1
|
Chang CY, Hsieh EJ, Wang SL, Grillet L. L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2025; 177:e70024. [PMID: 39727040 DOI: 10.1111/ppl.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a toxic element and a widespread health hazard. Preventing its entry into crops is an outstanding issue. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) is a non-proteinogenic amino acid that is secreted by a few legume plants and affects neighboring plants. Exogenous L-DOPA triggers iron (Fe) uptake by roots of Arabidopsis thaliana Columbia-0 ecotype through transcriptional activation of Fe deficiency genes, including IRONMANs (IMAs), which encode peptides regulating Fe homeostasis. Ectopic expression of IRONMAN1 was reported to enhance Cd tolerance in Arabidopsis. We therefore hypothesized that L-DOPA could also enhance Cd tolerance by stimulating the expression of IMAs. In the present study, the elemental profile and the expression of key genes of plants exposed to a combination of Cd and L-DOPA were studied. The results show that exogenous L-DOPA considerably enhances the Cd tolerance of Arabidopsis thaliana, abolishing the Cd-induced chlorosis and necrosis, and reducing Cd accumulation. This increased tolerance is not due to an enhanced Fe uptake and is not mediated by IMAs. Instead, L-DOPA triggered a peculiar transcriptional program that led to an increased expression of a branch of the Fe deficiency pathway comprising the transcription factor bHLH39 but, surprisingly, not its target genes FRO2 and IRT1. The NICOTIANAMINE SYNTHASE 4 (NAS4) gene, which mediates Cd tolerance, was highly and specifically upregulated by the application of L-DOPA and Cd combined. These results suggest that Fe homeostasis is controlled by small molecules through currently unknown mechanisms that could be leveraged to manipulate Fe and Cd accumulation in plants.
Collapse
Affiliation(s)
- Ching-Yuan Chang
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - En-Jung Hsieh
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Louis Grillet
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Dutta A, Dracatos PM, Khan GA. Balancing act: The dynamic relationship between nutrient availability and plant defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1724-1734. [PMID: 39446893 DOI: 10.1111/tpj.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Plants depend heavily on soil nutrients for growth, development and defence. Nutrient availability is crucial not only for sustaining vital biochemical processes but also for mounting effective defences against a diverse array of pathogens. Macronutrients such as nitrogen, phosphorus and potassium significantly influence plant defence mechanisms by providing essential building blocks for the synthesis of defence compounds, immune signalling and physiological responses like stomatal regulation. Micronutrients like zinc, copper and iron are essential for balancing reactive oxygen species and other reactive compounds in plant immune responses. Although substantial circumstantial evidence links nutrient availability to plant defence, the molecular mechanisms underlying this process have only recently started to be understood. This review focuses on summarizing recent advances in understanding the molecular mechanisms by which nitrogen, phosphorus and iron interact with plant defence mechanisms and explores the potential for engineering nutritional immunity in crops to enhance their resilience against pathogens.
Collapse
Affiliation(s)
- Arka Dutta
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Peter M Dracatos
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ghazanfar Abbas Khan
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
- School of Life and Environmental Sciences & Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
3
|
Zhou M, Li Y, Yao XL, Zhang J, Liu S, Cao HR, Bai S, Chen CQ, Zhang DX, Xu A, Lei JN, Mao QZ, Zhou Y, Duanmu DQ, Guan YF, Chen ZC. Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules. Nat Commun 2024; 15:8946. [PMID: 39414817 PMCID: PMC11484902 DOI: 10.1038/s41467-024-53325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.
Collapse
Affiliation(s)
- Min Zhou
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Lei Yao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Rui Cao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Bai
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chun-Qu Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Ning Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - De-Qiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Yue-Feng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China.
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
5
|
Chia JC, Vatamaniuk OK. Shall we talk? New details in crosstalk between copper and iron homeostasis uncovered in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 242:832-835. [PMID: 38348503 DOI: 10.1111/nph.19583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This article is a Commentary on Cai et al. (2024), 242: 1206–1217.
Collapse
Affiliation(s)
- Ju-Chen Chia
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Olena K Vatamaniuk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Vélez-Bermúdez IC, Schmidt W. IRON MAN is a jack of all trades. NATURE PLANTS 2024; 10:703-705. [PMID: 38658792 DOI: 10.1038/s41477-024-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Cai Y, Ping H, Zhao J, Li C, Li Y, Liang G. IRON MAN interacts with Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1 to maintain copper homeostasis. THE NEW PHYTOLOGIST 2024; 242:1206-1217. [PMID: 38031525 DOI: 10.1111/nph.19439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Copper (Cu) is essential for plant growth and development. IRON MAN (IMA) is a family of small peptides that can bind both iron (Fe) and Cu ions. It was reported that IMAs mediate Fe homeostasis in Arabidopsis thaliana. However, it remains unclear whether IMAs are involved in Cu homeostasis. The transcript abundance of IMA genes decreased in response to Cu deficiency. The combined disruption of all IMA genes caused enhanced tolerance to Cu deficiency and resulted in an increase in the transcript abundance of Cu uptake genes, whereas the overexpression of IMA1 or IMA3 led to the opposite results. Protein interaction assays indicated that IMAs interact with Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR1 (CITF1), which is a positive regulator of the Cu uptake genes. Further studies showed that IMAs not only interfere with the DNA binding of CITF1 but also repress the transcriptional activation activity of CITF1, hence resulting in downregulation of the Cu uptake genes. Genetic analyses indicated that IMAs modulate Cu homeostasis in a CITF1-dependent manner. Our findings indicate that IMAs inhibit the functions of CITF1 in regulating Cu deficiency responses, thereby providing a conceptual framework for comprehending the regulation of Cu homeostasis.
Collapse
Affiliation(s)
- Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Huaqian Ping
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Junhui Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
8
|
Lichtblau DM, Baby D, Khan M, Trofimov K, Ari Y, Schwarz B, Bauer P. The small iron-deficiency-induced protein OLIVIA and its relation to the bHLH transcription factor POPEYE. PLoS One 2024; 19:e0295732. [PMID: 38626041 PMCID: PMC11020826 DOI: 10.1371/journal.pone.0295732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Iron (Fe) is a crucial micronutrient needed in many metabolic processes. To balance needs and potential toxicity, plants control the amount of Fe they take up and allocate to leaves and seeds during their development. One important regulator of this process is POPEYE (PYE). PYE is a Fe deficiency-induced key bHLH transcription factor (TF) for allocation of internal Fe in plants. In the absence of PYE, there is altered Fe translocation and plants develop a leaf chlorosis. NICOTIANAMINE SYNTHASE4 (NAS4), FERRIC-REDUCTION OXIDASE3 (FRO3), and ZINC-INDUCED FACILITATOR1 (ZIF1) genes are expressed at higher level in pye-1 indicating that PYE represses these genes. PYE activity is controlled in a yet unknown manner. Here, we show that a small Fe deficiency-induced protein OLIVIA (OLV) can interact with PYE. OLV has a conserved C-terminal motif, that we named TGIYY. Through deletion mapping, we pinpointed that OLV TGIYY and several regions of PYE can be involved in the protein interaction. An OLV overexpressing (OX) mutant line exhibited an enhanced NAS4 gene expression. This was a mild Fe deficiency response phenotype that was related to PYE function. Leaf rosettes of olv mutants remained smaller than those of wild type, indicating that OLV promotes plant growth. Taken together, our study identified a small protein OLV as a candidate that may connect aspects of Fe homeostasis with regulation of leaf growth.
Collapse
Affiliation(s)
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Mather Khan
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Ksenia Trofimov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Yunus Ari
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Birte Schwarz
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Grillet L, Hsieh EJ, Schmidt W. Transcriptome analysis of iron over-accumulating Arabidopsis genotypes uncover putative novel regulators of systemic and retrograde signaling. THE PLANT GENOME 2024; 17:e20411. [PMID: 38054209 DOI: 10.1002/tpg2.20411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023]
Abstract
On account of its competence to accept and donate electrons, iron (Fe) is an essential element across all forms of life, including plants. Maintaining Fe homeostasis requires precise orchestration of its uptake, trafficking, and translocation in order to meet the demand for Fe sinks such as plastids. Plants harboring defects in the systemic Fe transporter OPT3 (OLIGOPEPTIDE TRANSPORTER 3) display constitutive Fe deficiency responses and accumulate toxic levels of Fe in their leaves. Similarly, ectopic expression of IRONMAN (IMA) genes, encoding a family of phloem-localized signaling peptides, triggers the uptake and accumulation of Fe by inhibiting the putative Fe sensor BRUTUS. This study aims at elucidating the mechanisms operating between OPT3-mediated systemic Fe transport, activation of IMA genes in the phloem, and activation of Fe uptake in the root epidermis. Transcriptional profiling of opt3-2 mutant and IMA1/IMA3 overexpressing (IMA Ox) lines uncovered a small subset of genes that were consistently differentially expressed across all three genotypes and Fe-deficient control plants, constituting potential novel regulators of cellular Fe homeostasis. In particular, expression of the the F-box protein At1g73120 was robustly induced in all genotypes, suggesting a putative function in the posttranslational regulation of cellular Fe homeostasis. As further constituents of this module, two plastid-encoded loci that putatively produce transfer ribonucleic acid (tRNA)-derived small ribonucleic acids are possibly involved in retrograde control of root Fe uptake.
Collapse
Affiliation(s)
- Louis Grillet
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - En-Jung Hsieh
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Ito M, Tajima Y, Ogawa-Ohnishi M, Nishida H, Nosaki S, Noda M, Sotta N, Kawade K, Kamiya T, Fujiwara T, Matsubayashi Y, Suzaki T. IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nat Commun 2024; 15:733. [PMID: 38286991 PMCID: PMC10825120 DOI: 10.1038/s41467-024-44865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.
Collapse
Affiliation(s)
- Momoyo Ito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuri Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Rhelixa Inc., Tokyo, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momona Noda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawade
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Saitama, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Cao M, Platre MP, Tsai HH, Zhang L, Nobori T, Armengot L, Chen Y, He W, Brent L, Coll NS, Ecker JR, Geldner N, Busch W. Spatial IMA1 regulation restricts root iron acquisition on MAMP perception. Nature 2024; 625:750-759. [PMID: 38200311 PMCID: PMC11181898 DOI: 10.1038/s41586-023-06891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.
Collapse
Affiliation(s)
- Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huei-Hsuan Tsai
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Yintong Chen
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lukas Brent
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Webster SS, Guerinot ML. How plants iron out the competing interests of growth and defence. Nature 2024; 625:671-672. [PMID: 38200336 DOI: 10.1038/d41586-023-03995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
13
|
Dubos C. Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4. THE NEW PHYTOLOGIST 2023; 240:461-463. [PMID: 37583252 DOI: 10.1111/nph.19199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
This article is a Commentary on Yang et al. (2023), 240: 694–709.
Collapse
Affiliation(s)
- Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
14
|
Stanton C, Rodríguez-Celma J, Krämer U, Sanders D, Balk J. BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5767-5782. [PMID: 37393944 PMCID: PMC10540732 DOI: 10.1093/jxb/erad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/01/2023] [Indexed: 07/04/2023]
Abstract
The mineral micronutrients zinc (Zn) and iron (Fe) are essential for plant growth and human nutrition, but interactions between the homeostatic networks of these two elements are not fully understood. Here we show that loss of function of BTSL1 and BTSL2, which encode partially redundant E3 ubiquitin ligases that negatively regulate Fe uptake, confers tolerance to Zn excess in Arabidopsis thaliana. Double btsl1 btsl2 mutant seedlings grown on high Zn medium accumulated similar amounts of Zn in roots and shoots to the wild type, but suppressed the accumulation of excess Fe in roots. RNA-sequencing analysis showed that roots of mutant seedlings had relatively higher expression of genes involved in Fe uptake (IRT1, FRO2, and NAS) and in Zn storage (MTP3 and ZIF1). Surprisingly, mutant shoots did not show the transcriptional Fe deficiency response which is normally induced by Zn excess. Split-root experiments suggested that within roots the BTSL proteins act locally and downstream of systemic Fe deficiency signals. Together, our data show that constitutive low-level induction of the Fe deficiency response protects btsl1 btsl2 mutants from Zn toxicity. We propose that BTSL protein function is disadvantageous in situations of external Zn and Fe imbalances, and formulate a general model for Zn-Fe interactions in plants.
Collapse
Affiliation(s)
- Camilla Stanton
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Dale Sanders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
15
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
16
|
Hanikenne M, Bouché F. Iron and zinc homeostasis in plants: a matter of trade-offs. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5426-5430. [PMID: 37773264 PMCID: PMC10540728 DOI: 10.1093/jxb/erad304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
This article comments on:
Stanton C, Rodríguez-Celma J, Krämer U, Sanders D, Balk J. 2023. BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. Journal of Experimental Botany 74, 5767–5782.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS-PhytoSYSTEMS, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
| | - Frédéric Bouché
- InBioS-PhytoSYSTEMS, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
- InBioS-PhytoSYSTEMS, Plant Physiology, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
17
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
18
|
Mankotia S, Singh D, Monika K, Kalra M, Meena H, Meena V, Yadav RK, Pandey AK, Satbhai SB. ELONGATED HYPOCOTYL 5 regulates BRUTUS and affects iron acquisition and homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1267-1284. [PMID: 36920240 DOI: 10.1111/tpj.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival. Understanding the molecular mechanism underlying the root growth responses will have critical implications for plant breeding. Fe-uptake is regulated by a cascade of basic helix-loop-helix (bHLH) transcription factors (TFs) in plants. In this study, we report that HY5 (Elongated Hypocotyl 5), a member of the basic leucine zipper (bZIP) family of TFs, plays an important role in the Fe-deficiency signaling pathway in Arabidopsis thaliana. The hy5 mutant failed to mount optimum Fe-deficiency responses, and displayed root growth defects under Fe-limitation. Our analysis revealed that the induction of the genes involved in Fe-uptake pathway (FIT-FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR, FRO2-FERRIC REDUCTION OXIDASE 2 and IRT1-IRON-REGULATED TRANSPORTER1) is reduced in the hy5 mutant as compared with the wild-type plants under Fe-deficiency. Moreover, we also found that the expression of coumarin biosynthesis genes is affected in the hy5 mutant under Fe-deficiency. Our results also showed that HY5 negatively regulates BRUTUS (BTS) and POPEYE (PYE). Chromatin immunoprecipitation followed by quantitative polymerase chain reaction revealed direct binding of HY5 to the promoters of BTS, FRO2 and PYE. Altogether, our results showed that HY5 plays an important role in the regulation of Fe-deficiency responses in Arabidopsis.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Dhriti Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Kumari Monika
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Muskan Kalra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Himani Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
19
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
20
|
Tabata R. Regulation of the iron-deficiency response by IMA/FEP peptide. FRONTIERS IN PLANT SCIENCE 2023; 14:1107405. [PMID: 37180394 PMCID: PMC10167411 DOI: 10.3389/fpls.2023.1107405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, participating in many significant biological processes including photosynthesis, respiration, and nitrogen fixation. Although abundant in the earth's crust, most Fe is oxidized and difficult for plants to absorb under aerobic and alkaline pH conditions. Plants, therefore, have evolved complex means to optimize their Fe-acquisition efficiency. In the past two decades, regulatory networks of transcription factors and ubiquitin ligases have proven to be essential for plant Fe uptake and translocation. Recent studies in Arabidopsis thaliana (Arabidopsis) suggest that in addition to the transcriptional network, IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptide interacts with a ubiquitin ligase, BRUTUS (BTS)/BTS-LIKE (BTSL). Under Fe-deficient conditions, IMA/FEP peptides compete with IVc subgroup bHLH transcription factors (TFs) to interact with BTS/BTSL. The resulting complex inhibits the degradation of these TFs by BTS/BTSL, which is important for maintaining the Fe-deficiency response in roots. Furthermore, IMA/FEP peptides control systemic Fe signaling. By organ-to-organ communication in Arabidopsis, Fe deficiency in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. IMA/FEP peptides regulate this compensatory response through Fe-deficiency-triggered organ-to-organ communication. This mini-review summarizes recent advances in understanding how IMA/FEP peptides function in the intracellular signaling of the Fe-deficiency response and systemic Fe signaling to regulate Fe acquisition.
Collapse
Affiliation(s)
- Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Li Z, Li S, Jin D, Yang Y, Pu Z, Han X, Hu Y, Jiang Y. U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth. PLANT PHYSIOLOGY 2023; 191:2519-2533. [PMID: 36715300 PMCID: PMC10069885 DOI: 10.1093/plphys/kiad044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
ABSCISIC ACID-INSENSITIVE3 (ABI3) and ABI5 are 2 crucial transcription factors in abscisic acid (ABA) signaling, and their homeostasis at the protein level plays a decisive role in seed germination and subsequent seedling growth. Here, we found that PLANT U-BOX 8 (PUB8), a U-box E3 ubiquitin ligase, physically interacts with ABI3 and ABI5 and negatively regulates ABA responses during early Arabidopsis (Arabidopsis thaliana) seedling growth. Loss-of-function pub8 mutants were hypersensitive to ABA-inhibited cotyledon greening, while lines overexpressing PUB8 with low levels of ABI5 protein abundance were insensitive to ABA. Genetic analyses showed that ABI3 and ABI5 were required for the ABA-sensitive phenotype of pub8, indicating that PUB8 functions upstream of ABI3 and ABI5 to regulate ABA responses. Biochemical analyses showed that PUB8 can associate with ABI3 and ABI5 for degradation through the ubiquitin-mediated 26S proteasome pathway. Correspondingly, loss-of-function of PUB8 led to enhanced ABI3 and ABI5 stability, while overexpression of PUB8 impaired accumulation of ABI3 and ABI5 in planta. Further phenotypic analysis indicated that PUB8 compromised the function of ABI5 during early seedling growth. Taken together, our results reveal the regulatory role of PUB8 in modulating the early seedling growth by controlling the homeostasis of ABI3 and ABI5.
Collapse
Affiliation(s)
- Zhipeng Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongjie Jin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- Author for correspondence: (Y.J.), (Y.H.)
| | | |
Collapse
|
22
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Lu CK, Liang G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 237:1843-1855. [PMID: 36440498 DOI: 10.1111/nph.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Although iron (Fe) deficiency is an adverse condition to growth and development of plants, it increases the resistance to pathogens. How Fe deficiency induces the resistance to pathogens is still unclear. Here, we reveal that the inoculation of Botrytis cinerea activates the Fe deficiency response of plants, which further induces ethylene synthesis and then resistance to B. cinerea. FIT and bHLH Ib are a pair of bHLH transcription factors, which control the Fe deficiency response. Both the Fe deficiency-induced ethylene synthesis and resistance are blocked in fit-2 and bhlh4x-1 (a quadruple mutant for four bHLH Ib members). SAM1 and SAM2, two ethylene synthesis-associated genes, are induced by Fe deficiency in a FIT-bHLH Ib-dependent manner. Moreover, SAM1 and SAM2 are required for the increased ethylene and resistance to B. cinerea under Fe-deficient conditions. Our findings suggest that the FIT-bHLH Ib module activates the expression of SAM1 and SAM2, thereby inducing ethylene synthesis and resistance to B. cinerea. This study uncovers that Fe signaling also functions as a part of the plant immune system against pathogens.
Collapse
Affiliation(s)
- Cheng Kai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
25
|
Li M, Watanabe S, Gao F, Dubos C. Iron Nutrition in Plants: Towards a New Paradigm? PLANTS (BASEL, SWITZERLAND) 2023; 12:384. [PMID: 36679097 PMCID: PMC9862363 DOI: 10.3390/plants12020384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe availability affects crops' productivity and the quality of their derived products and thus human nutrition. Fe is poorly available for plant use since it is mostly present in soils in the form of insoluble oxides/hydroxides, especially at neutral to alkaline pH. How plants cope with low-Fe conditions and acquire Fe from soil has been investigated for decades. Pioneering work highlighted that plants have evolved two different strategies to mine Fe from soils, the so-called Strategy I (Fe reduction strategy) and Strategy II (Fe chelation strategy). Strategy I is employed by non-grass species whereas graminaceous plants utilize Strategy II. Recently, it has emerged that these two strategies are not fully exclusive and that the mechanism used by plants for Fe uptake is directly shaped by the characteristics of the soil on which they grow (e.g., pH, oxygen concentration). In this review, recent findings on plant Fe uptake and the regulation of this process will be summarized and their impact on our understanding of plant Fe nutrition will be discussed.
Collapse
Affiliation(s)
- Meijie Li
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Shunsuke Watanabe
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Christian Dubos
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Yu Y, Wang Y, Yao Z, Wang Z, Xia Z, Lee J. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. Methods Mol Biol 2023; 2665:95-111. [PMID: 37166596 DOI: 10.1007/978-1-0716-3183-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vital biochemical reactions including photosynthesis to respiration require iron, which should be tightly regulated. Although increasing evidence reveals the importance of epigenetic regulation in gene expression and signaling, the role of histone modifications and chromatin remodeling in plant iron homeostasis is not well understood. In this study, we surveyed publicly available ChIP-seq datasets of Arabidopsis wild-type and mutants defective in key enzymes of histone modification and chromatin remodeling and compared the deposition of epigenetic marks on loci of genes involved in iron regulation. Based on the analysis, we compiled a comprehensive list of iron homeostasis genes with differential enrichment of various histone modifications. This report will provide a resource for future studies to investigate epigenetic regulatory mechanisms of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Yuxin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zijun Xia
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China.
| |
Collapse
|
27
|
Chao ZF, Chao DY. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. THE NEW PHYTOLOGIST 2022; 236:1655-1660. [PMID: 36093736 DOI: 10.1111/nph.18482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) homeostasis is essential for both plant development and human nutrition. The maintenance of Fe homeostasis involves a complex network in which Fe signaling nodes and circuits coordinate tightly Fe transporters, ferric reductases, H+ -ATPases, low-molecular-mass metal chelators, and transporters of chelators and Fe-chelate complexes. Early-stage studies have revealed different strategies for Fe homeostasis between graminaceous and nongraminaceous plants. Recent progress has refreshed our understanding of previous knowledge, especially on the uptake, phloem transport and systemic signaling of Fe. This review attempts to summarize recent exciting and potentially influential studies on the various routes of Fe uptake and distribution in plants, focusing on breakthroughs that have changed our understanding of plant Fe nutrition.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
28
|
Okada S, Lei GJ, Yamaji N, Huang S, Ma JF, Mochida K, Hirayama T. FE UPTAKE-INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:3322-3337. [PMID: 35993196 DOI: 10.1111/pce.14424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis.
Collapse
Affiliation(s)
- Satoshi Okada
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Gui J Lei
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Naoki Yamaji
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Sheng Huang
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Jian F Ma
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Keiichi Mochida
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Hirayama
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
29
|
Kobayashi T, Maeda K, Suzuki Y, Nishizawa NK. Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase. RICE (NEW YORK, N.Y.) 2022; 15:54. [PMID: 36315339 PMCID: PMC9622965 DOI: 10.1186/s12284-022-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Iron is an essential micronutrient for living organisms, but its solubility is extremely low under alkaline conditions. Plants often suffer from iron deficiency chlorosis in calcareous soils, which consist of approximately 30% of the world's cultivated area, severely limiting plant productivity. Iron deficiency anemia is also a widespread problem in humans, especially in Asian and African people who take up iron mainly from staple foods containing low iron concentrations. Transgenic manipulation of genes involved in plant iron uptake, translocation, and storage has made improvements in enhancing iron deficiency tolerance or iron accumulation in edible parts, but these two properties have been characterized separately. We previously produced transgenic rice lines, with concomitant improvement of iron deficiency tolerance and grain iron accumulation by knocking-down OsHRZ ubiquitin ligases, which negatively regulate iron deficiency response and iron accumulation in rice. In the present report, we aimed to further improve the iron deficiency tolerance and grain iron accumulation of OsHRZ knockdown rice by the simultaneous introduction of the engineered ferric-chelate reductase gene Refre1/372 under the control of the OsIRT1 promoter for further enhancement of iron uptake. We obtained several transgenic rice lines with repressed OsHRZ expression and induced Refre1/372 expression. These lines showed a variable degree of iron deficiency tolerance in calcareous soils, with increased iron accumulation in brown seeds under both iron-deficient and iron-sufficient soil cultures. Selected OsHRZ knockdown plus Refre1/372 lines showed similar or better growth compared with that of singly introduced OsHRZ knockdown or Refre1/372 lines in calcareous soils under both non-submerged and submerged conditions. After submerged calcareous soil cultivation, these OsHRZ knockdown plus Refre1/372 lines accumulated 2.5-4.3 times and 17-23 times more iron concentrations than that of non-transformants in brown rice and straw, respectively, which was comparable or superior to a single OsHRZ knockdown line. Our results indicate that the combined introduction of OsHRZ knockdown and OsIRT1 promoter-Refre1/372 is highly effective in further improving the iron deficiency tolerance without compromising the iron accumulation of the OsHRZ knockdown effects.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Keisuke Maeda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Yutaro Suzuki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
30
|
Peng F, Li C, Lu C, Li Y, Xu P, Liang G. IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6463-6474. [PMID: 35789265 DOI: 10.1093/jxb/erac299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
IRONMAN (IMA) is a family of small peptides which positively regulate plant responses under Fe deficiency. However, the molecular mechanism by which OsIMA1 and OsIMA2 regulate Fe homeostasis in rice is unclear. Here, we reveal that OsIMA1 and OsIMA2 interact with the potential Fe sensors, OsHRZ1 (HAEMERYTHRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE (RING) AND ZINC-FINGER PROTEIN 1) and OsHRZ2. OsIMA1 and OsIMA2 contain a conserved 17 amino acid C-terminal region which is responsible for the interactions with OsHRZ1 and OsHRZ2. Plants overexpressing OsIMA1 (OsIMA1ox) show increased Fe concentration in seeds and reduced fertility, as observed in the hrz1-2 loss-of-function mutant plants. Moreover, the expression patterns of Fe deficiency inducible genes in the OsIMA1ox plants are the same as those in hrz1-2. Co-expression assays suggest that OsHRZ1 and OsHRZ2 promote the degradation of OsIMA1 proteins. As the interaction partners of OsHRZ1, the OsPRI (POSITIVE REGULATOR OF IRON HOMEOSTASIS) proteins also interact with OsHRZ2. The conserved C-terminal region of four OsPRIs contributes to the interactions with OsHRZ1 and OsHRZ2. An artificial IMA (aIMA) derived from the C-terminal of OsPRI1 can be also degraded by OsHRZ1. Moreover, aIMA overexpressing rice plants accumulate more Fe without reduction of fertility. This work establishes the link between OsIMAs and OsHRZs, and develops a new strategy for Fe fortification in rice.
Collapse
Affiliation(s)
- Feng Peng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Bakirbas A, Walker EL. CAN OF SPINACH, a novel long non-coding RNA, affects iron deficiency responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1005020. [PMID: 36275516 PMCID: PMC9581158 DOI: 10.3389/fpls.2022.1005020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with functions independent of any protein-coding potential. A whole transcriptome (RNA-seq) study of Arabidopsis shoots under iron sufficient and deficient conditions was carried out to determine the genes that are iron-regulated in the shoots. We identified two previously unannotated transcripts on chromosome 1 that are significantly iron-regulated. We have called this iron-regulated lncRNA, CAN OF SPINACH (COS). cos mutants have altered iron levels in leaves and seeds. Despite the low iron levels in the leaves, cos mutants have higher chlorophyll levels than WT plants. Moreover, cos mutants have abnormal development during iron deficiency. Roots of cos mutants are longer than those of WT plants, when grown on iron deficient medium. In addition, cos mutant plants accumulate singlet oxygen during iron deficiency. The mechanism through which COS affects iron deficiency responses is unclear, but small regions of sequence similarity to several genes involved in iron deficiency responses occur in COS, and small RNAs from these regions have been detected. We hypothesize that COS is required for normal adaptation to iron deficiency conditions.
Collapse
Affiliation(s)
- Ahmet Bakirbas
- Plant Biology Graduate Program, Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Elsbeth L. Walker
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
32
|
Su J, Yao Z, Wu Y, Lee J, Jeong J. Minireview: Chromatin-based regulation of iron homeostasis in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:959840. [PMID: 36186078 PMCID: PMC9523571 DOI: 10.3389/fpls.2022.959840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 05/26/2023]
Abstract
Plants utilize delicate mechanisms to effectively respond to changes in the availability of nutrients such as iron. The responses to iron status involve controlling gene expression at multiple levels. The regulation of iron deficiency response by a network of transcriptional regulators has been extensively studied and recent research has shed light on post-translational control of iron homeostasis. Although not as considerably investigated, an increasing number of studies suggest that histone modification and DNA methylation play critical roles during iron deficiency and contribute to fine-tuning iron homeostasis in plants. This review will focus on the current understanding of chromatin-based regulation on iron homeostasis in plants highlighting recent studies in Arabidopsis and rice. Understanding iron homeostasis in plants is vital, as it is not only relevant to fundamental biological questions, but also to agriculture, biofortification, and human health. A comprehensive overview of the effect and mechanism of chromatin-based regulation in response to iron status will ultimately provide critical insights in elucidating the complexities of iron homeostasis and contribute to improving iron nutrition in plants.
Collapse
Affiliation(s)
- Justin Su
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Yixuan Wu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, MA, United States
| |
Collapse
|
33
|
Liang G. Iron uptake, signaling, and sensing in plants. PLANT COMMUNICATIONS 2022; 3:100349. [PMID: 35706354 PMCID: PMC9483112 DOI: 10.1016/j.xplc.2022.100349] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China.
| |
Collapse
|
34
|
García MJ, Angulo M, Romera FJ, Lucena C, Pérez-Vicente R. A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in Arabidopsis thaliana roots. FRONTIERS IN PLANT SCIENCE 2022; 13:971773. [PMID: 36105702 PMCID: PMC9465050 DOI: 10.3389/fpls.2022.971773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
When plants suffer from Fe deficiency, they develop morphological and physiological responses, mainly in their roots, aimed to facilitate Fe mobilization and uptake. Once Fe has been acquired in sufficient quantity, the responses need to be switched off to avoid Fe toxicity and to conserve energy. Several hormones and signaling molecules, such as ethylene, auxin and nitric oxide, have been involved in the activation of Fe deficiency responses in Strategy I plants. These hormones and signaling molecules have almost no effect when applied to plants grown under Fe-sufficient conditions, which suggests the existence of a repressive signal related to the internal Fe content. The nature of this repressive signal is not known yet many experimental results suggest that is not related to the whole root Fe content but to some kind of Fe compound moving from leaves to roots through the phloem. After that, this signal has been named LOng-Distance Iron Signal (LODIS). Very recently, a novel family of small peptides, "IRON MAN" (IMA), has been identified as key components of the induction of Fe deficiency responses. However, the relationship between LODIS and IMA peptides is not known. The main objective of this work has been to clarify the relationship between both signals. For this, we have used Arabidopsis wild type (WT) Columbia and two of its mutants, opt3 and frd3, affected, either directly or indirectly, in the transport of Fe (LODIS) through the phloem. Both mutants present constitutive activation of Fe acquisition genes when grown in a Fe-sufficient medium despite the high accumulation of Fe in their roots. Arabidopsis WT Columbia plants and both mutants were treated with foliar application of Fe, and later on the expression of IMA and Fe acquisition genes was analyzed. The results obtained suggest that LODIS may act upstream of IMA peptides in the regulation of Fe deficiency responses in roots. The possible regulation of IMA peptides by ethylene has also been studied. Results obtained with ethylene precursors and inhibitors, and occurrence of ethylene-responsive cis-acting elements in the promoters of IMA genes, suggest that IMA peptides could also be regulated by ethylene.
Collapse
Affiliation(s)
- María José García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
35
|
Fu D, Li J, Yang X, Li W, Zhou Z, Xiao S, Xue C. Iron redistribution induces oxidative burst and resistance in maize against Curvularia lunata. PLANTA 2022; 256:46. [PMID: 35867182 DOI: 10.1007/s00425-022-03963-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
ΔClnps6 induced iron redistribution in maize B73 leaf cells and resulted in reactive oxygen species (ROS) burst to enhance plant resistance against Curvularia lunata. Iron is an indispensable co-factor of various crucial enzymes that are involved in cellular metabolic processes and energy metabolism in eukaryotes. For this reason, plants and pathogens compete for iron to maintain their iron homeostasis, respectively. In our previous study, ΔClnps6, the extracellular siderophore biosynthesis deletion mutant of Curvularia lunata, was sensitive to exogenous hydrogen peroxide and virulence reduction. However, the mechanism was not studied. Here, we report that maize B73 displayed highly resistance to ΔClnps6. The plants recruited more iron at cell wall appositions (CWAs) to cause ROS bursts. Intracellular iron deficiency induced by iron redistribution originated form up-regulated expression of genes involved in intracellular iron consumption in leaves and absorption in roots. The RNA-sequencing data also showed that the expression of respiratory burst oxidase homologue (ZmRBOH4) and NADP-dependent malic enzyme 4 (ZmNADP-ME4) involved in ROS production was up-regulated in maize B73 after ΔClnps6 infection. Simultaneously, jasmonic acid (JA) biosynthesis genes lipoxygenase (ZmLOX), allene oxide synthase (ZmAOS), GA degradation gene gibberellin 2-beta-dioxygenase (ZmGA2OX6) and ABA degradation genes abscisic acid hydroxylase (ZmABH1, ZmABH2) involved in iron homeostasis were up-regulated expression. Ferritin1 (ZmFER1) positive regulated maize resistance against C. lunata via ROS burst under Fe-limiting conditions. Overall, our results showed that iron played vital roles in activating maize resistance in B73-C. lunata interaction.
Collapse
Affiliation(s)
- Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayang Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenling Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zengran Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
36
|
Tabata R, Kamiya T, Imoto S, Tamura H, Ikuta K, Tabata M, Hirayama T, Tsukagoshi H, Tanoi K, Suzuki T, Hachiya T, Sakakibara H. Systemic Regulation of Iron Acquisition by Arabidopsis in Environments with Heterogeneous Iron Distributions. PLANT & CELL PHYSIOLOGY 2022; 63:842-854. [PMID: 35445268 PMCID: PMC9199186 DOI: 10.1093/pcp/pcac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Nutrient distribution within the soil is generally heterogeneous. Plants, therefore, have evolved sophisticated systemic processes enabling them to optimize their nutrient acquisition efficiency. By organ-to-organ communication in Arabidopsis thaliana, for instance, iron (Fe) starvation in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. This compensatory response through Fe-starvation-triggered organ-to-organ communication includes the upregulation of Iron-regulated transporter 1 (IRT1) gene expression on the Fe-sufficient side of the root; however, the molecular basis underlying this long-distance signaling remains unclear. Here, we analyzed gene expression by RNA-seq analysis of Fe-starved split-root cultures. Genome-wide expression analysis showed that localized Fe depletion in roots upregulated several genes involved in Fe uptake and signaling, such as IRT1, in a distant part of the root exposed to Fe-sufficient conditions. This result indicates that long-distance signaling for Fe demand alters the expression of a subset of genes responsible for Fe uptake and coumarin biosynthesis to maintain a level of Fe acquisition sufficient for the entire plant. Loss of IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) leads to the disruption of compensatory upregulation of IRT1 in the root surrounded by sufficient Fe. In addition, our split-root culture-based analysis provides evidence that the IMA3/FEP1-MYB10/72 pathway mediates long-distance signaling in Fe homeostasis through the regulation of coumarin biosynthesis. These data suggest that the signaling of IMA/FEP, a ubiquitous family of metal-binding peptides, is critical for organ-to-organ communication in response to Fe starvation under heterogeneous Fe conditions in the surrounding environment.
Collapse
Affiliation(s)
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shunpei Imoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Hana Tamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Kumiko Ikuta
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Michika Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196 Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502 Japan
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501 Japan
| | - Takushi Hachiya
- Department of Molecular and Function Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504 Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
37
|
Lichtblau DM, Schwarz B, Baby D, Endres C, Sieberg C, Bauer P. The Iron Deficiency-Regulated Small Protein Effector FEP3/IRON MAN1 Modulates Interaction of BRUTUS-LIKE1 With bHLH Subgroup IVc and POPEYE Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:930049. [PMID: 35755670 PMCID: PMC9226616 DOI: 10.3389/fpls.2022.930049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
In light of climate change and human population growth one of the most challenging tasks is to generate plants that are Fe-efficient, resilient to low Fe supply and Fe-biofortified. For such endeavors, it is crucial to understand the regulation of Fe acquisition and allocation in plants. One open question is how identified Fe-regulatory proteins comprising positive and negative regulators act together to steer Fe homeostasis. bHLH transcription factors (TFs) belonging to the subgroups IVb and IVc can initiate a bHLH cascade controlling the -Fe response in roots. In Arabidopsis thaliana, the -Fe-induced genes are sub-divided into several gene co-expression clusters controlled by different sets of TFs. Some of the co-expressed genes encode regulatory E3 ligase proteins BRUTUS (BTS)/BTS-LIKE (BTSL) and small proteins belonging to the group of FE UPTAKE-INDUCING PEPTIDE/IRON MAN (FEP/IMA). Recently, it was described that FEP1/IMA3 and FEP3/IMA1 proteins inhibit the repression of bHLH factors by BTS. We had postulated that -Fe-regulated co-expression clusters provide new information about regulatory protein interaction complexes. Here, we report a targeted yeast two-hybrid screen among 23 proteins of the -Fe response. This identified a novel protein interactome involving another E3 ligase, namely BTSL1, basic helix-loop-helix (bHLH) protein POPEYE (PYE) and transcription factors of the subgroup IVc as well as FEP3/IMA1. Because of the difficulty in stable BTSL1 protein expression in plant cells, we used a yeast two hybrid-based deletion mapping, homology modeling and molecular docking, to pinpoint interaction sites in BTSL1 and FEP3/IMA1. bHLH IVc TFs have similar residues at their C-terminus as FEP3/IMA1 interacting sites. FEP3/IMA1 attenuated interaction of BTSL1 and bHLH proteins in a yeast three-hybrid assay, in line with physiological data pointing to enhanced Fe acquisition and allocation in FEP3/IMA1 overexpression and btsl1 btsl2 mutant plants. Hence, exploiting -Fe-induced gene co-expression networks identified FEP3/IMA1 as a small effector protein that binds and inhibits the BTSL1 complex with PYE and bHLH subgroup IVc proteins. Structural analysis resolved interaction sites. This information helps improving models of Fe regulation and identifying novel targets for breeding of Fe-efficient crops.
Collapse
Affiliation(s)
| | - Birte Schwarz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Endres
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christin Sieberg
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
39
|
Mackinnon E, Stone SL. The Ubiquitin Proteasome System and Nutrient Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:867419. [PMID: 35665152 PMCID: PMC9161090 DOI: 10.3389/fpls.2022.867419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Plants utilize different molecular mechanisms, including the Ubiquitin Proteasome System (UPS) that facilitates changes to the proteome, to mitigate the impact of abiotic stresses on growth and development. The UPS encompasses the ubiquitination of selected substrates followed by the proteasomal degradation of the modified proteins. Ubiquitin ligases, or E3s, are central to the UPS as they govern specificity and facilitate the attachment of one or more ubiquitin molecules to the substrate protein. From recent studies, the UPS has emerged as an important regulator of the uptake and translocation of essential macronutrients and micronutrients. In this review, we discuss select E3s that are involved in regulating nutrient uptake and responses to stress conditions, including limited or excess levels of nitrogen, phosphorus, iron, and copper.
Collapse
|
40
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
41
|
Li Y, Lei R, Pu M, Cai Y, Lu C, Li Z, Liang G. bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors. PLANT PHYSIOLOGY 2022; 188:1335-1349. [PMID: 34894263 PMCID: PMC8825326 DOI: 10.1093/plphys/kiab540] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Iron (Fe) homeostasis is essential for plant growth and development. Many transcription factors (TFs) play pivotal roles in the maintenance of Fe homeostasis. bHLH11 is a negative TF that regulates Fe homeostasis. However, the underlying molecular mechanism remains elusive. Here, we generated two loss-of-function bhlh11 mutants in Arabidopsis (Arabidopsis thaliana), which display enhanced sensitivity to excess Fe, increased Fe accumulation, and elevated expression of Fe deficiency responsive genes. Levels of bHLH11 protein, localized in both the cytoplasm and nucleus, decreased in response to Fe deficiency. Co-expression assays indicated that bHLH IVc TFs (bHLH34, bHLH104, bHLH105, and bHLH115) facilitate the nuclear accumulation of bHLH11. Further analysis indicated that bHLH11 represses the transactivity of bHLH IVc TFs toward bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101). The two ethylene response factor-associated amphiphilic repression motifs of bHLH11 provided the repression function by recruiting the TOPLESS/TOPLESS-RELATED (TPL/TPRs) corepressors. Correspondingly, the expression of Fe uptake genes increased in the tpr1 tpr4 tpl mutant. Moreover, genetic analysis revealed that bHLH11 has functions independent of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR. This study provides insights into the complicated Fe homeostasis signaling network.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Inhibition of BRUTUS Enhances Plant Tolerance to Zn Toxicity by Upregulating Pathways Related to Iron Nutrition. Life (Basel) 2022; 12:life12020216. [PMID: 35207503 PMCID: PMC8879508 DOI: 10.3390/life12020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
The identification of the key genes regulating plant tolerance to Zn stress is important for enhancing the Zn phytoremediation of targeted plants. Here, we showed that the T-DNA insertion-induced inhibition of the BRUTUS (BTS) gene in the bts-1 mutant greatly improved Zn tolerance, as indicated by increased biomass production and reduced leaf chlorosis. The ProBTS::BTS-GFP complementation in the bts-1 mutant abolished the improvement of Zn tolerance. Unexpectedly, the bts-1 mutant had higher and comparable Zn concentrations in the roots and citrate effluxer shoots, respectively, compared to wild-type plants. As a result, the shoots and roots of bts-1 mutants had 53% and 193% more Zn accumulation than the wild-type plants, respectively. RNA-seq analyses revealed that the Fe nutrition-related genes were upregulated in bts-1 mutants, especially under Zn stress conditions. Therefore, the bts-1 mutants had a greater Fe concentration and a higher Fe/Zn ratio than the wild-type plants exposed to Zn toxicity. Further study showed that the differences in Zn tolerance between bts-1 and wild-type plants were minimized by eliminating Fe or supplementing excessive Fe in the growth medium. Taken together, the T-DNA insertion-induced inhibition of BTS improves plant Zn tolerance by optimizing Fe nutrition; thus, the knockdown of BTS may be a promising approach for improving Zn phytoremediation efficiency.
Collapse
|