1
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Cordero RY, Cordero JB, Stiemke AB, Datta LW, Buyske S, Kugathasan S, McGovern DPB, Brant SR, Simpson CL. Trans-ancestry, Bayesian meta-analysis discovers 20 novel risk loci for inflammatory bowel disease in an African American, East Asian and European cohort. Hum Mol Genet 2023; 32:873-882. [PMID: 36308435 PMCID: PMC9941836 DOI: 10.1093/hmg/ddac269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes: ulcerative colitis (UC) and Crohn's disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed genome-wide association studies (GWAS) and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of 205 loci lead SNPs from the 2015 meta-analysis, but also for three IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4 and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29 and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.
Collapse
Affiliation(s)
- Roberto Y Cordero
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer B Cordero
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew B Stiemke
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Steven Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA
| | - Subra Kugathasan
- Department of Pediatrics and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Rutgers Crohn’s and Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey and Department of Genetics, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Claire L Simpson
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
5
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Preferential Involvement of BRCA1/BARD1, Not Tip60/Fe65, in DNA Double-Strand Break Repair in Presenilin-1 P117L Alzheimer Models. Neural Plast 2022; 2022:3172861. [PMID: 35237315 PMCID: PMC8885292 DOI: 10.1155/2022/3172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, we showed that DNA double-strand breaks (DSBs) are increased by the Aβ42-amyloid peptide and decreased by all-trans retinoic acid (RA) in SH-SY5Y cells and C57BL/6J mice. The present work was aimed at investigating DSBs in cells and murine models of Alzheimer's disease carrying the preseniline-1 (PS1) P117L mutation. We observed that DSBs could hardly decrease following RA treatment in the mutated cells compared to the wild-type cells. The activation of the amyloidogenic pathway is proposed in the former case as Aβ42- and RA-dependent DSBs changes were reproduced by an α-secretase and a γ-secretase inhibitions, respectively. Unexpectedly, the PS1 P117L cells showed lower DSB levels than the controls. As the DSB repair proteins Tip60 and Fe65 were less expressed in the mutated cell nuclei, they do not appear to contribute to this difference. On the contrary, full-length BRCA1 and BARD1 proteins were significantly increased in the chromatin compartment of the mutated cells, suggesting that they decrease DSBs in the pathological situation. These Western blot data were corroborated by in situ proximity ligation assays: the numbers of BRCA1-BARD1, not of Fe65-Tip60 heterodimers, were increased only in the mutated cell nuclei. RA also enhanced the expression of BARD1 and of the 90 kDa BRCA1 isoform. The increased BRCA1 expression in the mutated cells can be related to the enhanced difficulty to inhibit this pathway by BRCA1 siRNA in these cells. Overall, our study suggests that at earlier stages of the disease, similarly to PS1 P117L cells, a compensatory mechanism exists that decreases DSB levels via an activation of the BRCA1/BARD1 pathway. This supports the importance of this pathway in neuroprotection against Alzheimer's disease.
Collapse
|
7
|
Cha HJ, Shen J, Kang J. Regulation of gene expression by the APP family in the adult cerebral cortex. Sci Rep 2022; 12:66. [PMID: 34997052 PMCID: PMC8741778 DOI: 10.1038/s41598-021-04027-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Amyloid precursor protein (APP) is associated with both familial and sporadic forms of Alzheimer's disease. APP has two homologs, amyloid precursor-like protein 1 and 2 (APLP1 and APLP2), and they have functional redundancy. APP intracellular c-terminal domain (AICD), produced by sequential α- or β- and γ-secretase cleavages, is thought to control gene expression, similarly as the ICD of Notch. To investigate the role of APP family in transcriptional regulation, we examined gene expression changes in the cerebral cortex of APP/APLP1/APLP2 conditional triple knockout (cTKO) mice, in which APP family members are selectively inactivated in excitatory neurons of the postnatal forebrain. Of the 12 previously reported AICD target genes, only Nep and Npas4 mRNA levels were significantly reduced in the cerebral cortex of cTKO mice, compared to littermate controls. We further examined global transcriptional changes by RNA-seq and identified 189 and 274 differentially expressed genes in the neocortex and hippocampus, respectively, of cTKO mice relative to controls. Gene Ontology analysis indicated that these genes are involved in a variety of cellular functions, including extracellular organization, learning and memory, and ion channels. Thus, inactivation of APP family alters transcriptional profiles of the cerebral cortex and affects wide-ranging molecular pathways.
Collapse
Affiliation(s)
- Hye Ji Cha
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Dilsizoglu Senol A, Tagliafierro L, Gorisse-Hussonnois L, Rebeillard F, Huguet L, Geny D, Contremoulins V, Corlier F, Potier MC, Chasseigneaux S, Darmon M, Allinquant B. Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cell Mol Life Sci 2019; 76:4995-5009. [PMID: 31139847 PMCID: PMC11105537 DOI: 10.1007/s00018-019-03157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Lidia Tagliafierro
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lucie Gorisse-Hussonnois
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Florian Rebeillard
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Léa Huguet
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - David Geny
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris Diderot, Paris, France
| | - Fabian Corlier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144, 75006, Paris, France
| | - Michèle Darmon
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Bernadette Allinquant
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France.
| |
Collapse
|
9
|
Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, Lemanske RF, Ober C, Palmenberg AC, Gern JE. CDHR3 Asthma-Risk Genotype Affects Susceptibility of Airway Epithelium to Rhinovirus C Infections. Am J Respir Cell Mol Biol 2019; 61:450-458. [PMID: 30916989 PMCID: PMC6775945 DOI: 10.1165/rcmb.2018-0220oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
CDHR3 (cadherin-related family member 3) is a transmembrane protein that is highly expressed in airway epithelia and the only known receptor for rhinovirus C (RV-C). A CDHR3 SNP (rs6967330) with G to A base change has been linked to severe exacerbations of asthma and increased susceptibility to RV-C infections in young children. The goals of this study were to determine the subcellular localization of CDHR3 and to test the hypothesis that CDHR3 asthma-risk genotype affects epithelial cell function and susceptibility to RV-C infections of the airway epithelia. We used immunofluorescence imaging, Western blot analysis, and transmission electron microscopy to show CDHR3 subcellular localization in apical cells, including expression in the cilia of airway epithelia. Polymorphisms in CDHR3 rs6967330 locus (G→A) that were previously associated with childhood asthma were related to differences in CDHR3 expression and epithelial cell function. The rs6967330 A allele was associated with higher overall protein expression and RV-C binding and replication compared with the rs6967330 G allele. Furthermore, the rs6967330 A allele was associated with earlier ciliogenesis and higher FOXJ1 expression. Finally, CDHR3 genotype had no significant effects on membrane integrity or ciliary beat function. These findings provide information on the subcellular localization and possible functions of CDHR3 in the airways and link CDHR3 asthma-risk genotype to increased RV-C binding and replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carol Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Ann C. Palmenberg
- Institute of Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin; and
| | | |
Collapse
|
10
|
Matrone C, Iannuzzi F, Annunziato L. The Y 682ENPTY 687 motif of APP: Progress and insights toward a targeted therapy for Alzheimer's disease patients. Ageing Res Rev 2019; 52:120-128. [PMID: 31039414 DOI: 10.1016/j.arr.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which no curative treatments, disease modifying strategies or effective symptomatic therapies exist. Current pharmacologic treatments for AD can only decelerate the progression of the disease for a short time, often at the cost of severe side effects. Therefore, there is an urgent need for biomarkers able to diagnose AD at its earliest stages, to conclusively track disease progression, and to accelerate the clinical development of innovative therapies. Scientific research and economic efforts for the development of pharmacotherapies have recently homed in on the hypothesis that neurotoxic β-amyloid (Aβ) peptides in their oligomeric or fibrillary forms are primarily responsible for the cognitive impairment and neuronal death seen in AD. As such, modern pharmacologic approaches are largely based on reducing production by inhibiting β and γ secretase cleavage of the amyloid precursor protein (APP) or on dissolving existing cerebral Aβ plaques or to favor Aβ clearance from the brain. The following short review aims to persuade the reader of the idea that APP plays a much larger role in AD pathogenesis. APP plays a greater role in AD pathogenesis than its role as the precursor for Aβ peptides: both the abnormal cleavage of APP leading to Aβ peptide accumulation and the disruption of APP physiological functions contribute to AD pathogenesis. We summarize our recent results on the role played by the C-terminal APP motif -the Y682ENPTY68 motif- in APP function and dysfunction, and we provide insights into targeting the Tyr682 residue of APP as putative novel strategy in AD.
Collapse
|
11
|
APPBP2 enhances non-small cell lung cancer proliferation and invasiveness through regulating PPM1D and SPOP. EBioMedicine 2019; 44:138-149. [PMID: 31105033 PMCID: PMC6604516 DOI: 10.1016/j.ebiom.2019.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background The influence of amyloid protein-binding protein 2 (APPBP2) on lung cancer is unknown. Methods The function and mechanisms of APPBP2 were investigated in the NSCLC cell lines A549 and H1299. The ectopic expression of APPBP2, PPM1D and SPOP in NSCLS were examined in samples collected from ten pairs of human lung adenocarcinoma cancer tissues and adjacent normal lung tissues. shRNA vector was used for APPBP2 knockdown. Quantitative PCR and western blot assays quantified the mRNA and protein level of APPBP2, PPM1D, and SPOP. Cell proliferation was measured with BrdU, MTT, colony formation assays, and xenograft tumour growth experiments. Cell migration and invasion were analysed with transwell and wound healing assays. Co-Immunoprecipitation assay detected protein–protein interactions. Findings APPBP2 was upregulated in NSCLC tissues. Silencing APPBP2 in A549 and H1299 cells resulted in the inhibition of cell proliferation, migration, and invasion, enhancement of apoptosis, and a significant decrease in the expression of PPM1D and SPOP. Overexpression of PPM1D and SPOP attenuated the APPBP2-knockdown inhibition of NSCLC cells. Co-IP assay showed that PPM1D interacted with APPBP2. Interpretation The expression level of APPBP2 positively correlates with NSCLC cell proliferation, migration, and invasiveness. APPBP2 contributes to NSCLC progression through regulating the PPM1D and SPOP signalling pathway. This novel molecular mechanism, underlying NSCLC oncogenesis, suggests APPBP2 is a potential target for diagnosis and therapeutic intervention in NSCLC. Fund Key Program of Natural Science Research of Higher Education of Anhui Province (No. KJ2017A241), the National Natural Science Foundation of China (No. 81772493).
Collapse
|
12
|
Dai W, Ryu T, Kim H, Jin YH, Cho YC, Kim K. Effects of δ-Catenin on APP by Its Interaction with Presenilin-1. Mol Cells 2019; 42:36-44. [PMID: 30622228 PMCID: PMC6354058 DOI: 10.14348/molcells.2018.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. β-Amyloid (Aβ) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that Aβ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in Aβ production, which initiates synaptic and neuronal damage. δ-Catenin is known to be bound to presenilin-1 (PS-1), which is the main component of the γ-secretase complex that regulates APP cleavage. Because PS-1 interacts with both APP and δ-catenin, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between δ-catenin and APP. However, we observed that δ-catenin could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, δ-catenin reduced PS-1-mediated stabilization of APP. The results suggest that δ-catenin can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.
Collapse
Affiliation(s)
- Weiye Dai
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922,
Korea
| | - Yun Hye Jin
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
13
|
Arabi-Derkawi R, O'Dowd Y, Cheng N, Rolas L, Boussetta T, Raad H, Marzaioli V, Pintard C, Fasseu M, Kroviarski Y, Belambri SA, Dang PMC, Ye RD, Gougerot-Pocidalo MA, El-Benna J. The Kinesin Light Chain-Related Protein PAT1 Promotes Superoxide Anion Production in Human Phagocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1549-1558. [PMID: 30665935 DOI: 10.4049/jimmunol.1800610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/22/2018] [Indexed: 11/19/2022]
Abstract
Superoxide anion production by the phagocyte NADPH oxidase plays a crucial role in host defenses and inflammatory reaction. The phagocyte NADPH oxidase is composed of cytosolic components (p40phox, p47phox, p67phox, and Rac1/2) and the membrane flavocytochrome b558, which is composed of two proteins: p22phox and gp91phox/NOX2. p22phox plays a crucial role in the stabilization of gp91phox in phagocytes and is also a docking site for p47phox during activation. In the current study, we have used a yeast two-hybrid approach to identify unknown partners of p22phox. Using the cytosolic C-terminal region of p22phox as bait to screen a human spleen cDNA library, we identified the protein interacting with amyloid precursor protein tail 1 (PAT1) as a potential partner of p22phox. The interaction between p22phox and PAT1 was further confirmed by in vitro GST pulldown and overlay assays and in intact neutrophils and COSphox cells by coimmunoprecipitation. We demonstrated that PAT1 is expressed in human neutrophils and monocytes and colocalizes with p22phox, as shown by confocal microscopy. Overexpression of PAT1 in human monocytes and in COSphox cells increased superoxide anion production and depletion of PAT1 by specific small interfering RNA inhibited this process. These data clearly identify PAT1 as a novel regulator of NADPH oxidase activation and superoxide anion production, a key phagocyte function.
Collapse
Affiliation(s)
- Riad Arabi-Derkawi
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Yvonne O'Dowd
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Garda Headquarters, Forensic Science Ireland, Dublin 8, Ireland
| | - Ni Cheng
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Tarek Boussetta
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Houssam Raad
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Coralie Pintard
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Magali Fasseu
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Yolande Kroviarski
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Sahra A Belambri
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, 19000 Sétif, Algeria
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard D Ye
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; .,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
14
|
Krasinski CA, Zheng Q, Ivancic VA, Spratt DE, Lazo ND. The Longest Amyloid-β Precursor Protein Intracellular Domain Produced with Aβ42 Forms β-Sheet-Containing Monomers That Self-Assemble and Are Proteolyzed by Insulin-Degrading Enzyme. ACS Chem Neurosci 2018; 9:2892-2897. [PMID: 30067897 DOI: 10.1021/acschemneuro.8b00305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in dementia. It is characterized pathologically by extracellular amyloid plaques composed mainly of deposited Aβ42 and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Recent clinical trials targeting Aβ have failed, suggesting that other polypeptides produced from the amyloid-β precursor protein (APP) may be involved in AD. An attractive polypeptide is AICD57, the longest APP intracellular domain (AICD) coproduced with Aβ42. Here, we show that AICD57 forms micelle-like assemblies that are proteolyzed by insulin-degrading enzyme (IDE), indicating that AICD57 monomers are in dynamic equilibrium with AICD57 assemblies. The N-terminal part of AICD57 monomer is not degraded, but its C-terminal part is hydrolyzed, particularly in the YENPTY motif that has been associated with the hyperphosphorylation of tau. Therefore, sustaining IDE activity well into old age holds promise for regulating levels of not only Aβ but also AICD in the aging brain.
Collapse
Affiliation(s)
- Claire A. Krasinski
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Valerie A. Ivancic
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Donald E. Spratt
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D. Lazo
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
15
|
Goiran T, Duplan E, Chami M, Bourgeois A, El Manaa W, Rouland L, Dunys J, Lauritzen I, You H, Stambolic V, Biféri MG, Barkats M, Pimplikar SW, Sergeant N, Colin M, Morais VA, Pardossi-Piquard R, Checler F, Alves da Costa C. β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog-Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models. Biol Psychiatry 2018; 83:416-427. [PMID: 28587718 DOI: 10.1016/j.biopsych.2017.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/10/2017] [Accepted: 04/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and β-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.
Collapse
Affiliation(s)
- Thomas Goiran
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Mounia Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Alexandre Bourgeois
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Wejdane El Manaa
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Lila Rouland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Julie Dunys
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Vuk Stambolic
- Princess Margaret Center, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Maria-Grazia Biféri
- Center of Research on Myology, Pierre and Marie Curie University, CNRS, INSERM, Paris, France
| | - Martine Barkats
- Center of Research on Myology, Pierre and Marie Curie University, CNRS, INSERM, Paris, France
| | - Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicolas Sergeant
- Alzheimer & Taopathies, Jean-Pierre Aubert Research Centre, Faculté de Médecine, L'Institut de Médecine Prédictive et de Recherche Thérapeutique, INSERM, Lille, France
| | - Morvane Colin
- Alzheimer & Taopathies, Jean-Pierre Aubert Research Centre, Faculté de Médecine, L'Institut de Médecine Prédictive et de Recherche Thérapeutique, INSERM, Lille, France
| | - Vanessa A Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raphaelle Pardossi-Piquard
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France
| | - Cristine Alves da Costa
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne, France.
| |
Collapse
|
16
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
17
|
Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation. Cell Signal 2016; 28:1725-34. [DOI: 10.1016/j.cellsig.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 01/11/2023]
|
18
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
19
|
Londino JD, Gulick D, Isenberg JS, Mallampalli RK. Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling. J Biol Chem 2015; 290:31113-25. [PMID: 26534964 DOI: 10.1074/jbc.m115.682914] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling.
Collapse
Affiliation(s)
- James D Londino
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Dexter Gulick
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Jeffrey S Isenberg
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rama K Mallampalli
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15213, Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
20
|
Hosono T, Mouri A, Nishitsuji K, Jung CG, Kontani M, Tokuda H, Kawashima H, Shibata H, Suzuki T, Nabehsima T, Michikawa M. Arachidonic or Docosahexaenoic Acid Diet Prevents Memory Impairment in Tg2576 Mice. J Alzheimers Dis 2015; 48:149-62. [DOI: 10.3233/jad-150341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takashi Hosono
- Department of Chemistry and Life Science, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Japan
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Kazuchika Nishitsuji
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Molecular Pathology, Institute of Biomedical Science, The University of Tokushima Graduate School, Tokushima, Japan
| | - Cha-Gyun Jung
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Neurophysiology and Brain Science, Nagoya City University, School of Medical Sciences, Nagoya, Japan
| | - Masanori Kontani
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toshitaka Nabehsima
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
- Nabeshima Laboratory, Department of Pharmacy, Meijyo University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Biochemistry, Nagoya City University, School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
21
|
Klinke DJ, Horvath N, Cuppett V, Wu Y, Deng W, Kanj R. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway. Mol Biol Cell 2015. [PMID: 26224311 PMCID: PMC4710243 DOI: 10.1091/mbc.e15-02-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein-protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin-induced gene expression.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506 )
| | - Nicholas Horvath
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Vanessa Cuppett
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Yueting Wu
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Wentao Deng
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Rania Kanj
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
22
|
Mishra P, Ayyannan SR, Panda G. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design. ChemMedChem 2015; 10:1467-74. [DOI: 10.1002/cmdc.201500215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Indexed: 12/24/2022]
|
23
|
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci 2015; 18:800-6. [PMID: 26007213 PMCID: PMC4445458 DOI: 10.1038/nn.4018] [Citation(s) in RCA: 501] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
The amyloid hypothesis, which has been the predominant framework for research in Alzheimer's disease (AD), has been the source of considerable controversy. The amyloid hypothesis postulates that amyloid-β peptide (Aβ) is the causative agent in AD. It is strongly supported by data from rare autosomal dominant forms of AD. However, the evidence that Aβ causes or contributes to age-associated sporadic AD is more complex and less clear, prompting criticism of the hypothesis. We provide an overview of the major arguments for and against the amyloid hypothesis. We conclude that Aβ likely is the key initiator of a complex pathogenic cascade that causes AD. However, we argue that Aβ acts primarily as a trigger of other downstream processes, particularly tau aggregation, which mediate neurodegeneration. Aβ appears to be necessary, but not sufficient, to cause AD. Its major pathogenic effects may occur very early in the disease process.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Grimm MOW, Mett J, Stahlmann CP, Grösgen S, Haupenthal VJ, Blümel T, Hundsdörfer B, Zimmer VC, Mylonas NT, Tanila H, Müller U, Grimm HS, Hartmann T. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression. Front Aging Neurosci 2015; 7:77. [PMID: 26074811 PMCID: PMC4443740 DOI: 10.3389/fnagi.2015.00077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology, Saarland University Homburg, Germany ; Department of Neurodegeneration and Neurobiology, Saarland University Homburg, Germany ; Deutsches Institut für DemenzPrävention, Saarland University Homburg, Germany
| | - Janine Mett
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | | | - Sven Grösgen
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Viola J Haupenthal
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Tamara Blümel
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | | | - Valerie C Zimmer
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Nadine T Mylonas
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland Kuopio, Finland ; Department of Neurology, Kuopio University Hospital Kuopio, Finland
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | - Heike S Grimm
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Tobias Hartmann
- Department of Experimental Neurology, Saarland University Homburg, Germany ; Department of Neurodegeneration and Neurobiology, Saarland University Homburg, Germany ; Deutsches Institut für DemenzPrävention, Saarland University Homburg, Germany
| |
Collapse
|
25
|
Ryu S, Teles F, Minopoli G, Russo T, Rosenfeld MG, Suh Y. An epigenomic role of Fe65 in the cellular response to DNA damage. Mutat Res 2015; 776:40-7. [PMID: 26255939 DOI: 10.1016/j.mrfmmm.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 01/02/2023]
Abstract
Previous findings describe Fe65 as a key protein in the cellular response to genotoxic stress. However, the precise molecular mechanism by which Fe65 contributes to DNA damage signaling remains unclear. In this study, we hypothesized that the transcriptional activity of Fe65 may contribute to DNA damage pathways by regulating gene expression patterns activated in response to genotoxic stress. To address this hypothesis, we mapped the global binding profile of Fe65 by chromatin immunoprecipitation (ChIP)-sequencing in the SK-N-SH cells exposed to genotoxic stress. Unexpectedly, the genome-wide location analysis showed a substantial enrichment of Fe65 in the promoter regions of coding genes linked to DNA damage signaling pathways. To further investigate the role of Fe65 in the transcriptional regulation of putative coding target genes identified by ChIP-seq, we performed microarray assays using wild-type (WT) or Fe65 deficient mouse embryonic fibroblasts (MEFs) exposed to oxidative stress with multiple recovery times. Gene ontology analysis of the Fe65-depedent transcriptome suggested that Fe65 modulates the expression of genes critical for DNA damage response. Motif enrichment analysis of regulatory regions occupied by Fe65 revealed a strong correlation with key transcription factors involved in DNA damage signaling pathways, including E2F1, p53, and Jun. Comparison of ChIP-sequencing results with microarray results ultimately identified 248 Fe65-depedent target genes, the majority of which were known regulators of cell cycle, cell death, and DNA replication and repair pathways. We validated the target genes identified by in silico analysis by qPCR experiments. Collectively, our results provide strong evidence that Fe65 plays a role in DNA damage response and cell viability by epigenomic regulation of specific transcriptional programs activated upon genotoxic stress.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francesca Teles
- Howard Hughes Medical Institute and Graduate Program in Biomedical Sciences, University of California at San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Giuseppina Minopoli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Tommaso Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute and Graduate Program in Biomedical Sciences, University of California at San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging Research, Guangdong Medical College, Dongguan, China.
| |
Collapse
|
26
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
27
|
Trazzi S, Fuchs C, De Franceschi M, Mitrugno VM, Bartesaghi R, Ciani E. APP-dependent alteration of GSK3β activity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2014; 67:24-36. [DOI: 10.1016/j.nbd.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
|
28
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
29
|
Sadeqzadeh E, de Bock CE, Wojtalewicz N, Holt JE, Smith ND, Dun MD, Schwarte-Waldhoff I, Thorne RF. Furin processing dictates ectodomain shedding of human FAT1 cadherin. Exp Cell Res 2014; 323:41-55. [PMID: 24560745 DOI: 10.1016/j.yexcr.2014.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Fat1 is a single pass transmembrane protein and the largest member of the cadherin superfamily. Mouse knockout models and in vitro studies have suggested that Fat1 influences cell polarity and motility. Fat1 is also an upstream regulator of the Hippo pathway, at least in lower vertebrates, and hence may play a role in growth control. In previous work we have established that FAT1 cadherin is initially cleaved by proprotein convertases to form a noncovalently linked heterodimer prior to expression on the cell surface. Such processing was not a requirement for cell surface expression, since melanoma cells expressed both unprocessed FAT1 and the heterodimer on the cell surface. Here we further establish that the site 1 (S1) cleavage step to promote FAT1 heterodimerisation is catalysed by furin and we identify the cleavage site utilised. For a number of other transmembrane receptors that undergo heterodimerisation the S1 processing step is thought to occur constitutively but the functional significance of heterodimerisation has been controversial. It has also been generally unclear as to the significance of receptor heterodimerisation with respect to subsequent post-translational proteolysis that often occurs in transmembrane proteins. Exploiting the partial deficiency of FAT1 processing in melanoma cells together with furin-deficient LoVo cells, we manipulated furin expression to demonstrate that only the heterodimer form of FAT1 is subject to cleavage and subsequent release of the extracellular domain. This work establishes S1-processing as a clear functional prerequisite for ectodomain shedding of FAT1 with general implications for the shedding of other transmembrane receptors.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Natalie Wojtalewicz
- Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Janet E Holt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nathan D Smith
- ABRF, Research Services, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Hunter Translational Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Hunter Translational Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
30
|
Sorrentino P, Iuliano A, Polverino A, Jacini F, Sorrentino G. The dark sides of amyloid in Alzheimer's disease pathogenesis. FEBS Lett 2014; 588:641-52. [PMID: 24491999 DOI: 10.1016/j.febslet.2013.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
Abstract
Although widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of β-amyloid (Aβ) remain to be elucidated. Many evidences are starting to cast doubt on Aβ as the primary causative factor in AD. For instance, Aβ is deposited in the brain following many different kinds of injury. Also, concentration of Aβ needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonietta Iuliano
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Arianna Polverino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Francesca Jacini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Giuseppe Sorrentino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy.
| |
Collapse
|
31
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease. Front Aging Neurosci 2013; 5:98. [PMID: 24391587 PMCID: PMC3870290 DOI: 10.3389/fnagi.2013.00098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| | - Janine Mett
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | | | | | - Valerie C Zimmer
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| |
Collapse
|
32
|
Kapoor A, Wang BJ, Hsu WM, Chang MY, Liang SM, Liao YF. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 2013; 4:1093-100. [PMID: 23530929 DOI: 10.1021/cn400039s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA)-elicited signaling has been shown to play critical roles in development, organogenesis, and the immune response. RA regulates expression of Alzheimer's disease (AD)-related genes and attenuates amyloid pathology in a transgenic mouse model. In this study, we investigated whether RA can suppress the production of amyloid-β (Aβ) through direct inhibition of γ-secretase activity. We report that RA treatment of cells results in significant inhibition of γ-secretase-mediated processing of the amyloid precursor protein C-terminal fragment APP-C99, compared with DMSO-treated controls. RA-elicited signaling was found to significantly increase accumulation of APP-C99 and decrease production of secreted Aβ40. In addition, RA-induced inhibition of γ-secretase activity was found to be mediated through significant activation of extracellular signal-regulated kinases (ERK1/2). Treatment of cells with the specific ERK inhibitor PD98059 completely abolished RA-mediated inhibition of γ-secretase. Consistent with these findings, RA was observed to inhibit secretase-mediated proteolysis of full-length APP. Finally, we have established that RA inhibits γ-secretase through nuclear retinoic acid receptor-α (RARα) and retinoid X receptor-α (RXRα). Our findings provide a new mechanistic explanation for the neuroprotective role of RA in AD pathology and add to the previous data showing the importance of RA signaling as a target for AD therapy.
Collapse
Affiliation(s)
- Arun Kapoor
- Molecular and Biological Agricultural Sciences Program,
Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Bo-Jeng Wang
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | - Yung-Feng Liao
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
33
|
Abstract
Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As such, the biological functions of APP and its processing products have been the subject of intense investigation, and the past 20+ years of research have met with both excitement and challenges. This article will review the current understanding of the physiological functions of APP in the context of APP family members.
Collapse
Affiliation(s)
- Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
34
|
Abstract
Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease (AD) because of its neurotoxicity and capacity to form characteristic insoluble deposits known as senile plaques. Aβ derives from amyloid-β protein precursor (AβPP), whose proteolytic processing generates several fragments including Aβ peptides of various lengths. The normal function of AβPP and its fragments remains poorly understood. While some fragments have been suggested to have a function in normal physiological cellular processes, Aβ has been widely considered as a "garbage" fragment that becomes toxic when it accumulates in the brain, resulting in impaired synaptic function and memory. Aβ is produced and released physiologically in the healthy brain during neuronal activity. In the last 10 years, we have been investigating whether Aβ plays a physiological role in the brain. We first demonstrated that picomolar concentrations of a human Aβ42 preparation enhanced synaptic plasticity and memory in mice. Next, we investigated the role of endogenous Aβ in healthy murine brains and found that treatment with a specific antirodent Aβ antibody and an siRNA against murine AβPP impaired synaptic plasticity and memory. The concurrent addition of human Aβ42 rescued these deficits, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal synaptic plasticity and memory to occur. Furthermore, the effect of both exogenous and endogenous Aβ was seen to be mediated by modulation of neurotransmitter release and α7-nicotinic receptors. These findings need to be taken into consideration when designing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | |
Collapse
|
35
|
Pinnix I, Ghiso JA, Pappolla MA, Sambamurti K. Major carboxyl terminal fragments generated by γ-secretase processing of the Alzheimer amyloid precursor are 50 and 51 amino acids long. Am J Geriatr Psychiatry 2013; 21:474-83. [PMID: 23570890 PMCID: PMC3740189 DOI: 10.1016/j.jagp.2013.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To understand the cleavage of the amyloid β protein (Aβ) precursor (APP) by γ-secretase and to determine its changes in a representative familial Alzheimer disease (FAD) mutation. METHODS Transfected cells expressing wild-type and FAD mutant APP were analyzed for changes in the levels of the major secreted Aβ species and of the corresponding intracellular C-terminal APP fragments (APP intracellular domain, AICD) generated by γ-secretase, whereas radio-sequencing was used to precisely identify the resulting cleavage site(s). RESULTS The AICD fragment(s) generated by γ-secretase cleavage comigrated in gels with a 50-residue synthetic peptide used as control, which is smaller than the 59 and 57 residues predicted from Aβ ending at positions 40 (Aβ40) and 42 (Aβ42), respectively. In agreement with previous findings, an FAD mutant form of presenilin 1 (PS1-M139V) significantly increased the longer Aβ42 while showing trends toward reducing Aβ40. AICD levels were reduced by the mutation, suggesting that γ-secretase activity may be actually impaired by the mutation. Radiosequence analysis in cells expressing wild-type PS1 detected γ-secretase cleavage sites at the Aβ peptide bond L(49)-V(50) to generate a 50-amino acid (aa) AICD fragment (AICD50) and the Aβ peptide bond T(48)-L(49), generating an AICD of 51 aa (AICD51). No other cleavage sites were reliably detected. CONCLUSIONS Based on findings that the FAD mutation that increases Aβ42 also reduces AICD, we propose that γ-secretase activity is impaired by FAD mutations and predict that physiologic and environmental agents that inhibit γ-secretase will actually induce AD pathogenesis rather that prevent it. Furthermore, we propose that the cleavage site to generate AICD is naturally ragged and occurs predominantly at two sites 48 and 49 aa from the start of the Aβ sequence. Thus, end specific antibodies to these two sites will need to be generated to study the quantitative relationships between these two cleavages in sporadic AD and FAD.
Collapse
Affiliation(s)
| | | | | | - Kumar Sambamurti
- To whom correspondence should be addressed: Kumar Sambamurti, Ph.D., Professor of Neuroscience, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, Tel: 843 792 4315,
| |
Collapse
|
36
|
Clinical significance of amyloid precursor protein in patients with testicular germ cell tumor. Adv Urol 2013; 2013:348438. [PMID: 23662100 PMCID: PMC3639667 DOI: 10.1155/2013/348438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/17/2013] [Indexed: 12/31/2022] Open
Abstract
Introduction. The biological role of amyloid precursor protein (APP) is not well understood, especially in testicular germ cell tumors (TGCTs). Therefore, we aimed to investigate the immunoreactivity (IR) and expression of APP in TGCTs and evaluated its clinical relevance. Materials and Methods. We performed an analysis of immunohistochemistry and mRNA expression of APP in 64 testicular specimens and 21 snap-frozen samples obtained from 1985 to 2004. We then evaluated the association between APP expression and clinicopathological status in TGCTs. Results. Positive APP IR was observed in 9.8% (4/41) of seminomatous germ cell tumors (SGCTs) and 39.1% (9/23) of nonseminomatous germ cell tumors (NGCTs). NGCTs showed significantly more cases of positive IR (P = 0.00870) and a higher mRNA expression level compared with those of SGCTs (P = 0.0140). Positive APP IR was also significantly associated with α-fetoprotein (αFP) elevation (P = 0.00870) and venous invasion (P = 0.0414). Conclusion. We observed an elevated APP expression in TGCTs, especially in NGCTs. APP may be associated with a more aggressive cancer in TGCTs.
Collapse
|
37
|
Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol 2012; 9:674-84. [PMID: 22654725 PMCID: PMC3263461 DOI: 10.2174/157015911798376181] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 01/26/2023] Open
Abstract
Amyloidopathies cause neurodegeneration in a substantial portion of the elderly population. Improvements in long term health care have made elderly individuals a large and growing demographic group, marking these diseases as a major public health concern. Alzheimer's Disease (AD) is the most studied form of neurodegenerative amyloidopathy. Although our understanding of AD is far from complete, several decades of research have advanced our knowledge to the point where it is conceivable that some form of disease modifying therapy may be available in the near future. These advances have been built on a strong mechanistic understanding of the disease from its underlying genetics, molecular biology and clinical pathology. Insights derived from the study of other neurodegenerative diseases, such as some forms of frontotemporal dementia, have been critical to this process. This knowledge has allowed researchers to construct animal models of the disease process that have paved the way towards the development of therapeutics. However, what was once thought to be a straightforward problem has evolved into a series of disappointing outcomes. Examination of pathways common to all neurodegenerative diseases, including the cellular mechanisms that clear misfolded proteins and their regulation, may be the best way to move forward.
Collapse
Affiliation(s)
- Dana M Niedowicz
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
38
|
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr 2012; 6:374-84. [PMID: 22796939 DOI: 10.4161/cam.20832] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Collapse
Affiliation(s)
- Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
ErbB4 is a receptor tyrosine kinase that can signal by a mechanism involving proteolytic release of intracellular and extracellular receptor fragments. Proteolysis-dependent signaling of ErbB4 has been proposed to be enhanced in breast cancer, mainly based on immunohistochemical localization of intracellular epitopes in the nuclei. To more directly address the processing of ErbB4 in vivo, an ELISA was developed to quantify cleaved ErbB4 ectodomain from serum samples. Analysis of 238 breast cancer patients demonstrated elevated quantities of ErbB4 ectodomain in the serum (≥40 ng/mL) in 21% of the patients, as compared to 0% of 30 healthy controls (P = 0.002). Significantly, the elevated serum ectodomain concentration did not correlate with the presence of nuclear ErbB4 immunoreactivity in matched breast cancer tissue samples. However, elevated serum ectodomain concentration was associated with the premenopausal status at diagnosis (P = 0.04), and estradiol enhanced ErbB4 cleavage in vitro. A 3.4 Å X-ray crystal structure of a complex of ErbB4 ectodomain and the Fab fragment of anti-ErbB4 mAb 1479 localized the binding site of mAb 1479 on ErbB4 to a region on subdomain IV encompassing the residues necessary for ErbB4 cleavage. mAb 1479 also significantly blocked ErbB4 cleavage in breast cancer cell xenografts in vivo, and the inhibition of cleavage was associated with suppression of xenograft growth. These data indicate that ErbB4 processing is enhanced in breast cancer tissue in vivo, and that ErbB4 cleavage can be stimulated by estradiol and targeted with mAb 1479.
Collapse
|
40
|
Lazarov O, Demars MP. All in the Family: How the APPs Regulate Neurogenesis. Front Neurosci 2012; 6:81. [PMID: 22675290 PMCID: PMC3366480 DOI: 10.3389/fnins.2012.00081] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
Recent intriguing evidence suggests that metabolites of amyloid precursor protein (APP), mutated in familial forms of Alzheimer’s disease (AD), play critical roles in developmental and postnatal neurogenesis. Of note is soluble APPα (sAPPα) that regulates neural progenitor cell proliferation. The APP family encompasses a group of ubiquitously expressed and evolutionarily conserved, type I transmembrane glycoproteins, whose functions have yet to be fully elucidated. APP can undergo proteolytic cleavage by mutually exclusive pathways. The subtle structural differences between metabolites generated in the different pathways, as well as their equilibrium, may be crucial for neuronal function. The implications of this new body of evidence are significant. Miscleavage of APP would readily impact developmental and postnatal neurogenesis, which might contribute to cognitive deficits characterizing Alzheimer’s disease. This review will discuss the implications of the role of the APP family in neurogenesis for neuronal development, cognitive function, and brain disorders that compromise learning and memory, such as AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | | |
Collapse
|
41
|
Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005777. [PMID: 22491782 DOI: 10.1101/cshperspect.a005777] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein ("plaques") and by insoluble filaments composed of hyperphosphorylated tau protein ("tangles"). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.
Collapse
Affiliation(s)
- Morgan Sheng
- Department of Neuroscience, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
42
|
Dumanis SB, Chamberlain KA, Jin Sohn Y, Jin Lee Y, Guénette SY, Suzuki T, Mathews PM, Pak DT, Rebeck GW, Suh YH, Park HS, Hoe HS. FE65 as a link between VLDLR and APP to regulate their trafficking and processing. Mol Neurodegener 2012; 7:9. [PMID: 22429478 PMCID: PMC3379943 DOI: 10.1186/1750-1326-7-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 03/19/2012] [Indexed: 11/17/2022] Open
Abstract
Background Several studies found that FE65, a cytoplasmic adaptor protein, interacts with APP and LRP1, altering the trafficking and processing of APP. We have previously shown that FE65 interacts with the ApoE receptor, ApoER2, altering its trafficking and processing. Interestingly, it has been shown that FE65 can act as a linker between APP and LRP1 or ApoER2. In the present study, we tested whether FE65 can interact with another ApoE receptor, VLDLR, thereby altering its trafficking and processing, and whether FE65 can serve as a linker between APP and VLDLR. Results We found that FE65 interacted with VLDLR using GST pull-down and co-immunoprecipitation assays in COS7 cells and in brain lysates. This interaction occurs via the PTB1 domain of FE65. Co-transfection with FE65 and full length VLDLR increased secreted VLDLR (sVLDLR); however, the levels of VLDLR C-terminal fragment (CTF) were undetectable as a result of proteasomal degradation. Additionally, FE65 increased cell surface levels of VLDLR. Moreover, we identified a novel complex between VLDLR and APP, which altered trafficking and processing of both proteins. Furthermore, immunoprecipitation results demonstrated that the presence of FE65 increased the interaction between APP and VLDLR in vitro and in vivo. Conclusions These data suggest that FE65 can regulate VLDLR trafficking and processing. Additionally, the interaction between VLDLR and APP altered both protein's trafficking and processing. Finally, our data suggest that FE65 serves as a link between VLDLR and APP. This novel interaction adds to a growing body of literature indicating trimeric complexes with various ApoE Receptors and APP.
Collapse
Affiliation(s)
- Sonya B Dumanis
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Skaper SD. Alzheimer's disease and amyloid: culprit or coincidence? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:277-316. [PMID: 22748834 DOI: 10.1016/b978-0-12-386986-9.00011-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is the largest unmet medical need in neurology today. This most common form of irreversible dementia is placing a considerable and increasing burden on patients, caregivers, and society, as more people live long enough to become affected. Current drugs improve symptoms but do not have profound neuroprotective and/or disease-modifying effects. AD is characterized by loss of neurons, dystrophic neurites, senile/amyloid/neuritic plaques, neurofibrillary tangles, and synaptic loss. Beta-amyloid (Aβ) peptide deposition is the major pathological feature of AD. Increasing evidence suggests that overexpression of the amyloid precursor protein and subsequent generation of the 39-43 amino acid residue, Aβ, are central to neuronal degeneration observed in AD patients possessing familial AD mutations, while transgenic mice overexpressing amyloid precursor protein develop AD-like pathology. Despite the genetic and cell biological evidence that supports the amyloid hypothesis, it is becoming increasing clear that AD etiology is complex and that Aβ alone is unable to account for all aspects of AD. The fact that vast overproduction of Aβ peptides in the brain of transgenic mouse models fails to cause overt neurodegeneration raises the question as to whether accumulation of Aβ peptides is indeed the culprit for neurodegeneration in AD. There is increasing evidence to suggest that Aβ/amyloid-independent factors, including the actions of AD-related genes (microtubule-associated protein tau, polymorphisms of apolipoprotein E4), inflammation, and oxidative stress, also contribute to AD pathogenesis. This chapter reviews the current state of knowledge on these factors and their possible interactions, as well as their potential for neuroprotection targets.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Largo E. Meneghetti, Padova, Italy
| |
Collapse
|
44
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
45
|
Nakayama K, Nagase H, Koh CS, Ohkawara T. γ-Secretase-regulated mechanisms similar to notch signaling may play a role in signaling events, including APP signaling, which leads to Alzheimer's disease. Cell Mol Neurobiol 2011; 31:887-900. [PMID: 21516353 DOI: 10.1007/s10571-011-9688-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/30/2011] [Indexed: 01/08/2023]
Abstract
Although γ-secretase was first identified as a protease that cleaves amyloid precursor protein (APP) within the transmembrane domain, thus producing Aβ peptides that are thought to be pathogenic in Alzheimer's disease (AD), its physiological functions have not been fully elucidated. In the canonical Notch signaling pathway, intramembrane cleavage by γ-secretase serves to release an intracellular domain of Notch that shows activity in the nucleus through binding to transcription factors. Many type 1 transmembrane proteins, including Notch, Delta, and APP, have recently been shown to be substrates for γ-secretase, and their intracellular domains are released from the cell membrane following cleavage by γ-secretase. The common enzyme γ-secretase modulates proteolysis and the turnover of possible signaling molecules, which has led to the attractive hypothesis that mechanisms similar to Notch signaling contribute widely to proteolysis-regulated signaling pathways. APP is also likely to have a signaling mechanism, although the physiological functions of APP have not been elucidated. Indeed, we have shown that the intracellular domain of APP alters gene expression and induces neuron-specific apoptosis. These results suggest that APP signaling responds to the onset of AD. Here, we review the possibility of γ-secretase-regulated signaling, including APP signaling, which leads to AD.
Collapse
Affiliation(s)
- Kohzo Nakayama
- Department of Anatomy, School of Medicine, Shinshu University, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | |
Collapse
|
46
|
Carter CJ. The Fox and the Rabbits-Environmental Variables and Population Genetics (1) Replication Problems in Association Studies and the Untapped Power of GWAS (2) Vitamin A Deficiency, Herpes Simplex Reactivation and Other Causes of Alzheimer's Disease. ISRN NEUROLOGY 2011; 2011:394678. [PMID: 22389816 PMCID: PMC3263564 DOI: 10.5402/2011/394678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 4, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 0LG, UK
| |
Collapse
|
47
|
Shah S, Federoff HJ. Therapeutic potential of vaccines for Alzheimer's disease. Immunotherapy 2011; 3:287-98. [PMID: 21322764 DOI: 10.2217/imt.10.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles. Although the relationship between neuronal loss and the presence of plaques/tangles is not well understood, the prevailing Aβ hypothesis posits that excessive accumulation of conformers and assemblies of Aβ protein precedes AD-related dementia and neuronal loss. Consequently, most disease-modifying immunotherapy approaches are directed towards modulating the levels of Aβ. The first AD vaccine clinical trial (AN1792) was suspended after the patients developed meningoencephalitis. In spite of the setback, the trial provided insights to refine development second-generation vaccines, which are attempting to resolve the side effects observed in the trial. This article provides an analysis of these efforts.
Collapse
Affiliation(s)
- Salim Shah
- Georgetown University Medical Center, 4000 Reservoir Road, NW 120 Building D, Washington, DC 20007, USA
| | | |
Collapse
|
48
|
Kim MY, Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Kim SM, Kim HY, Ahn JS, Kim H, Kim K, Hoe HS, Park HS. Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk. J Cell Sci 2011; 124:1831-43. [PMID: 21558417 DOI: 10.1242/jcs.076117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nie Q, Du XG, Geng MY. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease. Acta Pharmacol Sin 2011; 32:545-51. [PMID: 21499284 DOI: 10.1038/aps.2011.14] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amyloid β (Aβ) peptides have long been viewed as a potential target for Alzheimer's disease (AD). Aggregation of Aβ peptides in the brain tissue is believed to be an exclusively pathological process. Therefore, blocking the initial stages of Aβ peptide aggregation with small molecules could hold considerable promise as the starting point for the development of new therapies for AD. Recent rapid progresses in our understanding of toxic amyloid assembly provide a fresh impetus for this interesting approach. Here, we discuss the problems, challenges and new concepts in targeting Aβ peptides.
Collapse
|
50
|
Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011; 6:27. [PMID: 21527012 PMCID: PMC3098799 DOI: 10.1186/1750-1326-6-27] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/28/2011] [Indexed: 01/22/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in the pathophysiology of Alzheimer's disease in large part due to the sequential proteolytic cleavages that result in the generation of β-amyloid peptides (Aβ). Not surprisingly, the biological properties of APP have also been the subject of great interest and intense investigations. Since our 2006 review, the body of literature on APP continues to expand, thereby offering further insights into the biochemical, cellular and functional properties of this interesting molecule. Sophisticated mouse models have been created to allow in vivo examination of cell type-specific functions of APP together with the many functional domains. This review provides an overview and update on our current understanding of the pathobiology of APP.
Collapse
Affiliation(s)
- Hui Zheng
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|