1
|
Gamez N, Morales R. Role of peripheral amyloid-β aggregates in Alzheimer's disease: mechanistic, diagnostic, and therapeutic implications. Neural Regen Res 2025; 20:1087-1089. [PMID: 38989944 PMCID: PMC11438326 DOI: 10.4103/nrr.nrr-d-24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
2
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024. [PMID: 39392435 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, Columbus Ohio 43210, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
3
|
Nielsen J, Lauritsen J, Pedersen JN, Nowak JS, Bendtsen MK, Kleijwegt G, Lusser K, Pitarch LC, Moreno JV, Schneider MM, Krainer G, Goksøyr L, Khalifé P, Kaalund SS, Aznar S, Kjærgaard M, Sereikaité V, Strømgaard K, Knowles TPJ, Nielsen MA, Sander AF, Romero-Ramos M, Otzen DE. Molecular properties and diagnostic potential of monoclonal antibodies targeting cytotoxic α-synuclein oligomers. NPJ Parkinsons Dis 2024; 10:139. [PMID: 39075088 PMCID: PMC11286781 DOI: 10.1038/s41531-024-00747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
α-Synuclein (α-syn) accumulates as insoluble amyloid but also forms soluble α-syn oligomers (αSOs), thought to be even more cytotoxic than fibrils. To detect and block the unwanted activities of these αSOs, we have raised 30 monoclonal antibodies (mAbs) against different forms of αSOs, ranging from unmodified αSOs to species stabilized by lipid peroxidation products and polyphenols, αSOs formed by C-terminally truncated α-syn, and multivalent display of α-syn on capsid virus-like particles (cVLPs). While the mAbs generally show a preference for αSOs, they also bind fibrils, but to variable extents. Overall, we observe great diversity in the mAbs' relative affinities for monomers and αSOs, varied requirements for the C-terminal extension of α-syn, and only a modest effect on α-syn fibrillation. Several mAbs show several orders of magnitude preference for αSOs over monomers in in-solution studies, while the commercial antibody MJF14 only bound 10-fold more strongly to αSOs than monomeric α-syn. Gratifyingly, seven mAbs almost completely block αSO permeabilization of membrane vesicles. Five selected mAbs identified α-syn-related pathologies like Lewy bodies (LBs) and Lewy Neurites, as well as Glial Cytoplasmic Inclusions in postmortem brains from people diagnosed for PD, dementia with LBs or multiple system atrophy, although to different extents. Three mAbs were particularly useful for pathological evaluation of postmortem brain human tissue, including early stages of PD. Although there was no straightforward connection between the mAbs' biophysical and immunohistochemical properties, it is encouraging that this comprehensive collection of mAbs able to recognize different aggregated α-syn species in vitro also holds diagnostic potential.
Collapse
Affiliation(s)
- Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Johanne Lauritsen
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jannik N Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Jan S Nowak
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Malthe K Bendtsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Giulia Kleijwegt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kaija Lusser
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Laia C Pitarch
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Julián V Moreno
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Louise Goksøyr
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul Khalifé
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Simone Kaalund
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaité
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
4
|
Prosswimmer T, Nick SE, Bryers JD, Daggett V. Designed De Novo α-Sheet Peptides Destabilize Bacterial Biofilms and Increase the Susceptibility of E. coli and S. aureus to Antibiotics. Int J Mol Sci 2024; 25:7024. [PMID: 39000131 PMCID: PMC11241457 DOI: 10.3390/ijms25137024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Biofilm-associated microbes are 10-1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to reinforce their extracellular matrix. Previously, de novo synthetic α-sheet peptides designed in silico were shown to inhibit amyloid formation in multiple bacterial species, leading to the destabilization of their biofilms. Here, we investigated the impact of inhibiting amyloid formation on antibiotic susceptibility. We hypothesized that combined administration of antibiotics and α-sheet peptides would destabilize biofilm formation and increase antibiotic susceptibility. Two α-sheet peptides, AP90 and AP401, with the same sequence but inverse chirality at every amino acid were tested: AP90 is L-amino acid dominant while AP401 is D-amino acid dominant. For E. coli, both peptides increased antibiotic susceptibility and decreased the biofilm colony forming units when administered with five different antibiotics, and AP401 caused a greater increase in all cases. For S. aureus, increased biofilm antibiotic susceptibility was also observed for both peptides, but AP90 outperformed AP401. A comparison of the peptide effects demonstrates how chirality influences biofilm targeting of gram-negative E. coli and gram-positive S. aureus. The observed increase in antibiotic susceptibility highlights the role amyloid fibrils play in the reduced susceptibility of bacterial biofilms to specific antibiotics. Thus, the co-administration of α-sheet peptides and existing antibiotics represents a promising strategy for the treatment of biofilm infections.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah E. Nick
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - James D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
5
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
6
|
Penny LK, Lofthouse R, Arastoo M, Porter A, Palliyil S, Harrington CR, Wischik CM. Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer's disease. Transl Neurodegener 2024; 13:25. [PMID: 38773569 PMCID: PMC11107038 DOI: 10.1186/s40035-024-00417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.
Collapse
Affiliation(s)
- Lewis K Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- GT Diagnostics (UK) Ltd, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- GT Diagnostics (UK) Ltd, Aberdeen, UK.
- TauRx Therapeutics Ltd, Aberdeen, UK.
| |
Collapse
|
7
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Dark HE, Duggan MR, Walker KA. Plasma biomarkers for Alzheimer's and related dementias: A review and outlook for clinical neuropsychology. Arch Clin Neuropsychol 2024; 39:313-324. [PMID: 38520383 PMCID: PMC11484593 DOI: 10.1093/arclin/acae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024] Open
Abstract
Recent technological advances have improved the sensitivity and specificity of blood-based biomarkers for Alzheimer's disease and related dementias. Accurate quantification of amyloid-ß peptide, phosphorylated tau (pTau) isoforms, as well as markers of neurodegeneration (neurofilament light chain [NfL]) and neuro-immune activation (glial fibrillary acidic protein [GFAP] and chitinase-3-like protein 1 [YKL-40]) in blood has allowed researchers to characterize neurobiological processes at scale in a cost-effective and minimally invasive manner. Although currently used primarily for research purposes, these blood-based biomarkers have the potential to be highly impactful in the clinical setting - aiding in diagnosis, predicting disease risk, and monitoring disease progression. Whereas plasma NfL has shown promise as a non-specific marker of neuronal injury, plasma pTau181, pTau217, pTau231, and GFAP have demonstrated desirable levels of sensitivity and specificity for identification of individuals with Alzheimer's disease pathology and Alzheimer's dementia. In this forward looking review, we (i) provide an overview of the most commonly used blood-based biomarkers for Alzheimer's disease and related dementias, (ii) discuss how comorbid medical conditions, demographic, and genetic factors can inform the interpretation of these biomarkers, (iii) describe ongoing efforts to move blood-based biomarkers into the clinic, and (iv) highlight the central role that clinical neuropsychologists may play in contextualizing and communicating blood-based biomarker results for patients.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
9
|
Chen A, Shea D, Daggett V. Performance of SOBA-AD blood test in discriminating Alzheimer's disease patients from cognitively unimpaired controls in two independent cohorts. Sci Rep 2024; 14:7946. [PMID: 38575622 PMCID: PMC10995183 DOI: 10.1038/s41598-024-57107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Amyloid-beta (Aβ) toxic oligomers are critical early players in the molecular pathology of Alzheimer's disease (AD). We have developed a Soluble Oligomer Binding Assay (SOBA-AD) for detection of these Aβ oligomers that contain α-sheet secondary structure that discriminates plasma samples from patients on the AD continuum from non-AD controls. We tested 265 plasma samples from two independent cohorts to investigate the performance of SOBA-AD. Testing was performed at two different sites, with different personnel, reagents, and instrumentation. Across two cohorts, SOBA-AD discriminated AD patients from cognitively unimpaired (CU) subjects with 100% sensitivity, > 95% specificity, and > 98% area under the curve (AUC) (95% CI 0.95-1.00). A SOBA-AD positive readout, reflecting α-sheet toxic oligomer burden, was found in AD patients, and not in controls, providing separation of the two populations, aside from 5 SOBA-AD positive controls. Based on an earlier SOBA-AD study, the Aβ oligomers detected in these CU subjects may represent preclinical cases of AD. The results presented here support the value of SOBA-AD as a promising blood-based tool for the detection and confirmation of AD.
Collapse
Affiliation(s)
- Amy Chen
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA
| | - Dylan Shea
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA
- University of Washington, Box 355610, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA.
- University of Washington, Box 355610, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
10
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
11
|
Blömeke L, Rehn F, Kraemer‐Schulien V, Kutzsche J, Pils M, Bujnicki T, Lewczuk P, Kornhuber J, Freiesleben SD, Schneider L, Preis L, Priller J, Spruth EJ, Altenstein S, Lohse A, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann B, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Spottke A, Roy‐Kluth N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Kleineidam L, Stark M, Schmid M, Jessen F, Bannach O, Willbold D, Peters O. Aβ oligomers peak in early stages of Alzheimer's disease preceding tau pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12589. [PMID: 38666085 PMCID: PMC11044868 DOI: 10.1002/dad2.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Soluble amyloid beta (Aβ) oligomers have been suggested as initiating Aβ related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aβ and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS Across groups, highest Aβ oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aβ oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE ε4 allele carriers showed significantly higher Aβ oligomer levels. No differences in tau oligomers were detected. DISCUSSION The accumulation of Aβ oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aβ oligomers might have the highest therapeutic effect in these disease stages. Highlights Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aβ oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAβ oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aβ oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.
Collapse
|
12
|
Liu P, Lapcinski IP, Hlynialuk CJ, Steuer EL, Loude TJ, Shapiro SL, Kemper LJ, Ashe KH. Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 2024; 27:109239. [PMID: 38433923 PMCID: PMC10905009 DOI: 10.1016/j.isci.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Aβ∗56 is a non-fibrillar Aβ assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aβ present in Aβ∗56. Here, we confirmed the memory-impairing characteristics of Aβ∗56 and extended its biochemical characterization. We used anti-Aβ(1-x), anti-Aβ(x-40), anti-Aβ(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40). In 5xFAD, Aβ∗56 is composed of Aβ(1-42), whereas in APP/TTA, it contains both Aβ(1-40) and Aβ(1-42). When injected into the hippocampus of wild-type mice, Aβ∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
Affiliation(s)
- Peng Liu
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ian P. Lapcinski
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris J.W. Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Steuer
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas J. Loude
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha L. Shapiro
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa J. Kemper
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen H. Ashe
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep 2024; 14:5376. [PMID: 38438446 PMCID: PMC10912764 DOI: 10.1038/s41598-024-55423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Colocalization of microbial pathogens and the β-amyloid peptide (Aβ) in the brain of Alzheimer's disease (AD) patients suggests that microbial infection may play a role in sporadic AD. Aβ exhibits antimicrobial activity against numerous pathogens, supporting a potential role for Aβ in the innate immune response. While mammalian amyloid is associated with disease, many bacteria form amyloid fibrils to fortify the biofilm that protects the cells from the surrounding environment. In the microbial AD hypothesis, Aβ aggregates in response to infection to combat the pathogen. We hypothesize that this occurs through toxic Aβ oligomers that contain α-sheet structure and form prior to fibrillization. De novo designed α-sheet peptides specifically bind to the α-sheet structure present in the oligomers of both bacterial and mammalian amyloidogenic proteins to neutralize toxicity and inhibit aggregation. Here, we measure the effect of E. coli on Aβ, including upregulation, aggregation, and toxicity. Additionally, we determined the effect of Aβ structure on E. coli amyloid fibrils, or curli comprised of the CsgA protein, and biofilm formation. We found that curli formation by E. coli increased Aβ oligomer production, and Aβ oligomers inhibited curli biogenesis and reduced biofilm cell density. Further, curli and biofilm inhibition by Aβ oligomers increased E. coli susceptibility to gentamicin. Toxic oligomers of Aβ and CsgA interact via α-sheet interactions, neutralizing their toxicity. These results suggest that exposure to toxic oligomers formed by microbial pathogens triggers Aβ oligomer upregulation and aggregation to combat infection via selective interactions between α-sheet oligomers to neutralize toxicity of both species with subsequent inhibition of fibrillization.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA
| | - Anthony Heng
- Department of Neuroscience, University of Washington, Seattle, WA, 98195-5610, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
14
|
Agarwal K, Backler W, Bayram E, Bloom L, Boeve BF, Cha J, Denslow M, Ferman TJ, Galasko D, Galvin JE, Gomperts SN, Irizarry MC, Kantarci K, Kaushik H, Kietlinski M, Koenig A, Leverenz JB, McKeith I, McLean PJ, Montine TJ, Moose SO, O'Brien JT, Panier V, Ramanathan S, Ringel MS, Scholz SW, Small J, Sperling RA, Taylor A, Taylor J, Ward RA, Witten L, Hyman BT. Lewy body dementia: Overcoming barriers and identifying solutions. Alzheimers Dement 2024; 20:2298-2308. [PMID: 38265159 PMCID: PMC10942666 DOI: 10.1002/alz.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.
Collapse
Affiliation(s)
| | | | - Ece Bayram
- Parkinson and Other Movement Disorders CenterDepartment of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | | | - Maria Denslow
- Alzheimer Disease and Brain HealthEisai, Inc.NutleyNew JerseyUSA
| | - Tanis J. Ferman
- Department of Psychiatry and PsychologyMayo ClinicJacksonvilleFloridaUSA
| | - Douglas Galasko
- Department of Neurosciencesand Shiley‐Marcos Alzheimer's Disease Research CenterUC San DiegoLa JollaCaliforniaUSA
| | - James E. Galvin
- Department of NeurologyComprehensive Center for Brain HealthUniversity of Miami Miller School of MedicineBoca RatonFloridaUSA
| | | | | | - Kejal Kantarci
- Department of RadiologyDivision of NeuroradiologyMayo Clinic RochesterRochesterMinnesotaUSA
| | | | | | | | - James B. Leverenz
- Cleveland Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Ian McKeith
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - John T. O'Brien
- Department of PsychiatryUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | | | - Sharad Ramanathan
- Departments of Molecular and Cell BiologyStem Cell and Regenerative Biology and Applied PhysicsHarvard UniversityCambridgeMassachusettsUSA
| | | | - Sonja W. Scholz
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyJohns Hopkins University Medical CenterBaltimoreMarylandUSA
| | | | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rebecca A. Ward
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Lisa Witten
- The Boston Consulting GroupBostonMassachusettsUSA
| | - Bradley T. Hyman
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
15
|
Hsu C, Templin AT, Prosswimmer T, Shea D, Li J, Brooks‐Worrell B, Kahn SE, Daggett V. Human islet amyloid polypeptide-induced β-cell cytotoxicity is linked to formation of α-sheet structure. Protein Sci 2024; 33:e4854. [PMID: 38062941 PMCID: PMC10823758 DOI: 10.1002/pro.4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Type 2 diabetes (T2D) results from insulin secretory dysfunction arising in part from the loss of pancreatic islet β-cells. Several factors contribute to β-cell loss, including islet amyloid formation, which is observed in over 90% of individuals with T2D. The amyloid is comprised of human islet amyloid polypeptide (hIAPP). Here we provide evidence that early in aggregation, hIAPP forms toxic oligomers prior to formation of amyloid fibrils. The toxic oligomers contain α-sheet secondary structure, a nonstandard secondary structure associated with toxic oligomers in other amyloid diseases. De novo, synthetic α-sheet compounds designed to be nontoxic and complementary to the α-sheet structure in the toxic oligomers inhibit hIAPP aggregation and neutralize oligomer-mediated cytotoxicity in cell-based assays. In vivo administration of an α-sheet design to mice for 4 weeks revealed no evidence of toxicity nor did it elicit an immune response. Furthermore, the α-sheet designs reduced endogenous islet amyloid formation and mitigation of amyloid-associated β-cell loss in cultured islets isolated from an hIAPP transgenic mouse model of islet amyloidosis. Characterization of the involvement of α-sheet in early aggregation of hIAPP and oligomer toxicity contributes to elucidation of the molecular mechanisms underlying amyloid-associated β-cell loss.
Collapse
Affiliation(s)
- Cheng‐Chieh Hsu
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Molecular Engineering ProgramUniversity of WashingtonSeattleWashingtonUSA
| | - Andrew T. Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of MedicineVA Puget Sound Health Care System and University of WashingtonSeattleWashingtonUSA
| | - Tatum Prosswimmer
- Molecular Engineering ProgramUniversity of WashingtonSeattleWashingtonUSA
| | - Dylan Shea
- Molecular Engineering ProgramUniversity of WashingtonSeattleWashingtonUSA
| | - Jinzheng Li
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Barbara Brooks‐Worrell
- Division of Metabolism, Endocrinology and Nutrition, Department of MedicineVA Puget Sound Health Care System and University of WashingtonSeattleWashingtonUSA
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of MedicineVA Puget Sound Health Care System and University of WashingtonSeattleWashingtonUSA
| | - Valerie Daggett
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Molecular Engineering ProgramUniversity of WashingtonSeattleWashingtonUSA
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
16
|
Scadding GK, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, Conti DM, De Corso E, Diamant Z, Gray C, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept for prevention and disease-modification? A EUFOREA paper. Part 1-allergic asthma. FRONTIERS IN ALLERGY 2024; 4:1291185. [PMID: 38352244 PMCID: PMC10863454 DOI: 10.3389/falgy.2023.1291185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
Asthma, which affects some 300 million people worldwide and caused 455,000 deaths in 2019, is a significant burden to suffers and to society. It is the most common chronic disease in children and represents one of the major causes for years lived with disability. Significant efforts are made by organizations such as WHO in improving the diagnosis, treatment and monitoring of asthma. However asthma prevention has been less studied. Currently there is a concept of pre- diabetes which allows a reduction in full blown diabetes if diet and exercise are undertaken. Similar predictive states are found in Alzheimer's and Parkinson's diseases. In this paper we explore the possibilities for asthma prevention, both at population level and also investigate the possibility of defining a state of pre-asthma, in which intensive treatment could reduce progression to asthma. Since asthma is a heterogeneous condition, this paper is concerned with allergic asthma. A subsequent one will deal with late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Head of ORL-Deptartment, Clinic Barcelona, Barcelona, Spain
- Chair of ORL, University of Barcelona, Barcelona, Spain
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Deptarment of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Gray
- Paediatric Allergist, Red Cross Children’s Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Division of Applied Health Sciences, Centre of Academic Primary Care, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Former Head of the Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
18
|
Forloni G. Oligomers and Neurodegeneration: New Evidence. Aging Dis 2023; 14:1977-1980. [PMID: 37199592 PMCID: PMC10676779 DOI: 10.14336/ad.2023.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023] Open
Abstract
In the last few months new results in Alzheimer's (AD) and Parkinson's disease (PD) have converged, attracting attention to oligomer species of misfolded proteins, β-amyloid (Aβ and α-synuclein (α-Syn), in the pathogenesis. The high affinity for Aβ protofibrils and oligomers of lecanemab, an antibody recently approved as a disease-modifying drug in AD, and the identification of Aβ-oligomers in blood samples as early biomarkers in subjects with cognitive decline, indicate the oligomers as a therapeutic target and diagnostic tool in AD. α-Syn oligomers were identified by new histopathological techniques in the hippocampus and visual cortex of PD subjects with a distribution distinct from the Lewy body pathologies but associated with cognitive impairment; these species purified from PD brain were highly neurotoxic. In a PD experimental model, we confirmed the presence of α-Syn oligomers associated with cognitive decline and sensitive to drug treatment.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
19
|
Löding S, Andersson U, Kaaks R, Schulze MB, Pala V, Urbarova I, Amiano P, Colorado-Yohar SM, Guevara M, Heath AK, Chatziioannou AC, Johansson M, Nyberg L, Antti H, Björkblom B, Melin B. Altered plasma metabolite levels can be detected years before a glioma diagnosis. JCI Insight 2023; 8:e171225. [PMID: 37651185 PMCID: PMC10619434 DOI: 10.1172/jci.insight.171225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Genetic and metabolic changes in tissue and blood are reported to occur several years before glioma diagnosis. Since gliomas are currently detected late, a liquid biopsy for early detection could affect the quality of life and prognosis of patients. Here, we present a nested case-control study of 550 prediagnostic glioma cases and 550 healthy controls from the Northern Sweden Health and Disease study (NSHDS) and the European Prospective Investigation into Cancer and Nutrition (EPIC) study. We identified 93 significantly altered metabolites related to glioma development up to 8 years before diagnosis. Out of these metabolites, a panel of 20 selected metabolites showed strong disease correlation and a consistent progression pattern toward diagnosis in both the NSHDS and EPIC cohorts, and they separated future cases from controls independently of biological sex. The blood metabolite panel also successfully separated both lower-grade glioma and glioblastoma cases from controls, up to 8 years before diagnosis in patients within the NSHDS cohort and up to 2 years before diagnosis in EPIC. Pathway enrichment analysis detected metabolites related to the TCA cycle, Warburg effect, gluconeogenesis, and cysteine, pyruvate, and tyrosine metabolism as the most affected.
Collapse
Affiliation(s)
| | - Ulrika Andersson
- Biobank Reserach Unit, and
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Public Health Laboratory in Gipuzkoa, San Sebastián, Spain
- Epidemiology of Chronic and Comunnicable Diseases Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Sandra M. Colorado-Yohar
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institute of Public and Labor Health and Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | | | - Lars Nyberg
- Department of Radiation Sciences, Diagnositc Radiology, and
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | | | | | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Popescu I, Deelen J, Illario M, Adams J. Challenges in anti-aging medicine-trends in biomarker discovery and therapeutic interventions for a healthy lifespan. J Cell Mol Med 2023; 27:2643-2650. [PMID: 37610311 PMCID: PMC10494298 DOI: 10.1111/jcmm.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
We are facing a growing aging population, along with increasing pressure on health systems, caused by the impact of chronic co-morbidities (i.e. cancer, cardiovascular and neurodegenerative diseases) and functional disabilities as people age. Relatively simple preventive lifestyle interventions, such as dietary restriction and physical exercise, are important contributors to active and healthy aging in the general population. However, as shown in model organisms or in 'in vitro' conditions, lifestyle-independent interventions may have additional health benefits and can even be conceived as possible reversers of the aging process. Thus, pharmaceutical laboratories, research institutes, and universities are putting more and more effort into finding new molecular pathways and druggable targets to develop gerotherapeutics. One approach is to target the driving mechanisms of aging, some of which, like cellular senescence and impaired autophagy, we discussed in an update on the biology of aging at AgingFit 2023 in Lille, France. We underline the importance of carefully and extensively testing senotherapeutics, given the pleiotropism and heterogeneity of targeted senescent cells within different organs, at different time frames. Other druggable targets emerging from new putative mechanisms, like those based on transcriptome imbalance, nucleophagy, protein phosphatase depletion, glutamine metabolism, or seno-antigenicity, have been evidenced by recent preclinical studies in classical models of aging but need to be validated in humans. Finally, we highlight several approaches in the discovery of biomarkers of healthy aging, as well as for the prediction of neurodegenerative diseases and the evaluation of rejuvenation strategies.
Collapse
Affiliation(s)
- Iuliana Popescu
- Barnstable Brown Diabetes Research CenterUniversity of Kentucky, College of MedicineLexingtonKentuckyUSA
| | - Joris Deelen
- Max Planck Institute for Biology of AgeingKölnGermany
| | - Maddalena Illario
- Department of Public Health and EDANFederico II University and HospitalNaplesItaly
| | | |
Collapse
|
21
|
Sheikh A, Mughal S, Owais R, Siddiqui MS. SOBA (soluble oligomer binding assay): A breakthrough or the early diagnosis of Alzheimer's disease. Health Sci Rep 2023; 6:e1492. [PMID: 37599661 PMCID: PMC10435830 DOI: 10.1002/hsr2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Ayesha Sheikh
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Sanila Mughal
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Rabia Owais
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Mishal Shan Siddiqui
- Department of Surgery. Dr. Ruth K. M. Pfau, Civil Hospital KarachiDow University of Health SciencesKarachiPakistan
| |
Collapse
|
22
|
Gandy S. Systemically administered alcadein peptide p3-Alcβ neutralizes brain Alzheimer's Aβ oligomers. Trends Mol Med 2023; 29:487-488. [PMID: 37169660 DOI: 10.1016/j.molmed.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Alcadeins are among the 90 known substrates for γ-secretase, the aspartyl proteinase complex that liberates the amyloid β (Aβ) peptide by intramembranous cleavage of the ß-carboxy terminal fragment of the Alzheimer's amyloid precursor protein (APP). A new study by Hata et al. provides some surprising results regarding a potential role for alcadeins and their fragments in the prevention and/or treatment of the dementia of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
23
|
Nguyen PH, Derreumaux P. Multistep molecular mechanisms of Aβ16-22 fibril formation revealed by lattice Monte Carlo simulations. J Chem Phys 2023; 158:235101. [PMID: 37318171 DOI: 10.1063/5.0149419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
As a model of self-assembly from disordered monomers to fibrils, the amyloid-β fragment Aβ16-22 was subject to past numerous experimental and computational studies. Because dynamics information between milliseconds and seconds cannot be assessed by both studies, we lack a full understanding of its oligomerization. Lattice simulations are particularly well suited to capture pathways to fibrils. In this study, we explored the aggregation of 10 Aβ16-22 peptides using 65 lattice Monte Carlo simulations, each simulation consisting of 3 × 109 steps. Based on a total of 24 and 41 simulations that converge and do not converge to the fibril state, respectively, we are able to reveal the diversity of the pathways leading to fibril structure and the conformational traps slowing down the fibril formation.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
24
|
Pils M, Dybala A, Rehn F, Blömeke L, Bujnicki T, Kraemer-Schulien V, Hoyer W, Riesner D, Willbold D, Bannach O. Development and Implementation of an Internal Quality Control Sample to Standardize Oligomer-Based Diagnostics of Alzheimer's Disease. Diagnostics (Basel) 2023; 13:diagnostics13101702. [PMID: 37238187 DOI: 10.3390/diagnostics13101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer's disease (AD), soluble and toxic amyloid-β (Aβ) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aβ oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aβ oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aβ1-42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aβ1-42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods.
Collapse
Affiliation(s)
- Marlene Pils
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Alexandra Dybala
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Fabian Rehn
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lara Blömeke
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tuyen Bujnicki
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Bannach
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
25
|
Liu P, Lapcinski IP, Shapiro SL, Kemper LJ, Ashe KH. Aβ*56 is a stable oligomer that correlates with age-related memory loss in Tg2576 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533414. [PMID: 36993768 PMCID: PMC10055265 DOI: 10.1101/2023.03.20.533414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Tg2576 human amyloid precursor protein (APP)-expressing transgenic mice modeling Alzheimer's disease produce Aβ*56, a non-fibrillar Aβ assembly that has been shown by several groups to relate more closely to memory deficits than plaques. Previous studies did not decipher specific forms of Aβ present in Aβ*56. Here, we confirm and extend the biochemical characterization of Aβ*56. We used anti-Aβ(1-x), anti-Aβ(x-40), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576 mice of different ages. We found that Aβ*56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-related, water-soluble, brain-derived oligomer containing canonical Aβ(1-40) that correlates with age-related memory loss. The unusual stability of this high molecular-weight oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
|
26
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
27
|
Wang Z, Jin M, Hong W, Liu W, Reczek D, Lagomarsino VN, Hu Y, Weeden T, Frosch MP, Young-Pearse TL, Pradier L, Selkoe D, Walsh DM. Learnings about Aβ from human brain recommend the use of a live-neuron bioassay for the discovery of next generation Alzheimer's disease immunotherapeutics. Acta Neuropathol Commun 2023; 11:39. [PMID: 36899414 PMCID: PMC10007750 DOI: 10.1186/s40478-023-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 03/12/2023] Open
Abstract
Despite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain. Of ten brains studied, extracts from nine caused neuritotoxicity, and in eight cases this was abrogated by Aβ immunodepletion. Here we show that activity in this bioassay agrees relatively well with disruption of hippocampal long-term potentiation, a correlate of learning and memory, and that measurement of neurotoxic oAβ can be obscured by more abundant non-toxic forms of Aβ. These findings indicate that the development of novel Aβ targeting therapeutics may benefit from unbiased activity-based discovery. To test this principle, we directly compared 5 clinical antibodies (aducanumab, bapineuzumab, BAN2401, gantenerumab, and SAR228810) together with an in-house aggregate-preferring antibody (1C22) and established relative EC50s in protecting human neurons from human Aβ. The results yielded objective numerical data on the potency of each antibody in neutralizing human oAβ neuritotoxicity. Their relative efficacies in this morphological assay were paralleled by their functional ability to rescue oAβ-induced inhibition of hippocampal synaptic plasticity. This novel paradigm provides an unbiased, all-human system for selecting candidate antibodies for advancement to human immunotherapy.
Collapse
Affiliation(s)
- Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - David Reczek
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tim Weeden
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|