1
|
Urbanovský P, David T, Hlinová V, Kubíček V, Pietzsch HJ, Hermann P. Cross-bridged cyclam derivatives with bis(phosphinate) and phosphinate-phosphonate pendant arms (cb-BPC) as chelators for copper radioisotopes. Org Biomol Chem 2024. [PMID: 39611221 DOI: 10.1039/d4ob01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Copper radioisotopes can be used for imaging as well as for therapy and, thus, can form ideal theranostic pairs. The Cu(II) complexes of cross-bridged cyclam (cb-cyclam) derivatives are considered to be highly stable in vivo. However, the complexes are mostly formed under harsh conditions not compatible with sensitive biomolecules. Here, a new class of cb-cyclam derivatives, cross-bridged bis(phosphinate)cyclams ("cb-BPC"), were investigated. Ligands with one or two methylene-bis(phosphinate) -CH2-PO2H-CH2-PO2H(R) (R = H, OH, substituted alkyl) pendant arms were synthesized. Bifunctionalization on the distant phosphorus atom was carried out by employing P-nitrobenzyl (R = CH2-Ph-4-NO2) precursors and/or, for cb-BPC with two bis(phosphinate) pendant arms, by reactions of silyl-phosphites obtained by silylation of their P(O)-H fragments. The reactive bifunctional groups include amine, carboxylate, azide, isothiocyanate, maleimide and/or tetrazine, and also their orthogonally reactive combination in a single molecule of chelator. The cb-BPCs with one bis(phosphinate) arm were not efficiently radiolabelled with 64Cu. The cb-BPCs with two pendant arms were radiolabelled even at room temperature and with only a small excess of chelator, leading to a high specific activity. Radiolabelling was fully comparable with that of analogous bis(phosphinate) derivatives of cyclam and identical radiolabelling of cyclam and cb-cyclam derivatives was observed for the first time. The cb-BPCs with two bis(phosphinate) pendant arms represent a new class of rigid chelators for copper radioisotopes that are easily synthetically modifiable, highly hydrophilic and radiolabelled under mild conditions.
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tomáš David
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Veronika Hlinová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| |
Collapse
|
2
|
Yang N, Guo XY, Ding J, Wang F, Liu TL, Zhu H, Yang Z. Copper-64 Based PET-Radiopharmaceuticals: Ways to Clinical Translational. Semin Nucl Med 2024; 54:792-800. [PMID: 39521713 DOI: 10.1053/j.semnuclmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography (PET) as an advanced noninvasive imaging technique, provides unprecedented insights into the study of physiological and biochemical processes in vivo. Copper-64 (64Cu) has a ideal half-life of 12.7 hours, with β+ and β-dual decay modes and abundant coordination chemistry, enabling the development of a wide variety of radiopharmaceuticals for PET imaging and radionuclide therapy.This review provides a comprehensive overview of the latest advances in Copper-64 (64Cu)-based PET radionuclides, covering their production, radiolabeling strategies, and clinical applications. It highlights the role of 64Cu-PET in enhancing diagnostic accuracy and therapeutic outcomes across various tumor types. Additionally, future research directions and the evolving clinical applications of 64Cu-based radiopharmaceuticals are discussed, offering insights into their potential impact on clinical practice.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Yi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
3
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Examination of the PET in vivo generator 134Ce as a theranostic match for 225Ac. Eur J Nucl Med Mol Imaging 2024; 51:4015-4025. [PMID: 38940841 DOI: 10.1007/s00259-024-06811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Edwin C Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Jung MH, Park JK, Yang SC, Jang HM, Chun KS, Cho WJ, Kim SW. First 70Zn(p,x) nuclear cross section measurements for theranostic 67Cu radionuclide production extended up to 100 MeV. Appl Radiat Isot 2024; 215:111579. [PMID: 39522394 DOI: 10.1016/j.apradiso.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
In this work the nuclear reaction routes 70Zn(p,x)64,67Cu, 66,67Ga, and 65,69mZn, induced by a high-energy proton beam up to 100 MeV have been investigated. Demand for 67Cu is increasing worldwide because it is known to be one of the best radionuclides having theranostic properties. Thus, efforts to improve its global production are underway. In previous studies, experimental data about nuclear cross-section measurements on 70Zn-enriched targets induced by proton beams were limited to an energy range of up to 70 MeV. Our goal was to extend nuclear data on 70Zn over a wider and unexplored so far region from 42 MeV to 98 MeV. As a result, our data turned out to be in good agreement with the literature ones in the overlapping energy range. In addition, to the best of our knowledge, new nuclear data exceeding 70 MeV were provided, demonstrating an excellent analytical method for producing 67Cu in the extended energy range.
Collapse
Affiliation(s)
- Myung-Hwan Jung
- Particle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju 38180, Republic of Korea; Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jun Kue Park
- Particle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju 38180, Republic of Korea
| | - Sung-Chul Yang
- Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 38180, Republic of Korea
| | - Hye Min Jang
- Particle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju 38180, Republic of Korea
| | - Kwon Soo Chun
- Particle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju 38180, Republic of Korea
| | - Won-Je Cho
- Particle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju 38180, Republic of Korea.
| | - Sang Wook Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
5
|
Liu S, Zhong J, Zhang Z, Zhao R, Yan Q, Wang X. [ 64Cu]Cu-FAP-NOX, a N-oxalyl modified cyclic peptide for FAP PET imaging with a flexible imaging time window. Eur J Nucl Med Mol Imaging 2024; 51:3651-3661. [PMID: 38910166 DOI: 10.1007/s00259-024-06807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The aim of the present study was to develop a novel 64Cu-labeled cyclic peptide ([64Cu]Cu-FAP-NOX) that targets fibroblast activation protein (FAP) and may offer advantages in terms of image contrast, imaging time window, and low uptake in normal tissues. METHODS The novel cyclic peptide featuring with a N-oxalyl modified tail was constructed and conjugated to NOTA for 64Cu labeling. Biochemical and cellular assays were performed with A549.hFAP cells. The performance of [64Cu]Cu-FAP-NOX was compared to that of two established tracers ([64Cu]Cu-FAPI-04 and [68Ga]Ga-FAP-2286) and three different NOTA-conjugates in HEK-293T.hFAP xenograft mice using micro-PET imaging. Ex vivo biodistribution studies were performed to confirm the FAP specificity and to validate the PET data. Furthermore, a first-in-human study of this novel tracer was conducted on one patient with lung cancer. RESULTS Compared to [64Cu]Cu-FAPI-04, [64Cu]Cu-FAP-NOX demonstrated faster and higher rates of cellular uptake and internalization in A549.hFAP cells, but lower rates of cellular efflux. All six radiotracers were rapidly taken up by the tumor within the first 4 h post-injection. However, [64Cu]Cu-FAP-NOX had more intense tumor accumulation and slower washout from the target. The ratios of the tumor to normal tissue (including kidneys and muscles) increased significantly over time, with [64Cu]Cu-FAP-NOX reaching the highest ratio among all tracers. In the patient, [64Cu]Cu-FAP-NOX PET showed a comparable result to FDG PET in the primary malignant lesion while exhibiting higher uptake in pleural metastases, consistent with elevated FAP expression as confirmed by immunohistochemistry. CONCLUSION [64Cu]Cu-FAP-NOX is a promising FAP-targeted tracer with a highly flexible imaging time window, as evidenced by preclinical evaluation encompassing biodistribution and micro-PET studies, along with a successful patient application. Furthermore, [64Cu]Cu-FAP-NOX showed enhanced image contrast and favorable pharmacokinetic properties for FAP PET imaging, warranting translation into large cohort studies.
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qingsong Yan
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
8
|
Wang Y, Tang T, Yuan Y, Li N, Wang X, Guan J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024; 19:e202400060. [PMID: 38443744 DOI: 10.1002/cmdc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingxi Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Tsuchihashi S, Nakashima K, Watanabe H, Ono M. Synthesis and evaluation of novel trifunctional chelating agents for pretargeting approach using albumin binder to improve tumor accumulation. Nucl Med Biol 2024; 132-133:108911. [PMID: 38614036 DOI: 10.1016/j.nucmedbio.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Exploring the PET in vivo generator 134Ce as a theranostic match for 225Ac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591165. [PMID: 38712285 PMCID: PMC11071455 DOI: 10.1101/2024.04.25.591165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Purpose The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations not possible with 225Ac. In this work, 225Ac- and 134Ce-labeled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. Methods The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labeled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. Results In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. Conclusion When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin C. Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
11
|
Kumar K, Fachet M, Hoeschen C. High-Spatial-Resolution Benchtop X-ray Fluorescence Imaging through Bragg-Diffraction-Based Focusing with Bent Mosaic Graphite Crystals: A Simulation Study. Int J Mol Sci 2024; 25:4733. [PMID: 38731956 PMCID: PMC11083219 DOI: 10.3390/ijms25094733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 μm when imaging abdominal tumor lesions across a range of low-dose (0.8 μGy) to high-dose (8 μGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.
Collapse
Affiliation(s)
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.K.)
| | | |
Collapse
|
12
|
Kubeil M, Neuber C, Starke M, Arndt C, Rodrigues Loureiro L, Hoffmann L, Feldmann A, Bachmann M, Pietzsch J, Comba P, Stephan H. 64Cu tumor labeling with hexadentate picolinic acid-based bispidine immunoconjugates. Chemistry 2024:e202400366. [PMID: 38506263 DOI: 10.1002/chem.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
Discussed are two picolinate appended bispidine ligands (3,7-diazabicyclo[3.3.1]nonane derivatives) in comparison with an earlier described bis-pyridine derivative, which are all known to strongly bind CuII. The radiopharmacological characterization of the two isomeric bispidine complexes includes quantitative labeling with 64CuII at ambient conditions with high radiochemical purities and yields (molar activities >200 MBq/nmol). Challenge experiments in presence of EDTA, cyclam, human serum and SOD demonstrate high stability and inertness of the 64Cu-bispidine complexes. Biodistribution studies performed in Wistar rats indicate a rapid renal elimination for both 64Cu-labeled chelates. The bispidine ligand with the picolinate group in N7 position was selected for further biological experiments, and its backbone was therefore substituted with a benzyl-NCS group at C9. Two tumor target modules (TMs), targeting prostate stem cell antigen (PSCA), overexpressed in prostate cancer, and the fibroblast activation protein (FAP) in fibrosarcoma, were selected for thiourea coupling with the NCS-functionalized ligand and lysine residues of TMs. Small animal PET experiments on tumor-bearing mice showed specific accumulation of the 64Cu-labeled TMs in PSCA- and FAP-overexpressing tumors (standardized uptake value (SUV) for PC3: 2.7±0.6 and HT1080: 7.2±1.25) with almost no uptake in wild type tumors.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Miriam Starke
- Universität Heidelberg, Anorganisch-Chemisches, Institut INF 270, 69120, Heidelberg, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universiät Dresden, 01307, Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Lydia Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, 01069, Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches, Institut INF 270, 69120, Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120, Heidelberg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| |
Collapse
|
13
|
Yang H, Zeng X, Liu J, Li J, Li Y, Zhang Q, Shu L, Liu H, Wang X, Liang Y, Hu J, Huang L, Guo Z, Zhang X. A proof-of-concept study on bioorthogonal-based pretargeting and signal amplify radiotheranostic strategy. J Nanobiotechnology 2024; 22:101. [PMID: 38462598 PMCID: PMC10926607 DOI: 10.1186/s12951-024-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linlin Shu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ji Hu
- HTA Co., Ltd., No. 1 Sanqiang Road, Fangshan District, Beijing, 102413, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
14
|
Dyer MR, Jing Z, Duncan K, Godbe J, Shokeen M. Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases. Nucl Med Biol 2024; 130-131:108879. [PMID: 38340369 DOI: 10.1016/j.nucmedbio.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.
Collapse
Affiliation(s)
- Michael R Dyer
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhenghan Jing
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Duncan
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Godbe
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Dai L, Zhang X, Zhou S, Li J, Pan L, Liao C, Wang Z, Chen Y, Shen G, Li L, Tian R, Sun H, Liu Z, Zhang S, Wu H. Pretargeted radiotherapy and synergistic treatment of metastatic, castration-resistant prostate cancer using cross-linked, PSMA-targeted lipoic acid nanoparticles. J Mater Chem B 2024; 12:2324-2333. [PMID: 38324337 DOI: 10.1039/d3tb02543h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a currently incurable disease associated with high mortality. Novel therapeutic approaches for CRPC are urgently needed to improve prognosis. In this study, we developed cross-linked, PSMA-targeted lipoic acid nanoparticles (cPLANPs), which can interact with transmembrane glycoprotein to accumulate inside prostate cancer cells, where they upregulate caspase-3, downregulate anti-apoptotic B-cell lymphoma-2 (BCL-2), and thereby induce apoptosis. The trans-cyclooctene (TCO) decoration on cPLANPs acts as a bioorthogonal handle allowing pretargeted single-photon emission computed tomography and radiotherapy, which revealed significantly enhanced tumor accumulation and minimal off-target toxicity in our experiments. The developed strategy showed a strong synergistic anti-cancer effect in vivo, with a tumor inhibition rate of up to 95.6% after 14 days of treatment. Our results suggest the potential of combining bioorthogonal pretargeted radiotherapy with suitable PSMA-targeted nanoparticles for the treatment of metastatic CRPC.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siming Zhou
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Jie Li
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ying Chen
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Hongbao Sun
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Haoxing Wu
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| |
Collapse
|
16
|
Bauer D, Carter LM, Atmane MI, De Gregorio R, Michel A, Kaminsky S, Monette S, Li M, Schultz MK, Lewis JS. 212Pb-Pretargeted Theranostics for Pancreatic Cancer. J Nucl Med 2024; 65:109-116. [PMID: 37945380 PMCID: PMC10755526 DOI: 10.2967/jnumed.123.266388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Although pancreatic ductal adenocarcinoma (PDAC) is associated with limited treatment options and poor patient outcomes, targeted α-particle therapy (TAT) represents a promising development in the field. TAT shows potential in treating metastatic cancers, including those that have become resistant to conventional treatments. Among the most auspicious radionuclides stands the in vivo α-generator 212Pb. Combined with the imaging-compatible radionuclide 203Pb, this theranostic match is a promising modality rapidly translating into the clinic. Methods: Using the pretargeting approach between a radiolabeled 1,2,4,5-tetrazine (Tz) tracer and a trans-cyclooctene (TCO) modified antibody, imaging and therapy with radiolead were performed on a PDAC tumor xenograft mouse model. For therapy, 3 cohorts received a single administration of 1.1, 2.2, or 3.7 MBq of the pretargeting agent, [212Pb]Pb-DO3A-PEG7-Tz, whereby administered activity levels were guided by dosimetric analysis. Results: The treated mice were holistically evaluated; minimal-to-mild renal tubular necrosis was observed. At the same time, median survival doubled for the highest-dose cohort (10.7 wk) compared with the control cohort (5.1 wk). Conclusion: This foundational study demonstrated the feasibility and safety of pretargeted TAT with 212Pb in PDAC while considering dose limitations and potential adverse effects.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohamed I Atmane
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York, New York
| | - Roberto De Gregorio
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexa Michel
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Spencer Kaminsky
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York, New York
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, Iowa; and
| | | | - Jason S Lewis
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology and Pharmacology Program, Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Ramogida C, Price E. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. Methods Mol Biol 2024; 2729:65-101. [PMID: 38006492 DOI: 10.1007/978-1-0716-3499-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiometals are an exciting class of radionuclides because of the large number of metallic elements available that have medically useful isotopes. To properly harness radiometals, they must be securely bound by chelators, which must be carefully matched to the radiometal ion to maximize radiolabeling performance and the stability of the resulting complex. This chapter focuses on practical aspects of radiometallation chemistry including chelator selection, radiolabeling procedures and conditions, radiolysis prevention, purification, quality control, requisite equipment and reagents, and useful tips.
Collapse
Affiliation(s)
- Caterina Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
| | - Eric Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
19
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
20
|
Im C, Ahn JH, Farag AK, Kim S, Kim JY, Lee YJ, Park JA, Kang CM. Porphyrin-Based Brain Tumor-Targeting Agents: [ 64Cu]Cu-porphyrin and [ 64Cu]Cu-TDAP. Mol Pharm 2023; 20:5856-5864. [PMID: 37851927 DOI: 10.1021/acs.molpharmaceut.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study is to evaluate a radioactive metal complex platform for brain tumor targeting. Herein, we introduce a new porphyrin derivative, 5,10,15,20-(tetra-N,N-dimethyl-4-aminophenyl)porphyrin (TDAP), in which four N,N-dimethyl-4-p-phenylenediamine (DMPD) moieties are conjugated to the porphyrin labeled with the radiometal 64Cu. DMPD affected the pharmacokinetics of porphyrin in terms of retention time in vivo and tumor-targeting ability relative to those of unmodified porphyrin. [64Cu]Cu-TDAP showed stronger enhancement than [64Cu]Cu-porphyrin in U87MG glioblastoma cells, especially in the cytoplasm and nucleus, indicating its tumor-targeting properties and potential use as a therapeutic agent. In the subcutaneous and orthotopic models of brain-tumor-bearing mice, [64Cu]Cu-TDAP was clearly visualized in the tumor site via positron emission tomography imaging and showed a tumor-to-brain ratio as high as 13. [64Cu]Cu-TDAP deserves attention as a new diagnostic agent that is suitable for the early diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Changkeun Im
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Jae Hun Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ahmed K Farag
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- CDN isotopes, Toronto Research Chemicals, Montreal, Quebec H9R 1H1, Canada
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Choong Mo Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| |
Collapse
|
21
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
22
|
Laurène W, Raúl L, Katalin S, Céline F, Gilles K, Antonio M, Charlotte C, Samir A. Design and synthesis of a new bifunctional chelating agent: Application for Al 18F/ 177Lu complexation. J Inorg Biochem 2023; 246:112267. [PMID: 37329775 DOI: 10.1016/j.jinorgbio.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Theranostic and personalized medicine are blooming strategies to improve oncologic patients' health care and facilitate early treatment. While 18F-radiochemistry for theranostic application is attractive due to its imaging properties, combining diagnosis by positron emission tomography (PET) via aluminum-fluoride-18 and β- therapy with lutetium-177 is relevant. Nevertheless, it requires the use of two different chelating agents, which are NOTA and DOTA for aluminum-fluoride-18 and lutetium-177 radiolabeling, respectively. To overcome this issue, we propose herein the synthesis of a new hybrid chelating agent named NO2A-AHM, which can be labeled with different types of emitters (β+, β- and γ) using the mismatched Al18F/177Lu pair. NO2A-AHM, is based on a hydrazine moiety functionalized by a NOTA cycle, a chelating arm, and a linker with a maleimide function. This design is chosen to increase the flexibility and allow the formation of 5 up to 7 coordination bonds with metal ions. Moreover, this agent can be coupled to targeting moieties containing a thiol function, such as peptides, to increase selectivity towards specific cancer cells. Experimental complexation and computational chemistry studies are performed to confirm the capacity of our chelating agent to label both aluminum-fluoride and lutetium using molecular modeling approaches at Density Functional Theory (DFT) level. The proof of concept of the ability of NO2A-AHM to complex both aluminum-fluoride-18, for PET imaging applications, and lutetium-177 for radiotherapy has shown encouraging results which is prominent for the development of a fully consistent theranostic approach.
Collapse
Affiliation(s)
- Wagner Laurène
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Nancyclotep, Plateforme d'imagerie moléculaire, F-54511 Vandœuvre-lès-Nancy, France
| | - Losantos Raúl
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France; Department of Chemistry, CISQ, Universidad de La Rioja, 26004 Logroño, Spain
| | | | - Frochot Céline
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Karcher Gilles
- Nancyclotep, Plateforme d'imagerie moléculaire, F-54511 Vandœuvre-lès-Nancy, France
| | - Monari Antonio
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France
| | - Collet Charlotte
- Nancyclotep, Plateforme d'imagerie moléculaire, F-54511 Vandœuvre-lès-Nancy, France; Université de Lorraine, INSERM, IADI, F-54000 Nancy, France.
| | - Acherar Samir
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
23
|
Maksymenko K, Maurer A, Aghaallaei N, Barry C, Borbarán-Bravo N, Ullrich T, Dijkstra TM, Hernandez Alvarez B, Müller P, Lupas AN, Skokowa J, ElGamacy M. The design of functional proteins using tensorized energy calculations. CELL REPORTS METHODS 2023; 3:100560. [PMID: 37671023 PMCID: PMC10475850 DOI: 10.1016/j.crmeth.2023.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity in vitro and in vivo. We also used this method to design high-affinity Cu2+ binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
Collapse
Affiliation(s)
- Kateryna Maksymenko
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Barry
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Krieger School of Arts and Sciences, Johns Hopkins University, Washington, DC 20036, USA
| | - Natalia Borbarán-Bravo
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Timo Ullrich
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Tjeerd M.H. Dijkstra
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72072 Tübingen, Germany
| | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mohammad ElGamacy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Boeke S, Winter RM, Leibfarth S, Krueger MA, Bowden G, Cotton J, Pichler BJ, Zips D, Thorwarth D. Machine learning identifies multi-parametric functional PET/MR imaging cluster to predict radiation resistance in preclinical head and neck cancer models. Eur J Nucl Med Mol Imaging 2023; 50:3084-3096. [PMID: 37148296 PMCID: PMC10382355 DOI: 10.1007/s00259-023-06254-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE Tumor hypoxia and other microenvironmental factors are key determinants of treatment resistance. Hypoxia positron emission tomography (PET) and functional magnetic resonance imaging (MRI) are established prognostic imaging modalities to identify radiation resistance in head-and-neck cancer (HNC). The aim of this preclinical study was to develop a multi-parametric imaging parameter specifically for focal radiotherapy (RT) dose escalation using HNC xenografts of different radiation sensitivities. METHODS A total of eight human HNC xenograft models were implanted into 68 immunodeficient mice. Combined PET/MRI using dynamic [18F]-fluoromisonidazole (FMISO) hypoxia PET, diffusion-weighted (DW), and dynamic contrast-enhanced MRI was carried out before and after fractionated RT (10 × 2 Gy). Imaging data were analyzed on voxel-basis using principal component (PC) analysis for dynamic data and apparent diffusion coefficients (ADCs) for DW-MRI. A data- and hypothesis-driven machine learning model was trained to identify clusters of high-risk subvolumes (HRSs) from multi-dimensional (1-5D) pre-clinical imaging data before and after RT. The stratification potential of each 1D to 5D model with respect to radiation sensitivity was evaluated using Cohen's d-score and compared to classical features such as mean/peak/maximum standardized uptake values (SUVmean/peak/max) and tumor-to-muscle-ratios (TMRpeak/max) as well as minimum/valley/maximum/mean ADC. RESULTS Complete 5D imaging data were available for 42 animals. The final preclinical model for HRS identification at baseline yielding the highest stratification potential was defined in 3D imaging space based on ADC and two FMISO PCs ([Formula: see text]). In 1D imaging space, only clusters of ADC revealed significant stratification potential ([Formula: see text]). Among all classical features, only ADCvalley showed significant correlation to radiation resistance ([Formula: see text]). After 2 weeks of RT, FMISO_c1 showed significant correlation to radiation resistance ([Formula: see text]). CONCLUSION A quantitative imaging metric was described in a preclinical study indicating that radiation-resistant subvolumes in HNC may be detected by clusters of ADC and FMISO using combined PET/MRI which are potential targets for future functional image-guided RT dose-painting approaches and require clinical validation.
Collapse
Affiliation(s)
- Simon Boeke
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - René M Winter
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sara Leibfarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Gregory Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Jonathan Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
25
|
Ketchemen JP, Babeker H, Tikum AF, Nambisan AK, Njotu FN, Nwangele E, Fonge H. Biparatopic anti-HER2 drug radioconjugates as breast cancer theranostics. Br J Cancer 2023; 129:153-162. [PMID: 37095184 PMCID: PMC10307858 DOI: 10.1038/s41416-023-02272-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND HER2 is overexpressed in 25-30% of breast cancer. Multiple domains targeting of a receptor can have synergistic/additive therapeutic effects. METHODS Two domain-specific ADCs trastuzumab-PEG6-DM1 (domain IV) and pertuzumab-PEG6-DM1 (domain II) were developed, characterised and radiolabeled to obtain [89Zr]Zr-trastuzumab-PEG6-DM1 and [67Cu]Cu-pertuzumab-PEG6-DM1 to study their in vitro (binding assay, internalisation and cytotoxicity) and in vivo (pharmacokinetics, biodistribution and immunoPET/SPECT imaging) characteristics. RESULTS The ADCs had an average drug-to-antibody ratio of 3. Trastuzumab did not compete with [67Cu]Cu-pertuzumab-PEG6-DM1 for binding to HER2. The highest antibody internalisation was observed with the combination of ADCs in BT-474 cells compared with single antibodies or ADCs. The combination of the two ADCs had the lowest IC50 compared with treatment using the single ADCs or controls. Pharmacokinetics showed biphasic half-lives with fast distribution and slow elimination, and an AUC that was five-fold higher for [89Zr]Zr-trastuzumab-PEG6-DM1 compared with [67Cu]Cu-pertuzumab-PEG6-DM1. Tumour uptake of [89Zr]Zr-trastuzumab-PEG6-DM1 was 51.3 ± 17.3% IA/g (BT-474), and 12.9 ± 2.1% IA/g (JIMT-1) which was similarly to [67Cu]Cu-pertuzumab-PEG6-DM1. Mice pre-blocked with pertuzumab had [89Zr]Zr-trastuzumab-PEG6-DM1 tumour uptakes of 66.3 ± 33.9% IA/g (BT-474) and 25.3 ± 4.9% IA/g (JIMT-1) at 120 h p.i. CONCLUSION Using these biologics simultaneously as biparatopic theranostic agents has additive benefits.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Anand Krishnan Nambisan
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, SK, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
26
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Bauer D, Sarrett SM, Lewis JS, Zeglis BM. Click chemistry: a transformative technology in nuclear medicine. Nat Protoc 2023; 18:1659-1668. [PMID: 37100960 PMCID: PMC10293801 DOI: 10.1038/s41596-023-00825-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
The 2022 Nobel Prize in Chemistry was awarded to Professors K. Barry Sharpless, Morten Meldal and Carolyn Bertozzi for their pioneering roles in the advent of click chemistry. Sharpless and Meldal worked to develop the canonical click reaction-the copper-catalyzed azide-alkyne cycloaddition-while Bertozzi opened new frontiers with the creation of the bioorthogonal strain-promoted azide-alkyne cycloaddition. These two reactions have revolutionized chemical and biological science by facilitating selective, high yielding, rapid and clean ligations and by providing unprecedented ways to manipulate living systems. Click chemistry has affected every aspect of chemistry and chemical biology, but few disciplines have been impacted as much as radiopharmaceutical chemistry. The importance of speed and selectivity in radiochemistry make it an almost tailor-made application of click chemistry. In this Perspective, we discuss the ways in which the copper-catalyzed azide-alkyne cycloaddition, the strain-promoted azide-alkyne cycloaddition and a handful of 'next-generation' click reactions have transformed radiopharmaceutical chemistry, both as tools for more efficient radiosyntheses and as linchpins of technologies that have the potential to improve nuclear medicine.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha M Sarrett
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
28
|
Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, Beloglazkina EK. Recent Advances in 64Cu/ 67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023; 24:9154. [PMID: 37298101 PMCID: PMC10288943 DOI: 10.3390/ijms24119154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy β-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.
Collapse
Affiliation(s)
- Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Daniil Abramchuck
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Peter Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Kuznetsov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Andrey Shemukhin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| |
Collapse
|
29
|
Qiao Z, Xu J, Fisher DR, Gonzalez R, Miao Y. Introduction of a Polyethylene Glycol Linker Improves Uptake of 67Cu-NOTA-Conjugated Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptide in Melanoma. Cancers (Basel) 2023; 15:2755. [PMID: 37345092 DOI: 10.3390/cancers15102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
The aim of this study was to evaluate the effect of linker on tumor targeting and biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex {67Cu-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 67Cu-NOTA-GGNle-CycMSHhex {67Cu-NOTA-GlyGlyNle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized and purified by HPLC. The biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex and 67Cu-NOTA-GGNle-CycMSHhex was determined in B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of 67Cu-NOTA-PEG2Nle-CycMSHhex was further examined in B16/F10 melanoma-bearing C57 mice. 67Cu-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake than 67Cu-NOTA-GGNle-CycMSHhex at 2, 4, and 24 h post-injection. The tumor uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 27.97 ± 1.98, 24.10 ± 1.83, and 9.13 ± 1.66% ID/g at 2, 4, and 24 h post-injection, respectively. Normal organ uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was lower than 2.6% ID/g at 4 h post-injection, except for kidney uptake. The renal uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 6.43 ± 1.31, 2.60 ± 0.79, and 0.90 ± 0.18% ID/g at 2, 4, and 24 h post-injection, respectively. 67Cu-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h post-injection. The B16/F10 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT) using 67Cu-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 4 h post-injection. The favorable tumor targeting and biodistribution properties of 67Cu-NOTA-PEG2Nle-CycMSHhex underscored its potential as an MC1R-targeted therapeutic peptide for melanoma treatment.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Safety, Richland, WA 99354, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Cortezon-Tamarit F, Song K, Kuganathan N, Arrowsmith RL, Mota Merelo de Aguiar SR, Waghorn PA, Brookfield A, Shanmugam M, Collison D, Ge H, Kociok-Köhn G, Pourzand C, Dilworth JR, Pascu SI. Structural and Functional Diversity in Rigid Thiosemicarbazones with Extended Aromatic Frameworks: Microwave-Assisted Synthesis and Structural Investigations. ACS OMEGA 2023; 8:16047-16079. [PMID: 37179648 PMCID: PMC10173449 DOI: 10.1021/acsomega.2c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/10/2023] [Indexed: 05/15/2023]
Abstract
The long-standing interest in thiosemicarbazones (TSCs) has been largely driven by their potential toward theranostic applications including cellular imaging assays and multimodality imaging. We focus herein on the results of our new investigations into: (a) the structural chemistry of a family of rigid mono(thiosemicarbazone) ligands characterized by extended and aromatic backbones and (b) the formation of their corresponding thiosemicarbazonato Zn(II) and Cu(II) metal complexes. The synthesis of new ligands and their Zn(II) complexes was performed using a rapid, efficient and straightforward microwave-assisted method which superseded their preparation by conventional heating. We describe hereby new microwave irradiation protocols that are suitable for both imine bond formation reactions in the thiosemicabazone ligand synthesis and for Zn(II) metalation reactions. The new thiosemicarbazone ligands, denoted HL, mono(4-R-3-thiosemicarbazone)quinone, and their corresponding Zn(II) complexes, denoted ZnL2, mono(4-R-3-thiosemicarbazone)quinone, where R = H, Me, Ethyl, Allyl, and Phenyl, quinone = acenapthnenequinone (AN), aceanthrenequinone (AA), phenanthrenequinone (PH), and pyrene-4,5-dione (PY) were isolated and fully characterized spectroscopically and by mass spectrometry. A plethora of single crystal X-ray diffraction structures were obtained and analyzed and the geometries were also validated by DFT calculations. The Zn(II) complexes presented either distorted octahedral geometry or tetrahedral arrangements of the O/N/S donors around the metal center. The modification of the thiosemicarbazide moiety at the exocyclic N atoms with a range of organic linkers was also explored, opening the way to bioconjugation protocols for these compounds. The radiolabeling of these thiosemicarbazones with 64Cu was achieved under mild conditions for the first time: this cyclotron-available radioisotope of copper (t1/2 = 12.7 h; β+ 17.8%; β- 38.4%) is well-known for its proficiency in positron emission tomography (PET) imaging and for its theranostic potential, on the basis of the preclinical and clinical cancer research of established bis(thiosemicarbazones), such as the hypoxia tracer 64Cu-labeled copper(diacetyl-bis(N4-methylthiosemicarbazone)], [64Cu]Cu(ATSM). Our labeling reactions proceeded in high radiochemical incorporation (>80% for the most sterically unencumbered ligands) showing promise of these species as building blocks for theranostics and synthetic scaffolds for multimodality imaging probes. The corresponding "cold" Cu(II) metalations were also performed under the mild conditions mimicking the radiolabeling protocols. Interestingly, room temperature or mild heating led to Cu(II) incorporation in the 1:1, as well as 1:2 metal: ligand ratios in the new complexes, as evident from extensive mass spectrometry investigations backed by EPR measurements, and the formation of Cu(L)2-type species prevails, especially for the AN-Ph thiosemicarbazone ligand (L-). The cytotoxicity levels of a selection of ligands and Zn(II) complexes in this class were further tested in commonly used human cancer cell lines (HeLa, human cervical cancer cells, and PC-3, human prostate cancer cells). Tests showed that their IC50 levels are comparable to that of the clinical drug cis-platin, evaluated under similar conditions. The cellular internalizations of the selected ZnL2-type compounds Zn(AN-Allyl)2, Zn(AA-Allyl)2, Zn(PH-Allyl)2, and Zn(PY-Allyl)2 were evaluated in living PC-3 cells using laser confocal fluorescent spectroscopy and these experiments showed exclusively cytoplasmic distributions.
Collapse
Affiliation(s)
| | - Kexin Song
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Navaratnarajah Kuganathan
- Department
of Materials, Imperial College London, Royal School of Mines, Exhibition
Road, London SW7 2AZ, U.K.
| | - Rory L. Arrowsmith
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | | | - Philip A. Waghorn
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Adam Brookfield
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Muralidharan Shanmugam
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David Collison
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Köhn
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Charareh Pourzand
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| | - Jonathan Robin Dilworth
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sofia Ioana Pascu
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
31
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
32
|
Hast K, Stone MRL, Jia Z, Baci M, Aggarwal T, Izgu EC. Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4996-5009. [PMID: 36649474 PMCID: PMC10069157 DOI: 10.1021/acsami.2c20942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The functionalization of material surfaces with biologically active molecules is crucial for enabling technologies in life sciences, biotechnology, and medicine. However, achieving biocompatibility and bioorthogonality with current synthetic methods remains a challenge. We report herein a novel surface functionalization method that proceeds chemoselectively and without a free transition metal catalyst. In this method, a coating is first formed via the tyrosinase-catalyzed putative polymerization of a tetrazine-containing catecholamine (DOPA-Tet). One or more types of molecule of interest containing trans-cyclooctene are then grafted onto the coating via tetrazine ligation. The entire process proceeds under physiological conditions and is suitable for grafting bioactive molecules with diverse functions and structural complexities. Utilizing this method, we functionalized material surfaces with enzymes (alkaline phosphatase, glucose oxidase, and horseradish peroxidase), a cyclic peptide (cyclo[Arg-Gly-Asp-D-Phe-Lys], or c(RGDfK)), and an antibiotic (vancomycin). Colorimetric assays confirmed the maintenance of the biocatalytic activities of the grafted enzymes on the surface. We established the mammalian cytocompatibility of the functionalized materials with fibroblasts. Surface functionalization with c(RGDfK) showed improved fibroblast cell morphology and cytoskeletal organization. Microbiological studies with Staphylococcus aureus indicated that surfaces coated using DOPA-Tet inhibit the formation of biofilms. Vancomycin-grafted surfaces additionally display significant inhibition of planktonic S. aureus growth.
Collapse
Affiliation(s)
- Kern Hast
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - M Rhia L Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Zhaojun Jia
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Melih Baci
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
33
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
34
|
Jiang C, Tian Q, Xu X, Li P, He S, Chen J, Yao B, Zhang J, Yang Z, Song S. Enhanced antitumor immune responses via a new agent [ 131I]-labeled dual-target immunosuppressant. Eur J Nucl Med Mol Imaging 2023; 50:275-286. [PMID: 36242616 PMCID: PMC9816240 DOI: 10.1007/s00259-022-05986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
Radionuclides theranostic are ideal "partners" for bispecific antibodies to explore the immune response of patients and synergistic treatment. A bispecific single-domain antibody-Fc fusion protein, KN046, exhibits a good treatment effect by binding to programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). An ionizing-radiation stimulus mediated by a low-dose of [131I] may be used for immunopotentiation. In this study, we established [131I]-labeled KN046 as a novel radioimmunotherapy agent to treat malignant melanoma and explored the mechanism. METHODS After intravenous injection of [131I]-KN046, SPECT/CT imaging was applied to identify candidate targets for KN046 immunotherapy. [18F]-FDG and [68 Ga]-NOTA-GZP (granzyme B-specific PET imaging agent) micro-PET/CT imaging was used to assess the immune response in vivo after [131I]-KN046 treatment. The synergistic treatment effect of [131I]-KN046 was evaluated by exploring the [131I]-based radionuclide-induced release of tumor immunogenicity-related antigens as well as the histology and survival of tumor-bearing mice after treatment. RESULTS The constructed [131I]-KN046 exhibited high affinity and specificity for PD-L1/CTLA-4 immune targets and had excellent in vivo intratumoral retention capability so as to achieve good antitumor efficacy. More importantly, the combination of low-dose [131I] and KN046-enhanced immunosensitivity increased the immunotherapy response rates significantly. Exposure of tumor cells to [131I]-KN046 led to upregulated expression of MHC-I and Fas surface molecules and significant increases in the degree of T-cell activation and counts of tumor-infiltrating immunocytes. CONCLUSION Use of low-dose [131I] combined with a dual-target immunosuppressant could be exploited to identify the subset of treatment responders but also exhibited great potential for enhancing antitumor immune responses.
Collapse
Affiliation(s)
- Chunjuan Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Panli Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Bolin Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Ziyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.
| |
Collapse
|
35
|
Nelson BJB, Wilson J, Schultz MK, Andersson JD, Wuest F. High-yield cyclotron production of 203Pb using a sealed 205Tl solid target. Nucl Med Biol 2023; 116-117:108314. [PMID: 36708660 DOI: 10.1016/j.nucmedbio.2023.108314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION 203Pb (t1/2 = 51.9 h, 279 keV (81 %)) is a diagnostic SPECT imaging radionuclide ideally suited for theranostic applications in combination with 212Pb for targeted alpha particle therapy. Our objectives were to develop a high-yield solid target 203Pb cyclotron production route using isotopically enriched 205Tl target material and the 205Tl(p,3n)203Pb reaction as an alternative to lower energy production via the 203Tl(p,n)203Pb reaction. METHODS 250 mg 205Tl metal (99.9 % isotopic enrichment) was pressed using a hardened stainless steel die. Aluminum target discs were machined with a central depression and annulus groove. The flattened 205Tl pellet was placed into the central depression of the Al disc and a circle of indium wire was laid in the machined annulus surrounding the pellet. An aluminum foil cover was then pressed onto the target disc to create an airtight bond. Targets were irradiated at 23.3 MeV for up to 516 min on a TR-24 cyclotron at currents up to 60 μA to produce 203Pb via the 205Tl(p,3n)203Pb nuclear reaction. Following a cool-down period of >12 h, the target was removed and 205Tl dissolved in 4 M HNO3. A NEPTIS Mosaic-LC synthesis unit performed automated separation using Eichrom Pb resin, and 203Pb was eluted using 8 M HCl or 1 M NH4OAc. 205Tl was diverted to a vial for recovery in an electrolytic cell. 203Pb product radionuclidic purity was assessed by HPGe gamma spectroscopy, while elemental purity was assessed by ICP-OES. Radiolabeling and stability studies were performed with PSC, TCMC, and DOTA chelators, and 203Pb incorporation was verified by radio-TLC analysis. RESULTS Cyclotron irradiations performed at 60 μA proton beam current and 23.3 MeV (205Tl incident energy) had a 203Pb saturated yield of 4658 ± 62 MBq/μA (n = 3). Automated NEPTIS separation took <4 h from the start of target dissolution to product elution, yielding >85 % decay-corrected [203Pb]PbCl2 with a radionuclidic purity of >99.9 %. Purified [203Pb]PbCl2 yields of up to 12 GBq 203Pb were attained (15.8 GBq at EOB). The [203Pb]PbCl2 and [203Pb]Pb(OAc)2 products contained no detectable radionuclidic impurities besides 201Pb (<0.1 %), and <0.4 ppm stable Pb. 205Tl metal was recovered with a 92 % batch yield. Aliquots of 100 μL [203Pb]Pb(OAc)2 were used for radiolabeling PSC-Bn-NCS, TCMC-NCS, and DOTA-NCS chelators at pH 4.5 and 22 °C for 30 min, with maximum respective molar activities of 461 ± 30 GBq/μmol, 195 ± 37 GBq/μmol, and 83 ± 12 GBq/μmol. PSC, TCMC, and DOTA chelators exhibited >99.9 % incorporation after a 120-hour incubation in human serum at 37 °C. CONCLUSIONS Nuclear medicine centers with access to higher energy cyclotrons can produce large 203Pb activities sufficient for clinical applications, with a convenient separation technique producing highly pure [203Pb]PbCl2 or [203Pb]Pb(OAc)2 for direct radiolabeling. This represents an attractive route to produce 203Pb for diagnostic SPECT imaging alongside 212Pb targeted alpha particle therapy. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our high-yield 203Pb production technique significantly enhances 203Pb production capabilities to meet the growing preclinical and clinical demand for 203Pb radiopharmaceuticals alongside 212Pb target alpha particle therapy.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael K Schultz
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; Department of Radiology, The University of Iowa, Iowa City, IA 52240, USA
| | - Jan D Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
36
|
Maisonial-Besset A, Witkowski T, Quintana M, Besse S, Gaumet V, Cordonnier A, Alliot C, Vidal A, Denevault-Sabourin C, Tarrit S, Levesque S, Miot-Noirault E, Chezal JM. Synthesis and In Vitro Comparison of DOTA, NODAGA and 15-5 Macrocycles as Chelators for the 64Cu-Labelling of Immunoconjugates. Molecules 2022; 28:molecules28010075. [PMID: 36615280 PMCID: PMC9822305 DOI: 10.3390/molecules28010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Vincent Gaumet
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Axel Cordonnier
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | | | | | - Caroline Denevault-Sabourin
- GICC EA7501, Team IMT, Université de Tours, UFR de Médecine, Bâtiment Vialle, 10 Boulevard Tonnellé, BP 3223, CEDEX 01, 37032 Tours, France
| | - Sébastien Tarrit
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Levesque
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
37
|
d'Orchymont F, Holland JP. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem Sci 2022; 13:12713-12725. [PMID: 36519052 PMCID: PMC9645377 DOI: 10.1039/d2sc03928a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2023] Open
Abstract
Radiolabelled monoclonal antibodies (mAbs) are a cornerstone of molecular diagnostic imaging and targeted radioimmunotherapy in nuclear medicine, but one of the major challenges in the field is to identify ways of reducing the radiation burden to patients. We reasoned that a rotaxane-based platform featuring a non-covalent mechanical bond between the radionuclide complex and the biologically active mAb could offer new ways of controlling the biophysical properties of cancer-specific radiotracers for positron emission tomography (PET). Herein, we present the photoradiosynthesis and characterisation of [89Zr]ZrFe-[4]rotaxane-azepin-onartuzumab ([89Zr]ZrFe-2), a unique rotaxane-antibody conjugate for PET imaging and quantification of the human hepatocyte growth factor receptor (c-MET). Multiple component self-assembly reactions were combined with simultaneous 89Zr-radiolabelling and light-induced bioconjugation methods to give [89Zr]ZrFe-2 in 15 ± 1% (n = 3) decay-corrected radiochemical yield, with >90% radiochemical purity, and molar activities suitable for PET imaging studies (>6.1 MBq mg-1 of protein). Cellular assays confirmed the specificity of [89Zr]ZrFe-2 binding to the c-MET receptor. Temporal PET imaging in athymic nude mice bearing subcutaneous MKN-45 gastric adenocarcinoma xenografts demonstrated specific binding of [89Zr]ZrFe-2 toward c-MET in vivo, where tumour uptake reached 9.8 ± 1.3 %ID g-1 (72 h, n = 5) in a normal group and was reduced by ∼56% in a control (blocking) group. Head-to-head comparison of the biodistribution and excretion profile of [89Zr]ZrFe-2versus two control compounds, alongside characterisation of two potential metabolites, showed that the rotaxane-radiotracer has an improved clearance profile with higher tumour-to-tissue contrast ratios and reduced radiation exposure to critical (dose-limiting) organs including liver, spleen, and kidneys. Collectively, the experimental results suggested that non-covalent mechanical bonds between the radionuclide and mAb can be used to fine-tune the pharmacokinetic profile of supramolecular radiopharmaceuticals in ways that are simply not accessible when using traditional covalent design.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| | - Jason P Holland
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| |
Collapse
|
38
|
Lambidis E, Lumén D, Koskipahta E, Imlimthan S, Lopez BB, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Synthesis and ex vivo biodistribution of two 68Ga-labeled tetrazine tracers: Comparison of pharmacokinetics. Nucl Med Biol 2022; 114-115:151-161. [PMID: 35680503 DOI: 10.1016/j.nucmedbio.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022]
Abstract
Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Dave Lumén
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elina Koskipahta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Brianda B Lopez
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
39
|
Lugat A, Bailly C, Chérel M, Rousseau C, Kraeber-Bodéré F, Bodet-Milin C, Bourgeois M. Immuno-PET: Design options and clinical proof-of-concept. Front Med (Lausanne) 2022; 9:1026083. [PMID: 36314010 PMCID: PMC9613928 DOI: 10.3389/fmed.2022.1026083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Radioimmunoconjugates have been used for over 30 years in nuclear medicine applications. In the last few years, advances in cancer biology knowledge have led to the identification of new molecular targets specific to certain patient subgroups. The use of these targets in targeted therapies approaches has allowed the developments of specifically tailored therapeutics for patients. As consequence of the PET-imaging progresses, nuclear medicine has developed powerful imaging tools, based on monoclonal antibodies, to in vivo characterization of these tumor biomarkers. This imaging modality known as immuno-positron emission tomography (immuno-PET) is currently in fastest-growing and its medical value lies in its ability to give a non-invasive method to assess the in vivo target expression and distribution and provide key-information on the tumor targeting. Currently, immuno-PET presents promising probes for different nuclear medicine topics as staging/stratification tool, theranostic approaches or predictive/prognostic biomarkers. To develop a radiopharmaceutical drug that can be used in immuno-PET approach, it is necessary to find the best compromise between the isotope choice and the immunologic structure (full monoclonal antibody or derivatives). Through some clinical applications, this paper review aims to discuss the most important aspects of the isotope choice and the usable proteic structure that can be used to meet the clinical needs.
Collapse
Affiliation(s)
- Alexandre Lugat
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France
| | - Clément Bailly
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Caroline Rousseau
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France,ARRONAX Cyclotron, Saint-Herblain, France,*Correspondence: Mickaël Bourgeois
| |
Collapse
|
40
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
41
|
Murillo O, Collantes M, Gazquez C, Moreno D, Hernandez-Alcoceba R, Barberia M, Ecay M, Tamarit B, Douar A, Ferrer V, Combal JP, Peñuelas I, Bénichou B, Gonzalez-Aseguinolaza G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson's disease. Mol Ther Methods Clin Dev 2022; 26:98-106. [PMID: 35795774 PMCID: PMC9234538 DOI: 10.1016/j.omtm.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Wilson’s disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Maria Collantes
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | - Ivan Peñuelas
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain.,Vivet Therapeutics S.L., Pamplona, Spain
| |
Collapse
|
42
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
43
|
Production Review of Accelerator-Based Medical Isotopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165294. [PMID: 36014532 PMCID: PMC9415084 DOI: 10.3390/molecules27165294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The production of reactor-based medical isotopes is fragile, which has meant supply shortages from time to time. This paper reviews alternative production methods in the form of cyclotrons, linear accelerators and neutron generators. Finally, the status of the production of medical isotopes in China is described.
Collapse
|
44
|
Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol 2022; 19:534-550. [PMID: 35725926 PMCID: PMC10585450 DOI: 10.1038/s41571-022-00652-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
Structural imaging remains an essential component of diagnosis, staging and response assessment in patients with cancer; however, as clinicians increasingly seek to noninvasively investigate tumour phenotypes and evaluate functional and molecular responses to therapy, theranostics - the combination of diagnostic imaging with targeted therapy - is becoming more widely implemented. The field of radiotheranostics, which is the focus of this Review, combines molecular imaging (primarily PET and SPECT) with targeted radionuclide therapy, which involves the use of small molecules, peptides and/or antibodies as carriers for therapeutic radionuclides, typically those emitting α-, β- or auger-radiation. The exponential, global expansion of radiotheranostics in oncology stems from its potential to target and eliminate tumour cells with minimal adverse effects, owing to a mechanism of action that differs distinctly from that of most other systemic therapies. Currently, an enormous opportunity exists to expand the number of patients who can benefit from this technology, to address the urgent needs of many thousands of patients across the world. In this Review, we describe the clinical experience with established radiotheranostics as well as novel areas of research and various barriers to progress.
Collapse
Affiliation(s)
- Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Ken Herrmann
- German Cancer Consortium, University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
45
|
Pineau J, Lima LMP, Platas‐Iglesias C, Zeevaart JR, Driver CHS, Le Bris N, Tripier R. Relevance of Palladium to Radiopharmaceutical Development Considering Enhanced Coordination Properties of TE1PA. Chemistry 2022; 28:e202200942. [PMID: 35560962 PMCID: PMC9401000 DOI: 10.1002/chem.202200942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Abstract
The limited use of palladium‐103 and ‐109 radionuclides for molecular radiotherapy is surely due to the lack of appropriate ligands capable of fulfilling all criteria required for application in nuclear medicine. Furthermore, the thermodynamic properties of these complexes in solution remain difficult to establish. The challenge is compounded when considering that radiolabeling of compounds for translation to clinical trials requires fast complexation. Thus, the coordination of Pd(II) and 103/109Pd‐nuclides is a huge challenge in terms of molecular design and physicochemical characterization. Herein, we report a comprehensive study highlighting TE1PA, a monopicolinate cyclam – already established in nuclear imaging with 64Cu‐PET (positron emission tomography) imaging tracers – as a highly relevant chelator for natural Pd and subsequently 109Pd‐nuclide. The structural, thermodynamic, kinetic and radiolabeling studies of Pd(II) with TE1PA, as well as the comparison of this complex with three structurally related derivatives, support palladium‐TE1PA radiopharmaceuticals as leading candidates for targeted nuclear medicine.
Collapse
Affiliation(s)
- Julie Pineau
- Univ Brest, UMR CNRS 6521 CEMCA 6 avenue Victor le Gorgeu 29238 Brest France) E-mail: s
| | - Luís M. P. Lima
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Carlos Platas‐Iglesias
- Departamento de Química Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA) Universidade da Coruña San Vicente de Elviña 15071 A Coruña Spain
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation Radiochemistry and PreClinical Imaging Facility Elias Motsoaledi Street, R104 Pelindaba North West 0240 South Africa
| | - Cathryn H. S. Driver
- South African Nuclear Energy Corporation Radiochemistry and PreClinical Imaging Facility Elias Motsoaledi Street, R104 Pelindaba North West 0240 South Africa
| | - Nathalie Le Bris
- Univ Brest, UMR CNRS 6521 CEMCA 6 avenue Victor le Gorgeu 29238 Brest France) E-mail: s
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA 6 avenue Victor le Gorgeu 29238 Brest France) E-mail: s
| |
Collapse
|
46
|
McDonagh AW, McNeil BL, Rousseau J, Roberts RJ, Merkens H, Yang H, Bénard F, Ramogida CF. Development of a multi faceted platform containing a tetrazine, fluorophore and chelator: synthesis, characterization, radiolabeling, and immuno-SPECT imaging. EJNMMI Radiopharm Chem 2022; 7:12. [PMID: 35666363 PMCID: PMC9170845 DOI: 10.1186/s41181-022-00164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Combining optical (fluorescence) imaging with nuclear imaging has the potential to offer a powerful tool in personal health care, where nuclear imaging offers in vivo functional whole-body visualization, and the fluorescence modality may be used for image-guided tumor resection. Varying chemical strategies have been exploited to fuse both modalities into one molecular entity. When radiometals are employed in nuclear imaging, a chelator is typically inserted into the molecule to facilitate radiolabeling; the availability of the chelator further expands the potential use of these platforms for targeted radionuclide therapy if a therapeutic radiometal is employed. Herein, a novel mixed modality scaffold which contains a tetrazine (Tz)--for biomolecule conjugation, fluorophore-for optical imaging, and chelator-for radiometal incorporation, in one construct is presented. The novel platform was characterized for its fluorescence properties, radiolabeled with single-photon emission computed tomography (SPECT) isotope indium-111 (111In3+) and therapeutic alpha emitter actinium-225 (225Ac3+). Both radiolabels were conjugated in vitro to trans-cyclooctene (TCO)-modified trastuzumab; biodistribution and immuno-SPECT imaging of the former conjugate was assessed. RESULTS Key to the success of the platform synthesis was incorporation of a 4,4'-dicyano-BODIPY fluorophore. The route gives access to an advanced intermediate where final chelator-incorporated compounds can be easily accessed in one step prior to radiolabeling or biomolecule conjugation. The DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) conjugate was prepared, displayed good fluorescence properties, and was successfully radiolabeled with 111In & 225Ac in high radiochemical yield. Both complexes were then separately conjugated in vitro to TCO modified trastuzumab through an inverse electron demand Diels-Alder (IEDDA) reaction with the Tz. Pilot small animal in vivo immuno-SPECT imaging with [111In]In-DO3A-BODIPY-Tz-TCO-trastuzumab was also conducted and exhibited high tumor uptake (21.2 ± 5.6%ID/g 6 days post-injection) with low uptake in non-target tissues. CONCLUSIONS The novel platform shows promise as a multi-modal probe for theranostic applications. In particular, access to an advanced synthetic intermediate where tailored chelators can be incorporated in the last step of synthesis expands the potential use of the scaffold to other radiometals. Future studies including validation of ex vivo fluorescence imaging and exploiting the pre-targeting approach available through the IEDDA reaction are warranted.
Collapse
Affiliation(s)
- Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Ryan J Roberts
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Hua Yang
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.
| |
Collapse
|
47
|
Marlin A, Hierlmeier I, Guillou A, Bartholomä M, Tripier R, Patinec V. Bioconjugated chelates based on (methylpyridinyl)tacn: synthesis, 64Cu labeling and in vitro evaluation for prostate cancer targeting. Metallomics 2022; 14:6596882. [PMID: 35648482 DOI: 10.1093/mtomcs/mfac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Three new bifunctional copper chelators based on the 1,4,7-triazacyclononane (tacn) platform have been synthesized and conjugated to peptide. The first one is constituted of the tacn with two methylpyridinyl and one methylthiazolyl carboxylic acid pendant arms, while, in the second and third ones, the macrocycle is functionalized by three methylpyridinyl groups, with an additional hexynoic acid chain on a carbon of one or two pyridine rings. These three bifunctional chelators have been conjugated to the antagonist JMV594 peptide for targeting the gastrin releasing peptide receptor (GRP-r), which is overexpressed in prostate cancer. The resulting monomeric bioconjugates have shown their efficiency to be radiolabeled with β+ emitter 64Cu, and the hydrophilicity and PC-3 cell internalisation properties of these radiolabeled conjugates have been studied. PC-3 cell binding affinity of mono- and dimeric metal-free and natCu metallated conjugates have been evaluated by IC50 measurements. The results demonstrate the potential of these methylpyridinyl tacn derivatives for radiopharmaceutical applications.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, 66421 Homburg, Germany
| | - Amaury Guillou
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, 66421 Homburg, Germany
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
48
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|
49
|
Matiz CA, Delaney S, Cook BE, Genady AR, Hoerres R, Kuchuk M, Makris G, Valliant JF, Sadeghi S, Lewis JS, Hennkens HM, Bryan JN, Zeglis BM. Pretargeted PET of Osteodestructive Lesions in Dogs. Mol Pharm 2022; 19:3153-3162. [DOI: 10.1021/acs.molpharmaceut.2c00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charles A. Matiz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Afaf R. Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rebecca Hoerres
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Marina Kuchuk
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Georgios Makris
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Heather M. Hennkens
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
50
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|