveil unprecedented structural details of the intact flagellar secretion machine by high-throughput cryo-electron tomography (cryo-ET) and subtomogram averaging. We provide the first structural evidence that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. The novel architecture of the ATPase complex not only strengthens the flagellar C-ring but also enables an optimal translocation of substrates through the ATPase complex and the export apparatus.
Collapse
|
45
|
Moon KH, Zhao X, Xu H, Liu J, Motaleb MA. A tetratricopeptide repeat domain protein has profound effects on assembly of periplasmic flagella, morphology and motility of the lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2018; 110:634-647. [PMID: 30303576 DOI: 10.1111/mmi.14121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Spirochetes possess a unique periplasmic flagellar motor component called the collar. However, little is known about the composition or function of the flagellar collar proteins. To identify a collar protein, we have inactivated almost all genes annotated as motility-related in the Borrelia burgdorferi genome and identified only FlbB, which comprises the base of the collar. Since the major components of the collar complex remained unidentified, we took advantage of a protein-protein interaction map developed in another spirochete, Treponema pallidum to identify proteins of unknown function that could be collar proteins. Subsequently, using various comprehensive approaches, we identified a tetratricopeptide repeat protein BB0236 as a potential candidate for the collar. Biochemical assays indicated that FlbB interacts with BB0236. Furthermore, ∆bb0236 mutant analyses indicated that BB0236 is crucial for collar structure assembly, cellular morphology, motility, orientation of periplasmic flagella and assembly of other flagellar structures. Moreover, using comparative motor analyses, we propose how the collar structure is assembled in B. burgdorferi. Together, our studies provide new insights into the organization and the complex assembly inherent to the unique spirochetal collar structure.
Collapse
Affiliation(s)
- Ki Hwan Moon
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA.,Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University, New Haven, CT, 06536, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
46
|
Bergström S, Normark J. Microbiological features distinguishing Lyme disease and relapsing fever spirochetes. Wien Klin Wochenschr 2018; 130:484-490. [PMID: 30074091 PMCID: PMC6096528 DOI: 10.1007/s00508-018-1368-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
The recent proposal of splitting the genus Borrelia into two genera in the newly formed family of Borreliaceae, i. e. Borrelia and Borreliella has motivated us to reflect upon how these organisms has been characterized and differentiated. This article therefore aims to take a closer look on the biology and virulence attributes of the two suggested genera, i. e. those causing Lyme borreliosis and relapsing fever borreliosis. Both genera have much in common with similar infection biological features. They are both characterized as bacterial zoonoses, transmitted by hematophagous arthropods with almost identical microbiological appearance. Nevertheless, a closer look at the genotypic and phenotypic characteristics clearly reveals several differences that might motivate the suggested split. On the other hand, a change of this well-established classification within the genus Borrelia might impose an economical burden as well as a great confusion in society, including medical and scientific societies as well as the general population.
Collapse
Affiliation(s)
- Sven Bergström
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, 901 87, Umeå, Sweden. .,Umeå Center for Microbial Research, Umeå University, Umeå, Sweden. .,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Bontemps-Gallo S, Lawrence KA, Richards CL, Gherardini FC. Genomic and phenotypic characterization of Borrelia afzelii BO23 and Borrelia garinii CIP 103362. PLoS One 2018; 13:e0199641. [PMID: 29944685 PMCID: PMC6019248 DOI: 10.1371/journal.pone.0199641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, the number of Lyme disease or borreliosis cases in Eurasia has been dramatically increasing. This tick-borne disease is caused by Borrelia burgdorferi sensu lato, which includes B. burgdorferi sensu stricto, the main species found in North America, and B. afzelii and B. garinii, which are primarily responsible for the disease in Eurasia. Currently, research on Lyme disease has focused mainly on B. burgdorferi while B. afzelii and B. garinii, which cause disease with distinctly different symptoms, are less studied. The purpose of this study is to evaluate B. afzelii BO23 and B. garinii CIP 103362 as model organisms to study Eurasian Lyme disease. To begin our analyses, we sequenced, annotated the chromosomes of both species and compared them to B. burgdorferi strain B31. We also assayed shuttle vector, pBSV2, for transformation efficacy and demonstrated that these strains can be cultured on solid media. In addition, we characterized how physicochemical parameters (e.g., oxygen, osmolarity, oxidative stress) affect both growth and motility of the bacteria. Finally, we describe each strain's antibiotic susceptibility and accessed their ability to infect mice. In conclusion, B. afzelii BO23 was more practical for in vitro and in vivo studies than B. garinii CIP 103362.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kevin A. Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Crystal L. Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sasaki Y, Kawamoto A, Tahara H, Kasuga K, Sato R, Ohnishi M, Nakamura S, Koizumi N. Leptospiral flagellar sheath protein FcpA interacts with FlaA2 and FlaB1 in Leptospira biflexa. PLoS One 2018; 13:e0194923. [PMID: 29634754 PMCID: PMC5892894 DOI: 10.1371/journal.pone.0194923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Leptospira spp. are spirochete bacteria that possess periplasmic flagella (PFs) underneath the outer membrane; each flagellum is attached to each end of the protoplasmic cylinder. PFs of Leptospira have a coiled shape that bends the end of the cell body. However, the molecular mechanism by which multiple flagellar proteins organize to form the distinctively curled PF of Leptospira remains unclear. Here we obtained a slow-motility mutant of L. biflexa MD4-3 by random insertion mutagenesis using a Himar1 transposon. In MD4-3, the gene encoding the flagellar sheath protein, flagellar-coiling protein A (FcpA), which was recently identified in L. interrogans, was inactivated. As with L. interrogans ΔfcpA strains, the L. biflexa ΔfcpA strain lacked a distinct curvature at both ends of the cell body, and its motility was significantly reduced as compared with that of the wild-type strain. PFs isolated from the ΔfcpA strain were straight and were thinner than those isolated from the wild-type strain. Western blot analysis revealed that flagellar proteins FlaA1, FlaA2, FlaB1, and FlaB2 were expressed in the ΔfcpA strain but the flagellar proteins, except for FlaB2 were not incorporated in its PFs. Immunoprecipitation assay using anti-FcpA antiserum demonstrated that FcpA associates with FlaA2 and FlaB1. The association between FcpA and FlaA2 was also verified using pull-down assay. The regions of FlaA2 and FlaB1 interacting with FcpA were determined using a bacterial two-hybrid assay. These results suggest that FcpA together with FlaA2, produces coiling of PF of the Leptospira, and the interaction between the sheath and core filament may be mediated by FcpA and FlaB1.
Collapse
Affiliation(s)
- Yuya Sasaki
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, Japan
- Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
49
|
Jackson KM, Schwartz C, Wachter J, Rosa PA, Stewart PE. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol Microbiol 2018; 108:77-89. [PMID: 29363884 DOI: 10.1111/mmi.13917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
Leptospires and other members of the evolutionarily ancient phylum of Spirochaetes are bacteria often characterized by long, highly motile spiral- or wave-shaped cells. Morphology and motility are critical factors in spirochete physiology, contributing to the ability of these bacteria to successfully colonize diverse environments. However, the mechanisms conferring the helical structure of Leptospira spp. have yet to be fully elucidated. We have identified five Leptospira biflexa bactofilin proteins, a recently characterized protein family with cytoskeletal properties. These five bactofilins are conserved in all species of the Leptospiraceae, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility and a decreased ability to tolerate cell wall stressors. The change in the helical spacing, combined with the motility and cell wall integrity defects, showcases the intimate relationship and coevolution between shape and motility in these spirochetes.
Collapse
Affiliation(s)
- Katrina M Jackson
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Cindi Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
50
|
Wills MKB, Kirby AM, Lloyd VK. Detecting the Lyme Disease Spirochete, Borrelia Burgdorferi, in Ticks Using Nested PCR. J Vis Exp 2018. [PMID: 29443061 PMCID: PMC5912355 DOI: 10.3791/56471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease is a serious vector-borne infection that is caused by the Borrelia burgdorferi sensu lato family of spirochetes, which are transmitted to humans through the bite of infected Ixodes ticks. The primary etiological agent in North America is Borrelia burgdorferi sensu stricto. As geographic risk regions expand, it is prudent to support robust surveillance programs that can measure tick infection rates, and communicate findings to clinicians, veterinarians, and the general public. The molecular technique of nested polymerase chain reaction (nPCR) has long been used for this purpose, and it remains a central, inexpensive, and robust approach in the detection of Borrelia in both ticks and wildlife. This article demonstrates the application of nPCR to tick DNA extracts to identify infected specimens. Two independent B. burgdorferi targets, genes encoding Flagellin B (FlaB) and Outer surface protein A (OspA), have been used extensively with this technique. The protocol involves tick collection, DNA extraction, and then an initial round of PCR to detect each of the two Borrelia-specific loci. Subsequent polymerase chain reaction (PCR) uses the product of the first reaction as a new template to generate smaller, internal amplification fragments. The nested approach improves upon both the specificity and sensitivity of conventional PCR. A tick is considered positive for the pathogen when inner amplicons from both Borrelia genes can be detected by agarose gel electrophoresis.
Collapse
Affiliation(s)
| | | | - Vett K Lloyd
- Department of Biology, Mount Allison University;
| |
Collapse
|