1
|
Wang F, Chi J, Guo H, Wang J, Wang P, Li YX, Wang ZM, Dai LP. Revealing the effects and mechanism of wine processing on Corni Fructus using chemical characterization integrated with multi-dimensional analyses. J Chromatogr A 2024; 1730:465100. [PMID: 38996512 DOI: 10.1016/j.chroma.2024.465100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
Corni fructus (CF) is always subjected to wine processing before prescription in clinic, for an enhancing effect of nourishing liver and kidney. While, the underlying mechanism for this processing on CF remains obscure. In this study, a sensitive ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS/MS) method combined multi-dimensional analyses was established to monitor chemical characterizations of raw and wine-processed CF (WCF) and hence reveal the effects and underlying mechanism of wine processing on CF. As indicated, a total of 216 compounds were tentatively identified, including 98 structurally complex and variable home/hetero-polymers, that were composed of iridoid glucosides, gallic acids, caffeic acid and/or 5-HMF. Interestingly, 53 of these compounds probably characterized potential novel, including 35 iridoid glucosides or their dimers, 9 iridoid glucoside-gallic acid dimers, 7 gallic acids derivatives and 2 gallic acid-caffeic acid dimers, which provides ideas for natural product researchers. Meanwhile, the multi-dimensional analyses including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and linear regression analysis were used to explore the differences between CF and WCF. The results showed that 23 compounds as chemical markers greatly contributing to the distinction were screened out, and 3 of which (7α/β-O-ethyl-morroniside, gallic acid and 5-HMF) in WCF indicated an increasing trend in intensities in relative to those in CF. Additionally, linear regression analysis showed that in WCF 53 compounds exhibited an increasing in intensities, while 132 ones did a decreasing trend, compared with those in CF. As our investigation demonstrated, acetal reaction of morroniside, ester hydrolysis in different organic acid derivatives as well as glycoside bond cleavage during wine processing probably resulted in the distinctions. The findings of this study provide a further understanding of the effect and mechanism of wine processing on CF.
Collapse
Affiliation(s)
- Fang Wang
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Jun Chi
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Hui Guo
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Jing Wang
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Pei Wang
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Yi-Xiao Li
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Zhi-Min Wang
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Li-Ping Dai
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Anindita PD, Otsuka Y, Lattmann S, Ngo KH, Liew CW, Kang C, Harris RS, Scampavia L, Spicer TP, Luo D. A high-throughput cell-based screening method for Zika virus protease inhibitor discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100164. [PMID: 38796112 DOI: 10.1016/j.slasd.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.
Collapse
Affiliation(s)
- Paulina Duhita Anindita
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yuka Otsuka
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States
| | - Simon Lattmann
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Khac Huy Ngo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States
| | - Louis Scampavia
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States
| | - Timothy P Spicer
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
3
|
Trevisan M, Pianezzola A, Onorati M, Apolloni L, Pistello M, Arav-Boger R, Palù G, Mercorelli B, Loregian A. Human neural progenitor cell models to study the antiviral effects and neuroprotective potential of approved and investigational human cytomegalovirus inhibitors. Antiviral Res 2024; 223:105816. [PMID: 38286212 DOI: 10.1016/j.antiviral.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Human cytomegalovirus (HCMV) is the viral leading cause of congenital defects in newborns worldwide. Many aspects of congenital CMV (cCMV) infection, which currently lacks a specific treatment, as well as the main determinants of neuropathogenesis in the developing brain during HCMV infection are unclear. In this study, we modeled HCMV infection at different stages of neural development. Moreover, we evaluated the effects of both approved and investigational anti-HCMV drugs on viral replication and gene expression in two different neural progenitor cell lines, i.e., human embryonic stem cells-derived neural stem cells (NSCs) and fetus-derived neuroepithelial stem (NES) cells. Ganciclovir, letermovir, nitazoxanide, and the ozonide OZ418 reduced viral DNA synthesis and the production of infectious virus in both lines of neural progenitors. HCMV infection dysregulated the expression of genes that either are markers of neural progenitors, such as SOX2, NESTIN, PAX-6, or play a role in neurogenesis, such as Doublecortin. Treatment with antiviral drugs had different effects on HCMV-induced dysregulation of the genes under investigation. This study contributes to the understanding of the molecular mechanisms of cCMV neuropathogenesis and paves the way for further consideration of anti-HCMV drugs as candidate therapeutic agents for the amelioration of cCMV-associated neurological manifestations.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Anna Pianezzola
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Lorenzo Apolloni
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mauro Pistello
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa, 56127, Italy
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
5
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
6
|
Steiner JP, Bachani M, Malik N, Li W, Tyagi R, Sampson K, Abrams RPM, Kousa Y, Solis J, Johnson TP, Nath A. Neurotoxic properties of the Zika virus envelope protein. Exp Neurol 2023; 367:114469. [PMID: 37327963 PMCID: PMC10527427 DOI: 10.1016/j.expneurol.2023.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.
Collapse
Affiliation(s)
- Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Muznabanu Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Richa Tyagi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Youssef Kousa
- Division of Neurology, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jamie Solis
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America; Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
7
|
Maria NI, Rapicavoli RV, Alaimo S, Bischof E, Stasuzzo A, Broek JA, Pulvirenti A, Mishra B, Duits AJ, Ferro A. Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing. Heliyon 2023; 9:e14115. [PMID: 36911878 PMCID: PMC9986505 DOI: 10.1016/j.heliyon.2023.e14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.
Collapse
Key Words
- 2DG, 2-Deoxy-Glucose
- ACE2, Angiotensin-converting enzyme 2
- COVID-19
- COVID-19, Coronavirus disease 2019
- Caco-2, Human colon epithelial carcinoma cell line
- Calu-3, Epithelial cell line
- Cellular SARS-CoV-2 signatures
- Cellular host-immune response
- Cellular simulation models
- DEGs, Differentially Expressed Genes
- DEPs, Differentially expressed proteins
- Drug repurposing
- HCQ-CQ, (Hydroxy)chloroquine
- IFN, Interferon
- ISGs, IFN-stimulated genes
- MITHrIL, Mirna enrIched paTHway Impact anaLysis
- MOI, Multiplicity of infection
- MP, Methylprednisolone
- NHBE, Normal human bronchial epithelial cells
- PHENSIM, PHENotype SIMulator
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- Systems biology
- TLR, Toll-like Receptor
Collapse
Affiliation(s)
- Naomi I. Maria
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, USA
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
- Department of Medical Microbiology and Immunology, St. Antonius Ziekenhuis, Niewegein, the Netherlands
- Corresponding author. Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA.
| | - Rosaria Valentina Rapicavoli
- Department of Physics and Astronomy, University of Catania, Italy
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Evelyne Bischof
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, Naples, Italy
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Pudong, Shanghai, China
- Insilico Medicine, Hong Kong Special Administrative Region, China
| | | | - Jantine A.C. Broek
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Bud Mishra
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
- Simon Center for Quantitative Biology, Cold Spring Harbor Lab, Long Island, USA
- Corresponding author. Courant Institute of Mathematical Sciences, Room 405, 251 Mercer Street, NY, USA.
| | - Ashley J. Duits
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
- Curaçao Biomedical Health Research Institute, Willemstad, Curaçao
- Institute for Medical Education, University Medical Center Groningen, Groningen, the Netherlands
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | | |
Collapse
|
8
|
Braun NJ, Huber S, Schmacke LC, Heine A, Steinmetzer T. Boroleucine-Derived Covalent Inhibitors of the ZIKV Protease. ChemMedChem 2023; 18:e202200336. [PMID: 36325810 PMCID: PMC10100045 DOI: 10.1002/cmdc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Indexed: 11/06/2022]
Abstract
The Zika virus (ZIKV) remains a potential threat to the public health due to the lack of both an approved vaccination or a specific treatment. In this work, a series of peptidic inhibitors of the ZIKV protease with boroleucine as P1 residue was synthesized. The highest affinities with Ki values down to 8 nM were observed for compounds with basic residues in both P2 and P3 position and at the N-terminus. The low potency of reference compounds containing leucine, leucine-amide or isopentylamide as P1 residue suggested a covalent binding mode of the boroleucine-derived inhibitors. This was finally proven by crystal structure determination of the most potent inhibitor from this series in complex with the ZIKV protease.
Collapse
Affiliation(s)
- Niklas J. Braun
- Institute of Pharmaceutical ChemistryPhilipps University of MarburgMarbacher Weg 635032MarburgGermany
| | - Simon Huber
- Institute of Pharmaceutical ChemistryPhilipps University of MarburgMarbacher Weg 635032MarburgGermany
| | - Luna C. Schmacke
- Institute of Pharmaceutical ChemistryPhilipps University of MarburgMarbacher Weg 635032MarburgGermany
| | - Andreas Heine
- Institute of Pharmaceutical ChemistryPhilipps University of MarburgMarbacher Weg 635032MarburgGermany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical ChemistryPhilipps University of MarburgMarbacher Weg 635032MarburgGermany
| |
Collapse
|
9
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
10
|
Zika Virus Infection and Development of Drug Therapeutics. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that is associated with neurological complications, such as neuroinflammatory Guillain Barré Syndrome in adults and microcephaly in newborns, and remains a potentially significant and international public health concern. The World Health Organization is urging the development of novel antiviral therapeutic strategies against ZIKV, as there are no clinically approved vaccines or drugs against this virus. Given the public health crisis that is related to ZIKV cases in the last decade, efficient strategies should be identified rapidly to combat or treat ZIKV infection. Several promising strategies have been reported through drug repurposing studies, de novo design, and the high-throughput screening of compound libraries in only a few years. This review summarizes the genome and structure of ZIKV, viral life cycle, transmission cycle, clinical manifestations, cellular and animal models, and antiviral drug developments, with the goal of increasing our understanding of ZIKV and ultimately defeating it.
Collapse
|
11
|
Kamboj S, Rajput A, Rastogi A, Thakur A, Kumar M. Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches. Comput Struct Biotechnol J 2022; 20:3422-3438. [PMID: 35832613 PMCID: PMC9271984 DOI: 10.1016/j.csbj.2022.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5-10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed the "Anti-HCV" platform using machine learning and quantitative structure-activity relationship (QSAR) approaches to predict repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A (495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using a recursive feature elimination algorithm. Different machine learning techniques viz. support vector machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the predictive models. We achieved Pearson's correlation coefficients from 0.80 to 0.92 during 10-fold cross validation and similar performance on independent datasets using the best developed models. The robustness and reliability of developed predictive models were also supported by applicability domain, chemical diversity and decoy datasets analyses. The "Anti-HCV" predictive models were used to identify potential repurposing drugs. Representative candidates were further validated by molecular docking which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naftifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove useful in antiviral drug development against HCV.
Collapse
Affiliation(s)
- Sakshi Kamboj
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 2022; 16:e0010291. [PMID: 35482672 PMCID: PMC9049358 DOI: 10.1371/journal.pntd.0010291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.
Collapse
|
13
|
Huber S, Braun NJ, Schmacke LC, Quek JP, Murra R, Bender D, Hildt E, Luo D, Heine A, Steinmetzer T. Structure-Based Optimization and Characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. J Med Chem 2022; 65:6555-6572. [PMID: 35475620 DOI: 10.1021/acs.jmedchem.1c01860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.
Collapse
Affiliation(s)
- Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921
| | - Robin Murra
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Eberhard Hildt
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
14
|
Yao G, Yu J, Lin C, Zhu Y, Duan A, Li M, Yuan J, Zhang J. Design, synthesis, and biological evaluation of novel 2′-methyl-2′-fluoro-6-methyl-7-alkynyl-7-deazapurine nucleoside analogs as anti-Zika virus agents. Eur J Med Chem 2022; 234:114275. [DOI: 10.1016/j.ejmech.2022.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022]
|
15
|
Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022; 11:293. [PMID: 35335617 PMCID: PMC8955721 DOI: 10.3390/pathogens11030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines. During viral replication, a single polyprotein precursor (PP) is produced and further cleaved into individual proteins by a viral NS2B-NS3 protease complex together with host proteases. Flavivirus protease is one of the most attractive targets for development of therapeutic antivirals because it is essential for viral PP processing, leading to active viral proteins. In this review, we have summarized recent development in drug discovery targeting the NS2B-NS3 protease of flaviviruses, especially Zika, dengue, and West Nile viruses.
Collapse
Affiliation(s)
- Subodh K. Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
16
|
Dorjsuren D, Eastman RT, Song MJ, Yasgar A, Chen Y, Bharti K, Zakharov AV, Jadhav A, Ferrer M, Shi PY, Simeonov A. A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model. PLoS One 2022; 17:e0261821. [PMID: 35041689 PMCID: PMC8765781 DOI: 10.1371/journal.pone.0261821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/10/2021] [Indexed: 01/24/2023] Open
Abstract
The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.
Collapse
Affiliation(s)
- Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Min Jae Song
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Adam Yasgar
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuchi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexey V. Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pei-Yong Shi
- University of Texas Medical Branch Galveston, Galveston, TX, United States of America
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nie S, Zhao J, Wu X, Yao Y, Wu F, Lin YL, Li X, Kneubehl AR, Vogt MB, Rico-Hesse R, Song Y. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur J Med Chem 2021; 225:113767. [PMID: 34450494 DOI: 10.1016/j.ejmech.2021.113767] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chemistry optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 μM. These compounds are novel pharmacological leads for further drug development targeting Zika virus.
Collapse
Affiliation(s)
- Shenyou Nie
- Department of Pharmacology and Chemical Biology, USA
| | - Jidong Zhao
- Department of Pharmacology and Chemical Biology, USA
| | - Xiaowei Wu
- Department of Pharmacology and Chemical Biology, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, USA
| | - Yi-Lun Lin
- Department of Pharmacology and Chemical Biology, USA
| | - Xin Li
- Department of Pharmacology and Chemical Biology, USA
| | | | - Megan B Vogt
- Department of Molecular Virology and Microbiology, USA; Intragrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | | | | |
Collapse
|
18
|
Abstract
Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
19
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
20
|
Vogel AL, Knebel AR, Faupel-Badger JM, Portilla LM, Simeonov A. A systems approach to enable effective team science from the internal research program of the National Center for Advancing Translational Sciences. J Clin Transl Sci 2021; 5:e163. [PMID: 34527302 PMCID: PMC8427549 DOI: 10.1017/cts.2021.811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
The internal research program of the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health aims to fundamentally transform the preclinical translational research process to get more treatments to more people more quickly. The program develops and implements innovative scientific and operational approaches that accelerate and enhance translation across many diverse projects. Cross-disciplinary team science is a defining feature of our organization, with scientists at all levels engaged in multiple research teams. Here, we share our systems approach to nurturing cross-disciplinary team science, which leverages organizational policies, structures, and processes. Policies including the organizational mission statement, principles for ethical conduct of research, performance review criteria, and training program objectives and approaches reinforce the value of team science to achieve the program's scientific goals. Structures including an organizational structure designed around solving translational problems, co-location of employees in a single state-of-the-art scientific facility, and shared-use laboratories, expertise and instrumentation facilitate collaboration. Processes including fluid team assembly, specialized project management, cross-agency partnerships, and decision making based on clear screening criteria and milestones enable effective team assembly and functioning. We share evidence of the impact of these approaches on the science and commercialization of findings and discuss pathways to broad adoption of similar approaches.
Collapse
Affiliation(s)
- Amanda L. Vogel
- National Institutes of Health (NIH); National Center for Advancing Translational Sciences (NCATS); Office of Policy, Communications and Education; Education Branch; Bethesda, MD, USA
| | - Ann R. Knebel
- National Institutes of Health (NIH), National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Office of the Scientific Director, Rockville, MD, USA
| | - Jessica M. Faupel-Badger
- National Institutes of Health (NIH); National Center for Advancing Translational Sciences (NCATS); Office of Policy, Communications and Education; Education Branch; Bethesda, MD, USA
| | - Lili M. Portilla
- National Institutes of Health (NIH), National Center for Advancing Translational Sciences (NCATS), Office of Strategic Alliances (OSA), Rockville, MD, USA
| | - Anton Simeonov
- National Institutes of Health (NIH), National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Office of the Scientific Director, Rockville, MD, USA
| |
Collapse
|
21
|
Ben-Zuk N, Dechtman ID, Henn I, Weiss L, Afriat A, Krasner E, Gal Y. Potential Prophylactic Treatments for COVID-19. Viruses 2021; 13:1292. [PMID: 34372498 PMCID: PMC8310088 DOI: 10.3390/v13071292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization declared the SARS-CoV-2 outbreak a Public Health Emergency of International Concern at the end of January 2020 and a pandemic two months later. The virus primarily spreads between humans via respiratory droplets, and is the causative agent of Coronavirus Disease 2019 (COVID-19), which can vary in severity, from asymptomatic or mild disease (the vast majority of the cases) to respiratory failure, multi-organ failure, and death. Recently, several vaccines were approved for emergency use against SARS-CoV-2. However, their worldwide availability is acutely limited, and therefore, SARS-CoV-2 is still expected to cause significant morbidity and mortality in the upcoming year. Hence, additional countermeasures are needed, particularly pharmaceutical drugs that are widely accessible, safe, scalable, and affordable. In this comprehensive review, we target the prophylactic arena, focusing on small-molecule candidates. In order to consolidate a potential list of such medications, which were categorized as either antivirals, repurposed drugs, or miscellaneous, a thorough screening for relevant clinical trials was conducted. A brief molecular and/or clinical background is provided for each potential drug, rationalizing its prophylactic use as an antiviral or inflammatory modulator. Drug safety profiles are discussed, and current medical indications and research status regarding their relevance to COVID-19 are shortly reviewed. In the near future, a significant body of information regarding the effectiveness of drugs being clinically studied for COVID-19 is expected to accumulate, in addition to information regarding the efficacy of prophylactic treatments.
Collapse
Affiliation(s)
- Noam Ben-Zuk
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Ido-David Dechtman
- The Israel Defense Force Medical Corps, Tel Hashomer, Military Post 02149, Israel;
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel
| | - Itai Henn
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
- Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| |
Collapse
|
22
|
Kousa YA, Hossain RA. Causes of Phenotypic Variability and Disabilities after Prenatal Viral Infections. Trop Med Infect Dis 2021; 6:tropicalmed6020095. [PMID: 34205913 PMCID: PMC8293342 DOI: 10.3390/tropicalmed6020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
Prenatal viral infection can lead to a spectrum of neurodevelopmental disabilities or fetal demise. These can include microencephaly, global developmental delay, intellectual disability, refractory epilepsy, deafness, retinal defects, and cortical-visual impairment. Each of these clinical conditions can occur on a semi-quantitative to continuous spectrum, from mild to severe disease, and often as a collective of phenotypes. Such serious outcomes result from viruses’ overlapping neuropathology and hosts’ common neuronal and gene regulatory response to infections. The etiology of variability in clinical outcomes is not yet clear, but it may be related to viral, host, vector, and/or environmental risk and protective factors that likely interact in multiple ways. In this perspective of the literature, we work toward understanding the causes of phenotypic variability after prenatal viral infections by highlighting key aspects of the viral lifecycle that can affect human disease, with special attention to the 2015 Zika pandemic. Therefore, this work offers important insights into how viral infections and environmental teratogens affect the prenatal brain, toward our ultimate goal of preventing neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Youssef A. Kousa
- Division of Neurology, Children’s National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Correspondence:
| | - Reafa A. Hossain
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
23
|
Shamim K, Xu M, Hu X, Lee EM, Lu X, Huang R, Shah P, Xu X, Chen CZ, Shen M, Guo H, Chen L, Itkin Z, Eastman RT, Shinn P, Klumpp-Thomas C, Michael S, Simeonov A, Lo DC, Ming GL, Song H, Tang H, Zheng W, Huang W. Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorg Med Chem Lett 2021; 40:127906. [PMID: 33689873 PMCID: PMC7936759 DOI: 10.1016/j.bmcl.2021.127906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Khalida Shamim
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xiao Lu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| |
Collapse
|
24
|
Maria NI, Rapicavoli RV, Alaimo S, Bischof E, Stasuzzo A, Broek JA, Pulvirenti A, Mishra B, Duits AJ, Ferro A. Rapid Identification of Druggable Targets and the Power of the PHENotype SIMulator for Effective Drug Repurposing in COVID-19. RESEARCH SQUARE 2021:rs.3.rs-287183. [PMID: 33880466 PMCID: PMC8057245 DOI: 10.21203/rs.3.rs-287183/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with very few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which - by leveraging available transcriptomic and proteomic databases - allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both > 96%) the viral effects on cellular host-immune response, resulting in a specific cellular SARS-CoV-2 signature and ii) utilize this specific signature to narrow down promising repurposable therapeutic strategies. Powered by this tool, coupled with domain expertise, we have identified several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential new druggable targets in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Naomi I. Maria
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
| | - Rosaria Valentina Rapicavoli
- Department of Physics and Astronomy, University of Catania
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Evelyne Bischof
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, Naples, Italy
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Pudong, Shanghai, China
- Insilico Medicine, Hong Kong Special Administrative Region, China
| | | | - Jantine A.C. Broek
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Bud Mishra
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
- Simon Center for Quantitative Biology, Cold Spring Harbor Lab, Long Island, USA
| | - Ashley J. Duits
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
- Curaçao Biomedical Health Research Institute, Willemstad, Curaçao
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| |
Collapse
|
25
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Structure-Based Virtual Screening: Identification of a Novel NS2B-NS3 Protease Inhibitor with Potent Antiviral Activity against Zika and Dengue Viruses. Microorganisms 2021; 9:microorganisms9030545. [PMID: 33800763 PMCID: PMC8000814 DOI: 10.3390/microorganisms9030545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV), which is associated with severe diseases in humans, has spread rapidly and globally since its emergence. ZIKV and dengue virus (DENV) are closely related, and antibody-dependent enhancement (ADE) of infection between cocirculating ZIKV and DENV may exacerbate disease. Despite these serious threats, there are currently no approved antiviral drugs against ZIKV and DENV. The NS2B-NS3 viral protease is an attractive antiviral target because it plays a pivotal role in polyprotein cleavage, which is required for viral replication. Thus, we sought to identify novel inhibitors of the NS2B-NS3 protease. To that aim, we performed structure-based virtual screening using 467,000 structurally diverse chemical compounds. Then, a fluorescence-based protease inhibition assay was used to test whether the selected candidates inhibited ZIKV protease activity. Among the 123 candidate inhibitors selected from virtual screening, compound 1 significantly inhibited ZIKV NS2B-NS3 protease activity in vitro. In addition, compound 1 effectively inhibited ZIKV and DENV infection of human cells. Molecular docking analysis suggested that compound 1 binds to the NS2B-NS3 protease of ZIKV and DENV. Thus, compound 1 could be used as a new therapeutic option for the development of more potent antiviral drugs against both ZIKV and DENV, reducing the risks of ADE.
Collapse
|